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Abstract. In this paper we consider additive circulant graph codes over GF(4) and
an algorithm for their construction. Also, we present some new results obtained by
this algorithm.

1 Introduction

It is well-known [4] that additive self-orthogonal codes over GF (q2) can be
used to represent a class of quantum error-correcting codes. Several papers (for
instance, [4, 6, 7]) were devoted to classifying or constructing additive self-dual
codes over GF (4). Additive self-dual codes over GF (9), GF (16) and GF (25)
were classified in [5]. Moreover, it was shown in [10] that certain vectors in
some additive self-dual codes over GF (4) hold generalized t-designs as well
as classical t-designs with possibly repeated blocks. These facts motivate the
construction of additive self-dual codes over GF (4).

The problem of classification of additive self-dual codes is to construct all
nonequivalent codes of given length and minimum distance. All additive self-
dual codes over GF (4) of length n have previously been classified (up to equiv-
alence) by Calderbank et al. [4] for n ≤ 5, and by Höhn [9] for n ≤ 7. Gaborit
et al. [7] classified all extremal codes of length 8, 9, 11, and 12. Gulliver and
Kim [8] classified many circulant and 4-circulant codes of length n ≤ 27. Using
graph representation, Danielsen and Parker [6] gave a full classification of the
codes of length n ≤ 12. Varbanov [13] classified all extremal (optimal) codes of
length 13 and 14, and constructed many extremal codes of length 15 ≤ n ≤ 21.

The purpose of this paper is to describe an algorithm for constructing addi-
tive self-dual codes with some special properties. Also, we present new results
obtained by this algorithm. The paper is structured in the following way. Sec-
tion 2 consists of some basic definitions and preliminary results. In Section 3
we give a description of an algorithm for constructing additive circulant graph
codes. Section 4 contains new results for additive self-dual codes obtained by
the algorithm.
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2 Preliminaries

Let GF (4) = {0, 1, ω, ω̄} with convention that ω̄ = ω2 = 1 + ω. We recall
some definitions on additive codes over GF (4) from [4, 7].

An additive code C over GF (4) of length n is an additive subgroup of
GF (4)n. As C is a free GF (2)-module, it has size 2k for some 0 ≤ k ≤ 2n. We
call C an (n, 2k) code. It has a basis, as a GF (2)-module, consisting of k basis
vectors; a generator matrix of C is a k×n matrix with entries in GF (4) whose
rows are a basis of C.

There is a natural inner product arising from the trace map. The trace
map Tr : GF (4) → GF (2) is given by Tr(x) = x + x2. In particular Tr(0) =
Tr(1) = 0 and Tr(ω) = Tr(ω̄) = 1. The conjugate of x ∈ GF (4), denoted x̄, is
the following image: 0̄ = 0, 1̄ = 1, and ¯̄ω = ω.

We now define the trace inner product of two vectors x = (x1, x2, . . . , xn),
y = (y1, y2, . . . , yn) in GF (4)n is

x ? y =
n∑

i=1

Tr(xiȳi) (1)

If C is an additive code, its dual code with respect to (1) is the code C⊥ =
{x ∈ GF (4)n|x ? c = 0 for all c ∈ C}. If C is an (n, 2k) code, then C⊥ is an
(n, 22n−k) code. As usual, C is self-orthogonal (with respect to (1)) if C ⊆ C⊥,
and self-dual if C = C⊥. In particular, if C is self-dual, then C is an (n, 2n)
code.

As usual, weight of a codeword c ∈ C (wt(c)) is the number of nonzero
components of c. The minimum weight d of a code C is the smallest weight of
any nonzero codewords of C. If C is an additive (n, 2k) code with minimum
weight d then C is called an (n, 2k, d) code. C is Type II code if C is self-dual
and all codewords have even weight; Type II codes of length n exist only if
n is even [7]. If C is self-dual but some codeword has odd weight, the code is
Type I. There is a bound on the minimum weight of an additive self-dual code
([11], Theorem 33). If dI and dII are the minimum weights of additive self-dual
Type I and Type II codes, respectively, of length n > 1, then

dI ≤


2bn/6c+ 1, n ≡ 0 (mod 6);
2bn/6c+ 3, n ≡ 5 (mod 6);
2bn/6c+ 2, otherwise

(2)

dII ≤ 2bn/6c+ 2

A code that meets the appropriate bound is called extremal. If the code is
not extremal but no code of the given type can exist with a larger minimum
weight then the code is called optimal.
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We say that two additive codes C1 and C2 are equivalent provided there is
a map sending the codewords of C1 onto the codewords of C2 where the map
consists of a permutation of coordinates, followed by a scaling of coordinates
by elements of GF (4), followed by conjugation of some of the coordinates. The
automorphism group of C, denoted Aut(C), consists of all maps which permute
coordinates, scale coordinates, and conjugate coordinates that send codewords
of C to codewords of C.

A graph code is an additive self-dual code over GF (4) with generator matrix
G = Γ + ωI where I is the identity matrix and Γ is the adjacency matrix of a
simple undirected graph, which must be symmetric with 0’s along the diagonal.

Example:

Γ =

 0 1 1
1 0 1
1 1 0

 , G =

 ω 1 1
1 ω 1
1 1 ω


Schlingemann [12] first proved (in terms of quantum stabilizer states) that

for any self-dual quantum code, there is an equivalent graph code. This means
that there is a one-to-one correspondence between the set of simple undirected
graphs and the set of additive self-dual codes over GF (4). We have seen that
every graph represents an additive self-dual code over GF (4), and that every
additive self-dual code over GF (4) can be represented by a graph.

3 Additive circulant graph codes

A matrix B of the form:

B =


b0 b1 . . . bn−2 bn−1

bn−1 b0 b1 . . . bn−2

. . . . . . . . . . . . . . .
b2 . . . bn−1 b0 b1

b1 b2 . . . bn−1 b0


is called a circulant matrix. The vector (b0, b1, . . . , bn−1) is called generator
vector for the matrix B. An additive code with circulant generator matrix is
called circulant code (see [8]).

An additive circulant graph (ACG) code is a code corresponding to graph
with circulant adjacency matrix. Circulant graphs must be regular, i.e., all
vertices must have the same number of neighbours. It is easy to see that
such matrix has the following property: bi = bn−i, ∀ i = 1, . . . , n − 1, and
b0 = ω. Then, the entries in the generator matrix of ACG code depend on
the coordinates (b1, b2, . . . , bbn/2c) only. Therefore, we can restrict our search
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space to the 2bn/2c codes over GF (4) of length n corresponding to graphs with
circulant adjacency matrices.

Besides a smaller search space, the special form of the generator matrix of
a graph code makes it easier to determine the minimum distance, since any
codeword obtained as a linear combination of i rows of the generator matrix
must have weight at least i. If, for example, we want to check whether a code
has minimum distance at least d, we only need to consider combinations of d−1
or fewer rows of its generator matrix.

Our search algorithm is the following:

INPUT: positive integers n and d (1 < d < n).

OUTPUT: all possible ACG codes of length n and minimum distance ≥ d.

Step 1. If n is even, take a binary vector g(0) = (g1, g2, . . . gn
2
) and extend

it to a vector g = (ω, g1, g2, . . . , gn
2
−1, gn

2
, gn

2
−1, . . . , g2, g1). If n is odd then

g(0) = (g1, g2, . . . gn−1
2

), and g = (ω, g1, g2, . . . , gn−1
2

, gn−1
2

, . . . , g2, g1)

Step 2. Construct a circulant matrix G (a generator matrix of an ACG
code) with generator vector g.

Step 3. Compute all linear combinations of 1, 2, ...., d − 1 rows of G and
check their weights. If all weights are ≥ d then the minimum distance is at
least d.

Step 4. If g(0) is not all-one vector – g(0) = g(0) + 1, Step 1.

END.

For Step 3, to compute all linear combinations of at most d−1 rows of G, we
should use exactly t embedded cycles (for any t < d). This is not appropriate for
practical purposes – certain number of cycles have to be added to (or removed
from) the program for any change of t. To eliminate this problem we use the
algorithm GCQARY NONREC ([2], p.14) that is a non-recursive emulation of
t embedded cycles. Also, to check a weight of given nonbinary vector we do
not need to check every coordinate position of the vector. We can use bit-
wise representation of the codewords and faster algorithm [3]. In step 4, the
operation g(0) = g(0) + 1 actually means that we take the next binary vector
(by lexicographic order). Initially, g(0) = (0, 0, . . . , 0, 1).

To obtain all nonequivalent codes among the constructed codes of given
length we use a transformation into linear binary codes (as is shown in [4]) and
we check the binary images by the program package Q-Extension [1].
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4 Results

Gulliver and Kim [8] performed a computer search of circulant self-dual
additive codes over GF (4) of length up to 30. Their search was not restricted
to graph codes, so our search space is a subset of theirs. On the other hand,
in some cases our search include all circulant graph codes of given length (not
only extremal or optimal codes).

In this section we construct ACG codes of lengths 13 ≤ n ≤ 36 with max-
imum d that the codes of this type can reach. We give full classification of
ACG codes of lengths 13 ≤ n ≤ 33, and we construct some codes of lengths
34 ≤ n ≤ 36. The complete classification of additive self-dual codes of lengths
2 ≤ n ≤ 12 was done in [6]. Also, a classification of extremal/optimal self-dual
codes of lengths 13 and 14 was given in [13]. We will compare our results with
those obtained in [5, 8].

n = 13: There are 8 nonequivalent ACG codes of length 13 – 2 optimal
codes with minimum distance d = 5, 4 codes with d = 4, 1 code with d = 3,
and 1 code with d = 2.

n = 14: There are 30 nonequivalent ACG codes – 3 codes with d = 6 (all
codes are Type II ), 3 codes with d = 5, 14 codes with d = 4 (6 Type I and 8
Type II ), 2 codes with d = 3, and 8 codes with d = 2 (3 Type I and 5 Type II ).

n = 15: There are 39 nonequivalent ACG codes of this length – 2 codes
with d = 6, 10 codes with d = 5, 10 codes with d = 4, 10 code with d = 3, and
7 codes with d = 2.

n = 16: There are 6 nonequivalent extremal codes with d = 6 (one code is
Type I and 5 codes are Type II ).

n = 17: There is a unique ACG (17, 217, 7) code. This code is equivalent to
the code constructed in [8].

n = 18: No extremal Type I (d = 7) or Type II (d = 8) codes of this length.
There are 52 ACG (18, 218, 6) codes (16 codes are Type I and 36 codes are Type
II ).

n = 19: There are 4 nonequivalent extremal codes with d = 7.
n = 20: There are 2 codes with d = 8. Their group orders are 40 and 6840,

and they are equivalent to the codes constructed in [8].
n = 21: No extremal code (with d = 8) of this length. There are 11

nonequivalent ACG codes with d = 7.
n = 22: There are 14 nonequivalent extremal codes with d = 8 (all of them

are Type II ).
n = 23 − 27: No ACG codes with d = 9. There are 2 nonequivalent

(23, 223, 8) codes, 51 nonequivalent (24, 224, 8) codes, 31 nonequivalent (25, 225, 8)
codes, 210 nonequivalent (26, 226, 8) codes, and 140 nonequivalent (27, 227, 8)
codes.
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n = 28− 29: There are a unique (28, 228, 10) code and a unique (29, 229, 11)
code. The group orders of these code are 56 and 812, respectively. They are
equivalent to the codes with the same parameters constructed in [8].

n = 30: We construct 4 ACG codes of this length and d = 12. These codes
have the same weight enumerator as the extended quadratic residue code XQ29.
We were unable to determine the equivalence in this case.

n = 31: No extremal ACG code with d = 12, and no code with d = 11.
There are exactly 62 nonequivalent codes with d = 10.

n = 32: No extremal ACG code with d = 12, and no code with d = 11.
There are exactly 108 nonequivalent codes with d = 10 (2 codes are Type I and
106 codes are Type II ).

n = 33: No extremal ACG code with d = 12, and no code with d = 11.
There are exactly 76 nonequivalent codes with d = 10.

n = 34 − 36: No ACG code with d > 10. For d = 10, we construct 144
nonequivalent codes of length 34, 12 nonequivalent codes of length 35, and 4
nonequivalent codes of length 36.

We summarize the obtained results in Table 1. The maximum reached
minimum distance is the same as in [5, 8]. But the classification results for
some lengths are different than the results in [8]. For instance, 51 nonequivalent
circulant codes of length 24 are constructed in [8], and all of them are Type II.
In our work, we also construct 51 nonequivalent codes of this length but five
of them are Type I (these are the first constructed examples), and 46
codes are Type II. This shows that the circulant graph code construction cannot
produce the same nonequivalent codes as strong as the more general circulant
code construction.

Also, in our work we improve the lower bound on the number of nonequiv-
alent codes of length 26. We construct 210 codes of length n = 26 (49 codes
are Type I and 161 codes are Type II ). In [8], the number of the codes of this
length is 14 (Type I ) and 49 (Type II ), respectively.

Table 1 – ACG codes of length 13 ≤ n ≤ 36 for the maximum
reached d

n d number n d number n d number n d number
13 5 2 19 7 4 25 8 31 31 10 62
14 6 3 20 8 2 26 8 210 32 10 108
15 6 2 21 7 11 27 8 140 33 10 76
16 6 6 22 8 14 28 10 1 34 10 ≥ 144
17 7 1 23 8 2 29 11 1 35 10 ≥ 12
18 6 52 24 8 51 30 12 ≥ 1 36 10 ≥ 4
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