New 2-arcs in projective Hjelmslev planes

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Sixth International Workshop on Optimal Codes And Related Topics

イロト イポト イヨト イヨト

æ

Michael Kiermaier New 2-arcs in projective Hjelmslev planes

・ロト ・ ア・ ・ ヨト ・ ヨト

3

Definition of a 2-arc

Given

- Some geometry & (consisting of points, lines, incidence relation).
- £ a set of points in 𝔅.

Definition

- ŧ is a <mark>2-arc</mark>, if
 - $\#(L \cap \mathfrak{k}) \leq 2$ for each line *L* in \mathfrak{G}.
- Maximum possible size of a 2-arc: $n_2(\mathfrak{G})$.

Goal

For interesting geometries \mathfrak{G} , determine $n_2(\mathfrak{G})$

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition of a 2-arc

Given

- Some geometry & (consisting of points, lines, incidence relation).
- £ a set of points in 𝔅.

Definition

- t is a 2-arc, if
 - $\#(L \cap \mathfrak{k}) \leq 2$ for each line *L* in \mathfrak{G}.
- Maximum possible size of a 2-arc: $n_2(\mathfrak{G})$.

Goal

For interesting geometries \mathfrak{G} , determine $n_2(\mathfrak{G})$.

イロト イポト イヨト イヨト

Recall

Projective plane $PG(2, \mathbb{F}_q)$ over the finite field \mathbb{F}_q :

- Points: one-dimensional linear subspaces of F³_q.
- Lines: two-dimensional linear subspaces of \mathbb{F}_q^3 .
- Incidence given by subset relation.

Ovals and hyperovals

- If q even: $n_2(PG(2, \mathbb{F}_q)) = q + 1$, such arcs are called ovals.
- If *q* odd: *n*₂(PG(2, 𝔽_{*q*})) = *q* + 2, such arcs are called hyperovals.

Connection to coding theory

Ovals and hyperovals give MDS-codes.

Recall

Projective plane $PG(2, \mathbb{F}_q)$ over the finite field \mathbb{F}_q :

- Points: one-dimensional linear subspaces of F³_q.
- Lines: two-dimensional linear subspaces of F³_a.
- Incidence given by subset relation.

Ovals and hyperovals

- If q even: $n_2(PG(2, \mathbb{F}_q)) = q + 1$, such arcs are called ovals.
- If *q* odd: *n*₂(PG(2, 𝔽_{*q*})) = *q* + 2, such arcs are called hyperovals.

Connection to coding theory

Ovals and hyperovals give MDS-codes.

Example (The Fano plane $PG(2, \mathbb{F}_q)$)

Michael Kiermaier New 2-arcs in projective Hjelmslev planes

Example (The Fano plane $PG(2, \mathbb{F}_q)$)

Michael Kiermaier New 2-arcs in projective Hjelmslev planes

Characterization of finite fields

A finite field is a finite ring *R* with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and *R*.

Generalization:

Definition

A finite ring *R* with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

 $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$, left-ideals are $\{0\}, \{0, 2\}$ and $\{0, 1, 2, 3\}$.

Properties of CR2-rings

- Left-ideals: $\{0\} \leq N \leq R$
- $N = \operatorname{rad}(R)$, so N both-sided ideal and $R/N \cong \mathbb{F}_q$.

Characterization of finite fields

A finite field is a finite ring *R* with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and *R*.

Generalization:

Definition

A finite ring *R* with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

 $\mathbb{Z}_4=\mathbb{Z}/4\mathbb{Z},$ left-ideals are $\{0\},\,\{0,2\}$ and $\{0,1,2,3\}.$

Properties of CR2-rings

- Left-ideals: $\{0\} \leq N \leq R$
- $N = \operatorname{rad}(R)$, so N both-sided ideal and $R/N \cong \mathbb{F}_q$.

Characterization of finite fields

A finite field is a finite ring *R* with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and *R*.

Generalization:

Definition

A finite ring *R* with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

 $\mathbb{Z}_4=\mathbb{Z}/4\mathbb{Z},$ left-ideals are $\{0\},\,\{0,2\}$ and $\{0,1,2,3\}.$

Properties of CR2-rings

- Left-ideals: $\{0\} \leq N \leq R$
- $N = \operatorname{rad}(R)$, so N both-sided ideal and $R/N \cong \mathbb{F}_q$.

Theorem

Let R be a CR2-ring, N = rad(R) with $R/N \cong \mathbb{F}_q$ and $q = p^r$, p prime. Then $\#R = q^2$ and either

- char(R) = p² and R ≅ GR(q², p²) (Galois ring of order q² and characteristic p²) or
- char(R) = p and there is a unique $\sigma \in Aut(\mathbb{F}_q)$ s.t. $R \cong \mathbb{F}_q[X, \sigma]/(X^2)$ (σ -duals over \mathbb{F}_q)

イロト イポト イヨト イヨト

1

Smallest CR2-rings

Abbreviations

$$\bullet \ \mathbb{G}_4 := \mathsf{GR}(16,4)$$

•
$$\mathbb{S}_q := \mathbb{F}_q[X]/(X^2)$$

•
$$\mathbb{T}_4 := \mathbb{F}_4[X, a \mapsto a^2]/(X^2)$$
 (non-commutative!)

ヘロン ヘアン ヘビン ヘビン

2

Definition

Let *R* be a CR2-ring. Projective Hjelmslev plane PHG(2, R) over *R*:

- Points: Free submodules of R_B^3 of rank 1.
- Lines: Free submodules of R_B^3 of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_2(R) := n_2(PHG(2, R))$ for CR2-rings *R*.

イロト 不得 とくほ とくほとう

Definition

Let *R* be a CR2-ring. Projective Hjelmslev plane PHG(2, R) over *R*:

- Points: Free submodules of R_B^3 of rank 1.
- Lines: Free submodules of R_B^3 of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_2(R) := n_2(PHG(2, R))$ for CR2-rings *R*.

イロト 不得 とくほと くほとう

1

Definition

Let *R* be a CR2-ring. Projective Hjelmslev plane PHG(2, R) over *R*:

- Points: Free submodules of R_B^3 of rank 1.
- Lines: Free submodules of R_B^3 of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_2(R) := n_2(PHG(2, R))$ for CR2-rings *R*.

ヘロト 人間 ト ヘヨト ヘヨト

Previous results (Thomas Honold, Ivan Landjev)

Previous results for small q

q	2	2	3	3		4		Ļ	5
R	\mathbb{Z}_4				\mathbb{G}_4	\mathbb{S}_4	\mathbb{T}_4		
$n_2(R)$	7	6	9	9	21	18	18	20 – 25	18 – 25

With Matthias Koch (proceedings): $n_2(\mathbb{Z}_{25}) \ge 21$, $n_2(\mathbb{S}_5) \ge 22$. Shortly later, different search method: $n_2(\mathbb{S}_5) = 25$.

ヘロア 人間 アメヨア 人口 ア

Previous results (Thomas Honold, Ivan Landjev)

$$\begin{array}{|c|c|c|c|}\hline n_2(R) & \hline R & \\\hline \hline Galois ring & \sigma \text{-duals} \\\hline q & \text{even} & q^2 + q + 1 & \cdot \leq q^2 + q \\ \text{odd} & \cdot \leq q^2 & \cdot \leq q^2 \end{array}$$

Previous results for small q

q		2	3	3		4		Ę	5
R	\mathbb{Z}_4	\mathbb{S}_2	\mathbb{Z}_9	\mathbb{S}_3	\mathbb{G}_4	\mathbb{S}_4	\mathbb{T}_4	\mathbb{Z}_{25}	\mathbb{S}_5
$n_2(R)$	7	6	9	9	21	18	18	20 – 25	18 – 25

With Matthias Koch (proceedings): $n_2(\mathbb{Z}_{25}) \ge 21$, $n_2(\mathbb{S}_5) \ge 22$. Shortly later, different search method: $n_2(\mathbb{S}_5) = 25$.

ヘロン 人間 とくほ とくほ とう

Previous results (Thomas Honold, Ivan Landjev)

$$\begin{array}{c|c} n_2(R) & \hline R \\ \hline \text{Galois ring} & \sigma\text{-duals} \\ \hline q & \text{even} & q^2 + q + 1 \\ \text{odd} & \cdot \leq q^2 & \cdot \leq q^2 \\ \end{array}$$

Previous results for small q

With Matthias Koch (proceedings): $n_2(\mathbb{Z}_{25}) \ge 21$, $n_2(\mathbb{S}_5) \ge 22$. Shortly later, different search method: $n_2(\mathbb{S}_5) = 25$.

ヘロン ヘアン ヘビン ヘビン

Previous results (Thomas Honold, Ivan Landjev)

$$\begin{array}{|c|c|c|c|}\hline n_2(R) & \hline R & \\\hline \hline Galois ring & \sigma \text{-duals} \\\hline q & \text{even} & q^2 + q + 1 & \cdot \leq q^2 + q \\ \text{odd} & \cdot \leq q^2 & \cdot \leq q^2 \end{array}$$

Previous results for small q

q	2	2	3	3		4		5	
R	\mathbb{Z}_4	\mathbb{S}_2	\mathbb{Z}_9	\mathbb{S}_3	G 4	\mathbb{S}_4	\mathbb{T}_4	\mathbb{Z}_{25}	\mathbb{S}_5
$n_2(R)$	7	6	9	9	21	18	18	21 – 25	25

With Matthias Koch (proceedings): $n_2(\mathbb{Z}_{25}) \ge 21$, $n_2(\mathbb{S}_5) \ge 22$. Shortly later, different search method: $n_2(\mathbb{S}_5) = 25$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (joint work with Thomas Honold)

For every prime power q end every ring R of σ -duals over \mathbb{F}_q , there is a $(q^2, 2)$ -arc in PHG(2, R).

Sketch of proof

- Work in *affine* Hjelmslev plane $AHG(2, R) \subset PHG(2, R)$.
- Write $R = \mathbb{F}_q[X; x \mapsto x^{p^i}]/(X^2)$. $(q = p^r; i \in \{0, \dots, r-1\}).$
- Identify R^2 with $S = \mathbb{F}_{q^2}[X; x \mapsto x^{p^i}]/(X^2)$.
- Write points of arc as t + f(t)X with $t \in \mathbb{F}_{q^2}$, $f : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$. (\Rightarrow in each point neighbor class: 1 point of the arc).
- Question: What are good maps f?

・ロト ・ ア・ ・ ヨト ・ ヨト

Theorem (joint work with Thomas Honold)

For every prime power q end every ring R of σ -duals over \mathbb{F}_q , there is a $(q^2, 2)$ -arc in PHG(2, R).

Sketch of proof

- Work in *affine* Hjelmslev plane AHG(2, R) ⊂ PHG(2, R).
- Write $R = \mathbb{F}_q[X; x \mapsto x^{p'}]/(X^2)$. $(q = p^r; i \in \{0, \dots, r-1\}).$
- Identify R^2 with $S = \mathbb{F}_{q^2}[X; x \mapsto x^{p^i}]/(X^2)$.
- Write points of arc as t + f(t)X with $t \in \mathbb{F}_{q^2}$, $f : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$. (\Rightarrow in each point neighbor class: 1 point of the arc).
- Question: What are good maps f?

イロト イポト イヨト イヨト

Theorem (joint work with Thomas Honold)

For every prime power q end every ring R of σ -duals over \mathbb{F}_q , there is a $(q^2, 2)$ -arc in PHG(2, R).

Sketch of proof

- Work in *affine* Hjelmslev plane AHG(2, R) ⊂ PHG(2, R).
- Write $R = \mathbb{F}_q[X; x \mapsto x^{p'}]/(X^2)$. $(q = p^r; i \in \{0, \dots, r-1\}).$
- Identify R^2 with $S = \mathbb{F}_{q^2}[X; x \mapsto x^{p^i}]/(X^2)$.
- Write points of arc as t + f(t)X with $t \in \mathbb{F}_{q^2}$, $f : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$. (\Rightarrow in each point neighbor class: 1 point of the arc).
- Question: What are good maps f?

イロト イポト イヨト イヨト

Theorem (joint work with Thomas Honold)

For every prime power q end every ring R of σ -duals over \mathbb{F}_q , there is a $(q^2, 2)$ -arc in PHG(2, R).

Sketch of proof

- Work in *affine* Hjelmslev plane AHG(2, R) ⊂ PHG(2, R).
- Write $R = \mathbb{F}_q[X; x \mapsto x^{p^i}]/(X^2)$. $(q = p^r; i \in \{0, \dots, r-1\}).$
- Identify R^2 with $S = \mathbb{F}_{q^2}[X; x \mapsto x^{p^i}]/(X^2)$.
- Write points of arc as t + f(t)X with $t \in \mathbb{F}_{q^2}$, $f : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$. (\Rightarrow in each point neighbor class: 1 point of the arc).
- Question: What are good maps f?

イロト 不得 とくほ とくほう

Theorem (joint work with Thomas Honold)

For every prime power q end every ring R of σ -duals over \mathbb{F}_q , there is a $(q^2, 2)$ -arc in PHG(2, R).

Sketch of proof

- Work in *affine* Hjelmslev plane AHG(2, R) ⊂ PHG(2, R).
- Write $R = \mathbb{F}_q[X; x \mapsto x^{p^i}]/(X^2)$. $(q = p^r; i \in \{0, \dots, r-1\}).$
- Identify R^2 with $S = \mathbb{F}_{q^2}[X; x \mapsto x^{p^i}]/(X^2)$.
- Write points of arc as t + f(t)X with t ∈ 𝔽_{q²}, f : 𝔽_{q²} → 𝔽_{q²}.
 (⇒ in each point neighbor class: 1 point of the arc).
- Question: What are good maps f?

・ロト ・ ア・ ・ ヨト ・ ヨト

Theorem (joint work with Thomas Honold)

For every prime power q end every ring R of σ -duals over \mathbb{F}_q , there is a $(q^2, 2)$ -arc in PHG(2, R).

Sketch of proof

- Work in affine Hjelmslev plane AHG(2, R) ⊂ PHG(2, R).
- Write $R = \mathbb{F}_q[X; x \mapsto x^{p^i}]/(X^2)$. $(q = p^r; i \in \{0, \dots, r-1\}).$
- Identify R^2 with $S = \mathbb{F}_{q^2}[X; x \mapsto x^{p^i}]/(X^2)$.
- Write points of arc as t + f(t)X with t ∈ 𝔽_{q²}, f : 𝔽_{q²} → 𝔽_{q²}.
 (⇒ in each point neighbor class: 1 point of the arc).
- Question: What are good maps f?

イロト イポト イヨト イヨト

Sketch of proof, continued

- Take $f(t) = \beta(t^{p^i}, t^{p^i})$, where β is \mathbb{F}_q -bilinear form of \mathbb{F}_{q^2} , then: f yields 2-arc $\iff f(u)/u \notin \mathbb{F}_q$ for all $u \in \mathbb{F}_{q^2}^{\times}$.
- $\beta(x, y) = (xy)^q + Axy$ with suitable parameter A works if not p = 2 and i = r 1.
- $\beta(x, y) = x^q y + Axy$ with suitable $A \in \mathbb{F}_q$ works it not i = 0.

イロト 不得 とくほ とくほ とう

1

Sketch of proof, continued

- Take $f(t) = \beta(t^{p^i}, t^{p^i})$, where β is \mathbb{F}_q -bilinear form of \mathbb{F}_{q^2} , then: f yields 2-arc $\iff f(u)/u \notin \mathbb{F}_q$ for all $u \in \mathbb{F}_{q^2}^{\times}$.
- $\beta(x, y) = (xy)^q + Axy$ with suitable parameter A works if not p = 2 and i = r 1.
- $\beta(x, y) = x^q y + Axy$ with suitable $A \in \mathbb{F}_q$ works it not i = 0.

イロト 不得 とくほ とくほ とう

Sketch of proof, continued

- Take $f(t) = \beta(t^{p^i}, t^{p^i})$, where β is \mathbb{F}_q -bilinear form of \mathbb{F}_{q^2} , then: f yields 2-arc $\iff f(u)/u \notin \mathbb{F}_q$ for all $u \in \mathbb{F}_{q^2}^{\times}$.
- $\beta(x, y) = (xy)^q + Axy$ with suitable parameter A works if not p = 2 and i = r 1.
- $\beta(x, y) = x^q y + Axy$ with suitable $A \in \mathbb{F}_q$ works it not i = 0.

イロト 不得 とくほ とくほとう

Codes

Apply generalized Gray map to the 2-arcs: \rightsquigarrow linear $[q^3, 6, q^3 - q^2 - q]$ -code over \mathbb{F}_q .

Numerical values

q	Code	distance-optimal?			
2	[8, 6, 2] ₂	optimal			
3	[27, 6, 15] ₃	optimal			
4	[64, 6, 44] ₄	optimal			
5	[125, 6, 95] ₅	best known			
7	$[343, 6, 287]_7$?			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Updated table

Open questions & future research

- For q even: Investigate extendibility of new 2-arcs. Can we always get (q + 2, 2)-arcs?
- Computationally determine the exact value of $n_2(\mathbb{Z}_{25})$.
- Find reasonable lower bound for q odd, R Galois ring.

イロン 不同 とくほ とくほ とう

æ

Updated table

Open questions & future research

- For *q* even: Investigate extendibility of new 2-arcs. Can we always get (*q* + 2, 2)-arcs?
- Computationally determine the exact value of n₂(Z₂₅).
- Find reasonable lower bound for q odd, R Galois ring.

ヘロア 人間 アメヨア 人口 ア

Updated table

Open questions & future research

- For *q* even: Investigate extendibility of new 2-arcs. Can we always get (*q* + 2, 2)-arcs?
- Computationally determine the exact value of $n_2(\mathbb{Z}_{25})$.
- Find reasonable lower bound for *q* odd, *R* Galois ring.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Updated table

Open questions & future research

- For *q* even: Investigate extendibility of new 2-arcs. Can we always get (*q* + 2, 2)-arcs?
- Computationally determine the exact value of $n_2(\mathbb{Z}_{25})$.
- Find reasonable lower bound for q odd, R Galois ring.

ヘロト 人間 ト ヘヨト ヘヨト

æ