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Abstract. We apply polynomial techniques to investigate the structure of spherical
designs in an asymptotic process with fixed odd strength while the dimension and odd
cardinality tend to infinity in certain relation. This gives new lower bounds on the
quantity Bodd(n, τ) = min{|C| : C ⊂ Sn−1 is a τ -design with odd cardinality |C|}.

1 Introduction

The spherical designs were introduced in 1977 by Delsarte-Goethals-Seidel [8].
A spherical τ -design C ⊂ Sn−1 is a finite nonempty subset of Sn−1 such that

1
µ(Sn−1)

∫
Sn−1

f(x)dµ(x) =
1
|C|

∑
x∈C

f(x)

holds for all polynomials f(x) = f(x1, x2, . . . , xn) of degree at most τ . If C ⊂
Sn−1 is a spherical τ -design and x ∈ C then (cf. [9])∑

y∈C\{x}

f(〈x, y〉) = f0|C| − f(1)

holds, where f0 is the first coefficient in the expansion of f(t) =
∑k

i=0 fiP
(n)
i (t)

in terms of the Gegenbauer polynomials [1, Chapter 22].
Delsarte-Goethals-Seidel [8] proved that if C ⊂ Sn−1 is a spherical τ -design,

then

|C| ≥


2
(
n+ k − 2
n− 1

)
, if τ = 2k − 1,(

n+ k − 1
n− 1

)
+
(
n+ k − 2
n− 1

)
, if τ = 2k.
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We denote Bodd(n, τ) = min{|C| : C ⊂ Sn−1 is a τ -design with odd cardi-
nality |C|} and consider the following problem.

Problem. For fixed integer τ = 2k − 1 ≥ 3 and for n → ∞ obtain lower
bounds for Bodd(n, τ).

We extend a method for proving nonexistence of spherical (2k − 1)-designs
with odd cardinality |C| = M which was proposed recently in [4, 5] to work in
our problem. In what follows we assume that τ ≥ 5. Our results show that

Bodd(n, 2k − 1) &
(1 + 2k−1

√
3)

(k − 1)!
nk−1

for τ = 2k − 1, k = 3, 4, . . . , 13. Some discussion and numerical results for odd
τ , 5 ≤ τ ≤ 17, are presented also.

2 Preliminaries

Let the integers n ≥ 3, odd τ = 2k − 1 ≥ 3, and odd M ≥ D(n, τ) + 1 be fixed
and let C ∈ Sn−1 be a spherical τ -design of odd size |C| = M = ( 2

(k−1)! +γ)nk−1,
where γ > 0 is a constant.

For every fixed point x ∈ C we consider I(x) = {〈u, x〉 : u ∈ C \ {x}} =
{t1(x), t2(x), . . . , t|C|−1(x)}, where −1 ≤ t1(x) ≤ · · · t|C|−1(x) < 1 (note that
I(x) may contain repeating numbers). We denote by Uτ,i(x) (respectively
Lτ,i(x)) any upper (resp. lower) bound on the inner product ti(x). When
a bound does not depend on x we omit x in the notation.

It follows from [9, Section 4] (see also [2]) that for every fixed cardinality
M ≥ D(n, 2k − 1) there exist uniquely determined real numbers −1 ≤ α0 <
α1 < · · · < αk−1 < 1 and ρ0, ρ1, . . . , ρk−1, ρi > 0 for i = 0, 1, . . . , k − 1, such
that the equality

f0 =
f(1)
M

+
k−1∑
i=0

ρif(αi) (1)

is true for every real polynomial f(t) of degree at most 2k−1. The numbers αi,
i = 0, 1, . . . , k−1, are the roots of the equation Pk(t)Pk−1(s)−Pk(s)Pk−1(t) = 0,
where s = αk−1, Pi(t) = P

(n−1)/2,(n−3)/2
i (t) is a Jacobi polynomial [1].

We denote g(t) = (t − α1)2(t − α2)2 · · · (t − αk−1)2 =
∑2k−2

i=0 giP
(n)
i (t). It

follows by (3) that g0|C| − g(1) = ρ0|C|g(α0).
Lemma 2.1. [2] Let C ⊂ Sn−1 be a τ -design with odd τ = 2k− 1. For any

point x ∈ C we have t1(x) ≤ Uτ,1 = α0 and t|C|−1(x) ≥ Lτ,|C|−1 = αk−1. If |C|
is odd then there exist a point x ∈ C such that t2(x) ≤ Uτ,2(x) = α0.
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Lemma 2.2. [3] Let C ⊂ Sn−1 be a τ -design with odd τ = 2k − 1 and
odd cardinality |C|. Then there exist three distinct points x, y, z ∈ C such that
t1(x) = t1(y) and t2(x) = t1(z). Moreover, we have t|C|−1(z) ≥ Lτ,|C|−1(z) =
max{αk−1, 2α2

0 − 1}.
Theorem 2.3. [2] If C ⊂ Sn−1 is a τ -design with odd τ = 2k − 1 and odd

|C| then ρ0|C| ≥ 2.
Every special triple {x, y, z} from Lemma 2.2 is obviously and uniquely

extended to a special quadruple {x, y, z, u} by adding the point u ∈ C which is
defined by t2(z) = 〈z, u〉. Our method is based on careful investigation of the
special quadruples {x, y, z, u} ∈ C.

Definition 2.4. A special quadruple {x, y, z, u} ⊂ C is called ”good ” if
t2(z) ≤ α0.

Our main purpose is to obtain a bound t1(z) ≤ Uτ,1(z) < α0. Such bounds
start a procedure (of improving other bounds) which often reaches a contradic-
tion with the existence of C. The inequality Uτ,1(z) < α0 can be obtained in
all cases: when a special quadruple which is not ”good” exists, and when all
special quadruples are ”good”.

We have (cf. [6]) α0 ∼ −
1

1 + γ(k − 1)!
, αi ∼ 0, for i = 1, 2, . . . , k − 1 and

then ρ0|C| ∼ (1 + γ(k − 1)!)2k−1. We also need the conditions 2 ≤ ρ0|C| < 3
and 2α2

0 − 1 > αk−1.
Let Tk be the set of the designs under consideration. We will always assume

that the dimension n is large enough to have all bounds below valid.

3 Bounds for special triples and special quadruples

By Lemma 2.2 we have t|C|−1(z) ≥ Lτ,|C|−1(z) = 2α2
0−1 in every special triple.

We consecutively obtain the following bounds.
Lemma 3.1. [5] If ρ0|C| < 3 then α0 < t3(v) for every point v ∈ C.
Lemma 3.2. Let C ⊂ Tk and z ∈ C belongs to a special triple {x, y, z} in

C. Then we have t1(z) ≥ Lτ,1(z) ∼ − 2k−2

√
1 + γ(k − 1)!

2
, where Lτ,1(z) is the

smallest root of the equation 2g(t) = ρ0|C|g(α0).
Lemma 3.3. Let C ⊂ Tk and z ∈ C belongs to a special triple {x, y, z} in

C. If (
2

(1 + γ(k − 1)!)2
− 1)2k−2 <

1 + γ(k − 1)!
2

then

t2(z) ≤ Uτ,2(z) ∼
(1 + ( 2

(1+γ(k−1)!)2
− 1)2k−1 − 1+γ(k−1)!

2 ) 2k−2

√
1+γ(k−1)!

2

( 2
(1+γ(k−1)!)2

− 1)2k−2 − 1+γ(k−1)!
2

.
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Lemma 3.4. [5] a) If x, y1, y2 ∈ Sn−1 are such that 〈x, y1〉 = a < 0 and
〈x, y2〉 = b < 0, then 〈y1, y2〉 ≥ ab−

√
(1− a2)(1− b2).

b) Let C ⊂ Tk and {x, y, z} be a special triple in C. Then we have

t|C|−1(x) ≥ Lτ,|C|−1(x) = Uτ,1(z)Uτ,2(z)−
√

(1− U2
τ,1(z))(1− U2

2k−1,2(z)),

provided Uτ,i(z), i = 1, 2, are negative upper bounds for ti(z), i = 1, 2.
Lemma 3.5. Let C ⊂ Tk and {x, y, z} be a special triple in C. Then we

have

t3(z) ≥ Lτ,3(z) ∼ −[
1 + γ(k − 1)!

2
− 1

2
(

1
1 + γ(k − 1)!

)2k−2

−1
2

(
2

(1 + γ(k − 1)!)2
− 1)2k−2]

1
2k−2 ,

where Lτ,3(z) is the smallest root of the equation 2g(t) = (ρ0|C| − 1)g(α0) −
g(2α2

0 − 1).
Let us have a special quadruple in C which is not ”good ”. Using the

inequalities t1(z) ≤ α0 < t2(z) we obtain better upper bound t1(z) ≤ Uτ,1(z) <
α0.

Lemma 3.6. Let C ⊂ Tk and {x, y, z, u} be a special quadruple in C which
is not ”good ”. Then we have t1(z) ≤ Uτ,1(z), where f(t) = (t − Lτ,3(z))g(t)
and Uτ,1(z) is the smallest root of the equation f(t) = (ρ0|C| − 1)f(α0) −
f(Lτ,|C|−1(z)).

Since t1(z) = t2(x), Lemma 3.6. implies t2(x) ≤ Uτ,2(x) := Uτ,1(z).
Lemma 3.7. (x-check for existence of C) If

Lx(g) := 1 + γ(k − 1)!− 2(Uτ,2(x))2k−2 − (Lτ,M−1(x))2k−2 < 0,

then there exist no spherical τ -designs C ⊂ Tk, |C| = M , with a special quadru-
ple which is not ”good ”.

If we have Lx(g) ≥ 0 then we continue with a recursive procedure which
replaces α0 with Uτ,1(z) whenever possible. In all cases after several steps we
obtain Lx(g) < 0 and nonexistence of the designs under consideration follows.

The case t2(z) ≤ α0 for every special quadruple {x, y, z, u} ∈ C is considered
in a similar way with the following stronger property.

Theorem 3.8. [4, 5] Let C ⊂ Tk in which all special quadruples are ”good ”.
Then there exist a ”good ” special quadruple {x, y, z, u} ⊂ C and a point v ∈
C\{x, y, z, u} such that 〈v, w〉 ≤ α0 for some w ∈ {y, u}.

Corollary 3.9. [4, 5] We have t|C|−2(x) ≥ 2α2
0 − 1 or t|C|−2(z) ≥ 2α2

0 − 1
for at least one ”good ” quadruple.
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The bounds from Corollary 3.9 in many cases turn out sufficiently good to
prove nonexistence of the design C. In both cases we start with a good lower
bound for t3(z) and this allows us to obtain the desired good upper bound on
t1(z). Finally, certain analogs of Lemma 3.7 are applied.

4 Conclusions, comments and numerical results

It follows from the corresponding Lemmas and their proofs that all our bounds
are monotonic in the right direction – the lower bounds are increasing and
the upper bounds are decreasing. Also, the functionals Lx(g) are decreasing.
Therefore the nonexistence proof for any admissible γ0 means nonexistence for

every admissible γ < γ0. The best γ we have achieved is γ =
2k−1
√

3− 1
(k − 1)!

so for

all odd τ ∈ {5, 7, . . . , 25} we obtain nonexistence in all cases when ρ0|C| < 3.
Theorem 4.1. If C ⊂ Sn−1 is a spherical τ -design, τ = 2k − 1, k =

3, 4, . . . , 13, of odd cardinality and n is large enough, then ρ0|C| ≥ 3. In other
words,

Bodd(n, 2k − 1) &
(1 + 2k−1

√
3)

(k − 1)!
nk−1.

The next table gives asymptotic form of the Delsarte-Goethals-Seidel bounds
[8], the previously best known bounds and the new bounds.

τ Delsarte-Goethals-Seidel Previously best New bounds
bounds [8] known bounds (with γ =

2k−1√3−1
(k−1)! )

3 2n 2.3925n [4]
5 n2 1.09309n2 [3] 1.12286n2

7 n3

3 ≈ 0.33333n3 0.35314n3 [3] 0.36165n3

9 n4

12 ≈ 0.08333n4 0.08667n4 [7, 2, 6] 0.08874n4

11 n5

60 ≈ 0.01666n5 0.01721n5 [7, 2, 6] 0.01754n5

13 n6

360 ≈ 0.0027777n6 0.0028538n6 [7, 2, 6] 0.0029003n6

15 n7

2520 ≈ 0.0003968n7 0.0004062n7 [7, 2, 6] 0.0004119n7

17 n8

20160 ≈ 0.00004960n8 0.00005063n8 [7, 2, 6] 0.00005126n8

Table 1. Asymptotic lower bounds for Bodd(n, τ).
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