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Abstract. Given a linear code [n, k, d] with parity check matrix H, we provide
inequality that supports existence of a code with parameters [n + l + 1, k + l, d].
We show that this inequality is stronger than the Gilbert-Varshamov (GV) bound
even if the existence of the code [n, k, d] is guaranteed by the GV bound itself.

1 Introduction

Let H is the parity check matrix of some binary code [n− 1, k − 1, d]. Let
H (n− k, d− 2) denotes the set of all unique (n− k)-tuples that are linear
combination of d− 2 columns of H. Then a code with parameters [n, k, d] does
exist provided

|H (n− k, d− 2)| ≤ 2n−k − 2 (1)

Let Bk(n, d) denotes the size of the largest (optimal) linear code over Fn
2 . Then

the existence of [n− 1, k − 1, d] lower-bounds Bk(n, d)

Bk (n, d) ≥ n− dlog |H (n− k, d− 2)|e (2)

We will write V (n, d− 2) to denote the number of all combinations of d− 2 or
less elements from an n-element set, namely

V (n, d− 2) =
d−2∑
i=0

(
n
i

)
(3)

In coding theory this quantity is known as the volume of a Hamming sphere
with radius d in Fn

2 . Since |H (n− k, d− 2)| cannot be larger than V (n, d− 2)
we get an estimate of (1)

V (n, d− 2) ≤ 2n−k − 2 (4)

known as the Varshamov’s lower bound. If the triplet n, k, and d satisfies (4),
then the code [n, k, d] does exist [3]. Motivated by recent improvements of (4)
by linear factor with code length n, [1], [2], we will present the following result:
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The code [n, k, d] can be extended to a code with parameters [n+ l + 1, k + l, d]
provided that the following holds true

min(l,d−2)∑
i=1, i odd

(
l
i

)
V (n, d− 2− i) ≤ 2n−k (5)

where the summation is over the odd values of the index i. To support the
existence of the code [n, k, d] we can use the GV bound (4) or we can use (5)
recursively as long as n− k > d− 1. The stopping criterion for the recursion is
the repetition code [d, 1, d]. In both cases (5) guarantees existence of a better
code than (4).

It has been known that a simple greedy algorithm will produce a linear code
with parameters that are at least as good as the parameters that satisfy (4).
The greedy algorithm searches over Fn−k

2 and outputs a parity check matrix H.
We will show that code parameters obtained by running the greedy algorithm
also satisfy (5).

In the following section we will put side by side (5) with some previously
known results on the GV bound. In Section III we will present construc-
tive proof of (5). Then we will show additional improvement of the term
V (n, d− 2− i). The main idea behind these improvements is to count only
once as many linear combinations from H (n− k, d− 2) as possible.

2 Comparison with prior results

We will start with the GV bound. The inequality

2 ·
min(l,d−2)∑
i=1, i odd

(
l
i

)
V (n, d− 2− i) ≤ V (n+ l, d− 2) (6)

holds true for any n and d. This can be proved by applying the Vandermonde’s
convolution formula on the right-hand side of (6). From (6) we conclude that
(5) improves the Varshamov’s inequality (4).

Elia [5] reported the following result: Let the code [n− 2, k − 1, d] does
exist. Then the code [n, k, d] does exist too, provided

V (n− 2, d− 3) ≤ 2n−k−1 (7)

If we restrict l to be at most 1, l ≤ 1, then (5) is precisely Elia’s result. Moreover,
letting l ≤ 2 we obtain improvement of (7); namely, assuming prior existence of
the code [n− 3, k − 2, d], the code [n, k, d] does exist if the following holds true

V (n− 3, d− 3) ≤ 2n−k−2 (8)
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Barg, Guritman, and Simonis [7] reported the following remark: The code
[n, k, d] with covering radius ρ ≤ d−2 can be extended to [n+ d− ρ− 1, k + 1, d].
In this context, if the covering radius of [n, k, d] is strictly less than d− 2, then
(5) guarantees existence of the trivial lengthening [n+ 1, k, d]. However if we
have prior knowledge of the covering radius, we can modify (5) so that we ob-
tain at least the same result as in [7]. For example, similar to (8), we can extend
remark 13 from [7], i.e. if

V (n, α) ≤ 2n−k−1

for some α ≤ d− 1, then any [n, k, d] code can be extended to an
[n+ d− ρ, k + 2, d] code. For α = d− 3 this reduces to (8).

Jiang and Vardy have developed a graph-theoretic approach to asymptot-
ically improve the GV bound for nonlinear codes [1], [2]. They were able to
show that the code (n,M, d) does exist provided

c
V (n, d− 1)

n
≤ 2n−dlog2Me (9)

where the constant c is at least 1/2 + o(1), as reported in [2]. How does (5)
compares with (9)? In our case, we were unable to prove that the left-hand of
(6) is smaller than the right-hand by a factor n. Hence, one may assume that
(9) guarantees existence of a code with better parameters than (5). However,
in general inequality (9) guarantees existence of a non-linear code, while (5)
pertains to the linear codes. Gaborit and Zemor [6] proved that some linear
double circulant codes follow (9), but only for code rates of 1/2 . If a linear
code is proved to comply with (9), then (6) and (9) will complement each other.
Namely, Jiang and Vardy reported [1] that (9) improves the GV bound when
the relative distance d/n is constant. On the other hand, (6) improves the GV
bound even when the relative distance d/n approaches to zero.

3 The proof

We will consider infinite family of linear codes [nm, nm −m, d] with parity check
matrices Hm, where m → ∞. The parity check matrix for each m is obtained
by greedy adding vectors from Fm

2 to Hm as long as (1) holds true. Hence, each
[nm, nm −m, d] code satisfies

|H (m, d− 2)| = 2m − 1 (10)

The parity check matrix Hm is in systematic form with Hm−1 embedded in it

Hm =
[
0 . . . 0 1 1 . . . 1
Hm−1 0 Lm

]
(11)
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To prove this, simply pick the first row from Fm
2 and keep its value 0, while run-

ning the greedy algorithm. This will generate Hm−1. Add the vector
[
1 0

]T ,
then flip the value of the coordinate to 1 and continue as long as (1) is true.
The systematic nature of the parity check matrix Hm was first noticed in [4].

Proposition 1. Given a code [nm, nm −m, d] with parity check matrix Hm.
The code [nm + l + 1, nm + l −m, d] does exist provided

min(l,d−2)∑
i=1, i odd

(
l
i

)
V (nm, d− 2− i) ≤ 2m − 1 (12)

Proof. The set H (m+ 1, d− 2) of d−2 linear combinations from Hm+1 can be
divided into three subsets A, B, and C. Set A is made of all d−2 linear combi-

nations from
[

0
Hm

]
. Set B consists of all d−2 linear combinations that include

odd number of vectors from
[
1 1
0 Lm+1

]
. Similar to B, set C consists of all

d−2 linear combinations that include even number of vectors from
[
1 1
0 Lm+1

]
.

Every (d− 2)-linear combination from Hm+1 belongs to at least one of these
sets. However, the first row of the vectors from set C is 0, thus every vector
from set C also belongs to set A. Hence, we conclude that H (m+ 1, d− 2)
is union of two disjoint sets A and B. Since Hm satisfies (10), set A has at

most 2m elements. Let l is the number of columns of
[
1 1
0 Lm+1

]
. Then the

right-hand side of (12) is estimate of |B|

If we compare results obtained from running the greedy algorithm for small
d [8] with the corresponding solutions of (12), we will observe a considerable
gap. For example, for m = 32 the greedy algorithm will produce the code
[8752, 8720, 5], while (12) predicts the existence of [3186, 3154, 5]. Can we find
a better estimate for the code parameters of the greedy algorithm? Following
the idea of counting only once as many linear combinations from Hm as possible
we have obtained proposition 2, which improves the term V (nm, d− 2− i) in
(12).

Proposition 2. Given some code [nm, nm −m, d] with parity check matrix Hm.
The code [nm + l + 1, nm + l −m, d] does exist provided

min(d−2,l)∑
i=1, i odd

(
l
i

)
Cd−2−i + V (n, d− 3)− Cd−3 ≤ 2m (13)
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where Cd−2−i is the largest term in

Cd−2−i = max
max(d−1−i,i)≤p≤d−2

{Cd−2−i (p)} (14)

and

Cd−2−i (p) =
d−2−i∑

z=d−2−p

b z+p−d+2
2 c∑

j=0

(
p
j

)(
n− p
z − j

)
(15)

Proof. Let the greedy algorithm has generated the matrix Hm. Then the algo-
rithm adds the vector

[
1 0

]T and continues with the search over the quotient

space
[
1 Fm

2

]T . In order to improve (12) we will develop a mechanism that

counts only once each vector that is linear combination of
[
1 0

]T and d − 3
columns from Hm.

Let a vector y is linear combination of i columns of the matrix
[
1 1
0 Lm+1

]
.

The same vector y can be represented as linear combination of p vectors from
Hm,

y = a1 + a2 + · · ·+ ap (16)

Clearly, p cannot be smaller than d− 1− i, because this will violate the criteria
of independence of each (d− 1)-linear combination of the columns of Hm+1.
On the other hand p cannot be larger than d− 2 because this would mean that
the code [nm, nm −m, d] did not satisfy (10). Hence, we can write d− 1− i ≤
p ≤ d− 2.

Let some vector x is linear combination of at most d−2−i vectors from Hm,
x ∈ H (m, d− 2− i). We want to find the number Cd−2−i of linear combinations
y + x that could possibly lead to linear combination of exactly d − 2 vectors
from Hm. For example, let x is linear combination of d − 3 − p columns from
Hm; then the vector y+x cannot result in a linear combination of exactly d−2
vectors from Hm. For i ≥ (d− 2)/2 , we have that p must be greater than
or equal to i in order to be able to obtain linear combination of exactly d − 2
columns from Hm.

We will denote the columns of Hm as follows

Hm =
[
a1 a2 · · · ap hp+1 hp+2 · · · hn

]
where the columns ai belong to the vector y (16). Let assume that the vector
x is linear combination of z vectors from Hm, where d− 2− p ≤ z ≤ d− 2− i.
We can say that x is made of j vectors from a1, a2, . . . , ap and z − j vectors
from hp+1, hp+2, . . . , hn. The resulting vector y + x can possibly be a linear
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combination of exactly d− 2 vectors if j ≤
⌊

p+z−d+2
2

⌋
. Assuming that we have

prior knowledge of p, we obtain that (15) can be inserted in (12) instead of
V (nm, d− 2− i). Since p is not known in advance we must find the largest
term Cd−2−i (p), namely we must solve (14). Finally, we must add the term
V (n, d− 3)−Cd−3 so that each linear combination of

[
1 0

]T and d−3 columns
from Hm is counted only once.
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