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Abstract. In this note we find all ”good” values S for which two unknown elements
from the set {1, 2, 3, . . . , 2n}, n ≥ 4, can be found by questions B ⊂ A such that the
sum of the elements of B equals S.

1 Introduction

Consider the set A = {1, 2, 3, . . . , 2n} and assume two of its elements, say x and
y, are being marked. For a given positive integer S a set B ⊂ A is permissible
if the sum of its elements equals S. We are allowed to choose a permissible set
B and ask whether B contains a marked element or not. The answer is 0 if
non of x and y lies in B, 1 if only one of them is in B and 2 if both of them
are in B. We find all values of S for which it is possible to find x and y using
nonadaptive search. The same search problem for one unknown element has
been discussed in [1, 2, 3]. For other search problems see [4, 5, 6].

As usual each subset B of A is represented by the characteristic vector
V = (v1, v2, . . . , v2n) where vi = 1 if i ∈ B and vi = 0 otherwise. It is clear that
the scalar product of a characteristic vector for permissible set with (1, 2, . . . , 2n)
equals S.

Further, consider a collection of permissible sets B1, B2, . . . , Bk. Define
k × 2n characteristic matrix G which rows are all characteristic vectors of
B1, B2, . . . , Bk. Let a = (a1, a2, . . . , ak)t be the vector of the corresponding
answers. If x and y are uniquely determined by these answers then the sum of
x-th and y-th columns of G equals at and there are is no other pair of columns
with the same property.

Therefore in order to find x and y we need to find a binary matrix G such
that the scalar product of any row of G with (1, 2, . . . , 2n) equals S and no two
pairs of columns have one and the same sum. We find all integers S for which
such matrix exists. It turns out the result is the same as for the case of one
unknown element (see [1]).
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2 Main result

In this section we find all good values of S.

Theorem 1. An integer S is ”good” if and only if

S ∈
[
2n − 1, 22n−1 − 2n−1 + 1

]
.

Proof. Consider all permissible sets and find the corresponding characteris-
tic matrix.

First, we show that this matrix contains no equal columns. It suffices to
show that for any two integers a and b, a < b from A there exists permissible
set B for which a 6∈ B and b ∈ B or a ∈ B and b 6∈ B. Apply greedy
algorithm to express S − b as a sum of elements from A\{a, b}. If it succeeds
then the desired set exists. When a ≥ 4 we have that a = 1 + (a − 1) and
b = 1 + (b− 1) = 2 + (b− 2) and therefore the greedy always succeeds. When
a = 3 and b ≥ 5 we have a = 1 + 2 and b = 1 + (b− 1) and the greedy can be
completed. If a = 3 and b = 4 then the algorithm fails only if at some point
we need 4 to complete the algorithm. Note that since S ≤ 22n−1 − 2n−1 + 1 we
have that 5 is not a term in the sum so far. Now replace 4 + 4 by 3 + 5 and we
obtain permissible set for which a ∈ B and b 6∈ B. The cases a = 2 and a = 1
are treated in similar manner.

Second, we prove that there are no two pairs of columns of the characteristic
matrix having one and the same sum. It suffices to show that for any a, b, c, d ∈
A, a < b < c < d there exists permissible set B for which |B ∩ {a, b, c, d}| is
odd. Apply greedy algorithm to express S− b− c−d as a sum of elements from
the set A\{a, b, c, d}. If it succeeds we have |B ∩ {a, b, c, d}| = 3 and we are
done. Suppose a ≥ 3, b− a ≥ 2, c− b ≥ 2 and d− c ≥ 2. For x ∈ {a, b, c, d} we
have x = 1 + (x− 1) and 1, x− 1 6∈ {a, b, c, d}, so the greedy algorithm works.

All the remaining cases are considered separately. The observations are long
and somehow tedious. For example, let a = 2, b−a ≥ 2, c−b = 1 and d−c ≥ 2.
Since b = 1 + (b− 1), d = 1 + (d− 1) the greedy algorithm could fail only when
at some point we are left with a or c to complete the sum. Suppose first this
is c. Since for c ≥ 7 we have c = 3 + (c − 3) where {a, b} ∩ {3, c − 3} = ∅
it follows that greedy always works when c ≥ 7. It remains to consider the
cases c = 6 or c = 5. If d − c ≥ 3 then we replace b + 2c = 5 + 2.6 = 17 by
7 + 8 + 1 + 4 (when c = 6) and b + 2c = 4 + 2.5 = 14 by 6 + 7 + 1 (when c = 6).
In both cases we are done. When d − c = 1 we have {a, b, c, d} = {2, 5, 6, 8}
or {a, b, c, d} = {2, 4, 5, 7}. In both cases it follows from S ≤ 22n−1 − 2n−1 + 1
that d + 1 is not a term in the sum obtained by the greedy algorithm. Since
b + 2c = 17 = 1 + 3 + 4 + 9 for the first case and b + 2c = 4 + 2.5 = 6 + 8 for
the second one, the greedy works.
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Now, assume the algorithm stops at a = 2. Observe that c − 2 6= 2 and
c − 2 6= b. If we replace c by 2 and c − 2 we again find permissible set B such
that |B ∩ {a, b, c, d}| = 3. �

Let S be an integer from the interval from Theorem 1. To determine the
minimum number of questions needed to find the two unknown elements seems
difficult task. An easy lower bound is given by

Proposition 1. If k is the minimum number of questions needed to find
the two unknown elements then

3k − 2k ≥ 22n−1 − 2n−1.
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