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Abstract. Codes capable to correct two errors of value ±1 in a codeword are con-
structed and studied. Large number of experiments simulating the implementation
of several double ±1-error correctable codes in QAM-modulation schemes have been
carried out. The obtained results present in graphical form the performance of the
coded modulation schemes based on the considered codes versus signal-to-noise ra-
tio (SNR). The results confirm the good performance of integer coded modulation
in comparison to the other schemes for coded modulation.

1 Introduction

Codes over finite rings and in particular codes over integer residue rings and
their applications in coding theory have been studied for a long time. The
origin of integer codes can be found in [14] where an integer code to correct a
single insertion/deletion error per codeword was described. The earliest papers
discussing the codes over the ring ZA of integers modulo A are due to I. Blake
[2, 3]. Some other works in the area are [4, 13, 6]. In [7] and [1] linear block
codes over integer rings are studied in order to improve the performance of PSK
communication systems.

Let ZA be the ring of integers modulo A and H be an m × n matrix with
entries in ZA. Recall that an integer code over ZA of length n with a check
matrix H is referred to as a subset of ZnA, defined by

C = C(H,d)={c ∈ ZnA | cHT = d mod A}

where d ∈ ZmA . Usually d is the all-zero vector and then we say that C is an
[n, n−m] code.

When a codeword c ∈ C is sent through a noisy channel the received vector
can be written in the form

r = c + e,

where e = (e1, . . . , en) ∈ ZnA denotes the error vector. If t of the entries of e are
nonzero, we say that t errors occurred in c.
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We do not consider integer codes in general. We are interested in a special
class of these codes, namely:

Definition 1 Let C be an [n, k] code over the integer ring ZA. C is a t-multiple
(±e1,±e2, . . . ,±es)-error correctable code if it can correct (up to) any t errors
with values from the set {±ei, | i = 1, . . . , s} occurred in a codeword ([15, 8]).

The above defined codes are suitable for applications to coded modulation.
Despite their variety, the coded modulation schemes can be classified in three
large groups:
• Trellis coded modulation (TCM): This concept requires a larger sig-

nal set than the one used in the case of uncoded modulation and involves
convolutional codes. This is a well known, basic and widely used modu-
lation technique.
• Integer coded modulation (ICM): A type of block coded modulation

- each point of the signal constellation corresponds to a symbol of ZA and
coded by a code over ZA.
• Others: Coded modulation based on Gaussian and algebraic integers

([5], [12], and others).

In this talk we present a part of our research on integer codes which are ca-
pable of correcting up to two errors with values ±1. These codes are interesting
since they can be effectively applied to improving the performance of Quadra-
ture Amplitude Modulation (QAM) schemes. We demonstrate their practical
potential by numerous simulations and comparisons with other types of coded
modulations.

Single error correctable codes are discussed in [8, 9]. Herein we present only
one new result (Theorem 2).

2 Why (±1)-error correctable codes?

Let us consider M -QAM constellation of square type. In this case we have that
M = 22k, k = 1, 2, . . .. Let us label each signal point in M -QAM constellation
by sij , i.e., by a pair (i, j) ∈ ZA × ZA of elements of ZA where A ≥ 2k. The
counting begin, for example, from the left upper corner down and to right, i for
the number of the row and j for the number of the column which sij is placed
in. An example for the case M = 64 is depicted on Figure 1.

Let a signal point sij be sent through a communication channel. At the
other end the detector estimates the received signal and gives a signal point,
e.g. skl, at the output. If (k, l) 6= (i, j) the detector has taken a wrong decision.
Obviously not all signal points are equiprobable candidates for the detector
decision. In the case of AWGN channel the probability a given signal point
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Figure 1: Indexing a 64-QAM constellation

skl to appear at the output of the detector depends on the Euclidean distance
between it and really-sent signal sij . In terms of chosen labeling it means that
signal points with indices (i ± 1, j), (i, j ± 1), (i ± 1, j ± 1), that is, the points
of the “big square” around sij , are more probable candidate. (In Figure 1 the
sent points is s44. )

Therefore, using (±1)-error correctable code(s) over ZA and coding inde-
pendently first and second indices we can correct a wrong decision if it belongs
to the “big square”. This reflects in significant decreasing the symbol- and
bit-error rate. The problem is discussed again below.

The (±1)-error correctable codes are also applicable to steganography (see
[11]).

3 Theoretical results

Let C be an [n, k] code over the ring ZA. The analog of the Hamming bound
for the considered codes gives a low bound for the cardinality, A, of the ring in
terms of block length and number of errors.

Proposition 1 If C correct two errors of type (±e1,±e2, . . . ,±es) then the
cardinality, A, of the ring satisfies the inequality

An−k ≥ 2sn(2sn− n+ 1) + 1.
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In particular if C is a double ±1-error correctable code, then

A ≥ 2n2 + 1; when k = n− 1 (1)

A ≥
√

2n2 + 1 when k = n− 2. (2)

The proof is straightforward and we omit it. (Hamming bound for codes over
rings and Hamming distance can be found in [].)

To achieve a transmission rate grater than 1/2 one needs a code of length
n > 3. But the practice and simulations show that in this case the occurrence
of two or more errors per a codeword is very likely. Hence one needs a code
capable to correct at least two errors. But (1) shows that the cardinality of the
alphabet increases too much even for small block lengths. That is why [n, n−2]
codes are preferable from a practical standpoint.

Theorem 2 Let l > 1 be an integer. For every n ≥ 2l−1 there exists a (±1)
single error correctable code of length n over Z2l with an m× n check matrix,

H = (h1,h2, . . . ,hi, . . . ,hn) ,

where m is defined by

2m−2
(

2(m−1)(l−1) − 1
)
< n ≤ 2m−1

(
2m(l−1) − 1

)
and every column hi belongs to

S1 = {(s1, s2, . . . , sm)τ | s1 ∈ Z∗2l−1 , si ∈ Z2l−1 , i = 2, . . . ,m},

or to

S2 = {(s1, s2, . . . , sm)τ | s1 ∈ {0, 2l−1}, si ∈ Z∗2l−1 , i = 2, . . . ,m}.

Corollary 3 A (±1) single error correctable integer code of length n over Z2l

with a check matrix H is quasi-perfect when n = 2ml−1 − 2m−1.

Let C be an [n, k] code over the integer ring ZA with a parity-check matrix

H = (h1,h2, . . . ,hn),

where the columns are nonzero and of length n− k.
The condition C is double ±1-error correctable code means that the set

{±hi, ±(hi ± hj), for any i 6= j} (3)

consists of different (there is no repeating) vector-columns.
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Proposition 2 [10] Up to equivalence the parity check matrix of an [n, n− 2]
double ±1-error correctable code over ZA has the form

H =
(1 0 h13 . . . h1n

0 1 h23 . . . h2n

)
or H =

(1 h12 h13 . . . h1n
0 a h23 . . . h2n

)
,

where a | A, a > 1.

Note that every code with a parity check matrix

H =
(0 1 2 3 . . . n− 1

1 0 h23 h24 . . . h2n

)
(4)

over a ring ZA with A ≥ 2n− 1 is at least single ±1-error correctable code.
List of codes of small block lengths and over the ring with minimum possible

cardinality A can be found at http://sharoacademy.math.bas.bg/
Research/CommunRes.html.

From practical point of view the codes over Z2m or Z2m+1 are more inter-
esting since they enable the standard 22m-QAM constellations to be used. An
example for the application of a code over Z2m+1 is given in [10]

Given a signal constellation K and an integer code C, let qu and qc be
the average probabilities of a correct decision of the decoder per signal point
without and with using the code, respectively. For the both quantities it is well
known how to be calculated (for the coded case see [8]). Knowing qu and qc,
we can evaluate the error probability per symbol for both cases.

Let X(c) be the random variable that represents the number of erroneously
decoded symbols per a codeword when the codeword c is sent. Let EX(c)
denote the expectation of X(c). The average symbol error probability PSE(C)
of the code C is defined as

PSE(C) =
1
n|C|

∑
c∈C

EX(c) (5)

where n is the length of code C. Since the codewords are equiprobable and
usually EX(c) does not depend on c we can rewrite (5) as

PSE(C) =
1
n

EX(c) (6)

Let a sequence of signal points, si1j1 , si2j2 , . . . , sinjn , be sent trough the chan-
nel. In the coded case (i1, i2, . . . , in) and (j1, j2, . . . , jn) are codewords. At the
receiver the decoder based on the received signal sequence ri1j1 , ri2j2 , . . . , rinjn ,
outputs a sequence of signal points s′i1j1 , s

′
i2j2

, . . . , s′injn .
The probability of error decision per symbol (for a block of n symbols) in

the uncoded case is
PSE =

1
n

(1− qnu). (7)



122 OC2009

The average symbol error probability PSE(C) depends on the chosen decod-
ing method. In the case of hard decision decoding with a double ±1-error
correctable code applied (as described in Section 2), the following value ap-
proximates well the symbol error probability

PSE(C) =
1
n

(
1− qnu − nqn−1

u qc −
(
n

2

)
qn−2
u q2c

)
(8)

The values of qu and qc as a function of M are given in [9].

4 Applications and simulation results

Example 1. Consider [6, 4] code C over Z16 with a parity-check matrix H and
the corresponding generator matrix G:

H =
( 5 4 3 2 1 0

12 6 3 5 0 1

)
G =

1 0 0 0 11 4
0 1 0 0 12 10
0 0 1 0 13 13
0 0 0 1 14 11

 .

The code is double ±1-error correctable and we apply it to 256-QAM modula-
tion scheme in order to correct errors of type “big square” (see [9] ).

The encoder maps any bite into signal point sij , where the binary represen-
tation of i and j are the first four and the last four bits of the bite, respectively.
To any four signal points si1j1 , si2j2 , si3j3 , si4j4 the decoder adds two points
si5j5 , si6j6 such that (i1, i2, . . . , i6) and (j1, j2, . . . , j6) are codewords.

In the case of the 256-QAM and the correction type “big square” we have
(see [9]):

qu = {1 + 15 erf(γ)}2 /256,

qc =
{

196 erf2(3γ) + 56 erf(3γ) + 4
}
/264

where γ =
√
Es/170N0 and erf(x) = 2√

π

∫ x
0 e
−u2

du.

The described above evaluation of the symbol error probability leaves the
decoding algorithm out of account. The choice of a proper decoding algorithm
can improve error rate with several dBs. Also, the bit error rate is more relevant
than symbol error probability.

We have performed simulations in order to determine the bit error rate using
three types of decoding algorithms:
• Hard decoding: If a syndrome of the received vector does not belong

to the list of possible syndromes the decoder leaves the values (on the
corresponding axis) unchanged.
• Soft decoding: The classical soft decoding for “big square”(i.e., there

are 9 possible values for each signal point).
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• Mixed decoding: The decoder applies soft decoding when the syn-
dromes are not among the possible ones.

Figure 2 presents the obtained results by simulations of communications through
an AWGN channel.

Figure 2: 256-QAM: Grey, hard, and mixed decoding [6, 4] code over Z16.
(Example 1).
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