Good (n,r)-arcs in PG(2,23)

Multiple blocking sets in PG(2,23)

Rumen Daskalov, Elena Metodieva

Department of Mathematics

Technical University of Gabrovo

5300 Gabrovo, Bulgaria

Varna, 16-22 June 2009 – p.

Let GF(q) denote the Galois field of q elements

Let V(3,q) be the vector space of row vectors of length three with entries in GF(q).

Let **PG(2,q)** be the corresponding **projective plane**.

The **points** (x_1, x_2, x_3) of PG(2,q) are the 1-dimensional subspaces of V(3,q).

Subspaces of dimension two are called **lines**.

The number of k-dimensional subspaces of V(n,q) is

$$\frac{(q^n - 1)(q^n - q)\dots(q^n - q^{k-1})}{(q^k - 1)(q^k - q)\dots(q^k - q^{k-1})}$$

The number of points is $q^2 + q + 1$ (n = 3, k = 1) The number of lines is $q^2 + q + 1$ (n = 3, k = 2)

There are q + 1 points on every line and q + 1 lines through every point.

Introduction - (n, r)-arc

Definition: An (n, r)-arc is a set of n points of a projective plane such that some r, but no r + 1 of them, are collinear.

Notation: $m_r(2,q) \rightarrow$ the maximum size of an (n,r)-arc

Introduction - (n, r)-arc

Definition: An (n, r)-arc is a set of n points of a projective plane such that some r, but no r + 1 of them, are collinear.

Notation: $m_r(2,q) \rightarrow$ the maximum size of an (n,r)-arc

Definition: An (l, t)-blocking set S in PG(2, q) is a set of l points such that every line of PG(2, q) intersects Sin at least t points, and there is a line intersecting S in exactly t points. **Definition**: An (n, r)-arc is a set of n points of a projective plane such that some r, but no r + 1 of them, are collinear.

Notation: $m_r(2,q) \rightarrow$ the maximum size of an (n,r)-arc

Definition: An (l, t)-blocking set S in PG(2, q) is a set of l points such that every line of PG(2, q) intersects Sin at least t points, and there is a line intersecting S in exactly t points.

Note that an (n,r)-arc is the complement of a $(q^2+q+1-n,q+1-r)$ -blocking set in a projective plane and conversely.

Introduction - *secant distribution*

Definition: Let M be a set of points in any plane. An i-secant is a line meeting M in exactly i points.

Notation: τ_i - the number of *i* -secants to a set *M*.

Introduction - *secant distribution*

Definition: Let M be a set of points in any plane. An i-secant is a line meeting M in exactly i points.

Notation: τ_i - the number of *i* -secants to a set *M*. In terms of τ_i the definitions of (n, r)-arc and (l, t)-blocking set become **Definition**: Let M be a set of points in any plane. An i-secant is a line meeting M in exactly i points.

Notation: τ_i - the number of *i* -secants to a set *M*. In terms of τ_i the definitions of (n, r)-arc and (l, t)-blocking set become

Definition: An (n, r)-arc is a set of n points of a projective plane for which $\tau_i \ge 0$ for i < r, $\tau_r > 0$ and $\tau_i = 0$ when i > r.

Definition: Let M be a set of points in any plane. An i-secant is a line meeting M in exactly i points.

Notation: τ_i - the number of *i* -secants to a set *M*. In terms of τ_i the definitions of (n, r)-arc and (l, t)-blocking set become

Definition: An (n, r)-arc is a set of n points of a projective plane for which $\tau_i \ge 0$ for i < r, $\tau_r > 0$ and $\tau_i = 0$ when i > r. **Definition**: An (l, t)-blocking set is a set of l points of a projective plane for which $\tau_i = 0$ for i < t, $\tau_t > 0$ and $\tau_i \ge 0$ when i > t.

Basic results in PG(2,q)

Bose (1947) proved that

$$m_2(2,q) = q+1$$
 for q - odd
 $m_2(2,q) = q+2$ for q - even

Bose (1947) proved that

$$m_2(2,q) = q+1$$
 for q - odd
 $m_2(2,q) = q+2$ for q - even

From the results of **Barlotti** (1965) and **Ball** (1994) it follows that

$$m_r(2,q) = (r-1)q + 1$$

for q odd prime and

$$r = (q+1)/2, \quad r = (q+3)/2$$

Let C be a conic = (q+1,2) arc = (24,2)-arc

0-secants (exterior lines) - q(q-1)/2 = 253

1-secants (tangents) - q+1 = 24

2-secants (secants) - (q+1)q/2 = 276

Barlotti's construction - PG(2,23)

$$q^2 + q + 1 = 553$$
 points of PG(2,23)

There are **three types of points** with respect to their position relative to C (**a conic**)

- 276 exterior points on precisely 2 tangents
- 253 interior points on no tangents at all
- 24 points of C

Barlotti's construction- PG(2,23)

All interior points plus one point of $\mathbf{C} \rightarrow (254, 12)$ arc

 $m_{12}(2,23) = 254$

Barlotti's construction- PG(2,23)

All interior points plus one point of $\mathbf{C} \rightarrow (254, 12)$ arc

$$m_{12}(2,23) = 254$$

All interior points plus all points of $\mathbf{C} \rightarrow (277, 13)$ arc

$$m_{13}(2,23) = 277$$

Varna, 16-22 June 2009 – p.

Additional interesting facts

C - *a conic*. **Lines** - *secants; tangents; exterior lines*

Every secant has $\frac{q-1}{2}$ exterior points and $\frac{q-1}{2}$ interior points

Each tangent has q exterior points and no interior points

Each exterior line has $\frac{q+1}{2}$ exterior points and $\frac{q+1}{2}$ interior points

Upper bounds on $m_r(2,q)$

Theorem 1: (Ball, 1996) Let K be an (n, r)-arc in PG(2, q) where q is prime. If $r \leq \frac{q+1}{2}$ then $m_r(2, q) \leq (r-1)q + 1$ If $r \geq \frac{q+3}{2}$ then $m_r(2, q) \leq (r-1)q + r - (q+1)/2$

Upper bounds on $m_r(2,q)$

Theorem 1: (Ball, 1996) Let K be an (n, r)-arc in PG(2, q) where q is prime. If $r \leq \frac{q+1}{2}$ then $m_r(2,q) \leq (r-1)q+1$ If $r \ge \frac{q+3}{2}$ then $m_r(2,q) \le (r-1)q + r - (q+1)/2$ **Theorem 2:** (Daskalov, OC'2005) Let K be an (n, r)-arc in PG(2, q), $q \leq 29$ is prime. If $r > \frac{q+3}{2}$ then $m_r(2,q) \le (r-1)q + r - (q+3)/2$

$m_r(2,q)$ - known values

r\q	3	4	5	7	8	9
2	4	6	6	8	10	10
3		9	11	15	15	17
4			16	22	28	28
5				29	33	37
6				36	42	48
7					49	55
8						65

 $m_r(2,q)$ - bounds

r\q	11	13	17	19
2	12	14	18	20
3	21	23	2835	3139
4	3234	3840	4852	5258
5	4345	4953	6169	6877
6	56	6466	7886	8696
7	67	79	94103	105115
8	7778	92	114120	124134
9	8990	105	137	147153
10	100102	118119	154	172

 $m_r(2,q)$ - bounds

r q	11	13	17	19
11		132133	166171	191
12		145147	182189	204210
13			204207	225230
14			221225	242250
15			239243	262270
16			256261	285290
17				305310
18				324330

Recent results on $m_r(2,q)$

• S. Ball	q = 11, 13
• Marcugini, Milani, Pambianco	q = 11, 13
 Daskalov, Contreras 	q = 13
 Daskalov, Metodieva 	q = 17
• Braun, Kohnert, Wassermann	q = 11, 13, 16, 17, 19

There exist:

- 1. A (35,3)- arc
- 2. A (58,4) arc
- 3. A (77,5) arc
- 4. A (97,6) arc
- 5. A (119,7) arc

Blocking sets in PG(2,23)

There exist:

- 1. A (193,7)- blocking set
- 2. A (168,6)- blocking set
- 3. A (142,5)- blocking set
- 4. A (116,4)- blocking set
- 5. A (92,3)- blocking set
- 6. A (69,2)- blocking set

Arcs in PG(2,23)

There exist:

- **6.** A (360,17) arc \Leftrightarrow a (193,7)- blocking set
- 7. A (485,18) arc \Leftrightarrow a (168,6)- blocking set
- **8.** A (411,19) arc \Leftrightarrow a (142,5)- blocking set
- **9.** A (437,20) arc \Leftrightarrow a (116,4)- blocking set
- **10.** A (461,21) arc \Leftrightarrow a (92,3)- blocking set
- **11.** A (484,22) arc \Leftrightarrow a (69,2)- blocking set

 $\tau_0 = 172, \ \tau_1 = 58, \ \tau_2 = 187, \ \tau_3 = 136$ a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16,h = 17, i = 18, k = 19, l = 20, m = 21, n = 22

The new results - table

r q	11	13	17	19	23
2	12	14	18	20	24
3	21	23	2835	3139	3547
4	3234	3840	4852	5258	5870
5	4345	4953	6169	6877	77 93
6	56	6466	7886	8696	97116
7	67	79	94103	105115	119139
8	7778	92	114120	124134	***162
9	8990	105	137	147153	***185
10	100102	118119	154	172	***208
11		132133	166171	191	***231

The new results - table

r q	11	13	17	19	23
12		145147	182189	204210	254
13			204207	225230	277
14			221225	242250	***300
15			239243	262270	***324
16			256261	285290	***348
17				305310	360372
18				324330	385396
19					411420
20					437444
21					461468
22					$484_{\text{arrfa}}, 16-22$ $492_{\text{une}}, 2009 - 100$