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Abstract. A method is described for obtaining additional relations between co-
efficients of the error locator polynomial. The obtained relations are used for list
correcting, in polynomial time, +1 error with cyclic codes.

1 Introduction

Several procedures for decoding cyclic codes beyond the BCH bound were pre-
sented. Most of them use special techniques to determine the unknown syn-
dromes from Newton’s identities (see [1–4]) or some other syndrome relations
(see [5, Ch. 10.5] and [1, 6]) by means of the known syndromes. Thus, the
decoding capabilities of these procedures are limited to half the minimum dis-
tance. In contrast to these procedures, list decoding procedures break away
this restriction at the cost of complexity of bivariate polynomial factorization
(see [7, 8]). The aim of this paper is not to describe a faster procedure but
point out a method to obtain additional relations between coefficients of the
error locator polynomial without determination of the unknown syndromes.

2 Preliminaries

Denote by L the set of all roots of unity of degree n over the field Fq: L = {αi}n1 ,
αi = αi, where α is a primitive root of xn − 1 = 0. The field Fqm is obtained
from Fq by adjoining to Fq a primitive zero of xn − 1, i. e., L ⊂ Fqm .

Suppose the error vector e = (e0, e1, . . . , en−1) , ei ∈ Fq, has nonzero com-
ponents ei1 , ei2 , . . . , eit , where t = wt(e) is the Hamming weight of e, and no
other. If we associate with e the elements of L : X1, X2, . . . , Xt, where Xj = αij ,
then we say that σ(x) is the error locator polynomial and write

σ(x) =
t∏

j=1

(Xjx− 1) =
t∑

j=0

σjx
j , σ0 = 1. (1)

Without loss of generality we can assume that t = deg σ(x) ≤ n− 1.
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Let the n× n Hankel matrix S associated with σ(x) has the form

S =


σ0 σ1 σ2 . . . σn−1

σ1 σ2 σ3 . . . σ0

σ2 σ3 σ4 . . . σ1

. . . . . . . . . . . . . . . . . . . . . . . . .
σn−1 σ0 σ1 . . . σn−2

 , (2)

where σl = 0, ∀l > t. We introduce a concise notation for minors of order l of S
formed by i1, i2, . . . , il rows and j1, j2, . . . , jl columns:

D(l) = S

(
i1 i2 . . . il
j1 j2 . . . jl

)
.

By D1, D2, . . . , Dn denote consistent principal minors of S.

3 Additional relations

By definition,

GCD (σ(x), xn − 1) =
σ(x)
σt

. (3)

The following generalization of König-Rados theorem [9, Th. 6.1] provides a
way to use this property for obtaining additional relations between σi.

Theorem 1. Suppose σ(x) is a polynomial denoted in (1). Then

∃D(n−t) 6= 0, (4)

D(l) = 0, ∀l > n− t+ 1. (5)

Proof. Use the elements of L to set up the nonsingular (αi 6= αj , ∀i 6= j)
Vandermonde matrix [10, Ch. 4, § 8, L. 17]

A =


1 1 . . . 1
α1 α2 . . . αn
α2

1 α2
2 . . . α2

n

. . . . . . . . . . . . . . . . . . . . . . . .

αn−1
1 αn−1

2 . . . αn−1
n

 .

Multiplying S and A and using αni = 1, ∀αi ∈ L, we get

SA =


σ(α1) σ(α2) . . . σ(αn)

α−1
1 σ(α1) α−1

2 σ(α2) . . . α−1
n σ(αn)

α−2
1 σ(α1) α−2

2 σ(α2) . . . α−2
n σ(αn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
−(n−1)
1 σ(α1) α

−(n−1)
2 σ(α2) . . . α

−(n−1)
n σ(αn)

 .
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Find the rank of SA. First note that v has no n − t + 1 zero components,
i. e., ∃αij ∈ L : σ(αij ) = 0. Then any minor of SA of order l ≥ n− t+ 1 has at
least one zero column. Hence the rank of SA is at most n− t. Otherwise write
the minor of SA of order n− t formed by 1, 2, . . . , n− t rows and i1, i2, . . . , in−t
columns of SA

n−t∏
j=1

σ(αij )

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
α−1
i1

α−1
i2

. . . α−1
in−t

α−2
i1

α−2
i2

. . . α−2
in−t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
−(n−t−1)
i1

α
−(n−t−1)
i2

. . . α
−(n−t−1)
in−t

∣∣∣∣∣∣∣∣∣∣∣
,

If i1, i2, . . . , in−t are indices of zero components of v (σ(αij ) 6= 0), then this
minor is nonzero. Therefore the rank of SA is n− t.

ButA is nonsingular, hence SA and S have the same rank. Thus ∃D(n−t) 6= 0
and D(l) = 0, ∀l ≥ n− t+ 1.

4 Correcting +1 error

Let the e(x) =
∑t

j=0 eijx
ij , eij 6= 0, be the error polynomial associated with

the vector e. Suppose t = δ′

2 + 1, where δ′ = 2
⌊
δ−1
2

⌋
and δ is the BCH bound

of a cyclic code with minimum distance d ≥ δ. Then write

σj = Φj(S1, . . . , Sδ′ , z), j ∈ {1, . . . , t}, (6)

where Φj is a function of given syndromes {Si}δ
′

1 and unknown z ∈ Fqm .
The function Φj is a linear function of z [5, Ch. 7.3]. Find z using relation (5)

D(n−t+1) = F (σ1, . . . , σt) =
∑
i

ci

t∏
j=1

σ
bij
j = 0, (7)

where F is a function of σj , ci ∈ Fq and bij are some degrees. We are interested
in nontrivial (∃i : ci 6= 0) relation (7). Taking into account F (σ1, . . . , σt) =
F1(σ1, . . . , σt−1) + σtF2(σ1, . . . , σt), find it by the following theorem.

Theorem 2. Suppose σt = 0, σt−1 6= 0, 1 ≤ t ≤ n−1
2 , and

D(n−t+1) = S

(
1 . . . t 2t . . . n
1 . . . t 2t . . . n

)
.

Then at least one of Dn−t+1 and D(n−t+1) is nonzero.



148 OC2009

Proof. The proof is completed by showing that D(n−t+1) 6= 0, if Dn−t+1 = 0.
For this evaluate Dt, Dt+1, . . . , Dn−t:

Dt = (−1)b
t
2cσtt−1 6= 0,

Dt+1 = (−1)b
t+1
2 cσt+1

t = 0.

If n > 7
Dt+2 = . . . = Dn−t−1 = 0,

because these minors have at least one zero column. And

Dn−t = (−1)
n−2t−1

2 Dt+1 = 0.

I. e., Dt 6= 0, Dt+1 = · · · = Dn−t+1 = 0, hence it follows from Frobenius’s
theorem [11, Ch. X, Th. 23] that D(n−t+1) 6= 0.

Substituting (6) for σj in nontrivial relation (7) and fixing {Si}δ
′

1 for a cer-
tain e, we get

F (σ1, . . . , σt) = F (Φ1(z), . . . ,Φt(z)) = Φ(z) = 0, (8)

where Φ is a function of z and only. Suppose Φt(z) = az+ b; then denote by L∗

the set of n elements
{
a−1(αi − b)

}n
1
. We now present algorithm for correcting

all patterns of t and fewer errors, using σt ∈ L.

Algorithm

1. Compute the syndromes {Si}δ
′

1 .

2. If S1 = S3 = 0, then σ(x) = 1. Go to step 7.

3. Determine Φ(z) from (8).

4. Use the Chein search to find roots ξi of Φ(z) in L∗. If ∃ξi ∈ L∗ : Φ(ξi) = 0,
go to step 6.

5. Using Φt(z) = 0, we get z = − b
a . Substituting − b

a for z in σj = Φj(z),
we get σ(1)(x). Go to step 7.

6. Output all polynomials σ(i)(x) =
∑t

j=1 Φj(ξi)xj + 1 such that (3) holds.

7. Use the Chein search to find roots of σ(i)(x) in L.

Remark. If t =
⌊
d−1
2

⌋
+ 1, then output σ(i)(x) from steps 5 and 6 such that (3)

holds for maximum likelihood decoding.
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5 Examples

Unique correction Consider the (39, 15, 10) binary cyclic code with δ = 7
[12, p. 496]. It has roots α, α3, where α = β105 and β is a primitive element
of F212 such that β12 +β7 +β6 +β5 +β3 +β+1 = 0. Suppose e(x) = x34 +x13 +
x10 +x9; then the sequence of syndromes is {β354, β708, β476, β1416, β1068, β952}.

Consider z = S7. By applying Berlekamp’s algorithm [5, 7.4] one step
further we get Φ1(z) = β354, Φ2(z) = β1028z + β3216, Φ3(z) = β1382z + β4031,
Φ4(z) = β1160z + β2226. Further note that F (σ1, σ2, σ3, σ4) = D36. That is

Φ(z) = β1099z20 + β2135z19 + β2334z18 + β434z17 + β2166z16 + β2033z15+

+ β1849z14 + β45z13 + β156z12 + β1493z11 + β1373z10 + β3370z9+

+ β3779z8 + β658z7 + β2493z6 + β1903z5 + β1558z4 + β3492z3+

+ β2916z2 + β1309z + β4081.

Thus the only root of Φ(z) in L∗ =
{
β−1160(αi + β2226)

}39

1
is β45. Finally,

we obtain σ(x) = α27x4 + β405x3 + β3686x2 + β354x + 1, which corresponds to
e(x) = x34 + x13 + x10 + x9.

List correction Consider the (33, 12, 10) binary cyclic code with the BCH
bound δ = 10 [12, p. 495]. It has roots 1, α, α3, where α = β31 and β is
a primitive element of F210 such that β10 + β6 + β5 + β3 + β2 + β + 1 = 0.
Suppose e(x) = x30 + x18 + x12 + x7 + x4; then the sequence of syndromes is
{β845, β312, β934, β467, 1, β622, β221, β777}.

By [13], it follows that σ(x) =
∑3

i=1 ciσi(x), where ci are some unknowns
and σi(x) are the polynomials obtained by an extension of the Euclidean al-
gorithm (deg σi(x) = i + 2). Combining this with σ0 = 1, σ1 = S6, we get
Φ1(z) = β622, Φ2(z) = β43z + β221, Φ3(z) = β665z + β777, Φ4(z) = β198z,
Φ5(z) = β754z. Further note that F (σ1, σ2, σ3, σ4, σ5) = D29. That is

Φ(z) = β504z17 + β781z16 + β728z15 + β213z14 + β292z13 + β305z12+

+ β516z11 + β562z10 + β905z9 + β27z8 + β964z7 + β119z6+

+ β924z5 + β277z4 + β191z3.

The function Φ(z) has roots β424 and β889 in L∗ =
{
β−754αi

}33

1
; hence, we get

σ(1) = α5z5 + β622z4 + β87z3 + β893z2 + β622z + 1 and σ(2) = α20z5 + β64z4 +
β180z3+β242z2+β622z+1, which correspond to e(1)(x) = x30+x18+x12+x7+x4

and e(2)(x) = x31 + x26 + x20 + x8 + x, respectively, with the same sequence of
syndromes.
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