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Abstract. In this paper we study the function N(d, d⊥). More precisely, we give
results for classification and construction of codes which reach, or give upper bounds
on N(d, d⊥).

1 Introduction

Let Fn
q be the n-dimensional vector space over the Galois field Fq. The Hamming

distance d(x, y) between two vectors x, y ∈ Fn
q is defined to be the number of

coordinates in which they differ, and accordingly we define the weight of a vector
x ∈ Fn

q to be wt(x) = d(x, 0). A linear q-ary [n, k, d]-code is a k-dimensional
linear subspace of Fn

q with minimum Hamming distance d. We say that the
code C has length n, dimension k and minimum (primal) distance d.

Let (u, v) : Fn
q × Fn

q → Fq be an inner product in the linear space Fn
q . Then

C⊥ = {u ∈ Fn
q : (u, v) = 0 for all v ∈ C} is called the dual code of the linear

code C. It is known that C⊥ is an [n, n − k, d⊥] code. Also, d⊥ is called the
dual distance of the code C. If C ⊆ C⊥, C is termed self-orthogonal and if
C = C⊥, the code is self-dual.

Let C1 and C2 be two linear [n, k]q codes. They are said to be equivalent if
the codewords of C2 can be obtained from the codewords of C1 via a sequence of
transformations of the following types: (1) permutation on the set of coordinate
positions; (2) multiplication of the elements in a given position by a non-zero
element of Fq; (3) application of a field automorphism to the elements in all
coordinate positions.

One of the main concerns in coding theory is the problem of finding codes
with largest possible minimum distance. Many papers study the function
nq(k, d) (the minimum length of linear codes for the given minimum distance d
and dimension k) and construction and classification of codes with parameters
[nq(k, d), k, d]. A variant of this problem is given by Matsumoto et al. [9]. They
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define the function N(d, d⊥) as the minimal n such that there exist a linear bi-
nary code of length n with minimum distance d and dual distance d⊥. They
also present some general bounds on the function N(d, d⊥) and some examples.
This problem is directly related to the design method of cryptographic Boolean
functions suggested by Kurosawa and Satoh [8].

In this paper we continue to study N(d, d⊥). More precisely, we give results
for classification and construction of codes which reach, or give upper bounds
on, N(d, d⊥). Notice that there are many classification results for [nq(k, d), k, d]
and tables with such results (see for example [6], [7]). But only in some cases
they coincide with the codes that achieve N(d, d⊥).

In this research, we use some theoretical and software tools. These tools
are discussed in Section 2. In Section 3, we consider a particular example of
classification of codes. In Section 4, we present a table for N(d, d⊥) when
d ≤ 12, d⊥ ≤ 12.

2 Preliminaries and tools

In our methods for construction and classification we use punctured, shortened
and residual codes of a given code C.

Proposition 1 Let C be a linear code with minimum distance d and dual dis-
tance d⊥, and C ′ be the punctured code of C. Then C ′ has minimum distance
at least d− 1 and dual distance at least d⊥.

Definition 1 Let G be a generator matrix of a linear binary [n, k, d] code C.
Then the residual code Res(C, c) of C with respect to a codeword c is the code
generated by the restriction of G to the columns where c has a zero entry.

If w = wt(c) we will also use the notation Resw(C). A lower bound on the
minimum distance of the residual code is given by

Lemma 2 ([11], Lemma 3.9): Suppose C is a binary [n, k, d]-code and suppose
c ∈ C has weight w, where d > w/2. Then Res(C, c) is an [n−w, k−1, d′]-code
with d′ ≥ d− w + dw/2e.

Proposition 3 Suppose C is a binary [n, k, d]-code with dual distance d⊥, c ∈
C, and the dimension of Res(C, c) is k−1. Then the dual distance of Res(C, c)
is also d⊥.

Let C be a binary [n, k, d] code and Bi denote the number of codewords of
weight i in its dual code C⊥.
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Lemma 4 [4]: For a binary [n, k, d] code Bi = 0 for each value of i (where
1 ≤ i ≤ k) such that there does not exist a binary [n− i, k − i + 1, d] code.

One of our tools is Q-Extension. We use this program to construct all
inequivalent linear codes with length n, dimension k, and minimum distance
d, from their residual or shortening codes. In practice, this program gives us
options for two types of extensions in the case of codes with fixed dual distance
(according to the statements 1-4).

The first approach uses results for the parameters of residuals of codes. Let
G be a generator matrix of a linear [n, k, d] code C. In addition to constructing
[n, k, d] codes from their [n − w, k − 1, d′] residual codes, one may also start
from [n − i, k, d′] codes. On the bottom of this hierarchy of extensions is the
trivial [k, k, 1] code. In the second approach, [n, k, d] codes are constructed by
extending [n−i, k−i, d] or [n− i− 1, k − i, d] codes. If G is a generator matrix
for an [n− i, k− i, d] or an [n− i− 1, k− i, d] code, we extend it (in all possible
ways) to (

∗ Ii

G 0

)
or

(
∗ 1 Ii

G 0

)
, (1)

respectively, where Ii is the i × i identity matrix, 1 is an all-1 column vector,
and the starred submatrix is to be determined. If we let the matrix G be in
systematic form, we can fix k more columns to get

(
∗ 0 Ii

G1 Ik 0

)
or

(
∗ 0 1 Ii

G1 Ik 0

)
. (2)

More information on this topic can be found in [1] and in
http://www.moi.math.bas.bg/˜ iliya/Q ext.htm.

3 Classification of codes which reach N(9, 6), N(10, 6),
N(12, 6) and related results

According to Brouwer’s table [28,10,10] and [27,10,9] linear codes with dual
distance 5 could exist [2] (there are [27,10,9] and [27,17,5] codes but no [26,17,5]
codes exist).

Let C27 be a [27,10,9] linear code with dual distance 5. Then we can consider
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a generator matrix of C27 in the form:

G27 =



00000
. . . G22

00000
11000
10100 A
10010
10001


Adding a parity check bit to this matrix we obtain a generator matrix of a

code C28 with parameters [28, 10, 10]. This generator matrix is:

G28 =



00000
. . . G23

00000
11000 b7

10100 A b8

10010 b9

10001 b10


where G23 generates a [23,6,10] code.

Obviously, if we know all inequivalent codes C28 with generator matrix of the
form G28 we can obtain, after exhaustive search and deleting each coordinate,
all inequivalent C27. We can make the following extensions: from [23,6,10] to
[25,7,10] and then [25, 7, 10] → [26, 8, 10] → [27, 9, 10] → [28, 10, 10]. It is easy
to find that there are 29 inequivalent [23,6,10] codes. Using these codes and
extension by dimension, we obtain 30522 [25,7,10], 507533 [26,8,10] and 30481
inequivalent [27,9,10] codes. In the end, we construct exactly ten inequivalent
codes with parameters [28,10,10] - five with dual distance 5 and five with dual
distance 4. One of these was obtained in [10] as a quasi-cyclic code. The number
of inequivalent codes with parameters [27,10,9] and dual distance 5 is 137.

Let us consider optimal codes with minimum distance 12. Starting from 91
inequivalent [15, 5,≥ 6] codes, we make the following extensions:

[15, 5,≥ 6] → [27, 6, 12]178 → [28, 7, 12]129 → [29, 8, 12]73 → [30, 9, 12]9 →
[31, 10, 12]2→ [32, 11, 12]2.

We can conclude that there are exactly two inequivalent [31, 10, 12] codes
which have dual distance 5 and transitive automorphism group of order 155
and exactly two inequivalent [32, 11, 12] which have dual distance 6 and tran-
sitive automorphism group of order 4960. The codes of dimension 11 have the
following spectrum 1 + 496z12 + 1054z16 + 496z20 + z32.
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From Proposition 1 and the results for optimal codes with minimum distance
12, we have: N(12, 6) = 32, N(11, 6) = 31, N(10, 6) = 30 and N(9, 6) = 29.
Also N(12, 5) = 31, N(11, 5) = 30, N(10, 5) ≤ 29 and N(9, 5) ≤ 28. Moreover,
there are exactly two inequivalent codes which reach N(11,6), and exactly two
inequivalent codes which reach N(11,5).

4 Table of N(d, d⊥)

The table contains bounds and exact values for N(d, d⊥). In the brackets we
put the number of inequivalent codes.

d/d⊥ 3 4 5 6 7 8 9 10 11 12

3 6(1) - - - - - - - - -
4 7(1) 8(1) - - - - - - - -
5 11(1) 13(1) 16(1) - - - - - - -
6 12(1) 14(1) 17(1) 18(1) - - - - - -
7 14(1) 15(1) 20(1) 21(1) 22*(1) - - - - -
8 15(1) 16(1) 21(1) 22*(1) 23*(1) 24*(1) - - - -
9 20(3) 22(1) 27(137) 29(≥ 2) 32-373 33-41 38-42 - - -
10 21(2) 24(2) 28(5) 30(≥ 2) 33-41 34-42 39-43 40-44 - -
11 23(1) 26(1) 30(2) 31(2) 36-42 37-43 41-44 43-45 46*(1) -
12 24(1) 28(7) 31(2) 32(2) 37-43 38-44 42-45 44-46 47*(1) 48*(1)

Keynotes:

1. In most of the cases, the lower bounds on N(d, d⊥) coincide with the minimum length
nm, for which codes with parameters [nm, k, d] and [nm, n−k, d⊥] exist. N(11, 4) and N(12, 4)
are exceptions.

2. The results noted by * are related with the unique [48,24,12] code (see [5]) and the
unique [24,12,8] code (see [3]).

3. We have constructed [37,16,9] code with dual distance 7.

Open problem: A binary formally self-dual (f.s.d.) code is a code which has
the same weight distribution as its dual code. It is not known whether there
is an extremal f.s.d. [40,20,10] code. Existence of a code with such parameters
directly leads to an exact value of N(d, d⊥).
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