Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne¹, Marcus Greferath¹, Axel Kohnert², Vitaly Skachek¹

¹Claude Shannon Institute and School of Mathematical Sciences University College Dublin Ireland

> ²Dept Mathematics University of Bayreuth Germany

> > June 18 2009

Outline

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

- Codes over finite fields
- Code optimality
- Bounds for codes for the Hamming weight
- Ring-linear coding
- The homogeneous weight
- Bounds on the size of a code for the homogeneous weight

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Notation

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

- F = GF(q), $q = p^m$ some prime p
- R is a finite ring with identity
- $\hat{R} := \operatorname{Hom}_{\mathbf{Z}}(R, \mathbb{C}^{\times})$ the characters on (R, +)
- $\chi \in \hat{R}$ is a character on (R, +)
- C is a code of length n and minimum distance d

Sphere Packing

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek A good code is one with a large number of codewords for a given minimum distance and length.

Sphere Packing

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek A good code is one with a large number of codewords for a given minimum distance and length.

Code Optimality

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek The Main Coding Problem:

For fixed length n and minimum distance d, what is the maximum size of any code over R? i.e., what is A_R(n, d)?

For a fixed length n and minimum distance d, what is the maximum size of any linear code over R? i.e., what is B_R(n, d)?

Some Distance Functions

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition (Hamming Metric)

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. The Hamming distance between \mathbf{u} and \mathbf{v} is the number of components where \mathbf{u} and \mathbf{v} differ, i.e.

$$\mathrm{d}_{\mathrm{Ham}}(\mathbf{u},\mathbf{v}) = |\{i: u_i \neq v_i\}|$$

$$\textbf{u} = [0,0,1,1,3,3], \textbf{v} = [1,2,2,1,1,3] \in \textbf{Z}_4$$

$$d_{\mathrm{Ham}}(\mathbf{u},\mathbf{v})=4.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Some Distance Functions

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition (Lee Metric)

Let $u, v \in \mathbf{Z}_m$. The Lee distance between u and v is the absolute value modulo m of u - v, i.e.

$$d_{\text{Lee}}(u,v) = |u-v|_m = \left\{ \begin{array}{ll} u-v & \text{if } u-v \in \{0,...,\lfloor m/2 \rfloor\}\\ v-u & \text{otherwise} \end{array} \right.$$

If $\mathbf{u}, \mathbf{v} \in \mathbf{Z}_m^n$ then $d_{\text{Lee}}(\mathbf{u}, \mathbf{v}) = \sum_{i=1..n} |u_i - v_i|_m$.

$$\textbf{u} = [0, 0, 1, 1, 3, 3], \textbf{v} = [1, 2, 2, 1, 1, 3] \in \textbf{Z}_4$$

 $d_{\text{Lee}}(\mathbf{u},\mathbf{v}) = 1 + 2 + 1 + 2 = 6$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Some Bounds for Codes over Finite Fields

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Singleton: |C| ≤ A_q(n, d) ≤ q^{n-d+1}
Hamming: |C| ≤ A_q(n, d) ≤ $\frac{q^n}{V_q(n, \lfloor \frac{d-1}{2} \rfloor)}$,

Plotkin: $|C| \le A_q(n,d) \le rac{d}{d-\gamma n}, \gamma = rac{q-1}{q}$, if $n < rac{d}{\gamma}$

- Gilbert-Varshamov: $A_q(n,d) \geq rac{q^n}{V_q(n,d-1)}$
- Elias-Bassalygo bound
- Mc-Eliece-Rodemich-Rumsey-Welch bound
- Linear Programming bound

Asymptotic Representations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Codes over Finite Rings

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition

An code of length n over R is a nonempty subset of R^n . A (left) linear code of length n over R is a left R-submodule of R^n .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Codes over Finite Rings

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition

An code of length n over R is a nonempty subset of R^n . A (left) linear code of length n over R is a left R-submodule of R^n .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We will usually assume that R is a finite Frobenius ring.

Codes over Finite Rings

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition

An code of length n over R is a nonempty subset of R^n . A (left) linear code of length n over R is a left R-submodule of R^n .

We will usually assume that R is a finite Frobenius ring.

Many of the foundational results of classical coding theory (e.g. the MacWilliams' theorems) can be extended to the finite ring case when R is Frobenius.

[Wood, Honold, Nechaev, Greferath, Schmidt..]

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek For a finite ring R, \hat{R} is an R - R bimodule via $\chi^{r}(x) = \chi(rx), \quad {}^{r}\chi(x) = \chi(xr)$ for all $x, r \in R, \chi \in \hat{R}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek For a finite ring R, \hat{R} is an R - R bimodule via $\chi^{r}(x) = \chi(rx), \quad {}^{r}\chi(x) = \chi(xr)$ for all $x, r \in R, \chi \in \hat{R}$. R is a finite Frobenius ring iff

> $soc _{R}R$ is left principal, iff $_{R}(R/rad R) \simeq soc _{R}R$, iff $_{R}R \simeq _{R}\hat{R}$

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek For a finite ring R, \hat{R} is an R - R bimodule via $\chi^{r}(x) = \chi(rx), \quad {}^{r}\chi(x) = \chi(xr)$ for all $x, r \in R, \chi \in \hat{R}$. R is a finite Frobenius ring iff

$$soc _{R}R$$
 is left principal, iff
 $_{R}(R/rad \ R) \simeq soc _{R}R$, iff
 $_{R}R \simeq _{R}\hat{R}$

Then $_{R}\hat{R} = _{R}\langle \chi \rangle$ for some (left) generating character χ .

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek Let R and S be finite Frobenius rings, let G be a finite group. The following are examples of Frobenius rings.

- integer residue rings **Z**_m
- Galois rings
- principal ideal rings
- $R \times S$
- the matrix ring $M_n(R)$
- the group ring R[G]

Not a Frobenius Ring

 $R = \mathbb{F}_2[x, y]/\langle x, y, xy \rangle$ is not Frobenius since R/Rad R = R, but Soc R = Rx + Ry.

Homogeneous Weights

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition

A weight $w: R \longrightarrow \mathbf{Q}$ is *(left) homogeneous*, if w(0) = 0 and

1 If
$$Rx = Ry$$
 then $w(x) = w(y)$ for all $x, y \in R$.

2 There exists a real number γ such that

$$\sum_{y \in Rx} w(y) = \gamma |Rx| \quad \text{for all } x \in R \setminus \{0\}$$

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On every finite field \mathbb{F}_q the Hamming weight is a homogeneous weight of average value $\gamma = \frac{q-1}{q}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On every finite field \mathbb{F}_q the Hamming weight is a homogeneous weight of average value $\gamma = \frac{q-1}{q}$.

Example

On Z_4 the Lee weight is homogeneous with $\gamma = 1$.

x	0	1	2	3
$w_{\rm Lee}(x)$	0	1	2	1

$$1 \bullet R = Z_4$$

$$2 \bullet 2R = \{0,2\}$$

$$0 \bullet \{0\}$$

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On \mathbf{Z}_{10} the following weight is homogeneous with $\gamma = 1$:

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On the ring R of 2×2 matrices over GF(2) the weight $w: R \longrightarrow \mathbb{R}, \quad X \mapsto \begin{cases} 0 & : \quad X = 0, \\ 2 & : \quad X \text{ singular}, \quad X \neq 0, \\ 1 & : \quad \text{otherwise}, \end{cases}$

is a homogeneous weight of average value $\gamma = \frac{3}{2}$.

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On the ring R of 2×2 matrices over GF(2) the weight

$$w: R \longrightarrow \mathbb{R}, \quad X \mapsto \left\{ egin{array}{cccc} 0 & : & X = 0, \\ 2 & : & X ext{ singular, } X
eq 0, \\ 1 & : & ext{otherwise,} \end{array}
ight.$$

is a homogeneous weight of average value $\gamma = \frac{3}{2}$. *R* has 3 principal ideals - each of size - 4 and six units. We have

$$0 + \underbrace{9\frac{4}{3}\gamma}_{\text{sing.}} + \underbrace{6\frac{2}{3}\gamma}_{\text{units}} = 16\gamma.$$

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On a local Frobenius ring R with q-element residue field the weight

$$w: R \longrightarrow \mathbb{R}, \quad x \mapsto \left\{ egin{array}{ccc} 0 & : & x = 0, \ rac{q}{q-1} & : & x \in soc(R), \ x
eq 0, \ 1 & : & otherwise, \end{array}
ight.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

is a homogeneous weight of average value $\gamma = 1$.

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On a local Frobenius ring R with q-element residue field the weight

$$w: R \longrightarrow \mathbb{R}, \quad x \mapsto \left\{ egin{array}{ccc} 0 & : & x = 0, \ rac{q}{q-1} & : & x \in soc(R), \ x
eq 0, \ 1 & : & otherwise, \end{array}
ight.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

is a homogeneous weight of average value $\gamma = 1$.

Which finite rings admit a homogeneous weight?

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

On a local Frobenius ring R with q-element residue field the weight

$$w: R \longrightarrow \mathbb{R}, \quad x \mapsto \left\{ egin{array}{ccc} 0 & : & x = 0, \ rac{q}{q-1} & : & x \in soc(R), \ x
eq 0, \ 1 & : & otherwise, \end{array}
ight.$$

is a homogeneous weight of average value $\gamma = 1$.

Which finite rings admit a homogeneous weight? Up to the choice of γ , every finite ring admits a unique homogeneous weight .

Homogeneous Weights of FFRs

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Theorem (Honold)

Let R be a finite Frobenius ring with generating character χ . Then the homogeneous weights on R are precisely the functions

$$w: R \longrightarrow \mathbb{R}, \quad x \mapsto \gamma \Big[1 - \frac{1}{|R^{\times}|} \sum_{u \in R^{\times}} \chi(xu) \Big]$$

where γ is a real number.

Bounds on $A_R(n, d)$ for the Homogeneous Weight

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek The following bounds have been found for codes over FFRs for the homogeneous weight.

- Sphere-packing (Hamming)
- Sphere-covering (Gilbert-Varshamov)
- Plotkin-like bounds
- Elias-like bounds
- Singleton-like bound
- Linear programming bound

A Key Lemma

Refined Upper Bounds for **Ring-Linear** Codes

Definition

Let
$$x \in \mathbb{R}^n$$
, $C <_{\mathbb{R}} \mathbb{R}^n$. We define $\pi_C(x) := (x_i)_{i \notin \text{supp}C}$

Lemma

Let $C \leq {}_{R}R^{n}$ be a linear code, and let $x \in R^{n}$. Then

$$\frac{1}{|C|}\sum_{c\in C}w(x+c)=\gamma|\mathrm{supp}\,C|+w(\pi_C(x)).$$

A Key Lemma

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Proof: WLOG, let
$$\gamma = 1$$
. We compute $\sum_{c \in C} w(x + c)$

$$= \sum_{c \in C} \sum_{i \in \text{supp}C} w(x_i + c_i) + \sum_{c \in C} \sum_{i \notin \text{supp}C} w(x_i)$$

$$= \sum_{i \in \text{supp}C} \sum_{c \in C} w(x_i + c_i) + |C|w(\pi_C(x))$$

$$= \sum_{i \in \text{supp}C} \sum_{c \in C} \left[1 - \frac{1}{|R^{\times}|} \sum_{u \in R^{\times}} \chi(u(x_i + c_i)) \right] + |C|w(\pi_C(x))$$

$$= |\text{supp}C| \left[|C| - \frac{1}{|R^{\times}|} \sum_{u \in R^{\times}} \chi(ux_i) \sum_{c \in C} \chi(uc_i) \right] + |C|w(\pi_C(x))$$

$$= |C|[|\text{supp}C| + w(\pi_C(x))].$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Residual Codes

Definition

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachak

Let $C \leq_R R^n, c \in R^n$. $Res(C, c) := \{(x_i) : x \in C, c_i = 0\}.$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Residual Codes

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Definition

Let
$$C \leq_R R^n, c \in R^n$$
. $Res(C, c) := \{(x_i) : x \in C, c_i = 0\}$.
Example

Let C be the \mathbb{Z}_4 -linear code generated by

1	0	0	0	3	1	2	1]
0	1	0	0	1	2	3	1
0	0	1	0	3	3	3	2
0	0	0	1	2	3	1	1

•

Let c = [0, 0, 0, 2, 0, 2, 2, 2]. Then Res(C, c) is generated by

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

.

Residual Codes - the Main Theorem

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Theorem (BGKS)

Let $C \leq_R R^n$ have minimum homogeneous weight d, and let $c \in C$ satisfy $\ell(c) := w_{\text{Ham}}(c) < \frac{d}{\gamma}$. Then Res(C, c) has length $n - \ell(c)$,

• minimum homogeneous weight $d' \ge d - \gamma \ell(c)$,

• $Res(C,c) \cong C/Rc$: in particular $|Res(C,c)| = \frac{|C|}{|Rc|}$,

$$|C| \leq |Rc| \frac{d - \gamma \ell(c)}{d - \gamma n}$$

Bounds on $B_R(n, d)$ for the Homogeneous Weight

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Corollary (BGKS)

Let $C \leq {}_{R}R^{n}$ be a linear code of minimum homogeneous weight d and minimum Hamming weight ℓ where $\ell \leq n < \frac{d}{\gamma}$. Then

$$|C| \le |R| \, \frac{d - \gamma \ell}{d - \gamma n}$$

Bounds on $B_R(n, d)$ for the Homogeneous Weight

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Corollary (BGKS)

Let $C \leq {}_{R}R^{n}$ be a linear code of minimum homogeneous weight d and minimum Hamming weight ℓ where $\ell < n < \frac{d}{\gamma}$. Let Q be the maximum size of any minimal ideal of R. Then

$$|C| \le Q \, \frac{d - \gamma \ell}{d - \gamma n}$$

A Plotkin Optimal Code

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

Let $R = \mathbb{F}_2^{2 \times 2}$. Let C be the length $16^m - 1$ Simplex Code over R. Then $|C| = |R|^m = 16^m$,

$$d=|R|^m\gamma=16^m\gamma,$$

$$\ell := d_{\operatorname{Ham}}(C) = 16^m - \frac{16^m}{4} = \frac{3}{4}16^m.$$

・ロト ・ 雪 ト ・ ヨ ト

A Plotkin Optimal Code

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

Let $R = \mathbb{F}_2^{2 \times 2}$. Let C be the length $16^m - 1$ Simplex Code over R. Then $|C| = |R|^m = 16^m$,

$$d=|R|^m\gamma=16^m\gamma,$$

$$\ell := d_{\operatorname{Ham}}(C) = 16^m - \frac{16^m}{4} = \frac{3}{4}16^m$$

R has 3 minimal ideals, each of size Q = 4 and so

$$\begin{aligned} | &\leq Q \, \frac{d - \gamma \ell}{d - \gamma n} \\ &= 4 \, \frac{16^m \gamma - \frac{3}{4} 16^m \gamma}{16^m \gamma - (16^m - 1)\gamma} \, = \, 4 \frac{16^m}{4} \, = \, 16^m. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bounds on $B_R(n, d)$ for the Homogeneous Weight

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Singleton-like bounds:

Theorem (BGKS)

Let $C \leq {}_{R}R^{n}$ be an [n, d] linear code and suppose that $n \leq \frac{d}{\gamma}$. Then

$$n - \left\lceil \frac{|R| - 1}{|R|} \frac{d}{\gamma} \right\rceil \ge \left\lceil \log_{|R|} |C| - 1 \right\rceil.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bounds on $B_R(n, d)$ for the Homogeneous Weight

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Singleton-like bounds:

Theorem (BGKS)

Let $C \leq {}_{R}R^{n}$ be an [n, d] linear code and suppose that $n \leq \frac{d}{\gamma}$. Then

$$n-\left|\frac{|R|-1}{|R|}\frac{d}{\gamma}\right|\geq\left\lceil\log_{|R|}|C|-1\right\rceil.$$

Theorem (BGKS)

Let C be an [n, d] code over R satisfying $n \leq \frac{d}{\gamma}$ and $\ell(C) < n$. Let $P := \max\{|Ra| : a \in R^n, Ra \leq C, \ell(a) < n\}$. Then

$$n - \left\lceil rac{P-1}{P} rac{d}{\gamma}
ight
ceil \geq \left\lceil \log_P |C| - \log_P |R|
ight
ceil$$

Singleton-Like Bounds

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek These bounds arise by repeated applications of the main theorem, to obtain a sequence of $[n_i, d_i]$ codes

$$C = C_0, \ C_1 \cong C/Rc, \ C_2 \cong C_1/Rc^1, \ ..., C_r \cong C_{r-1}/Rc^{r-1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

with minumum Hamming distance ℓ_i .

Singleton-Like Bounds

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

(

These bounds arise by repeated applications of the main theorem, to obtain a sequence of $[n_i, d_i]$ codes

$$C = C_0, \ C_1 \cong C/Rc, \ C_2 \cong C_1/Rc^1, \ ..., C_r \cong C_{r-1}/Rc^{r-1}$$

with minumum Hamming distance ℓ_i . Then

$$|C| = |Rc^{0}||Rc^{1}|\cdots|Rc^{r-1}||C_{r}|$$

$$\leq P^{r-1}|C_{r}| \leq P^{r-1}|R|$$

where $P = \max\{|Ra| : a \in \mathbb{R}^n, Ra \leq C, \ell(a) < n\},\$

Singleton-Like Bounds

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

(

These bounds arise by repeated applications of the main theorem, to obtain a sequence of $[n_i, d_i]$ codes

$$C = C_0, \ C_1 \cong C/Rc, \ C_2 \cong C_1/Rc^1, \ ..., C_r \cong C_{r-1}/Rc^{r-1}$$

with minumum Hamming distance ℓ_i . Then

$$|C| = |Rc^{0}||Rc^{1}|\cdots|Rc^{r-1}||C_{r}|$$

$$\leq P^{r-1}|C_{r}| \leq P^{r-1}|R|$$

where $P = \max\{|Ra| : a \in R^n, Ra \leq C, \ell(a) < n\}$, so

$$n \geq rac{|Rc|-1}{|Rc|}rac{d}{\gamma} + r \geq rac{P-1}{P}rac{d}{\gamma} + \log_P(|C|-|R|).$$

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

Let *R* be a chain ring of length 2. Then $R^{\times} = R \setminus rad R$ and $|R| = q^2$. Let $U := R^2 \setminus rad R^2$, let $\mathcal{P} := \{xR : x \in U\}$. Then $|\mathcal{P}| = q^2 + q$.

Let $C < {}_{R}R^{n}$ be the length $n := q^{2} + q$ code with $2 \times n$ generator matrix whose columns are the distinct elements of \mathcal{P} .

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

Let R be a chain ring of length 2. Then $R^{\times} = R \setminus rad R$ and $|R| = q^2$. Let $U := R^2 \setminus rad R^2$, let $\mathcal{P} := \{xR : x \in U\}$. Then $|\mathcal{P}| = q^2 + q$.

Let $C < {}_{R}R^{n}$ be the length $n := q^{2} + q$ code with $2 \times n$ generator matrix whose columns are the distinct elements of \mathcal{P} . Clearly $\ell(c) < n$ for each $c \in C$.

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

Let R be a chain ring of length 2. Then $R^{\times} = R \setminus rad R$ and $|R| = q^2$. Let $U := R^2 \setminus rad R^2$, let $\mathcal{P} := \{xR : x \in U\}$. Then $|\mathcal{P}| = q^2 + q$.

Let $C < {}_{R}R^{n}$ be the length $n := q^{2} + q$ code with $2 \times n$ generator matrix whose columns are the distinct elements of \mathcal{P} . Clearly $\ell(c) < n$ for each $c \in C$. *C* is free of rank 2 and the

maximal cyclic submodules of C have size $P := |R| = q^2$.

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Example

Let R be a chain ring of length 2. Then $R^{\times} = R \setminus rad R$ and $|R| = q^2$. Let $U := R^2 \setminus rad R^2$, let $\mathcal{P} := \{xR : x \in U\}$. Then $|\mathcal{P}| = q^2 + q$.

Let $C < {}_{R}R^{n}$ be the length $n := q^{2} + q$ code with $2 \times n$ generator matrix whose columns are the distinct elements of \mathcal{P} . Clearly $\ell(c) < n$ for each $c \in C$. *C* is free of rank 2 and the maximal cyclic submodules of *C* have size $P := |R| = q^{2}$. Let $r = \lceil \log_{P} |C| - 1 \rceil = \log_{q^{2}} q^{4} - 1 = 1$.

Example (cont.)

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

Setting $\gamma = 1$, each nonzero word xG of C has weight

$$w(xG) = \left\{ egin{array}{cc} q^2+q & ext{if } x\in U \ rac{q^3}{q-1} & ext{if } x\in radR^2ackslash 0 \end{array}
ight.,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example (cont.)

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek Setting $\gamma = 1$, each nonzero word xG of C has weight

$$w(xG) = \left\{ egin{array}{cc} q^2+q & ext{if } x\in U \ rac{q^3}{q-1} & ext{if } x\in radR^2ackslash 0 \end{array}
ight.$$

$$\implies n - \left\lceil \frac{P-1}{P}d \right\rceil = n - \left\lceil \frac{q^2-1}{q^2}(q^2+q) \right\rceil$$
$$= n - \left\lceil q^2+q-1-\frac{1}{q} \right\rceil$$
$$= q^2+q-q^2-q+1 = 1 = r.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

Refined Upper Bounds for Ring-Linear Codes

Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek

- E. Byrne, M. Greferath and M. E. O'Sullivan, *The linear programming bound for codes over finite Frobenius rings*, Designs, Codes and Cryptography, Vol. 42, **3** (2007), pp. 289 301.
- I. Constantinescu and W. Heise, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii 33 (1997), no. 3, 22–28.
- M. Greferath and M. E. O'Sullivan, On Bounds for Codes over Frobenius Rings under Homogeneous Weights, Discrete Mathematics 289 (2004), 11–24.
- T. Honold, A characterization of finite Frobenius rings, Arch. Math. (Basel), 76 (2001), 406–415.
- J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), 555–575.