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Notation

F = GF (q), q = pm some prime p

R is a finite ring with identity

R̂ := HomZ(R,C×) the characters on (R,+)

χ ∈ R̂ is a character on (R,+)

C is a code of length n and minimum distance d
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Sphere Packing

A good code is one with a large number of codewords for a
given minimum distance and length.
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given minimum distance and length.
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Code Optimality

The Main Coding Problem:

1 For fixed length n and minimum distance d , what is the
maximum size of any code over R?
i.e., what is AR(n, d)?

2 For a fixed length n and minimum distance d , what is the
maximum size of any linear code over R?
i.e., what is BR(n, d)?
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Some Distance Functions

Definition (Hamming Metric)

Let u, v ∈ Rn. The Hamming distance between u and v is the
number of components where u and v differ, i.e.

dHam(u, v) = |{i : ui 6= vi}|

u = [0, 0, 1, 1, 3, 3], v = [1, 2, 2, 1, 1, 3] ∈ Z4

dHam(u, v) = 4.
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Some Distance Functions

Definition (Lee Metric)

Let u, v ∈ Zm. The Lee distance between u and v is the
absolute value modulo m of u − v , i.e.

dLee(u, v) = |u − v |m =

{
u − v if u − v ∈ {0, ..., bm/2c}
v − u otherwise

If u, v ∈ Zn
m then dLee(u, v) =

∑
i=1..n |ui − vi |m.

u = [0, 0, 1, 1, 3, 3], v = [1, 2, 2, 1, 1, 3] ∈ Z4

dLee(u, v) = 1 + 2 + 1 + 2 = 6
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Some Bounds for Codes over Finite Fields

Singleton: |C | ≤ Aq(n, d) ≤ qn−d+1

Hamming: |C | ≤ Aq(n, d) ≤ qn

Vq(n,b d−1
2
c) ,

Plotkin: |C | ≤ Aq(n, d) ≤ d
d−γn , γ = q−1

q , if n < d
γ

Gilbert-Varshamov: Aq(n, d) ≥ qn

Vq(n,d−1)

Elias-Bassalygo bound

Mc-Eliece-Rodemich-Rumsey-Welch bound

Linear Programming bound
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Asymptotic Representations
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Codes over Finite Rings

Definition

An code of length n over R is a nonempty subset of Rn. A
(left) linear code of length n over R is a left R-submodule of
Rn.

We will usually assume that R is a finite Frobenius ring.

Many of the foundational results of classical coding theory (e.g.
the MacWilliams’ theorems) can be extended to the finite ring
case when R is Frobenius.

[Wood, Honold, Nechaev, Greferath, Schmidt..]
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Finite Frobenius Rings

For a finite ring R, R̂ is an R − R bimodule via

χr (x) = χ(rx), rχ(x) = χ(xr)

for all x , r ∈ R, χ ∈ R̂.

R is a finite Frobenius ring iff

soc RR is left principal, iff

R(R/rad R) ' soc RR, iff

RR ' R R̂

Then R R̂ = R〈χ〉 for some (left) generating character χ.
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Finite Frobenius Rings

Let R and S be finite Frobenius rings, let G be a finite group.
The following are examples of Frobenius rings.

integer residue rings Zm

Galois rings

principal ideal rings

R × S

the matrix ring Mn(R)

the group ring R[G ]
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Not a Frobenius Ring

R = F2[x , y ]/〈x , y , xy〉 is not Frobenius since R/Rad R = R,
but Soc R = Rx + Ry .
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Homogeneous Weights

Definition

A weight w : R −→ Q is (left) homogeneous, if w(0) = 0 and

1 If Rx = Ry then w(x) = w(y) for all x , y ∈ R.

2 There exists a real number γ such that∑
y∈Rx

w(y) = γ |Rx | for all x ∈ R \ {0}.
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Examples of Homogeneous Weights

Example

On every finite field Fq the Hamming weight is a homogeneous
weight of average value γ = q−1

q .

Example

On Z4 the Lee weight is homogeneous with γ = 1.

x 0 1 2 3

wLee(x) 0 1 2 1
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Examples of Homogeneous Weights

Example

On Z10 the following weight is homogeneous with γ = 1:

x 0 1 2 3 4 5 6 7 8 9

whom(x) 0 1 5
4 1 5

4 2 5
4 1 5

4 1
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Examples of Homogeneous Weights

Example

On the ring R of 2× 2 matrices over GF(2) the weight

w : R −→ R, X 7→


0 : X = 0,
2 : X singular, X 6= 0,
1 : otherwise,

is a homogeneous weight of average value γ = 3
2 .

R has 3 principal ideals - each of size - 4 and six units. We have

0 + 9
4

3
γ︸ ︷︷ ︸+ 6

2

3
γ︸ ︷︷ ︸ = 16γ.

sing. units
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Examples of Homogeneous Weights

Example

On a local Frobenius ring R with q-element residue field the
weight

w : R −→ R, x 7→


0 : x = 0,
q

q−1 : x ∈ soc(R), x 6= 0,

1 : otherwise,

is a homogeneous weight of average value γ = 1.

Which finite rings admit a homogeneous weight?

Up to the choice of γ, every finite ring admits a unique
homogeneous weight .
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Homogeneous Weights of FFRs

Theorem (Honold)

Let R be a finite Frobenius ring with generating character χ.
Then the homogeneous weights on R are precisely the functions

w : R −→ R, x 7→ γ
[
1− 1

|R×|
∑

u∈R×

χ(xu)
]

where γ is a real number.
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Bounds on AR(n, d) for the Homogeneous Weight

The following bounds have been found for codes over FFRs for
the homogeneous weight.

Sphere-packing (Hamming)

Sphere-covering (Gilbert-Varshamov)

Plotkin-like bounds

Elias-like bounds

Singleton-like bound

Linear programming bound
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A Key Lemma

Definition

Let x ∈ Rn,C <R Rn. We define πC (x) := (xi )i /∈suppC .

Lemma

Let C ≤ RRn be a linear code, and let x ∈ Rn. Then

1

|C |
∑
c∈C

w(x + c) = γ|suppC |+ w(πC (x)).
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A Key Lemma

Proof: WLOG, let γ = 1. We compute
∑

c∈C w(x + c)

=
∑
c∈C

∑
i∈suppC

w(xi + ci ) +
∑
c∈C

∑
i /∈suppC

w(xi )

=
∑

i∈suppC

∑
c∈C

w(xi + ci ) + |C |w(πC (x))

=
∑

i∈suppC

∑
c∈C

1− 1

|R×|
∑

u∈R×

χ(u(xi + ci ))

+ |C |w(πC (x))

= |suppC |

|C | − 1

|R×|
∑

u∈R×

χ(uxi )
∑
c∈C

χ(uci )

+ |C |w(πC (x))

= |C |[|suppC |+ w(πC (x))].
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Residual Codes

Definition

Let C ≤R Rn, c ∈ Rn. Res(C , c) := {(xi ) : x ∈ C , ci = 0}.

Example

Let C be the Z4-linear code generated by
1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1

 .
Let c = [0, 0, 0, 2, 0, 2, 2, 2]. Then Res(C , c) is generated by

1 0 0 3
0 1 0 1
0 0 1 3
0 0 0 2

 .
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Residual Codes - the Main Theorem

Theorem (BGKS)

Let C ≤ RRn have minimum homogeneous weight d, and let
c ∈ C satisfy `(c) := wHam(c) < d

γ . Then Res(C , c) has

length n − `(c),

minimum homogeneous weight d ′ ≥ d − γ`(c),

Res(C , c) ∼= C/Rc : in particular |Res(C , c)| =
|C |
|Rc |

,

|C | ≤ |Rc | d − γ`(c)

d − γn
.
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Bounds on BR(n, d) for the Homogeneous Weight

Corollary (BGKS)

Let C ≤ RRn be a linear code of minimum homogeneous weight
d and minimum Hamming weight ` where ` ≤ n < d

γ . Then

|C | ≤ |R| d − γ`
d − γn

.
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Bounds on BR(n, d) for the Homogeneous Weight

Corollary (BGKS)

Let C ≤ RRn be a linear code of minimum homogeneous
weight d and minimum Hamming weight ` where ` < n < d

γ .
Let Q be the maximum size of any minimal ideal of R. Then

|C | ≤ Q
d − γ`
d − γn

.
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A Plotkin Optimal Code

Example

Let R = F2×2
2 . Let C be the length 16m − 1 Simplex Code over

R. Then |C | = |R|m = 16m,

d = |R|mγ = 16mγ,

` := dHam(C ) = 16m − 16m

4
=

3

4
16m.

R has 3 minimal ideals, each of size Q = 4 and so

|C | ≤ Q
d − γ`
d − γn

= 4
16mγ − 3

4 16mγ

16mγ − (16m − 1)γ
= 4

16m

4
= 16m.
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Bounds on BR(n, d) for the Homogeneous Weight

Singleton-like bounds:

Theorem (BGKS)

Let C ≤ RRn be an [n, d ] linear code and suppose that n ≤ d
γ .

Then

n −
⌈
|R| − 1

|R|
d

γ

⌉
≥
⌈

log|R| |C | − 1
⌉
.

Theorem (BGKS)

Let C be an [n, d ] code over R satisfying n ≤ d
γ and `(C ) < n.

Let P := max{|Ra| : a ∈ Rn,Ra ≤ C , `(a) < n}. Then

n −
⌈

P − 1

P

d

γ

⌉
≥ dlogP |C | − logP |R|e .



Refined Upper
Bounds for
Ring-Linear

Codes

Eimear Byrne,
Marcus

Greferath,
Axel Kohnert,

Vitaly
Skachek

Bounds on BR(n, d) for the Homogeneous Weight

Singleton-like bounds:

Theorem (BGKS)

Let C ≤ RRn be an [n, d ] linear code and suppose that n ≤ d
γ .

Then

n −
⌈
|R| − 1

|R|
d

γ

⌉
≥
⌈

log|R| |C | − 1
⌉
.

Theorem (BGKS)

Let C be an [n, d ] code over R satisfying n ≤ d
γ and `(C ) < n.

Let P := max{|Ra| : a ∈ Rn,Ra ≤ C , `(a) < n}. Then

n −
⌈

P − 1

P

d

γ

⌉
≥ dlogP |C | − logP |R|e .



Refined Upper
Bounds for
Ring-Linear

Codes

Eimear Byrne,
Marcus

Greferath,
Axel Kohnert,

Vitaly
Skachek

Singleton-Like Bounds

These bounds arise by repeated applications of the main
theorem, to obtain a sequence of [ni , di ] codes

C = C0, C1
∼= C/Rc , C2

∼= C1/Rc1, ...,Cr
∼= Cr−1/Rc r−1

with minumum Hamming distance `i .

Then

|C | = |Rc0||Rc1| · · · |Rc r−1||Cr |
≤ P r−1|Cr | ≤ P r−1|R|

where P = max{|Ra| : a ∈ Rn,Ra ≤ C , `(a) < n}, so

n ≥ |Rc | − 1

|Rc |
d

γ
+ r ≥ P − 1

P

d

γ
+ logP(|C | − |R|).
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A Class of MDS Codes

Example

Let R be a chain ring of length 2. Then R× = R\rad R and
|R| = q2. Let U := R2\rad R2, let P := {xR : x ∈ U}. Then
|P| = q2 + q.

Let C < RRn be the length n := q2 + q code with 2× n
generator matrix whose columns are the distinct elements of P.

Clearly `(c) < n for each c ∈ C . C is free of rank 2 and the

maximal cyclic submodules of C have size P := |R| = q2. Let

r = dlogP |C | − 1e = logq2 q4 − 1 = 1.
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Clearly `(c) < n for each c ∈ C .

C is free of rank 2 and the

maximal cyclic submodules of C have size P := |R| = q2. Let

r = dlogP |C | − 1e = logq2 q4 − 1 = 1.
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Example (cont.)

Setting γ = 1, each nonzero word xG of C has weight

w(xG ) =

{
q2 + q if x ∈ U
q3

q−1 if x ∈ radR2\0 ,

=⇒ n −
⌈

P − 1

P
d

⌉
= n −

⌈
q2 − 1

q2
(q2 + q)

⌉
= n −

⌈
q2 + q − 1− 1

q

⌉
= q2 + q − q2 − q + 1 = 1 = r .
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