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Abstract. A method is described for obtaining additional relations between co-
efficients of the error locator polynomial. The obtained relations are used for list
correcting, in polynomial time, 4+1 error with cyclic codes.

1 Introduction

Several procedures for decoding cyclic codes beyond the BCH bound were pre-
sented. Most of them use special techniques to determine the unknown syn-
dromes from Newton’s identities (see [1-4]) or some other syndrome relations
(see [5, Ch. 10.5] and [1,6]) by means of the known syndromes. Thus, the
decoding capabilities of these procedures are limited to half the minimum dis-
tance. In contrast to these procedures, list decoding procedures break away
this restriction at the cost of complexity of bivariate polynomial factorization
(see [7,8]). The aim of this paper is not to describe a faster procedure but
point out a method to obtain additional relations between coefficients of the
error locator polynomial without determination of the unknown syndromes.

2 Preliminaries

Denote by L the set of all roots of unity of degree n over the field Fy: L = {a;}7,
a; = o, where « is a primitive root of " —1 = 0. The field Fyn is obtained
from IF, by adjoining to [, a primitive zero of 2™ —1,i.e., L C Fym

Suppose the error vector e = (eg, e1,...,e,—1), €¢; € Fy, has nonzero com-
ponents €;,, €, ..., ¢, where t = wt(e) is the Hamming weight of e, and no
other. If we associate with e the elements of L: X1, Xo, ..., Xy, where X; = a;,

then we say that o(x) is the error locator polynomial and write

t

¢
H jx—1) Zajxj, og = 1. (1)

J=0

Without loss of generality we can assume that ¢t = dego(z) <n — 1.
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Let the n x n Hankel matrix S associated with o(x) has the form

o9 01 02 ... Op_i
o1 02 03 ... 0Og
S=1\| oo 03 04 ... o1 |, (2)
Opn—1 00 O1 ... Op_2

where o; = 0, VI > t. We introduce a concise notation for minors of order [ of S

formed by 41,12, ...,4 rows and ji, jo,...,j; columns:
Y R |
By D1, Ds, ..., D, denote consistent principal minors of S.

3 Additional relations

By definition,

GCD (o(x), 2" — 1) = "S). (3)

The following generalization of Koénig-Rados theorem [9, Th. 6.1] provides a
way to use this property for obtaining additional relations between o;.

Theorem 1. Suppose o(x) is a polynomial denoted in (1). Then
3D £, (4)
DO =0, Vizn—t+1. (5)

Proof. Use the elements of L to set up the nonsingular (o # «;j, Vi # j)
Vandermonde matrix [10, Ch. 4, § 8, L. 17]

1 1 e 1
a1 (6% PN Qp
— 2 2 2
A= of o5 o
—1 n—1 n—1
o fa%% o

Multiplying S and A and using o =1, Vo, € L, we get

o(aq) o(ag) . o(ay,)
al_la(al) az_la(ag) . a;to(an)
SA = oy %o (ar) oy %o(ag) ... a,2o(ay)
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Find the rank of SA. First note that v has no n — ¢t + 1 zero components,
i.e., Ja;; € L: o(a;;) = 0. Then any minor of SA of order [ > n —t+ 1 has at
least one zero column. Hence the rank of SA is at most n —¢t. Otherwise write
the minor of SA of order n —t formed by 1,2,...,n—t rows and 41,2, ...,%,_¢
columns of SA

1 1 1
-1 -1 -1
n—t l12 i22 In—t
H J(aij) all i2 In—t )
F=1
—(n—t—1) —(n—t-1) —(n—t—1)
71 12 In—t
If i1,142,...,ip—¢ are indices of zero components of v (o(ay;) # 0), then this

minor is nonzero. Therefore the rank of SA is n —t.
But A is nonsingular, hence SA and S have the same rank. Thus 3 D"t £ (
and DO =0, VI >n—t+1. O

4 Correcting +1 error

Let the e(z) = Zz':o e,-jxij, ei; 7 0, be the error polynomial associated with
the vector e. Suppose t = %/ + 1, where §' =2 L‘sg—lJ and ¢ is the BCH bound
of a cyclic code with minimum distance d > §. Then write

aj:qu(Sl,...,Sg/,z),jE{l,...,t}, (6)

where ®; is a function of given syndromes {S;}J and unknown z € Fym.
The function ®; is a linear function of z [5, Ch. 7.3]. Find z using relation (5)

t
DD = F(oy,... o) =Y ¢ [[ o7 =0, (7)
i =1

where F'is a function of 0, ¢; € IF; and b;; are some degrees. We are interested
in nontrivial (Ji: ¢; # 0) relation (7). Taking into account F(oi,...,0) =
Fi(o1,...,00-1) + 0¢F3(01,...,01), find it by the following theorem.

Theorem 2. Suppose oy =0, 0,1 #0,1 <t < ”T_l, and

(n—t—i—l)z 1 ... ¢t 2t ... n
b S<1 oot 2t 0 o n)

Then at least one of Dy_411 and D=1 s nonzero.
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Proof. The proof is completed by showing that D"~t+1) £ 0, if D, ., = 0.
For this evaluate Dy, Dyy 1, ..., Dp—y:

D, = (-nlelet | 2o,
D1 = (—-1)LF sttt = .

Ifn>7
Diyo=...=D,_41=0,
because these minors have at least one zero column. And
n—2t—1

Dn—t = (—1) 2 Dt+1 = 0.

e, Di 20, Diy1 = -+ = Dy_41 = 0, hence it follows from Frobenius’s
theorem [11, Ch. X, Th. 23] that D=+ £ 0. O

Substituting (6) for ¢; in nontrivial relation (7) and fixing {S;}¢ for a cer-
tain e, we get

F(o1,. . 00) = F(1(2), ..., y(2)) = B(2) =0, (8)

where @ is a function of z and only. Suppose ®;(z) = az+ b; then denote by L*
the set of n elements {ail(ai — b)}’f We now present algorithm for correcting
all patterns of ¢ and fewer errors, using o; € L.
Algorithm

1. Compute the syndromes {S;}9".

2. If S; = S3 =0, then o(x) = 1. Go to step 7.

3. Determine ®(z) from (8).

4. Use the Chein search to find roots & of ®(z) in L*. If 3¢; € L*: (&) =0,
go to step 6.

5. Using ®4(z) = 0, we get z = —2. Substituting —g for z in 0; = ®;(2),
we get o) (z). Go to step 7.

6. Output all polynomials ¢ (z) = 23:1 ®;(&)27 + 1 such that (3) holds.
7. Use the Chein search to find roots of o (z) in L.

Remark. If t = | %51 ] + 1, then output ¢V (z) from steps 5 and 6 such that (3)
holds for maximum likelihood decoding.



Lomakov 149

5 Examples

Unique correction Consider the (39, 15, 10) binary cyclic code with 6 = 7
[12, p. 496]. Tt has roots a, o, where a = (305 and 3 is a primitive element
of Fy12 such that 52+ 37434+ 3%+ 33 +B+1 = 0. Suppose e(z) = 3 + 213 +
219 4 2°; then the sequence of syndromes is {33%4, 3708, 3476 31416 31068 39521
Consider z = S7. By applying Berlekamp’s algorithm [5, 7.4] one step
further we get q)l(z) — /3354’ q)z(z) — 51028Z —}-,83216, @3(2) — 513822 4 54031’
®y(z) = BH602 + 32225 Further note that F(o1,09,03,04) = D3g. That is

(ID(z) — B1099220 + 62135219 + ﬂ2334218 + 54342,17 + ﬂ2166216 + ﬂ2033215+
+ 518492,14 + 645213 + ,8156212 + ﬁ1493211 + /81373210 + 53370294-
+ ﬂ377928 + ﬁ65827 + [32493,26 + 6190325 + ﬁ155824 + 53492234—
+ 62916'22 + ,813092 + ﬂ4081.

Thus the only root of ®(z) in L* = {57 1%0(q, +ﬂ2226)}?9 is 3%, Finally,
we obtain o(z) = a?Tz? + p10523 4 3368622 4 3354y 4 1, which corresponds to

List correction Consider the (33,12,10) binary cyclic code with the BCH
bound § = 10 [12, p. 495]. It has roots 1, a, o, where a = 33! and f3 is
a primitive element of Fyi0 such that 819 + 35+ 3> + B3 + 32 + 5+ 1 = 0.
Suppose e(x) = 239 + 218 4 2'2 4 27 + z4; then the sequence of syndromes is

{6845 6312 ﬁ934 6467 1 6622 B221 ﬁ777}-

By [13], it follows that o(z) = Y37, ¢;04(x), where ¢; are some unknowns
and o;(z) are the polynomials obtained by an extension of the Euclidean al-
gorithm (dego;(x) = i + 2). Combining this with o9 = 1, 01 = Sg, we get
(131(22) — ﬂ622, (1)2(2,) _ 643Z+62217 @3(2) — ﬂ6652+ﬁ777, (1)4(2) — ,81982’,
®5(2) = 742, Further note that F (o1, 09,03,04,05) = Dag. That is

B(z) = 01T 4 GTSLL16 4 728,15 | g213,14 | 202,13 4 4305 12y
4 @161 | 562,10 | 39059 | 927 8 | 9647  g119 6
F 305 4 2T A 4 g191,3,
The function ®(z) has roots 3424 and 5% in L* = {5_754%}?3; hence, we get
o) = 08,5 4 36224 | 87,3 | 893.2 L 4622, | 1 and o(2) — 20,5 4 64,4 4
(18023 4 324252 4 3622, 1 1, which correspond to e (z) = 304218 4212 4 7 2%

and e (r) = 231 + 226 + 220 4 2% 4 2, respectively, with the same sequence of
syndromes.
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