On the classification of binary self-dual [44,22,8] codes with an automorphism of order 3^1

STEFKA BOUYUKLIEVA Veliko Tarnovo University, 5000 Veliko Tarnovo, BULGARIA RADKA RUSSEVA, NIKOLAY YANKOV, NIKOLA ZIAPKOV, MILENA NIKOLOVA Faculty of Mathematics and Informatics, Shumen University, Shumen 9712, BULGARIA

Abstract. All binary self-dual [44, 22, 8] codes with an automorphism of order 3 with 8, 10, and 12 independent cycles are classified up to equivalence. There exist exactly 4570 inequivalent codes with automorphism of order 3 with 8 independent cycles, 8738 inequivalent such codes with 10 cycles, and 123147 inequivalent codes with 12 cycles.

1 Introduction

In this paper, we consider optimal binary self-dual [44,22,8] codes. The codes having automorphisms of prime orders $p \ge 5$ are classified in [13], [14], [10], [3], and [2]. That's why we focus on the automorphisms of order 3, and we complete the classification of [44,22,8] SD codes having an automorphism of prime odd order. The codes with automorphisms of order 3 with 6 independent 3-cycles are considered in [3]. We continue with the next possibilities for the number of cycles – 8, 10, and 12. The case of 14 cycles is solved in [11]. To do that we apply the method developed by Huffman and Yorgov (see [7], [12]).

2 Construction Method

Let C be a binary self-dual code of length n = 44 with an automorphism σ of order 3 with exactly c independent 3-cycles and f = 44 - 3c fixed points in its decomposition. We may assume that

$$\sigma = (1, 2, 3)(4, 5, 6) \cdots (3c - 2, 3c - 1, 3c), \tag{1}$$

and shortly say that σ is of type 3 - (c, f).

Denote the cycles of σ by $\Omega_1, \ldots, \Omega_c$, and the fixed points by $\Omega_{c+1}, \ldots, \Omega_{c+f}$. Let $F_{\sigma}(C) = \{v \in C \mid v\sigma = v\}$ and $E_{\sigma}(C) = \{v \in C \mid wt(v|\Omega_i) \equiv 0 \pmod{2}, i = 1, \cdots, c+f\}$, where $v|\Omega_i$ is the restriction of v on Ω_i . Then $C = F_{\sigma}(C) \oplus E_{\sigma}(C)$. We have that $v \in F_{\sigma}(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi : F_{\sigma}(C) \to \mathbb{F}_2^{c+f}$ be the projection map where if $v \in F_{\sigma}(C)$, $(v\pi)_i = v_j$ for some $j \in \Omega_i, i = 1, 2, \ldots, c+f$. It is known that $\pi(F_{\sigma}(C))$ is a binary self-dual code of length c + f [7].

Denote by $E_{\sigma}(C)^*$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. So $E_{\sigma}(C)^*$ is a self-orthogonal binary code of length 3c. For v in $E_{\sigma}(C)^*$ we let $v|\Omega_i = (v_0, v_1, v_2)$ correspond to the polynomial $v_0 + v_1 x + v_2 x^2$ from P, where P is the set of even-weight polynomials in $\mathbb{F}_2[x]/(x^3+1)$. In our case $P = \{0, e = x + x^2, w = 1 + x^2, w^2 = 1 + x\} \cong \mathbb{F}_4$ where e is the identity of P and \mathbb{F}_4 is the Galois field of 4 elements. Thus we obtain the map $\varphi : E_{\sigma}(C)^* \to P^c$.

Theorem 1 [7] The binary code C with an automorphism σ defined in (1) is self-dual iff the following two conditions hold:

- (i) $\pi(F_{\sigma}(C))$ is a self-dual binary code of length c + f;
- (ii) $\varphi(E_{\sigma}(C)^*)$ is a self-dual code of length c over the field P under the inner product $(u, v) = \sum_{i=1}^{n} u_i v_i^2$.

So we have that $\varphi(E_{\sigma}(C)^*)$ is a Hermitian quaternary self-dual code of length c. Since the minimum distance of $E_{\sigma}(C)$ is at least 8, this Hermitian code should have minimum distance at least 4.

Let \mathcal{B} , respectively \mathcal{D} , be the largest subcode of $C_{\pi} = \pi(F_{\sigma}(C))$ whose support is contained entirely in the left c, respectively, right f, coordinates. Suppose \mathcal{B} and \mathcal{D} have dimensions k_1 and k_2 , respectively. Let $k_3 = k - k_1 - k_2$. Then there exists a generator matrix for C_{π} in the form

$$G_{\pi} = \begin{pmatrix} B & O \\ O & D \\ E & F \end{pmatrix}$$
(2)

where B is a $k_1 \times c$ matrix with $gen(\mathcal{B}) = [B \ O]$, D is a $k_2 \times f$ matrix with $gen(\mathcal{D}) = [O \ D]$, O is the appropriate size zero matrix, and $[E \ F]$ is a $k_3 \times n$ matrix. Let \mathcal{B}^* be the code of length c generated by B, \mathcal{B}_E the code of length c generated by the rows of B and E, \mathcal{D}^* the code of length f generated by D, and \mathcal{D}_F the code of length f generated by the rows of D and F. Then $k_3 = rank(E) = rank(F), k_2 = k + k_1 - c = \frac{c+f}{2} + k_1, \mathcal{B}_E^{\perp} = \mathcal{B}^*$ and $\mathcal{D}_F^{\perp} = \mathcal{D}^*$.

3 Optimal Self-Dual Codes of Length 44 with an automorphism of order 3

The weight enumerators of the self-dual codes of length 44 are known [6]:

$$W_{44,1}(y) = 1 + (44 + 4\beta)y^8 + (976 - 8\beta)y^{10} + (12289 - 20\beta)y^{12} + \dots$$
(3)

for $10 \leq \beta \leq 122$ and

$$W_{44,2}(y) = 1 + (44 + 4\beta)y^8 + (1232 - 8\beta)y^{10} + (10241 - 20\beta)y^{12} + \dots$$
(4)

for $0 \le \beta \le 154$.

Self-dual codes with a weight enumerator $W_{44,1}$ for $\beta = 10, \ldots, 68, 70, 72,$ 74, 82, 86, 90, 122 and $W_{44,2}$ for $\beta = 0, \ldots, 56, 58, \ldots, 62, 64, 66, 68, 70, 72,$ 74, 76, 82, 86, 90, 104, 154 are known (see [8]).

3.1 Codes with an automorphism of type 3 - (8, 20)

Up to equivalence, a unique Hermitian quaternary [8,4,4] code exists (see [9]). So we have unique up to equivalence subcode $E_{\sigma}(C)^*$. The code C_{π} is a binary self-dual [28, 14, \geq 4] code with a generator matrix G_{π} given in (2) where Bgenerates a [8, k_1 , \geq 4], and D generates a [20, $k_1 + 6$, \geq 8] self-orthogonal code, respectively. Since $0 \leq k_1 \leq 4$, \mathcal{D}^* is a binary self-orthogonal [20, $6 \leq k_2 \leq$ 10, \geq 8] code. All optimal binary self-orthogonal codes of length 20 are classified in [3]. There are exactly 23 inequivalent [20,6,8], four inequivalent [20,7,8], and a unique [20, 8, 8] self-orthogonal codes. Hence $k_1 \leq 2$.

In the case $k_1 = 2$ we obtain only two inequivalent optimal codes of length 44, both with weight enumerator $W_{44,2}$, respectively for $\beta = 68$ and $\beta = 76$. For $k_1 = 1$, there exist 31 self-dual [44,22,8] codes - four of them with weight function $W_{44,1}$ for $\beta = 42$, 44, 46, 50, and the other 27 with $W_{44,2}$ for $\beta = 2s$, $s = 14, 16, \ldots, 23, 25, 26$. When $k_1 = 0$, the obtained inequivalent codes are 4537. Their weight enumerators are of both types with $\beta \leq 46$.

3.2 Codes with an automorphism of type 3 - (10, 14)

In this case $\varphi(E_{\sigma}(C)^*)$ is a Hermitian self-dual [10, 5, 4] code and by [9] is equivalent to either E_{10} or B_{10} . Then we can fix the generator matrix of the subcode $E_{\sigma}(C)^*$ in two forms.

The code C_{π} is a binary self-dual $[24, 12, \geq 4]$. There are exactly thirty inequivalent such codes, namely E_8^3 , $E_{16} \oplus E_8$, $F_{16} \oplus E_8$, E_{12}^2 and 26 indecomposable codes denoted by $A_{24}, B_{24} \dots Z_{24}$ in [5]. The Golay code G_{24} and Z_{24}

have minimum weights 8 and 6 and all other codes have minimum weight 4. For any 4-weight vector in C_{π} at most 2 nonzero coordinates may be fixed points. An examination of the vectors of weight 4 in the listed codes eliminates 23 of them. By investigation of all alternatives for a choice of the 3-cycle coordinates in the rest codes G_{24} , R_{24} , U_{24} , W_{24} , X_{24} , Y_{24} and Z_{24} we obtain, up to equivalence, all possibilities for the generator matrix of the code C_{π} .

Denote by G_{π} the generator matrix of the code C_{π} . Let τ be a permutation of the ten cycle coordinates in G_{π} and let C^{τ} be the self-dual [44,22] code determined by $\varphi(E_{\sigma}(C)^*)$ and the matrix $\tau(G_{\pi})$. The following transformations preserve the decomposition and send the code C to an equivalent one: (i) a permutation of the last 14 fixed coordinates; (ii) a permutation of the ten 3cycles coordinates; (iii) a substitution $x \to x^2$ in $\varphi(E_{\sigma}(C)^*)$ and (iv) a cyclic shift to each 3-cycle independently.

We consider the products of transformations (ii), (iii) and (iv) which preserve the quaternary code $\varphi(E_{\sigma}(C)^*)$. Their permutational part forms a subgroup of the symmetric group S_{10} which we denote by L. Let $S = Stab(C_{\pi})$ be the stabilizer of the automorphism group of the code generated by G_{π} on the set of the fixed points. It is easy to prove that if τ_1 and τ_2 are the permutations from the group S_{10} the codes C^{τ_1} and C^{τ_2} are equivalent iff the double cosets $S\tau_1L$ and $S\tau_2L$ coincide.

In this way from all the cases for C_{π} we constructed 1815 inequivalent [44, 22, 8] self-dual codes with weight enumerator $W_{44,1}$ for $\beta = 10, \dots, 52$, 54,55,60,62 and 6923 codes with weight enumerator $W_{44,2}$ for $\beta = 0, 2, \dots, 16$, 18,21,24. The calculations for these results was done with the GAP VERSION 4 software system and the program Q-EXTENSION [1].

3.3 Codes with an automorphism of type 3 - (12, 8)

There exist exactly five inequivalent quaternary self-dual [12, 6, 4] codes, denoted by d_{12} , $2d_6$, $3d_4$, $e_6 \oplus e_6$, and $e_7 + e_5$ [9].

The code C_{π} is $[20, 10, \geq 4]$ binary self-dual code. There are exactly seven such codes, namely $d_{12} + d_8$, $d_{12} + e_8$, d_{20} , d_4^5 , $d_6^3 + f_2$, $d_8^2 + d_4$, and $e_7^2 + d_6$ [5]. The 13th, 14th, ..., and 20th coordinates correspond to the fixed points of C, so each choice for these fixed points can lead to different subcode C_{π} . We have considered all possibilities for each of these seven codes and we found exactly 7 inequivalent codes for $d_{12} + d_8$, one code for $d_{12} + e_8$, one code for d_{20} , 10 codes for d_4^5 , 26 codes for $d_6^3 + f_2$, 18 codes for $d_8^2 + d_4$, and 3 codes for $e_7^2 + d_6$. Denote these codes by $H_{i,j}$, for i = 1, 2..., 7 and $j \geq 1$.

Using the method from Section 3.2, considering the transformations (ii), (iii) and (iv) (see Section 3.2) and the stabilizer of the automorphism group

of the codes $H_{i,j}$ on the fixed points, we classified all codes up to equivalence. There are exactly 123147 inequivalent codes. Their weight enumerators are of type $W_{44,1}$ for $\beta = 10, \ldots, 68, 70, 72, 74, 82, 86, 90, 122$ and of type $W_{44,2}$ for $\beta = 0, \ldots, 56, 58, \ldots, 62, 64, 66, 68, 70, 72, 74, 76, 82, 86, 90, 104, 154$. The results are displayed in the Table below. The number of inequivalent codes in each case are written in the following manner: number of codes with weight enumerator $W_{44,1}$ (number of codes with weight enumerator $W_{44,2}$).

	$d_{12} + d_8$	$d_{12} + e_8$	d_{20}	d_4^5	$d_6^3 + f_2$	$d_8^2 + d_4$	$e_7^2 + d_6$
d_{12}	11(29)	3(0)	0 (0)	431 (1894)	379(1531)	103(383)	34(0)
$2d_6$	74 (416)	15(0)	0(6)	5760(30678)	5099(26962)	977 (5859)	357(0)
$3d_4$	37(203)	9(0)	0(4)	2375 (12627)	2042 (11759)	422(2566)	148(0)
$e_6\oplus e_6$	3 (17)	1(0)	0(2)	30(88)	45(123)	18 (70)	6(0)
$e_7 + e_5$	16(95)	3(0)	0(2)	710 (3304)	817 (3437)	201 (894)	72(0)

Table: c = 12

References

- I. Bouyukliev, About the code equivalence, in Adv. Coding Theory Cryptol., World Scientific Publishing, Hackensack, NJ, 2007.
- [2] S. Buyuklieva, New extremal self-dual codes of lengths 42 and 44, IEEE Trans. Inform. Theory 43, 1997, 1607-1612.
- [3] S. Bouyuklieva, Some optimal self-orthogonal and self-dual codes, *Discr. Math.* 287, 2004, 1-10.
- [4] S. Bouyuklieva, N. Yankov, R. Russeva, Classification of the binary selfdual [42, 21, 8] codes having an automorphism of order 3, *Fin. Fields Their Appl.* 13, 2007, 605-615.
- [5] J. H. Conway, V. Pless, N. J. A. Sloane, The binary self-dual codes of length up to 32: a revised enumeration, J. Combin. Theory A-60, 1992, 183-195.
- [6] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, *IEEE Trans. Inform. Theory* 36, 1991, 1319-1333.
- [7] W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of lenght 48, *IEEE Trans. Inform. Theory* 28, 1982, 511-521.
- [8] W. C. Huffman, On the classification and enumeration of self-dual codes, Fin. Fields Their Appl. 11, 2005, 451-490.

- [9] F. J. MacWilliams, A. M. Odlyzko, N. J. A. Sloane, H. N. Ward, Self-dual codes over GF(4), J. Combin. Theory A-25, 1978, 288-318.
- [10] N. Yankov, R. Russeva, Classification of the binary self-dual [44,22,8] codes with automorphisms of order 7, Proc. 37th Spring Conf. Union Bulg. Math., 2008, 239-244.
- [11] N. Yankov, Extremal self-dual [44,22,8] codes with automorphism of order 3 with 14 cycles, Proc. Fifth Intern. Workshop OCRT, Bulgaria, June 2007, 249-254.
- [12] V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, *IEEE Trans. Inform. Theory* 33, 1987, 77-82.
- [13] V. Y. Yorgov, New extremal singly-even self-dual codes of lenght 44, Proc. Sixth Swedish-Russian Intern. Workshop Inform. Theory, Molle, Sweden, 1993, 372-375.
- [14] V. Yorgov, R. Russeva, Two extremal codes of length 42 and 44, Probl. Pered. Inform. 29, 1994, 385-388.