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Abstract. In this paper, we present various results on arcs in projective three-
dimensional Hjelmslev spaces over finite chain rings of nilpotency index 2. A table
is given containing exact values and bounds for projective arcs in the geometries
over the two chain rings with four elements.

1 Introduction

From the point of view of coding theory, arcs in higher dimensional Hjelmslev
spaces are of particular interest. However, the ongoing research is focused
mainly on plane projective arcs. In this paper, we present some construc-
tions and upper bounds on arcs in the 3-dimensional Hjelmslev spaces over
the finite chain rings of nilpotency index 2. As a by-product, we obtain
also new results on non-projective plane arcs. In order to save space, we
have not introduced the basic facts on projective Hjelmslev geometries over
finite chain rings. A self-contained introduction to coordinate Hjelmslev
geometries is given e.g. in [2].

2 A recursive upper bound

Denote by mn(Rt
R) the largest size of a (k, n)-arc in PHG(Rt

R).

Theorem 1. Let K be a (k, n)-(multi)arc in PHG(Rt
R), where R is a chain

ring with |R| = q2, R/RadR ∼= Fq, and let x be a point with K(x) = a.
Then

k ≤ a+mn−a(Rt−1
R ).
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Proof. Fix a hyperplane H with x 6_̂H. Define a projection ϕ from x onto
H by

ϕ :
{
P \ {x} → H,

y → ∪L:L∈L,x∈LL ∩H.

If y ∈ P is not a neighbour to x then its image is a point; if y _̂x then the
image of y is a neighbour class of points inH ∼= PHG(Rt−1

R ). The image of an
s-dimensional Hjelmslev subspace through x contains an (s−1)-dimensional
subspace in H. Conversely, every (s − 1)-dimensional subspace in H is
contained in the projection of some s-dimensional subspaces of PHG(Rt

R)
through x.

Define a new arc Kϕ : H → Q via

Kϕ(z) :=
∑

y:ϕ(y)=z,y 6_̂ x

K(y) +
1
q

∑
y:ϕ(y)=z,y _̂ x

K(y).

Let H ′ be a hyperplane in PHG(Rt
R) containing x, and set F ′ = ϕ(H ′).

Then
Kϕ(F ′) = K(H ′)− K(x).

Hence Kϕ is a (k − a, n− a)-arc with rational multiplicities of the points.
Now define

ϕ0 :
{
P \ {x} → H,

y → L ∩H,

where L is some arbitrarily chosen line in PHG(Rt
R) that contains x and y.

Set
Kϕ0(z) :=

∑
y:ϕ0(y)=z

K(y).

It is now easily verified that Kϕ0(F ′) ≤ Kϕ(F ′). The arc Kϕ0 is integer-valued
(k − a, n− a)-arc in H hence

n− a ≤ mn−a(Rt−1
R ),

which had to be proved.

Corollary 2. Let K be a projective (k, n)-arc in PHG(R4
R) where R is a

chain ring with |R| = q2, R/RadR ∼= Fq. Then

k ≤ 1 +mn−1(R3
R).
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3 Arcs with multiple points in PHG(R3
R)

Extensive tables for the optimal sizes of projective arcs in Hjelmslev planes
over the small chain rings are given in [1, 3, 5]. However, the arcs needed in
Corollary 2 are not projective. In this section, we collect results on multiarcs
of maximal size in projective Hjelmslev geometries of dimension 3. Let us
note that the general bound from [5] applies also for arcs with multiple
points. Since this bound is our main tool, we state it explicitly.

Theorem 3. Let K be a (k, n)-arc in PHG(R3
R) where |R| = q2, R/N ∼= Fq.

Suppose there exist a point x with K(x) = a and a neighbour class of points
[x] with K([x]) = b. Then

k ≤ (n− a)q2 + (n− b)q + b.

For some special values of n, the exact value of mn(R3
R) is easily found.

Theorem 4. Let R be a chain ring with |R| = q2, R/RadR ∼= Fq. Then

(a) msq(q+1)(R3
R) = sq2(q2 + q + 1);

(b) msq(q+1)+1(R3
R) = sq2(q2 + q + 1) + 1.

Proof. Since part (a) follows easily from (b), we provide a proof for part (b)
only.

Arcs with parameters (sq2(q2+q+1)+1, sq(q+1)+1) are easily obtained
as the sum of s copies of the complete plane plus an arbitrary point. Now
we are going to prove that we cannot have an arc with n = sq(q + 1) + 1
and a larger size. Let K be an (k, n)-with n = sq(q + 1) + 1.

Assume [x] is a neighbour class of points with K([x]) = sq2 + α, α > 0.
There must be such a class; otherwise k ≤ sq2(q2 + q + 1) and we are done.

Now in each parallel class of [x] (which has the structure of AG(2, q))
we have a line segment of multiplicity at least sq + dα/qe. For each line L
having the direction of this line segment, we have

K(L \ [x]) ≤ sq(q + 1)− sq − dα/qe = sq2 + 1− dα/qe.

This implies

k ≤ sq2 + α+ q(q + 1)sq2 + 1− dα/qe
= sq2(q2 + q + 1) + q2(1− dα/qe) + q(1− dα/qe) + α.

If α > q, q2(1−dα/qe)+q(1−dα/qe)+α < 0. So let 1 ≤ α ≤ q. Clearly,
there exists a point in [x] of multiplicity s + β, β ≥ 1, and at least one
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of the line segments through this point has multiplicity more than sq + 2.
Otherwise, we would have

K([x]) ≤ s+ β + (q + 1)(sq + 1− s− β) = sq2 + (q + 1)(1− β) ≤ sq2,

a contradiction. Now

k ≤ sq2 + α+ q2(sq2 + 1− dα/qe) + q(sq2 − dα/qe
= sq2(q2 + q + 1) + q2(1− dα/qe)− qdα/qe) + α.

We have that q2(1 − dα/qe) − qdα/qe) + α ≤ 1. with equality for α = 1.
This proves the theorem.

The next theorem settles the problem of finding the maximal multiarcs
for the rings with four elements.

Theorem 5. Let R be a chain ring with |R| = 4, R/RadR ∼= F2. Then

(i) m6t(R3
R) = 28t,

(ii) m6t+1(R3
R) = 28t+ 1,

(iii) m6t+2(R3
R) =

{
28t+ 7 if R = Z4;
28t+ 6 if R = F2[X]/(X2)

,

(iv) m6t+3(R3
R) = 28t+ 10,

(v) m6t+4(R3
R) = 28t+ 16,

(vi) m6t+5(R3
R) = 28t+ 22,

where t = 0, 1, 2, . . ..

Proof. Clearly, (i) and (ii) are settled by Theorem 4.
(iii) Let n = 6t+2. Arcs of cardinality 28t+7 (resp. 28t+6) are obtained

as a sum of T copies of the complete plane and a (7, 2)-arc (resp. (6, 2)-arc).
Now assume there exists a (k, n)-arc with k = 28t+ 8. Then there exists a
class of points [x] with K([x])4t+ 2 and a point in it with K(x) ≥ t+ 1. By
Theorem 3 we get

k ≤ 4 · (6t+ 2− a) + 2 · (6t+ 2− b) + b

= 36t+ 12− 4a− b
≤ 28t+ 6,

which is a contradiction.



136 OC2009

Now assume that K is a (k, n)-arc with k = 28t + 7. By the above
argument, all classes of points have multiplicity 4t+ 1 and every point has
multiplicity at most t + 1. Moreover, the four points in each neighbour
class of points must have multiplicities t + 1, t, t, t since otherwise we get a
contradiction by a counting argument. For instance, if the multiplicities of
the points in a neighbour class are t+ 1, t+ 1, t+ 1, t− 2 then there is a line
segment of multiplicity 2t+ 2 in each direction and

k ≤ 4t+ 1 + 6 · (6t+ 2− 2t− 2) = 28t+ 1.

The other possibility of points of multiplicities t + 1, t + 1, t, t − 1 is ruled
out by the same argument.

Now we have seven points of multiplicity t + 1 and obviously no three
of them are collinear. Hence they form a (7, 2)-arc which is known to exist
when R = Z4 and not to exist in case of R = F2[X]/(X2).

(iv) Obviously, we can construct (28t + 10, 6t + 3)-arcs as a sum of t
copies of the plane and a (10, 3)-arc. Assume there is a (k, n)-arc K with
k = 28t+11 and n = 6t+3. Then there exists a class [x] with K([x]) ≥ 4t+2
and a point in it, x say, with K(x) ≥ 4t + 1. By Theorem 3, k ≤ 28t + 12.
If k = 28t + 11 or 28t + 12 then K([x]) ≤ 4t + 3 for every class [x] and
K(y) ≤ t+ 1 for every point y in such a class.

Classes of multiplicity 4t+3 are easily ruled out since they must consist of
three (t+ 1)-points and one t-point, and must have segments of multiplicity
2t+2 in every direction. By a similar argument, a class of multiplicity 4t+2
consists of two (t+ 1)-points and two t-points. Now the (t+ 1)-points form
a (κ, 3)-arc with κ = 11 or 12, which is impossible.

The proofs of (v) and (vi) use similar arguments.

The next theorem gives better upper bounds for large values of n.

Theorem 6. Let K be a (k, n)-arc in PHG(R4
R), where R is a chain ring

with |R| = q2, R/RadR ∼= Fq. If there exists a neighbour class of lines [L]
with K([L]) ≥ c then

k ≤ q(q + 1)(n− d c
q
e) + c.

Remark 3.1. There exists a spread of q2 + 1 lines of the factor geometry
PG(3, q). Hence we have the estimate c ≥ dk/(q2 + 1)e. Now applying
Theorem 6, one gets that for every (k, n)-arc in PHG(R4

R) the following
inequality holds:

k − d k

q2 + 1
e+ q(q + 1)d1

q
d k

q2 + 1
ee ≤ nq(q + 1).
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4 Arcs in three-dimensional Hjelmslev spaces

In this section, we present a table with exact values and bounds on mn(R4
R),

n ≤ 28, for the two chain rings with four elements. Let us note that for n =
3, 4, 5 the exact values are computed in [4]. For n ≥ 20, the constructions
are obtained by deleting disjoint lines from the geometry PHG(R3

R). Note
that there exists a line spread of PHG(R4

R). Hence we can select any number
(up to q(q2 + 1)) of disjoint lines.

In some cases we can get larger arcs. Let us note that a subgeome-
try isomorphic to PG(3, q) blocks each plane at least q + 1 times. Such a
subgeometry exists if the underlying chain ring R contains a subring isomor-
phic to the factor field. Moreover, there exists a partition of PHG(R4

R) in
three dimensional projective spaces of order q. Hence in the geometry over
R = Fq[X;σ]/(X2), we have blocking sets with parameters (15, 3), (30, 6)
and (45, 9). These blocking sets produce arcs with parameters (105, 25),
(90, 22) and (75, 19).

The arcs with 6 ≤ n ≤ 15 are produced as a sum of suitable plane arcs.

Table 1. Values of mn(R4
R) for Hjelmslev planes of order q2 = 4

n/R Z4 F2[X]/(X2) n/R Z4 F2[X]/(X2)
3 8 6 16 64 – 67 64 – 67
4 10 11 17 65 – 70 65 – 70
5 16 16 18 66 – 76 66 – 76
6 18 – 23 18 – 23 19 67 – 80 75 – 80
7 21 – 29 19 – 29 20 72 – 83 76 – 83
8 22 – 30 22 – 30 21 78 – 90 78 – 90
9 24 – 36 24 – 35 22 84 – 91 90 – 91

10 26 – 39 26 – 39 23 90 – 98 90 – 98
11 30 – 45 30 – 45 24 96 – 104 96 – 104
12 36 – 51 36 – 51 25 102 – 105 105
13 40 – 57 40 – 57 26 108 – 110 108 – 110
14 44 – 58 44 – 58 27 114 114
15 50 – 61 50 – 61 28 120 120
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