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Note: On a Class of Boolean Functions 1
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Abstract. In this note, we present an initial attempts to study a class of Boolean
functions which might be useful in some coding-theoretical and cryptographic con-
siderations. Some suggestions for future research are proposed.

1 Introduction

When studying Boolean functions (BFs) it is helpful to take into account the dif-
ferent types of equivalence relations among them. As a rule these relations keep
invariant many of coding-theoretical and cryptographic properties of the func-
tions, like the distributions of absolute Walsh and autocorrelation spectrum, as
well as the properties derived by latter ones, as nonlinearity, balancedness (more
generally coset weight distribution), dimension of the linear space, GAC indica-
tors, distances to functions with non-zero linear structures [5], etc. Of course,
these equivalence relations come from the action of corresponding groups of
transformations on the set of variables. Usually, in this connection the role of
some general groups is studied, e.g., the general affine (or the general linear)
group AGL(m, 2) (GL(m, 2)) (see, [2] and [3]), but sometimes much can be
gained also when considering their subgroups (like the cyclic group Cm or the
dihedral group Dm), and even only separate transformations (see, e.g., [7], [1]
and [6]).

In this note, we present our initial efforts to investigate the properties of BFs
under the action of one such transformation that takes function’s variables in
reverse order, and show that these properties are interesting from combinatorial
and coding-theoretical point of view.

1This work is suported by the Found Scientific Research of Sofia University ”St. Kliment
Ohridski” by a Contract with the preliminary number 182/2009.
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2 Some preliminaries

Let x1, x2, . . . , xn be n Boolean variables. The function f : {0, 1}n → {0, 1}
is called Boolean function (BF) on n variables. We shall denote by Fn the
set of BFs on n variables and by F =

⋃
Fn, n = 1, 2, 3, . . . the set of all BFs,

respectively. If the vectors of {0, 1}n are lexicographically ordered: (α0 =
0, α1, . . . , α2n−1 = 1) then each Boolean function f ∈ Fn can be represented by
the vector-column β = (b0, b1, . . . , b2n−1) (also called truth-table of f), where
bi = f(αi), i = 0, 1, . . . , 2n − 1. Another useful representation of f is by its
Zhegalkin polynomial [4] (also known as Algebraic Normal Form of f),
Pf (x1, x2, ..., xn) that is a formulae over the set of BFs Z = {0, 1, xy, x ⊕ y}
which gives the value of f for every assignment of x1, x2, . . . , xn. A Boolean
function f possessing linear polynomial Pf is called linear. We shall also,
denote by Ln (and by L), the set of the linear BFs in Fn (the set of all linear
BFs, respectively).

Definition 1 Let α = (a1, a2, . . . , αn) ∈ {0, 1}n. Then α̃ = (an, an−1, . . . , a1)
is called reverse to α. If α = α̃ then we call α self-reverse (or palindrome-
vector).

Definition 2 Let f(x1, x2, . . . , xn) ∈ Fn. The Boolean function f̃(x1, x2, . . . , xn)
defined by f̃(x1, x2, . . . , xn) = f(xn, xn−1, . . . , x1) is called reverse to f . If
f = f̃ then f is called self-reverse.

We will denote by S̃ the set of the self-reverse BFs, and by S̃n = S̃
⋂
Fn

and S̃Ln = S̃
⋂
Ln = S̃n

⋂
L, respectively.

3 Properties of S̃n as a class of BFs

Traditional problems, when a class of Boolean functions is considered, are: to
finding the cardinality of this class; to decide is it closed or complete by the
superposition of functions, in what relation it is with the important closed
classes of Boolean functions - T0, T1, S,M,L (see, [4] for notations and more
details), etc.?

Herein, we formulate some results in the aforementioned directions.

Lemma 1 For any n ≥ 1 there are 2d
n
2
e palindrome-vectors, as well as 2n−1−

2d
n
2
e−1 pairs of reverse to each other vectors.

Proposition 1 |S̃n| = 22n−1+2d
n
2 e−1

.

Proposition 2 For each Boolean function f : (̃f̃) = f .
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Proposition 3 If f ∈ Fm and g1, . . . , gm ∈ S̃n then f(g1, . . . , gm) belongs to
S̃n.

Proposition 4 Each BF f ∈ Fn and its negation f = f ⊕ 1 belong both to S̃n

or to Fn − S̃n.
Let us give some examples of self-reverse BFs. Clearly, we have S̃1 ≡ F1,

i.e. all BFs of one variable are self-reverse. For n = 2, the property to be
self-reverse BF, coincides with the commutativity of that function. So, the self-
reverse Boolean functions of two variables are: 0, xy, x⊕y, x∨y, x|y, x ≡ y, x ↑ y
and 1. Since the set generating all Zhegalkin polynomials is a subset of S̃2 we
have

Proposition 5 [S̃2] = [S̃] = F , where [F] is the closure of the set F of BFs
generated by the superposition of BFs.

Finally, we would like to mention that the property of self-reverseability is
not preserved when a dummy variable is appended. For example, if f(x, y, z) =
xy, then f̃ = f(z, y, x) = yz and f 6= f̃ .

4 Coding-theoretical properties of S̃n

In this section, we consider Boolean functions as vectors of 2n-dimensional
vector space over GF (2). Since 0 ∈ S̃n, and obviously if f, g ∈ S̃n then f ⊕ g ∈
S̃n (a particular case of Proposition 3), we have the following:

Proposition 6 For any n ≥ 1, S̃n is a binary [2n, 2n−1 + 2d
n
2
e−1, 1]-code.

By the same reasoning the linear functions in S̃n form a linear sub-code of
that code:

Proposition 7 For any n ≥ 1, S̃Ln is a binary [2n, dn2 e+ 1, 2n−1]-code.
Also, since the all-one vector 1 belongs to S̃n the following proposition holds

Proposition 8 For any n ≥ 1, the dual code S̃n
⊥

is a binary [2n, 2n−1 −
2d

n
2
e−1,≥ 2]-code.

5 Conclusion

In this note, we present an initial efforts to investigate combinatorial and
coding-theoretical properties of one special class of BFs. Our future goal will
be to deeper and extend this study in several directions. For instance, we aim
to investigate into more details the cryptographic properties of these functions,
and, of course, to find useful applications of them.
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[1] T.W. Cusick, P. Stǎnicǎ, Fast evaluation, weights and nonlinearity of
rotation-symmetric functions, Discr. Math. 258, 2002, 289-301.

[2] X. D. Hou, AGL(m, 2) acting on R(r,m)/R(s,m), J. Algebra 171, 1995,
921-938.

[3] X. D. Hou, GL(m, 2) acting on R(r,m)/R(r − 1,m), Discr. Math. 149,
1996, 99-122.

[4] Kr. Manev, Introduction to Dicrete Mathematics, 4-th edition, KLMN,
Sofia, 2005 (in Bulgarian).

[5] W. Meier, O. Staffelbach, Nonlinearity criteria for cryptographic functions,
Proc. of EUROCRYPT’89, LNCS 434, 1989, Springer-Verlag, 549-562.
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