Sixth International Workshop on Optimal Codes and Related Topics
June 16-22, 2009, Varna, Bulgaria pp. 163-167

A new operating tool for coding in lossless
image compression

RADU RADESCU radu.radescu@upb.ro
Polytechnic University of Bucharest, 1-3 Iuliu Maniu Blvd, Sector 6, Bucharest,
ROMANIA
Abstract. The objective of the ICompress tool is to study the compression behav-
ior in real situations with large data sequences for images with limited number of
colors. Because the existing standards do not offer enough flexibility, and the im-
plementation of some compression and decompression routines for these standards
would not differ very much from the existing applications, it was chosen the cre-
ation of new file formats in order to apply the lossless compression. The studied
compression algorithms are LZW and RLC, for each one introducing a file format
and studying the performance in the case of medical images.

1 Introduction

The ICOMPRESS application carries out the encoding for images with at most
as 255 colors. The LZW coding [1]-[4] is inspired by the one used for the GIF
standard [3], attaining a better packing of the factors compared to the GIF
format. The RLC encoding [1]-[4] is a common algorithm, which aims the
replacement of the repeated character sequences. Details of the coding method
will be provided in the following.

As output, the application produces two file types, named after the encoding
type used to make them. The LZW type file is aligned at 32 bits; it has a header
with the coding and image parameters, and a color palette [5]. The same idea is
found at the RLC format, except the 32 bits alignment, which is not necessary
[6].

As source, the program accepts BMP files, represented on 8, 16 or 32 bits,
with the condition that these files will contain less than 255 colors. If only
images with a large number of colors, ICompress has an algorithm to reduce
the color depth [7]. In addition, the coded files can be loaded and viewed, being
converted automatically to the BMP format for memory storage.

2 Implementing the compression

A general problem regarding the image processing is the image run through to
find the exact number of different colors.

This is the algorithm: the colors are stored in a table, which is built as the
image is run through pixel by pixel. If the color of the pixel exists in the table,
it is ignored, and if not, it is added to the table. This kind of simple algorithm

164 0C2009

has a major disadvantage from the speed point of view. A simple computation
shows that for an image with 50,000 colors, in a common 1024 768 pixels format,
a 50,000-positions vector will be made which needs to be run through more or
less entirely, for the majority of the 786,432 pixels. The problem can be solved
using advanced methods to run through the image or data storage, so that the
search time for the color table can be reduced substantially.

For the implementation of the ICompress application, the second solution
was chosen. There are many methods of fast search, like the binary trees or
map type structures. The MFC CMap class was used, which implements a map
structure and has a very efficient search algorithm like Hash Table. The image
is first run through and brought to a brute form and the color table is made
up. The encoder runs over this brute form, coding the color table identifiers.
The pointers are ASCII characters with codes form 1 to 255.

The problems related strictly to the LZW encoding have been the dictionary
search speed and the optimization for writing of factors in file. If the first
problem was solved using a map dictionary implemented with CMap, the second
one is more complicated. Characteristic to the LZW coding is the fact that it
provides a series of words that can be binary represented with different lengths,
assigned by the current number of inputs in the dictionary for building of the
code words.

If a fixed format for the writing of data would be used, adequate from
point of view of the maximum inputs in the dictionary (e.g., for 4.096 WORD
positions for 16 bits), the coding would not be efficient. Thus for a word
written at the beginning of the process, when the dictionary is not full, many
bits would by redundant. From this situation, the necessity of binary writing
the code words emerges.

In the ICompress application, the factors are first binary written using con-
secutive moves in a DWORD (double word with 32 bits). When the DWORD
space is finished, the current DWORD is written in the file, and the writing of
code words continues in another DWORD. At the decoding, the information is
read DWORD by DWORD, and the code words are extracted with the use of
some bit wise masks.

A problem related to the string storing in the CMap of the code words has
appeared because of the impossibility of using the character with the ASCII
code 0 - character used for the end of strings. For this reason, it was accepted
that the images would have at most 255 colors and the indexes from the color
table would begin with 1. A possible solution is to store the exact string length,
but this would lead to a performance decrease.

For RLC, the encoding is made at character level, and the 0 character is
used as an indicator for the encoding presence, so it cannot take part in the
source symbols. A coded sequence is composed of the 0 character, indicator of
the encoding, and then a character whose ASCII code represents the number of

Radescu 165

repetitions in the source sequence of the third character, which is the encoded
character. Only sequences for which the compression is effective are coded
(larger than 3 characters and shorter than 255 characters, the maximum ASCII
code).

In order to have an encoding flexibility, in the case of LZW, a variable size
dictionary is used, with 2,048, 4,096 or 8,192 positions, and in the case of RLC -
two ways to run through the image: up and down or left to right, which exploits
in two different ways the image correlation. The algorithm to reduce the number
of colors is sufficiently effective without high expectations, its intentions being
strictly for use. The algorithm is based on the nearest color method, computed
based on the mean square method. The generated color palette is a joint one,
including 128 standard colors, allocated equally in the color space, and other
127 colors calculated based on the bar graph of the image.

Because the search of the nearest color for every pixel in a 255-position map
is time consuming (even when the CMap is used), 3 maps with balanced colors
were used. Therefore, the colors are divided between the three maps, depending
on the distance to the three base colors: R, G, and B. When the picture run
through is performed, the nearest value is searched in the nearest map. It is
also specified an acceptable step for the difference of two colors, in order to
avoid the exhaustively search for every pixel in the map.

3 Experimental results

A study was made concerning the effect of implemented algorithms on images
with different correlations and different number of colors. Two pairs of images
were chosen (one with a large color dispersion, with different sizes, and the other
with large areas of the same color, also with different sizes) and their number
of colors was reduces gradually from 255 to 128 and finally to 16 colors.

In order to have an accurate image of the performances, the original BMP
file and the same file compressed with GIF have been compared to the files
obtained with the ICompress application. A usual compression software was
used, RAR, with the best compression method offered by it. The experimental
results are presented in Tables 1 and 2.

Table 1. The dimensions of graphic compressed formats (B) for images
with 255 colors

255 NMR | Angiographies | Tomographies | Ultrasounds | X rays
colors | 600 x 600 600 x 600 600 x 600 540 x 405 | 540 x 405
BMP | 361.078 361.078 361.078 219.778 219.778
LZW | 150.951 258.532 130.190 62.608 100.527
RLC | 272.950 356.454 201.309 96.037 212.335
RAR | 120.595 209.811 110.156 53.667 84.009

166

0C2009

Table 2. The dimensions of graphic compressed formats (B) for images
with 128 colors

255 NMR | Angiographies | Tomographies | Ultrasounds | X rays
colors | 600 x 600 | 600 x 600 600 x 600 540 x 405 | 540 x 405
BMP | 180.118 180.118 180.118 110.278 110.278
LZW 81.094 101.070 62.770 27.782 49.582
RLC | 203.886 268.667 149.215 62.007 140.527
RAR 61.001 78.773 47.664 22.802 38.536

4 Conclusion

One can see that the [Compress program gives a superior compression compared
to GIF, mostly because of a better saving of coded words in files and because of
the fact that it builds a color palette with the size obtained by the exact colors
in the image.

The ICompress application has an advantage before the GIF compression as
the file size is growing and the color number is decreasing. The particular case
of 16 color files accentuates the major deficiency of the ICompress program.
Because the 0 index is not used — by the above-mentioned reasons — the com-
pression is affected and the primary indexes of the colors from the table need
an extra bit comparing to the indexes used by the GIF format. For images with
15 colors or less, the ICompress application has better results than GIF, but
the above-mentioned problem appears for black and white (1 bit) images. The
usual archiver (RAR) proved to be the best from the point of view of the com-
pression rate. The reason is the combination of statistic and adaptive methods
(LZW, Huffman).

One can observe that the result does not depend very much on the number of
colors from the input image (an effect of the general character of the encoding)
but on the size of the source file. From the point of view of the compression
time, this one is the slowest.

For the RLC compression, one can see that it does not depend very much on
the number of colors from the image, depending more on the correlation within
the image. In the case of the 16 color images, the RLE compression for the BMP
format, with the combination of two pixels on the same byte, is superior to the
RLC encoding for The ICompress format. Exceptions are images that, after
decreasing the number of colors, have become more correlated, in advantage of
the RLC encoding.

References

[1] G. Held, Data Compression, J. Wiley, New York, 1984.

Radescu 167

2]

A.T. Murgan, The Principles of Information Theory in Information and
Communication Engineering, Romanian Academy Press, Bucharest, 1998.

R. Radescu, Lossless Compression — Methods and Applications, Matrix
Rom Press, Bucharest, 2003.

R. Radescu, Digital Transmission of Information - Applications and Prac-
tical Works, UPB Press, Bucharest, 2006.

A.T. Murgan, R. Radescu, Comparison of algorithms for lossless data com-
pression using the Lempel-Ziv-Welch type methods, Proc. 1994 IEEE-IMS
Workshop Inform. Theory Stat., Alexandria, Virginia, USA, Oct. 1994,
105.

R. Radescu, C. Sindelaru, An application in image compression using the
RLC and LZW algorithms, EEA Revue on Electronics, Electro-technique
and Automatics, Electra Press, Bucharest, 51, 2003, 39-42.

R. Radescu, St. Olteanu, Text and image compression with derived LZW
algorithms, EEA Revue on Electronics, Electro-technique and Automatics,
Electra Press, Bucharest, 53, 2005, 7-10.

R. Radescu, C. Bontas, Design and implementation of a dictionary-based
archiver, Scientific Bulletin, Electrical Engineering Series C, Polytechnic
University of Bucharest, 70, 2008, 21-28.

