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Abstract. Given an n-ary k−valued function f , gap(f) denotes the minimal number
of essential variables in f which become fictive when identifying any two distinct
essential variables in f . It is called the essential arity gap of f . We obtain an explicit
determination of n-ary k−valued functions f whose essential arity gap is equal to
m, m ≤ n ≤ k. Our methods yield new combinatorial results about the number of
k−valued functions with given gap.

1 Introduction

Given a function f , the essential variables in f are defined as variables which
occur in f and weigh with the values of that function. The number of essential
variables is an important measure of complexity for discrete functions.

We proved a few results concerning simplifying of functions by identification
of variables.

2 Preliminaries

Let k be a natural number with k > 2 and let K = {0, 1, . . . , k − 1} be the
set (ring) of remainders modulo k. An n-ary k-valued function (operation) on
K is a mapping f : Kn → K for a natural number n, called the arity of f . The
set of the all such functions is denoted by Pnk .

Definition 2.1 Let Xn = {x1, . . . , xn} be the set of n variables. A variable
xi is called essential in f , or f essentially depends on xi, if there exist values
a1, . . . , an, b ∈ K, such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

The set of all essential variables in a function f is denoted by Ess(f) and the
number of its essential variables is denoted by ess(f) = |Ess(f)|.

Let xi and xj be two distinct essential variables in f . We say that the function
g is obtained from f ∈ Pnk by the identification of the variable xi with xj , if

g = f(x1, . . . , xi−1, xj , xi+1, . . . , xn) = f(xi = xj).
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Briefly, when g is obtained from f, by identification of the variable xi with xj ,
we will write g = fi←j and g is called the identification minor of f and Min(f)
denotes the set of all identification minors of f .

We shall allow formation of identification minors when xi or xj are not es-
sential in f , also. Such minors of f are called trivial and they do not belong to
Min(f). So, if xi does not occur in f , then we define fi←j := f .

Clearly, ess(fi←j) ≤ ess(f), because xi /∈ Ess(fi←j), even though it might
be essential in f .

Definition 2.2 Let f ∈ Pnk be an n-ary k-valued function. Then the essential
arity gap (shortly arity gap or gap) of f is defined by

gap(f) := ess(f)− max
g∈Min(f)

ess(g).

We let Gmp,k denote the set of all functions in Pnk which essentially depend on
m variables whose arity gap is p i.e. Gmp,k = {f ∈ Pnk | ess(f) = m & gap(f) = p},
with m ≤ n.

In [2] the Boolean functions whose arity gap is 2 are described. In [3] the
class Gn2,2 is investigated, also and several combinatorial results concerning the
number of the functions in this class are obtained.

The case 2 ≤ p ≤ n and n > k is fully described in [4] where it is proved that
gap(f) ≤ 2 and if f ∈ Gn2,k then f is a totally symmetric function.

So, we shall pay attention to the case 2 < k and n ≤ k, solving a problem of
M. Couceiro and E. Lehtonen, namely:
For each 1 ≤ m ≤ |A|, determine explicitly the functions f : An → B whose
arity gap is m ([1], page 6, Problem 1).

We shall assume that A = B = K. The most of the results obtained in this
case might be easily generalized about finite defined and finite valued functions.

Let m ∈ N , 0 ≤ m ≤ kn − 1 be an integer. It is well known that for every
k, n ∈ N, k ≥ 2 there is an unique finite sequence (α1, . . . , αn) ∈ Kn such that

m = α1k
n−1 + α2k

n−2 + . . .+ αn.

This equation is known as the representation of m in k−ary positional numerical
system. One briefly writes m = α1α2 . . . αn.

Given a variable x and α ∈ K, xα is an important function defined by:

xα =

{
1 if x = α
0 if x 6= α.

In this paper we shall use sums of conjunctions (SC) for representation of
functions in Pnk . This is the most natural representation of the functions in finite
algebras. It is based on so called operation tables of the functions.
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Each function f ∈ Pnk can be uniquely represented in SC-form as follows

f = a0.x
0
1 . . . x

0
n ⊕ . . .⊕ am.x

α1
1 . . . xαn

n ⊕ . . .⊕ akn−1.x
k−1
1 . . . xk−1

n

with m = α1α2 . . . αn, and αi, am ∈ K, where ” ⊕ ” and ”.” are the operations
addition and multiplication modulo k in the ring K.

3 Essential arity gap of k-valued functions

First, we study the n-ary k-valued functions whose arity gap is n.
Given two natural numbers k, n ≥ 2, Eqnk denotes the set of all strings over

K = {0, 1, . . . , k − 1} with length n which have at least two equal letters i.e.

Eqnk := {α1 . . . αn ∈ Kn | αi = αj , for some i, j ≤ n, i 6= j}.

Theorem 3.1 Let f ∈ Pnk , be a function which depends essentially on all of its
n variables and 2 < n ≤ k. Then f ∈ Gnn,k if and only if it can be represented as
follows

f = [
⊕

β1...βn /∈Eqn
k

ar.x
β1
1 . . . xβn

n ]⊕ a0.[
⊕

α1...αn∈Eqn
k

xα1
1 . . . xαn

n ], (1)

where r = β1 . . . βn and at least two among the coefficients {a0} ∪ {ar | r =
β1 . . . βn, & β1 . . . βn /∈ Eqnk}, are distinct.

Corollary 3.1 If f ∈ Gnn,k and 2 ≤ n ≤ k, then f(α1, . . . , αn) = f(0, . . . , 0)
for all α1 . . . αn ∈ Eqnk .

Corollary 3.2 For each k, k ≥ 3 the functions

qk(x1, . . . , xk) =
⊕

α1...αk∈Eqk
k

xα1
1 . . . xαk

k

and
pk(x1, . . . , xk) =

⊕
α1...αk /∈Eqk

k

am.x
α1
1 . . . xαk

k ,

where m = α1 . . . αk and at least two among the coefficients am are distinct, have
the essential arity gap equal to k.

Theorem 3.2 If 2 ≤ n ≤ k then

|Gnn,k| = k((k
n).n!+1) − k.
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The basic properties of the functions whose arity gap is p with 2 < p ≤ n ≤ k,
are described by the next theorems.

Theorem 3.3 Let f ∈ Gnp,k with 2 < p ≤ n ≤ k. Then
(i) If Ess(fu←v) ∩ {xu, xv, xw} = ∅ and ess(fu←v) = n − p then the following
holds:

(i1) ess(fu←w) = ess(fv←w) = n− p;
(i2) xu /∈ Ess(fv←w) and xv /∈ Ess(fu←w);
(i3) xj ∈ Ess(fv←j) for all xj, xj ∈ Ess(fu←v);
(i4) xi /∈ Ess(fv←i) for all i, xi /∈ Ess(fu←v).

(ii) If xv ∈ Ess(fu←v), Ess(fu←v) ∩ {xu, xw} = ∅ and ess(fu←v) = n − p then
the following holds:

(ii1) ess(fw←v) = ess(fw←u) = n− p;
(ii2) xv /∈ Ess(fw←u) and xu /∈ Ess(fw←v);
(ii3) xv ∈ Ess(fw←j) ⇐⇒ xu /∈ Ess(fw←j) for all xj , xj /∈ {xu, xv, xw};
(ii4) xi /∈ Ess(fw←i) for all xi, xi /∈ Ess(fu←v).
(ii5) xj ∈ Ess(fw←j) for all xi, xi ∈ Ess(fu←v).

Theorem 3.4 Let f ∈ Gnp,k and 2 < p ≤ n ≤ k . Then the following conditions
hold:

(i) There exist u, v ∈ {1, . . . , n} such that fu←v depends essentially on n− p
variables and xv ∈ Ess(fu←v);

(ii) There exist u, v ∈ {1, . . . , n} such that fu←v depends essentially on n− p
variables and xv /∈ Ess(fu←v).

Remark 3.1 The results from Theorem 3.3, and Theorem 3.4 might be sum-
marized as follows:

(i) Let f ∈ Gnp,k. If xv /∈ Ess(fu←v) and ess(fu←v) = n − p, then xj ∈
Ess(fi←j) and xi ∈ Ess(fj←i) for all xj ∈ Ess(fu←v) and xi /∈ Ess(fu←v),
according to Theorem 3.3 (i).

(ii) Let f ∈ Gnp,k. If xv ∈ Ess(fu←v) and ess(fu←v) = n − p, then xi /∈
Ess(fj←i) for all xi, xj /∈ Ess(fu←v), according to Theorem 3.3 (ii).

(iii) Thus, we have obtained a partition of the set Xn = {x1, . . . , xn} into the
sets V := Ess(fu←v) and W =: Xn \ V , such that

(xi, xj) ∈W 2 ⇒ (ess(fi←j) = n− p & xj /∈ Ess(fi←j))

and
(xi, xj) ∈W × V ⇒ (ess(fi←j) = n− p & xj ∈ Ess(fi←j)).
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Theorem 3.5 Let f be a k-valued function which depends essentially on the
all of its n variables and 2 < p < n ≤ k. Then f ∈ Gnp,k if and only if there exist
n− p variables yi1 , . . . , yin−p ∈ Xn such that

f(x1, . . . , xn) = h(yi1 , . . . , yin−p) ⊕ g(x1, . . . , xn−p, xn−p+1, . . . , xn),

where h depends essentially on all of its n− p variables and g ∈ Gnn,k.

Theorem 3.6 If 2 < p < n ≤ k, then

|Gnp,k| = [k((k
n).n!+1) − k].

n∑
j=p

(−1)j−p
(
j

p

)(
n

j

)
.kk

n−j
.

In the special class G3
2,k we have proved the following proposition.

Proposition 3.1 |G3
2,k| = 8.729.

(k
3

)
.(kk − k) = 5832.

(k
3

)
.(kk − k).

In the more general case of the class of functions Gn2,k, n > 3 it might be
proved the following combinatorial result:

Proposition 3.2 |Gn2,k| ≥ [k((k
n).n!+1) − k].

∑n
j=2(−1)j

(j
2

)(n
j

)
.kk

n−j
.
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