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Abstract. We obtain restrictions on the structure of binary orthogonal arrays of
strength 5 under the assumption that their covering radius is close to the Fazekas-
Levenshtein bound. We obtain lower and upper bounds on the number of the points
of the array which are closest to a point of realization of the covering radius.

1 Introduction

Let H(n, 2) be the binary Hamming space of dimension n. An orthogonal array,
or equivalently, a τ -design C in H(n, 2) is an M × n matrix of a code C such
that every M × τ submatrix contains all ordered τ -tuples of H(τ, 2), each one
exactly |C|

2τ times as rows. It is well known that the strength is equal to the
dual distance of C minus one.

We consider H(n, 2) with the inner product 〈x, y〉 = 1 − 2d(x,y)
n , where

d(x, y) is the Hamming distance between x and y. An equivalent definition of
a τ -designs (cf. [2, 3]) is convenient for the so called polynomial techniques.

Definition 1. A code C ⊂ H(n, 2) is a τ -design in H(n, 2) if and only if
every real polynomial f(t) of degree at most τ and every point y ∈ H(n, 2)
satisfy ∑

x∈C
f(〈x, y〉) = f0|C|, (1)

where f0 is the first coefficient in the expansion f(t) =
n∑
i=1

fiQ
(n)
i (t), Q(n)

i (t) are

the normalized Krawtchouk polynomials, i.e.

Q
(n)
i (t) =

1(
n
i

) i∑
j=0

(−1)j
(
d

j

)(
n− d
i− j

)
, i = 0, 1, . . . , n,

where d = n(1− t)/2 [1, 2, 3].
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Definition 2. The number ρ(C) = max
y∈H(n,2)

min
x∈C

d(x, y) is called covering

radius of C.
We work with the covering radius in terms of the inner products as tc =

1 − 2ρ(C)
n = min

y∈H(n,2
max
x∈C
〈x, y〉 which will be also called covering radius of C.

Fazekas-Levenshtein [2, Theorem 2] obtain the following lower bound on tc (i.e.
upper bound on ρ(C)): if C is a (2k − ε)-design, then

tc ≥ tFL = t0,1−εk , (2)

where t0,1−εk is the largest zero of certain polynomial.
Denote by pc(y) the number of the points x ∈ C such that tc = 〈x, y〉 =

t|C|(y). So y is a point in H(n, 2) where the covering radius is attained – so
called deep hole of C. In this note we consider designs with covering radius
which is close to the bound tFL and obtain bounds on pc(y) for every possible
y.

2 Bounds on pc(y)

For every real number a we denote by [a](n) the minimum number −1 + 2`
n ,

` ∈ Z, which is greater than or equal to a and, similarly, by [a](n) the maximum
number −1 + 2`

n , ` ∈ Z, which is less than or equal to a. Therefore the Fazekas-
Levenshtein bound (2) states tc ≥ [tFL](n).

For y ∈ H(n, 2) we define the (possibly) multiset

I(y) = {〈x, y〉 : x ∈ C} = {t1(y), t2(y), ..., t|C|(y)},

where −1 ≤ t1(y) ≤ t2(y) ≤ · · · ≤ t|C|(y) ≤ 1. It is clear that we can order the
points of C to achieve the ordering of I(y) as required. In what remains, the
point y will be a point y ∈ H(n, 2), where the covering radius is realized, i.e.
t|C|(y) = tc.

The next theorem gives a lower bound on pc(y) for designs whose covering
radius is as close as possible to tFL.

Theorem 1. Let C ⊂ H(n, 2) be a τ -design with covering radius tc =
[tFL](n). Let f(t) be a real polynomial of degree at most τ such that f(t) ≤ 0
for t ∈ [−1, tc − 2

n ] and f(t) is increasing in [tc − 2
n , tc]. Then

pc(y) ≥ f0|C|
f(tc)

for every admissible y.
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Proof. It follows by (1) and the conditions of the theorem that

f0|C| =
|C|∑
i=1

f(ti(y)) ≤ pc(y)f(tc).

Since f(tc) > 0, it follows that pc(y) ≥ f0|C|
f([tFL](n) .

If we relax the condition on tc, then we can obtain only upper bounds on
pc(y).

Theorem 2. Let C ⊂ H(n, 2) be a τ -design with covering radius tc ≥
[tFL](n). Let f(t) be a real polynomial of degree at most τ such that f(t) ≥ 0
for t ∈ [−1, 1] and f(t) is increasing in [[tFL](n), 1]. Then

pc(y) ≤ f0|C|
f(tc)

for every admissible y.
Proof. Similar to Theorem 1.
As usually in the polynomial techniques, the polynomials in Theorems 1

and 2 have some free parameters which must be optimized. For small degrees
(strengths) this is a routine calculation which can be performed by Maple or
Mathematika.

3 Some applications

To avoid trivial case we give examples with τ = 5 (where trivial cases also
occur, indeed).

We apply Theorem 1 with polynomials f(t) = (t− [tFL](n) + 2
n)(t2 +at+b)2,

where a and b will be determined in a way to satisfy the conditions for f(t)
and to maximize the function F (a, b) = f0|C|

f(tc)
, tc = [tFL](n). The maximum is

obtained for

a1 =
4(n− 1)(n− 2k − 2)(n− 2k − 1)(n− 2k)

A
,

b1 = −(6 + 8k + 4k2 − 7n− 4kn+ n2)(2 + 4k2 − 3n− 4kn+ n2)
A

,

where A = n(n4−4n3(2k+1)+n2(24k2 +24k+5)−2n(16k3 +24k2 +4k+1)+
8k(2k3 + 4k2 + k − 1). The explicit form of F (a1, b1) is too long to be stated
here.

We consider Theorem 2 for polynomials f(t) = (t+ 1)(t2 + at+ b)2, where
a and b will be determined in a way to satisfy the conditions for f(t) and to
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minimize the function G(a, b) = f0|C|
f(tc)

, tc = 1− 2k
n . Our calculations show that

the minimum is obtained for

a2 =
4k(n− 2k)

n(2 + 4k + 4k2 − 3n− 4kn+ n2)
,

b2 = − (n− 2)(2 + 4k2 − 3n− 4kn+ n2)
n2(2 + 4k + 4k2 − 3n− 4kn+ n2)

and is equal to

G(a2, b2) =
n(n− 1)(n− 2)|C|

(n− k)B
,

where B = n4 − 4n3(2k + 1) + n2(24k2 + 24k + 7)− 8n(4k3 + 6k2 + 2k + 1) +
4(4k4 + 8k3 + 4k2 + 1).

It is worth to note that for length n = 9, there is a coincidence tc = [tFL](n).
The upper and lower bounds by Theorems 1 and 2 also coincide and, moreover,
give non-integral values. Therefore the bound [tFL](n) can not be attained.
One possible value for tc remains and this gives the exact value of the covering
radius ρ(C) = 1.

In other cases, we obtain lower and upper bounds for pc. Such bounds can
be used for reducing the number of different cases in the following approach.
We set f(t) = 1, t, . . . , t5 in (1) and obtain a system of linear equations with
unknowns – the numbers of the distance distribution of C with respect to y.
There are finitely many candidates for solutions of this system and their number
is substantially reduced by using the restrictions on pc. One preliminary step
reduces the possible values of ptc−2/n(y) = |{x ∈ C : 〈x, y〉 = tc − 2

n}| by using
the inequality

f0|C| =
|C|∑
i=0

f(ti(y)) ≥ ptc−2/n(y)f(tc −
2
n

) + pc(y)f(tc),

where f(t) = (t+ 1)(t2 + at+ b)2 is as in Theorem 2. This implies

ptc−2/n(y) ≤ f0|C| − pc(y)f(tc)
f(tc − 2/n)

.

For example, for n = 10 and |C| = 192, under the assumption tc =
[tFL](n) = 3

5 , we obtain 16 ≤ pc ≤ 21 by the above calculations (applications of
Theorems 1 and 2).

The corresponding systems for pc = 16, 17 and 21 do not have integer
solutions and we conclude that 18 ≤ pc ≤ 20. In these cases we obtain six
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solutions in total. In particular, we obtain no solutions with inner product −1,
which means that −y 6∈ C for any choice of y.
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