On a class of functions in finite algebras

SLAVCHO SHTRAKOV Department of Computer Science, Neofit Rilsky South-West University 2700 Blagoevgrad, BULGARIA

Abstract. Given an *n*-ary k-valued function f, gap(f) denotes the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. It is called the essential arity gap of f. We obtain an explicit determination of n-ary k-valued functions f whose essential arity gap is equal to $m, m \leq n \leq k$. Our methods yield new combinatorial results about the number of k-valued functions with given gap.

1 Introduction

Given a function f, the essential variables in f are defined as variables which occur in f and weigh with the values of that function. The number of essential variables is an important measure of complexity for discrete functions.

We proved a few results concerning simplifying of functions by identification of variables.

2 **Preliminaries**

Let k be a natural number with k > 2 and let $K = \{0, 1, \dots, k-1\}$ be the set (ring) of remainders modulo k. An n-ary k-valued function (operation) on K is a mapping $f: K^n \to K$ for a natural number n, called the arity of f. The set of the all such functions is denoted by P_k^n .

Definition 2.1 Let $X_n = \{x_1, \ldots, x_n\}$ be the set of *n* variables. A variable x_i is called essential in f, or f essentially depends on x_i , if there exist values $a_1, \ldots, a_n, b \in K$, such that

 $f(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n).$

The set of all essential variables in a function f is denoted by Ess(f) and the number of its essential variables is denoted by ess(f) = |Ess(f)|.

Let x_i and x_j be two distinct essential variables in f. We say that the function g is obtained from $f \in P_k^n$ by the identification of the variable x_i with x_j , if

$$g = f(x_1, \ldots, x_{i-1}, x_j, x_{i+1}, \ldots, x_n) = f(x_i = x_j).$$

shtrakov@swu.bg

Shtrakov

Briefly, when g is obtained from f, by identification of the variable x_i with x_j , we will write $g = f_{i \leftarrow j}$ and g is called the *identification minor of* f and Min(f) denotes the set of all identification minors of f.

We shall allow formation of identification minors when x_i or x_j are not essential in f, also. Such minors of f are called *trivial* and they do not belong to Min(f). So, if x_i does not occur in f, then we define $f_{i \leftarrow j} := f$.

Clearly, $ess(f_{i\leftarrow j}) \leq ess(f)$, because $x_i \notin Ess(f_{i\leftarrow j})$, even though it might be essential in f.

Definition 2.2 Let $f \in P_k^n$ be an n-ary k-valued function. Then the essential arity gap (shortly arity gap or gap) of f is defined by

$$gap(f) := ess(f) - \max_{g \in Min(f)} ess(g).$$

We let $G_{p,k}^m$ denote the set of all functions in P_k^n which essentially depend on m variables whose arity gap is p i.e. $G_{p,k}^m = \{f \in P_k^n \mid ess(f) = m \& gap(f) = p\}$, with $m \leq n$.

In [2] the Boolean functions whose arity gap is 2 are described. In [3] the class $G_{2,2}^n$ is investigated, also and several combinatorial results concerning the number of the functions in this class are obtained.

The case $2 \le p \le n$ and n > k is fully described in [4] where it is proved that $gap(f) \le 2$ and if $f \in G_{2,k}^n$ then f is a totally symmetric function.

So, we shall pay attention to the case 2 < k and $n \le k$, solving a problem of M. Couceiro and E. Lehtonen, namely:

For each $1 \leq m \leq |A|$, determine explicitly the functions $f : A^n \to B$ whose arity gap is m ([1], page 6, Problem 1).

We shall assume that A = B = K. The most of the results obtained in this case might be easily generalized about finite defined and finite valued functions.

Let $m \in N$, $0 \le m \le k^n - 1$ be an integer. It is well known that for every $k, n \in N, k \ge 2$ there is an unique finite sequence $(\alpha_1, \ldots, \alpha_n) \in K^n$ such that

$$m = \alpha_1 k^{n-1} + \alpha_2 k^{n-2} + \ldots + \alpha_n$$

This equation is known as the representation of m in k-ary positional numerical system. One briefly writes $m = \overline{\alpha_1 \alpha_2 \dots \alpha_n}$.

Given a variable x and $\alpha \in K$, x^{α} is an important function defined by:

$$x^{\alpha} = \begin{cases} 1 & if \quad x = \alpha \\ 0 & if \quad x \neq \alpha. \end{cases}$$

In this paper we shall use sums of conjunctions (SC) for representation of functions in P_k^n . This is the most natural representation of the functions in finite algebras. It is based on so called operation tables of the functions.

Each function $f \in P^n_k$ can be uniquely represented in SC-form as follows

$$f = a_0 \cdot x_1^0 \dots x_n^0 \oplus \dots \oplus a_m \cdot x_1^{\alpha_1} \dots x_n^{\alpha_n} \oplus \dots \oplus a_{k^n - 1} \cdot x_1^{k - 1} \dots x_n^{k - 1}$$

with $m = \overline{\alpha_1 \alpha_2 \dots \alpha_n}$, and $\alpha_i, a_m \in K$, where " \oplus " and "." are the operations addition and multiplication modulo k in the ring K.

3 Essential arity gap of *k*-valued functions

First, we study the n-ary k-valued functions whose arity gap is n.

Given two natural numbers $k, n \ge 2$, Eq_k^n denotes the set of all strings over $K = \{0, 1, \dots, k-1\}$ with length n which have at least two equal letters i.e.

 $Eq_k^n := \{ \alpha_1 \dots \alpha_n \in K^n \mid \alpha_i = \alpha_j, \text{ for some } i, j \le n, i \ne j \}.$

Theorem 3.1 Let $f \in P_k^n$, be a function which depends essentially on all of its n variables and $2 < n \leq k$. Then $f \in G_{n,k}^n$ if and only if it can be represented as follows

$$f = \left[\bigoplus_{\beta_1 \dots \beta_n \notin Eq_k^n} a_r . x_1^{\beta_1} \dots x_n^{\beta_n}\right] \oplus a_0 . \left[\bigoplus_{\alpha_1 \dots \alpha_n \in Eq_k^n} x_1^{\alpha_1} \dots x_n^{\alpha_n}\right],\tag{1}$$

where $r = \overline{\beta_1 \dots \beta_n}$ and at least two among the coefficients $\{a_0\} \cup \{a_r \mid r = \overline{\beta_1 \dots \beta_n}, \& \beta_1 \dots \beta_n \notin Eq_k^n\}$, are distinct.

Corollary 3.1 If $f \in G_{n,k}^n$ and $2 \le n \le k$, then $f(\alpha_1, \ldots, \alpha_n) = f(0, \ldots, 0)$ for all $\alpha_1 \ldots \alpha_n \in Eq_k^n$.

Corollary 3.2 For each $k, k \ge 3$ the functions

$$q_k(x_1,\ldots,x_k) = \bigoplus_{\alpha_1\ldots\alpha_k \in Eq_k^k} x_1^{\alpha_1}\ldots x_k^{\alpha_k}$$

and

$$p_k(x_1,\ldots,x_k) = \bigoplus_{\alpha_1\ldots\alpha_k \notin Eq_k^k} a_m . x_1^{\alpha_1} \ldots x_k^{\alpha_k},$$

where $m = \overline{\alpha_1 \dots \alpha_k}$ and at least two among the coefficients a_m are distinct, have the essential arity gap equal to k.

Theorem 3.2 If $2 \le n \le k$ then

$$|G_{n,k}^{n}| = k^{\left(\binom{k}{n}.n!+1\right)} - k.$$

170

Shtrakov

The basic properties of the functions whose arity gap is p with 2 , are described by the next theorems.

Theorem 3.3 Let $f \in G_{p,k}^n$ with 2 . Then $(i) If <math>Ess(f_{u \leftarrow v}) \cap \{x_u, x_v, x_w\} = \emptyset$ and $ess(f_{u \leftarrow v}) = n - p$ then the following holds:

 $\begin{array}{l} (i_1) \ ess(f_{u \leftarrow w}) = ess(f_{v \leftarrow w}) = n - p; \\ (i_2) \ x_u \notin Ess(f_{v \leftarrow w}) \ and \ x_v \notin Ess(f_{u \leftarrow w}); \\ (i_3) \ x_j \in Ess(f_{v \leftarrow j}) \ for \ all \ x_j, \ x_j \in Ess(f_{u \leftarrow v}); \\ (i_4) \ x_i \notin Ess(f_{v \leftarrow i}) \ for \ all \ i, \ x_i \notin Ess(f_{u \leftarrow v}). \\ (ii) \ If \ x_v \in Ess(f_{u \leftarrow v}), \ Ess(f_{u \leftarrow v}) \cap \{x_u, x_w\} = \emptyset \ and \ ess(f_{u \leftarrow v}) = n - p \ then \ the \ following \ holds: \end{array}$

 $\begin{array}{l} (ii_1) \ ess(f_{w\leftarrow v}) = ess(f_{w\leftarrow u}) = n - p;\\ (ii_2) \ x_v \notin Ess(f_{w\leftarrow u}) \ and \ x_u \notin Ess(f_{w\leftarrow v});\\ (ii_3) \ x_v \in Ess(f_{w\leftarrow j}) \ \iff \ x_u \notin Ess(f_{w\leftarrow j}) \ for \ all \ x_j, \ x_j \notin \{x_u, x_v, x_w\};\\ (ii_4) \ x_i \notin Ess(f_{w\leftarrow j}) \ for \ all \ x_i, \ x_i \notin Ess(f_{u\leftarrow v}).\\ (ii_5) \ x_j \in Ess(f_{w\leftarrow j}) \ for \ all \ x_i, \ x_i \in Ess(f_{u\leftarrow v}). \end{array}$

Theorem 3.4 Let $f \in G_{p,k}^n$ and 2 . Then the following conditions hold:

(i) There exist $u, v \in \{1, ..., n\}$ such that $f_{u \leftarrow v}$ depends essentially on n - p variables and $x_v \in Ess(f_{u \leftarrow v})$;

(ii) There exist $u, v \in \{1, ..., n\}$ such that $f_{u \leftarrow v}$ depends essentially on n - p variables and $x_v \notin Ess(f_{u \leftarrow v})$.

Remark 3.1 The results from Theorem 3.3, and Theorem 3.4 might be summarized as follows:

(i) Let $f \in G_{p,k}^n$. If $x_v \notin Ess(f_{u \leftarrow v})$ and $ess(f_{u \leftarrow v}) = n - p$, then $x_j \in Ess(f_{i \leftarrow j})$ and $x_i \in Ess(f_{j \leftarrow i})$ for all $x_j \in Ess(f_{u \leftarrow v})$ and $x_i \notin Ess(f_{u \leftarrow v})$, according to Theorem 3.3 (i).

(ii) Let $f \in G_{p,k}^n$. If $x_v \in Ess(f_{u \leftarrow v})$ and $ess(f_{u \leftarrow v}) = n - p$, then $x_i \notin Ess(f_{j \leftarrow i})$ for all $x_i, x_j \notin Ess(f_{u \leftarrow v})$, according to Theorem 3.3 (ii).

(iii) Thus, we have obtained a partition of the set $X_n = \{x_1, \ldots, x_n\}$ into the sets $V := Ess(f_{u \leftarrow v})$ and $W =: X_n \setminus V$, such that

$$(x_i, x_j) \in W^2 \Rightarrow (ess(f_{i \leftarrow j}) = n - p \& x_j \notin Ess(f_{i \leftarrow j}))$$

and

$$(x_i, x_j) \in W \times V \Rightarrow (ess(f_{i \leftarrow j}) = n - p \& x_j \in Ess(f_{i \leftarrow j})).$$

Theorem 3.5 Let f be a k-valued function which depends essentially on the all of its n variables and $2 . Then <math>f \in G_{p,k}^n$ if and only if there exist n-p variables $y_{i_1}, \ldots, y_{i_{n-p}} \in X_n$ such that

$$f(x_1, \ldots, x_n) = h(y_{i_1}, \ldots, y_{i_{n-p}}) \oplus g(x_1, \ldots, x_{n-p}, x_{n-p+1}, \ldots, x_n),$$

where h depends essentially on all of its n-p variables and $g \in G_{n,k}^n$.

Theorem 3.6 If 2 , then

$$|G_{p,k}^{n}| = [k^{\binom{k}{n}.n!+1} - k] \cdot \sum_{j=p}^{n} (-1)^{j-p} \binom{j}{p} \binom{n}{j} \cdot k^{k^{n-j}}.$$

In the special class $G_{2,k}^3$ we have proved the following proposition.

Proposition 3.1 $|G_{2,k}^3| = 8.729.\binom{k}{3}.(k^k - k) = 5832.\binom{k}{3}.(k^k - k).$

In the more general case of the class of functions $G_{2,k}^n$, n > 3 it might be proved the following combinatorial result:

Proposition 3.2 $|G_{2,k}^n| \ge [k^{\binom{k}{n}.n!+1} - k] \cdot \sum_{j=2}^n (-1)^j {j \choose 2} {n \choose j} \cdot k^{k^{n-j}}.$

References

- M. Couceiro, E. Lehtonen, On the arity gap of finite functions: results and applications, *Intern. Conf. Relat.*, Orders, Graphs: Interaction with Computer Science, Nouha Editions, Sfax, 2008, 65-72, (http://www.math.tut.fi/algebra/papers/ROGICS08-CL.pdf).
- [2] M. Couceiro, E. Lehtonen, On the effect of variable identification on the essential arity of functions on finite sets, *Intern. J. Found. Comp. Sci.* 18, 2007, 975-986.
- [3] Sl. Shtrakov, Essential arity gap of boolean functions, Serdica J. Comput. 2, 2008, 249-266.
- [4] R. Willard, Essential arities of term operations in finite algebras, *Discr. Math.* 149, 1996, 239-259.