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A class of singly even self-dual codes1
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Abstract. Some properties of the singly even self-dual codes whose shadow contains
a vector of weight 1 are considered. A new upper bound for the minimum weight
of these codes is proved. Two types of secret sharing schemes based on such codes
are proposed.

1 Introduction

In the present work we study a class of singly even self-dual codes with the
special property that the minimum weight of their shadow is 1. Using them, we
describe two types of schemes based on codes - with one-part secret and with
two-part secret. A secret sharing scheme is a way of sharing a secret among
a finite set of people or entities such that only some distinguished subsets of
these have access to the secret. The collection of all such distinguished subsets
is called the access structure of the scheme.

Our motivations are the following: First, the known codes of lengths 24m+2
and 24m + 10 with the mentioned property are not extremal. Second, these
codes enjoy some design properties. Third, their structure could be used in
characterizing the access groups in a secret sharing scheme based on codes.

The article is organized as follows. Section 2 collects the necessary defi-
nitions. Section 3 is devoted to the properties of the codes. In Section 4 we
describe the proposed one-part and two-part secret sharing schemes and their
access structures.

2 Preliminaries

Let C be a singly even self-dual [n, n/2, d] code and C0 be its doubly even
subcode. There are three cosets C1, C2, C3 of C0 such that C⊥0 = C0∪C1∪C2∪
C3, where C = C0 ∪ C2. The set S = C1 ∪ C3 = C⊥0 \ C is called the shadow
of C. Shadows for self-dual codes were introduced by Conway and Sloane [1]
in order to derive new upper bounds for the minimum weight of singly even
self-dual codes, and to provide restrictions on their weight enumerators.
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If Br is the number of the vectors of weight r in the shadow S, 0 ≤ r ≤ n,
then Br = 0 for r 6≡ n

2 (mod 4). Moreover, Br ≤ 1 for r < d/2, B0 = 0, and
Bi = Bn−i for i = 0, 1, . . . , n [1, Theorem 5]. It follows that B1 > 0 only for
lengths n ≡ 2 (mod 8), and in such a case B1 = 1 when d ≥ 4.

It was shown in [4] that the minimum weight d of a self-dual code of length
n is bounded by 4[n/24] + 4 for n 6≡ 22 (mod 24). We call a self-dual code
meeting this bound extremal. Note that for some lengths, for example, length
34, no extremal self-dual code exists. A self-dual code is called optimal if it
has the largest minimum weight among all self-dual codes of that length. An
extremal self-dual code is automatically optimal if it exists.

Let C be a self-dual code of length n = 24m + 8l + 2 with wt(S) = 1,
l = 0, 1, 2. The weight enumerators of C and its shadow are [1]:

W (y) =
12m+4l+1∑

j=0

ajy
2j =

3m+l∑
i=0

ci(1 + y2)12m+4l+1−4i(y2(1− y2)2)i

S(y) =
6m+2l∑
j=0

bjy
4j+1 =

3m+l∑
i=0

(−1)ici212m+4l+1−6iy12m+4l+1−4i(1− y4)2i

Using these expressions, we can write ci as a linear combination of the aj

and as a linear combination of the bj in the following ways [4]:

ci =
i∑

j=0

αijaj =
3m+l−i∑

j=0

βijbj . (1)

Theorem 1 (Assmus and Mattson Theorem, p.303 of [3]): Let A0, A1, . . . , An

be the weight distribution of the codewords in a binary linear [n, k, d] code C,
and let A⊥0 , A

⊥
1 , . . . , A

⊥
n be the weight distribution of the codewords in its dual

[n, n − k, d⊥] code C⊥. Fix a t, 0 < t < d, and let s = |{i | A⊥i 6= 0, 0 < i ≤
n− t}|. Assume s ≤ d− t.

• If Ai 6= 0 and i > 0, then Ci = {c ∈ C | wt(c) = i} holds a t-design.

• If A⊥i 6= 0 and 0 < i ≤ n − t then C⊥i = {c ∈ C⊥ | wt(c) = i} holds a
t-design.

3 Optimal self-dual codes with wt(S) = 1

Let C be an extremal [24m + 8l + 2, 12m + 4l + 1, 4m + 4] code, l = 0, 1, 2,
m ≥ 0, wt(S) = 1, and (100 . . . 0) ∈ C1. Then C1 = (100 . . . 0) + C0, C2 =
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(111 . . . 1) + C0, C3 = (011 . . . 1) + C0, and therefore

WC(y) = 1 + a2m+2y
4m+4 + a2m+3y

4m+6 + · · ·+ a2m+2y
20m+8l−2 + yn,

S(y) = y + (a2m+2 + a2m+3)y4m+5 + · · ·+ (a2m+2 + a2m+3)y20m+8l−3 + yn−1.

In our case a1 = a2 = · · · = a2m+1 = 0, b1 = b2 = · · · = bm = 0, a0 = 1,
b0 = 1. It follows that ci = αi0 for i = 0, 1, . . . , 2m + 1, and ci = βi0 for
i = 2m+ l, . . . , 3m. Hence for l ≤ 1 we have

c2m+1 = α2m+1,0 = β2m+1,0

Theorem 2 Extremal self-dual codes of lengths 24m + 2 and 24m + 10 with
wt(S) = 1 do not exist.

Proof. We know (see [1]) that extremal self-dual codes of lengths 2, 10, 26, 34, 50

and 58 do not exist. According [4], βij = (−1)i2−n/2+6ik − j
i

(
k + i− j − 1
k − i− j

)
,

where k = bn/8c = 3m+ l. Therefore

β2m+1,0 = −25−4l 3m+ l

2m+ 1

(
5m+ l

m+ l − 1

)
.

In another hand, αi0 = − n
2i

[coeff. of yi−1 in (1 + y)−n/2−1+4i(1− y)−2i]

⇒ α2m+1,0 = −12m+ 4l + 1
2m+ 1

[coeff. of y2m in (1 + y)4−4l(1− y2)−4m−2].

As (1− y2)−4m−2 =
∞∑

j=0

(
−4m− 2

j

)
(−1)jy2j =

∞∑
j=0

(
4m+ 1 + j

j

)
y2j , then

α2m+1,0 = −12m+ 4l + 1
2m+ 1

[coeff. of y2m in (1 + y)4−4l(
∞∑

j=0

(
4m+ 1 + j

j

)
y2j)].

If l = 0 then α2m+1,0 = −(12m+ 1)(56m+ 4)
(2m+ 1)(m− 1)

(
5m− 1
m− 2

)
.

⇒ c2m+1 = −(12m+ 1)(56m+ 4)
(2m+ 1)(m− 1)

(
5m− 1
m− 2

)
= −25 3m

2m+ 1

(
5m
m− 1

)

⇒ (12m+ 1)(56m+ 4)
(2m+ 1)(m− 1)

= 32
15m2

(2m+ 1)(m− 1)
⇒ 48m2 + 26m+ 1 = 0.
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As this is impossible for m ≥ 0, self-dual [24m+ 2, 12m+ 1, 4m+ 4] codes with
wt(S) = 1 do not exist.

In the case l = 1 we have α2m+1,0 = −12m+ 5
2m+ 1

(
5m+ 1
m

)
. Hence c2m+1 =

−12m+ 5
2m+ 1

(
5m+ 1
m

)
= −2

3m+ 1
2m+ 1

(
5m+ 1
m

)
and so 6m + 3 = 0, which is im-

possible. Therefore self-dual [24m+ 10, 12m+ 5, 4m+ 4] codes with wt(S) = 1
do not exist. �

When n = 24m+ 18, we have ci = αi0 for i = 0, 1, . . . , 2m+ 1, and ci = βi0

for i = 2m + 2, . . . , 3m. Hence the values of ci can be calculated and they do
not depend on any parameters, so if self-dual [24m+ 18, 12m+ 9, 4m+ 4] codes
with wt(S) = 1 exist, they have the same fixed weight enumerator. Moreover,
their subcode C0 has at most 4m + 3 different nonzero weights, that is why
according Theorem 1, the set of codewords of weight i in C0 for i > 0, Ai > 0,
holds 1-designs.

Suppose that C is an optimal [24m + 8l + 2, 12m + 4l + 1, 4m + 2] code,
l = 0, 1, m ≥ 0, wt(S) = 1 and

WC(y) = 1+a2m+1y
4m+2+a2m+2y

4m+4+· · ·+a2m+2y
20m−2+a2m+1y

20m+8l+yn.

⇒ S(y) = y+a2m+1y
4m+1+(a2m+2+a2m+3)y4m+5+· · ·+a2m+1y

20m+8l+1+yn−1.

Then a1 = a2 = · · · = a2m = 0, a0 = 1, b1 = · · · = bm−1 = 0, b0 = 1. It
follows that ci = αi0 for i = 0, 1, . . . , 2m, and ci = βi0 for i = 2m+l+1, . . . , 3m.
When l = 0, the values of the parameters ci can be calculated and so the self-
dual [24m + 2, 12m + 1, 4m + 2] codes with wt(S) = 1 have the same fixed
weight enumerator. Moreover, the code C0 has at most 4m different nonzero
weights, that’s why according Theorem 1, the set of codewords of weight i in
C0 for i > 0, Ai > 0, holds a 2-design.

Theorem 3 The set of codewords of weight i in C0 without the common zero
coordinate and the set of codewords of weight i in C2 without the common 1-
coordinate for i > 0, Ai > 0, in an optimal self-dual [24m+ 2, 12m+ 1, 4m+ 2]
code with wt(S) = 1 holds a 2-design. The set of codewords of weight i in C0

without the common zero coordinate and the set of codewords of weight i in C2

without the common 1-coordinate for i > 0, Ai > 0, in an extremal self-dual
[24m+ 18, 12m+ 9, 4m+ 4] code with wt(S) = 1 holds a 1-design.
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4 Two-part secret sharing

Dougherty, Mesnager, and Sole [2] proposed the following secret sharing scheme.
A secret consisting of elements of Fq is split into its components. Let s ∈ Fq

be the secret we wish to share, and let G be a generator matrix for a code C
of length n with columns G0, G1, . . . , Gn−1. Let v be the information vector
such that vG0 = s, and u = vG. To each party corresponding to all coordinates
except the first ui is assigned. Assume that G0 is a linear combination of the
n−1 columns G1, . . . , Gn−1. The secret s is then determined by the set of shares
{ui1 , ui2 , . . . , uim}, if and only if G0 is a linear combination G0 =

∑m
j=1 xjGij ,

where 1 ≤ i1 < · · · < im ≤ n − 1 and m ≤ n − 1. So by solving this linear
equation, we find xj and from then on the secret by s = vG0 =

∑m
j=1 xjvGij =∑m

j=1 xjuij . The set of m shares {ui1 , ui2 , . . . , uim} determines the secret if and
only if there is a codeword (1, 0, ..., 0, ci1 , 0, ..., 0, cim , 0.., 0) ∈ C⊥, where cij 6= 0
for at least one j [2]. Let P be the set of parties involved in the secret sharing.
In this case P is the set of coordinates except for the first one. The set Γ,
called the access structure of the secret sharing scheme, consists of subsets
of P such that any element of Γ can uncover the secret.

Here we explain a similar scheme that is the following: Let C be a singly
even binary self-dual code of length n and x = (1, 0, 0, . . . , 0) ∈ S. Then the
vectors in the doubly even subcode C0 are orthogonal to x, hence their first
coordinate is 0. Since all codewords of weight ≡ 2 (mod 4) are in the coset
C2 = x+ C0, their first coordinate is 1. Also, let the codewords of C2 of given
weight i hold 1-design (excluding the first coordinate). By Theorem 3 this is
true for [24m+ 2, 12m+ 1, 4m+ 2] and [24m+ 18, 12m+ 9, 4m+ 4] codes with
wt(S) = 1. For the secret s, the access structure contains Ai groups of size
i−1. For that 1−design we have v = n−1, k = i−1, and b = Ai. The number
of ones in any column is r = bk

v = Ai(i−1)
n−1 .

This scheme can be extended in the following way. Let the codewords of
weight i (without the common coordinate = 1) hold 2−(v, k, λ2) design D (that
is 1 − (v, k, v−1

k−1λ2) design, too). We describe our technique for the codewords
of given weight i, where i ≡ 2 (mod 4). For the first part of the secret s, the
access structure contains Ai groups of size i− 1. We take the blocks that have
1 in the first position. There are v−1

k−1λ2 such blocks. These blocks without the
first point hold 1− (v − 1, k − 1, λ1) design D1, where λ1 = λ2. For the second
part we take the λ1 blocks of D1 that have 1 in the first position. Then, for
the second part of the secret, the access structure consists of λ1 groups of size
i − 3. To recover the two-part secret we should use the groups of size i − 3
at first. They recover the second part of the secret. After that to recover the
other part of the secret we use these groups (they are of size i− 2 already) and
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the other v−1
k−1λ2 − λ1 groups of size i − 2. We add a new participant that has

ones in these groups of size i − 2 (the other values are 0). At last, we use the
obtained v−1

k−1λ2 groups of size i − 1, and the other groups of the same size to
recover the first part of the secret.

Example (two-part secret): Let C be a binary self-dual [50, 25, 10] code
with weight enumerator 1+196y10 + · · ·+y50. The shadow of this code contains
a vector of weight 1. By Theorem 3, the set of codewords of weight i in C0 for
i > 0, Ai > 0, holds a 2-design. We take the set A10 of the vectors of weight 10.
Up to equivalence, the first position in any vector x ∈ A10 must be 1. Without
the first column, the codewords hold 2−(49, 9, 6) design D (that is 1−(49, 9, 36)
design, too). For the first part of the secret, the access structure contains 196
groups of size 9. For the second part we take these 36 blocks of D that have 1
in the first position. Without the first point, the blocks of D hold 1− (48, 8, 6)
design D1. We take these 6 blocks of D1 that have 1 in the first position. Then,
for the second part of the secret, the access structure consists of 6 groups of
size 7. To recover the two-part secret should first be used the groups of size 7.
They recover the second part of the secret. After that to recover the other part
of the secret we use these groups (they are of size 8 already) and the other 30
groups of size 8. We add a new participant that has ones in these 36 groups
(the other entries are 0). At last, we use the obtained 36 groups of size 9, and
the other 160 groups of size 9 to recover the first part of the secret.

In general, in the secret sharing scheme produced from the [50, 25, 10] code
C for the first part of the secret the access structure contains 196 groups of size
9, 31752 groups of size 13, 773073 groups of size 17, etc. It is easy to calculate
that for the second part of the secret the access structure consists of 6 groups
of size 7, 8424 groups of size 11, 268209 groups of size 15, etc.
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