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On weight distributions of perfect structures
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Abstract. We study the weight distribution of a perfect coloring (equitable par-
tition) of a graph with respect to a completely regular code (in particular, with
respect to a vertex if the graph is distance-regular). We show how to compute this
distribution by the knowledge of the percentage of the colors over the code. For
some partial cases of completely regular codes we derive explicit formulas of weight
distributions. Since any (other) completely regular code itself generates a perfect
coloring, this gives universal formulas for calculating the weight distribution of any
completely regular code from its parameters.

1 Perfect colorings and completely regular codes

Let G = (V = {0, . . . , N−1}, E) be a graph; let f be a function (“coloring”) on
V that possesses exactly k different values e0, . . . , ek−1 (“colors”). The function
f is called a perfect coloring with parameter matrix S = (Sij)k

i,j=1, or S-perfect
coloring, iff for any i, j from 0 to k − 1 any vertex of color ei has exactly Sij

neighbors of color ej . (The corresponding partition of V into k parts is known
as an equitable partition. In another terminology, see e.g. [3], the coloring f is
called S-feasible and S is called a front divisor of G.)

In what follows we assume that ei is the tuple with 1 in the ith position and
0s in the others (the length of the tuple may vary depending on the context; in
the considered case it is k). Denote by A the adjacency matrix of G. Then it
is easy to see [7, Lemma 9.3.1] that f is an S-perfect coloring if and only if

Af = fS (1)

where the function f is represented by its value array; i.e., the ith row of the
|V | × k matrix f is f(i). If the equation (1) holds for some matrices A, S, and
f (of size N ×N , k×k, and N ×k respectively) over R, then we will say that f
is an S-perfect structure (or a perfect structure with parameters S) over A [2].

So, in this context the concept of perfect structure is a continuous gen-
eralization of the concept of perfect coloring. Conversely, a perfect coloring
(equitable partition) is equivalent to a perfect structure over the graph (i.e.,
over its adjacency matrix) with the rows from e0, . . . , ek−1.
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Suppose that f satisfying (1) is three-diagonal. In this case, the correspond-
ing perfect coloring (if any) has the following property: the colors ei, ej of any
two neighbor vertices satisfy |i− j| ≤ 1. The support of the e0 of such coloring
is known as a completely regular code with covering radius k−1. In other words,
a set C of vertices of a graph G = (V,E) is a completely regular code if and
only if its distance coloring (i.e., the function f(x) = edG(x,C) where dG(·, ·) is
the natural distance in the graph) is perfect.

Example 1 Very partial, but also very important, case of perfect structures
is the case of k = 1; then f is just an eigenvector of A (in the graph case, an
eigenfunction of the graph) with the eigenvalue equal to the only element of S.

Example 2 A subset P of the vertex set V of a regular graph G = (V,E) is
known to be a 1-perfect code if its distance coloring is perfect with the parameter
matrix ((0, d), (1, d− 1)), where d is the degree of the graph. 1-Perfect codes in
n-cubes (see Example 3 below) are actively studied; the best-investigated case is
binary, see e.g. [8, 12], but even in that case the problem of full characterization
of such codes is far from being solved.

2 Distributions

Assume that we have two perfect structures f and g over A with parameters S
and R respectively. Then we say that gTf is the distribution of f with respect
to g. For perfect colorings, this has the following sense: the element in the
ith column and jth row of gTf equals the number of the vertices v such that
g(v) = ei and f(v) = ej (to avoid misunderstanding, we note that the number
of elements in ei in the first equation is the number of colors of the coloring g,
while the number of elements in ej in the last equation is the number of colors
of f ; in general, these numbers can be different, even if i = j). In the case when
g is the distance coloring of some set (completely regular code) C, we will also
say that gTf is the weight distribution of f with respect to C (if C = {c}, with
respect to c). In other words the weight distribution of f with respect to C is
the tuple (f0, f1, f2, ...)T where fw is the sum of f over the all vertices at the
distance w from C.

The two following statements are elementary from the algebraic point of
view; nevertheless, they are very significant for the perfect structures.

Theorem 1 Let that f and g be S- and R- perfect structures over A and AT

respectively (f , g, A, S, and R are N × k, N ×m, N ×N , k × k, and m×m
matrices). Then gTf is a perfect structure over RT with parameters S.

Note that if A is the adjacency matrix of some graph, then A = AT.
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Theorem 2 If the matrix B = {Bi,j}n−1
i,j=0 satisfies Bi,i+1 6= 0, Bi,j = 0 for any

i = 0, ..., n − 2, j > i + 1, then any perfect S-structure f over B is uniquely
defined by its first row f0. Moreover, the rows fi satisfy the recursive relations

fi = (fi−1S −
i−1∑
j=0

Bi,jfj)/Bi−1,i, i = 1, . . . , n− 1, (2)

and, as follows, fi = f0Π(B)
i (S) where Π(B)

i (x) is a degree-i polynomial in x.

So, given a completely regular code C, we also have a way to reconstruct
the weight distribution with respect to C of any other perfect structure (perfect
coloring) f over the same graph by knowledge of only the first component
the distribution (the sum of the function f over the set C). To do this, we
should apply Theorem 2 with B = RT, where the three-diagonal matrix R
is the parameters of the distance coloring of C. The uniqueness of such the
reconstruction was known before [1], but known formulas cover only partial
cases of f (e.g., the weight distribution of 1-perfect binary codes [9, 11]).

3 Weight distributions in distance-regular graph

Let G = (V,E) be a graph and let for every w from 0 to diameter(G) the
matrix A

(G)
w = Aw = (aw

ij)i,j∈V be the distance-i matrix of G (i.e., aw
ij = 1 if the

graph distance between i and j is w, and = 0 otherwise); put A := A1. The
graph G is called distance regular iff for every w the matrix Aw equals Πw(A)
for some polynomial Πw of degree w. The polynomials Π0, Π1, . . . , Πdiameter(G)

are called P -polynomials of G.
Now suppose that f is a perfect structure over G (i.e., over A) with some

parameters S. By the definition, we have Af = fS. From this we easily derive
Awf = Aw−1fS = . . . = fSw for any degree w and, consequently, P (A)f =
fP (S) for any polynomial P . In particular, we get

Awf = fΠw(S). (3)

We now observe that the ith row of Awf is the sum of the vector-function f over
the all vertices at the distance w from the ith vertex. So, for perfect colorings
(3) means the following:

Theorem 3 Assume we have an S-perfect coloring of a distance-regular graph
with P -polynomials Πw. If the color of the vertex x is ej, then the percentage
of the colors at the distance w from x is calculated as ejΠw(S).

In other words, the weight distribution of the perfect coloring with respect to
any color-ej vertex is (ej = ejΠ0(S), ejΠ1(S), . . . , ejΠdiameter(G)(S))T.
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Example 3 Let G = Hn
q be the q-ary n-cube, whose vertex set is the set of

all n-words over the alphabet {0, . . . , q − 1}, two vertices being adjacent if and
only if they differ in exactly two positions. Then

Πw(·) = Pw(P−1
1 (·)) (4)

where
Pw(x) = Pw(x; n, q) =

w∑
j=0

(−1)j(q − 1)w−j

(
x

j

)(
n− x

w − j

)
(5)

is the Krawtchouk polynomial ; P1(x) = (q − 1)n− qx.

Example 4 Any of the two connected components Hn
+, Hn

− of the distance-2
graph of Hn

2 (two different vertices are adjacent in the distance-2 graph if and
only if they have a common neighbor in Hn

2 ) is also a distance-regular graph,

which is known as a halved n-cube. Since A
(Hn

+∪Hn
−)

w = A
(Hn

2 )
2w , for Hn

+ and Hn
−

we have Πw(·) = P2w(P−1
2 (·)) where Pw(x) = Pw(x; n, 2) is the Krawtchouk

polynomial (5); P2(x) =
(

n
2

)
− 2nx + 2x2.

Example 5 Let G = J(n, k) be the Johnson graph, whose vertex set is the set
of all binary n-tuples with exactly k ones, two vertices being adjacent if and
only if they differ in exactly two positions. Then Πw(·) = Ew(E−1

1 (·)) where

Ew(x) = Ew(x; n, k) =
w∑

j=0

(−1)j

(
x

j

)(
k − x

w − j

)(
n− k − x

w − j

)

is the Eberlein polynomial [4].

4 Distributions with respect to some sets

In this section we will derive formulas for the weight distributions of perfect
structures with respect to some special completely regular codes, which have
large covering radius and small (1 or 2) code distance. As we will see, for the
considered cases the situation is reduced to calculating the weight distributions
with respect to a vertex in some smaller distance-regular graph.

4.1 A lattice

The set R discussed in this subsection plays some role in the theory of perfect
colorings of the n-cube. It occurs in constructions of perfect colorings [5, 6];
it necessarily occurs in any linear distance-2 completely regular binary code
[13]; in particular, in shortened 1-perfect binary code, and a (non-shortened)
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variation of this set (case m = 2), known as a linear i-component, is widely
used for the construction of 1-perfect binary codes, see e.g. [12]. We will derive
a rather simple formula for the weight distribution of a perfect coloring with
respect to R.

Let us consider the q-ary mk-cube Hmk
q and the function g̃ : V (Hmk

q ) →
V (Hk

q ) defined as

g̃(x1, . . . , xm) = x1 + . . . + xm mod q, xi ∈ Hk
q . (6)

The set R is defined as the set of zeroes of g̃.

Lemma 1 g̃ is a perfect coloring of Hmk
q with the matrix mA(Hk

q ) where A(Hk
q )

is the adjacency matrix of Hk
q .

So, after representing the values of g̃ by the corresponding tuples ei ∈
{0, 1}V (Hk

q )

g(x) = eg̃(x),

we have the equation
A(Hmk

q )g = gmA(Hk
q ).

By Theorem 1, for any other perfect structure f over Hmk
q with parameters S

we have (mA(Hk
q ))(gTf) = (gTf)S or, equivalently,

A(Hk
q )(gTf) = (gTf)(

1
m

S).

I.e., (gTf) is a perfect structure over Hk
q with parameters 1

mS. Taking into
account the following simple fact, we see that our problem is reduced to the
calculation of the weight distribution of this new perfect structure with respect
to the zero vertex.

Lemma 2 The distance from a vertex x to R coincides with the distance from
g̃(x) to the zero.

So, we can use the results of the previous section to calculate the weight distri-
bution of f with respect to R.

Theorem 4 Let f be an S-perfect structure over the q-ary mk-cube Hmk
q . Let

f0 be the sum of f over the set R of zeroes of g̃ (6). Then the weight distribution
of f with respect to R is

(f0 = f0Π0( 1
mS), f0Π1( 1

mS), . . . , f0Πk( 1
mS))T,

where the polynomials Πi are defined by (4) and (5).
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4.2 The direct product

Here we consider distributions with respect to an instance of one of the mul-
tipliers in the direct product of two graphs. Given two graphs G′ = (V ′, E′),
G′′ = (V ′′, E′), their direct product G′ × G′′ = (V,G) is defined as follows:
the vertex set is the set V ′ × V ′′ = {(v′, v′′) : v′ ∈ V ′, v′′ ∈ V ′′}; two vertices
u = (u′, u′′) and v = (v′, v′′) are adjacent (i.e. {u, v} ∈ E) if and only if either
u′ = v′ and {u′′, v′′} ∈ E′′ or {u′, v′} ∈ E′ and u′′ = v′′.

Theorem 5 Let f be an S-perfect structure over the direct product G′×G′′ of
a regular graph G′ = (V ′, E′) and a distance-regular graph G′′ = (V ′′, E′′). Let
F be some instance of G′ in G′ × G′′, i.e., the subgraph of G′ × G′′ generated
by the vertex subset V ′ × {o} for some o ∈ V ′′. Let f0 be the sum of f over F .
Then the weight distribution of f with respect to F is

(f0 = f0Π0(S − dI), f0Π1(S − dI), . . . , f0Πdiameter(G′′)(S − dI))T,

where d is the degree of G′ and Π0, Π1, . . . are the P -polynomials of G′′.
A known example of the graph direct product is the q-ary n-cube Hn

q , which
is the direct product of n copies of the full graph Kq. For any integer m from
0 to n we have Hn

q = Hm
q ×Hn−m

q , and Theorem 5 means the following.

Corollary 1 Let f be an S-perfect structure over the q-ary (m+k)-cube Hm+k
q .

Let F be a subcube of Hm+k
q of dimension m (isomorphic to Hm

q ), and let f0

be the sum of f over F . Then the weight distribution of f with respect to F is
(f0 = f0Π0(S′), f0Π1(S′), . . . , f0Πm(S′))T,

where S′ = S − (q − 1)mI, Πw(·) = Pw(P−1
1 (·)), and Pw(x) = Pw(x; k, q) are

the Krawtchouk polynomial (5).

4.3 A subcube of smaller size

Here we consider distributions with respect to another completely regular code
in Hn

q with large covering radius, the subcube Hn
p of the same dimension and

a smaller order p < q. Note that if p divides q, then the theorem can be proved
using the approach of the previous two subsections; in the general case we can
calculate the parameters of the distance coloring and use the known recursive
formulas for the Krawtchouk polynomials (see, e.g., [10, § 5.7]).

Theorem 6 Let f be an S-perfect structure over the q-ary n-cube Hn
q . Let

p < q, and let f0 be the sum of f over an p-ary subcube Hn
p ⊂ Hn

q . Then the
weight distribution of f with respect to Hn

p is
(f0 = f0Π0(S′), f0Π1(S′), . . . , f0Πk(S′))T,

where S′ = (S − (p− 1)nI)/p, Πi(·) = Pi(P−1
1 (·)), Pi(x) = Pi(x; n, q

p) (5).
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