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Abstract. In this paper a 2-arc of size 21 in the projective Hjelmslev plane
PHG(2,Z25) and a 2-arc of size 22 in PHG(2,F5[X]/(X2)) are given. Both arcs
are bigger than the 2-arcs previously known in the respective plane. Furthermore,
we will give some information on the geometrical structure of the arcs.

1 Introduction

It is well known that a Desarguian projective plane of order q admits a 2-arc
of size q + 2 if and only if q is even. These 2-arcs are called hyperovals. The
biggest 2-arcs in the Desarguian projective planes of odd order q have size q+1
and are called ovals.

For an uniform projective Hjelmslev plane over a chain ring R of size q2, the
situation is somewhat similar: In PHG(R, 2) there exists an hyperoval – that
is a 2-arc of size q2 + q + 1 – if and only if G is a Galois ring of size q2 with q
even, see [6, 5]

In the remaining uniform projective Hjelmslev planes, the situation is less
clear. It is known [5] that for even q and R not a Galois ring, a 2-arc has at most
size q2 + q, and for odd q a 2-arc has at most size q2. For #R ≤ 16 the exact
values were determined either by theory or computationally [5, 7, 4], leaving
#R = 25 as the smallest case where the exact sizes n2(R) of a maximum
2-arc in PHG(2, R) are not known. Up to isomorphism there are two finite
chain rings of size 25 of composition length 2, these are Z25 and F5[X]/(X2).
When we started our search, the biggest known 2-arcs had size 20 [5] or 18 [1],
respectively.

In the following two sections, we give a brief introduction to finite chain rings
and Hjelmslev geometries. For details, see for example [5] and the references
cited there.

2 Finite chain rings

A ring1 R is called chain ring if the lattice of the left-ideals is a chain. A chain
ring is necessarily local, so there is a unique maximum ideal N = rad(R) and

1Rings are assumed to contain an unity element and to be associative, but not necessarily
commutative.
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the quotient ring R/N is a division ring. In the following we will only consider
finite chain rings, where we get R/N ∼= Fq with a prime power q = pr, p prime.
We will need the projection φ : R → Fq, a 7→ a mod N , which is a surjective
ring homomorphism.

The number of ideals of R reduced by 1 is the composition length of R,
considered as a left module RR. This number will be denoted by m.

An important subclass of the finite chain rings are the Galois rings. Their
definition is a slight generalization of the construction of finite fields via irre-
ducible polynomials:

Let p be prime, r and m positive integers, q = pr and f ∈ Zpm [X] be a
monic polynomial of degree r such that the image of f modulo p is irreducible
in Fp[X]. Then the Galois ring of order qm and characteristic pm is defined as

GR(qm, pm) = Zpm [X]/(f)

Up to isomorphism, the definition is independent of the exact choice of f . The
symbols p, q, r and m are consistent with the earlier definitions: It holds
GR(qm, pm)/ rad(GR(qm, pm)) ∼= Fq and the composition length of GR(qm, pm)
is m. Furthermore, the Galois rings contain the finite fields and the integer
residues modulo a prime power: GR(pm, pm) ∼= Zpm and GR(pr, p) ∼= Fpr .

While the fields are exactly the chain rings of composition length 1, in this
article we are interested in finite chain rings of composition length 2. The
isomorphism types of these rings are known:
Theorem 2.1 (see [2]). Let R be a finite chain ring of composition length 2,
N = rad(R) and R/N ∼= Fq. Then #R = q2, and exactly one of the following
statements is true:
(a) R is isomorphic to the Galois ring GR(q2, p2) of order q2 and characteristic

p2.

(b) There is an unique automorphism σ of Fq such that R is isomorphic to the
σ-dual numbers Fq[X,σ]/(X2).2

We see that there are r+1 isomorphism classes of chain rings of composition
length 2 and order q2. Among these rings 2 are commutative, namely GR(q2, p2)
and Sq := Fq[X]/(X2). The Galois ring is the unique one with characteristic
p2, all the others have characteristic p. The smallest such chain rings are:

q R

2 Z4 S2 = F2[X]/(X2)
3 Z9 S3 = F3[X]/(X2)
4 G4 := GR(16, 4) S4 = F4[X]/(X2) T4 := F4[X, a 7→ a2]/(X2)
5 Z25 S5 = F5[X]/(X2)

2Fq[X,σ] is a skew polynomial ring over Fq. Its addition is defined as in the usual poly-
nomial ring, and the multiplication is the distributive extension of the rule Xλ = σ(λ)X for
each scalar λ ∈ Fq.
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The only non-commutative ring in this list is T4.

3 Arcs in projective Hjelmslev planes

The projective Hjelmslev geometry PHG(k,R) of dimension k over a finite chain
ringR is defined as follows: The point set P(PHG(k,R)) [line set L(PHG(k,R))]
is the set of the free rank 1 [rank k] right submodules of the module Rk+1, and
the incidence is given by set inclusion.

We have |P(PHG(k,R))| = |L(PHG(k,R))| = qk+1−1
q−1 qk(m−1). For m = 1,

R is a finite field and PHG(k,R) is the classical projective geometry PG(R, k)
of dimension k over R. For m > 1 however, two different lines in PHG(k,R)
may meet in more than one point.

The map φ, extended to Rk+1, is a collineation PHG(k,R) → PG(k,Fq).
Let P,Q ∈ P(PHG(k,R)). There is more than one line passing through P
and Q if and only if φ(P ) = φ(Q). The preimages φ−1(P ) [φ−1(L)] with
P ∈ P(PG(k,Fq)) [L ∈ L(PG(k,Fq))] are called point [line] neighbor classes
of PHG(k,R). The restriction of a projective Hjelmslev geometry to a single
point neighbor class is isomorphic to the affine geometry PG(k,Fq). The group
of collineations of PGL(k,R) is exactly the semilinear projective group PΓL(k+
1, R) [9].

In the following, we restrict us to the projective Hjelmslev planes PHG(2, R).
If R has composition length 2, such a plane is called uniform. For n ∈ N, a set
of points k ⊆ P(PHG(2, R)) of size n is called projective (n, u)-arc, if some u
elements of k are collinear, but no u+ 1 elements of k are collinear. If we allow
k to be a multiset of points in this definition3, k is called (n, u)-multiarc. We
denote by nu(R) the maximum size of an u-multiarc in the projective Hjelsmelv
plane PHG(2, R).

In the case u = 2 the discrimination of projective arcs and multiarcs is not
important, since the only proper 2-multiarc is a single point of multiplicity 2.
So we will simply use the expression 2-arc.

For a 2-arc k in an uniform Hjelmslev plane over a chain ring with odd
parameter q, it is known that the complement of the image φ(k) is a blocking
set in PG(2,Fq).

The following table shows the known values of n2(R) for the finite chain
rings R with m = 2 and #R ≤ 25. The values for the rings R with #R ≤ 9, as
well as the lower bound for S4 and the upper bounds for G4, Z25 and S5 were
given in [5]. The lower bound for G4 was given in [3], and the upper bound for
S4 as well as lower and upper bound for T4 can be found in [4]. For the chain
rings R with q = 5 the table shows a range, since the exact value of n2(R) is

3Of course we have to respect multiplicities for counting the number of collinear points.
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not known. The lower bounds of these ranges are improved by our search.

q 2 3 4 5
R Z4 S2 Z9 S3 G4 S4 T4 Z25 S5

n2(R) 7 6 9 9 21 18 18 21− 25 22− 25

4 The new arcs

In this section we give the new arcs and some analysis of their geometrical
structure. The Hjelmslev planes PHG(2,Z25) and PHG(2, S5) both consist of
775 points and lines, and of 31 point and line neighbor classes. A single neighbor
class contains 25 points respectively lines.

4.1 A (21, 2)-arc in PHG(2,Z25)

A (21, 2)-arc kZ25 in PHG(2,Z25) is given by the points

(1 : 1 : 4) (1 : 19 : 19) (1 : 4 : 1)
(1 : 1 : 22) (1 : 8 : 8) (1 : 22 : 1)
(1 : 3 : 12) (1 : 23 : 19) (1 : 4 : 17)
(1 : 7 : 8) (1 : 22 : 4) (1 : 19 : 18)
(1 : 7 : 22) (1 : 8 : 6) (1 : 21 : 18)
(5 : 1 : 2) (1 : 15 : 13) (1 : 2 : 5)
(5 : 1 : 23) (1 : 10 : 12) (1 : 23 : 5).

Its automorphism group has order 3 and is generated by a rotation of the
coordinate axes: Aut(kZ25) = 〈ρ〉 where

ρ = 〈v〉 7→

〈0 1 0
0 0 1
1 0 0

 v

〉

The automorphism group partitions kZ25 into 7 orbits, each of size 3. In the
list of points above each row consists of a single orbit.

The 21 points are contained in 21 different point neighbor classes. The
complement of φ(kZ25) in PG(2,F5) has size 10 and consists of the projective
triangle ⋃

a∈F5

{(0 : 1 : −a2), (1 : −a2 : 0), (−a2 : 0 : 1)}

together with its center point (1 : 1 : 1).
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4.2 A (22, 2)-arc in S5

A (22, 2)-arc kS5 in PHG(2,S5) is given by the points

(1 : X + 1 : 4X) (4X : 1 : X + 1) (1 : 4X : 4X + 1)
(1 : 4X + 1 : 4X) (4X : 1 : 4X + 1) (1 : 4X : X + 1)

(1 : X + 1 : 3X + 4) (1 : 2X + 4 : X + 4) (1 : 4X + 4 : 4X + 1)
(1 : 4X + 1 : 4X + 4) (1 : X + 4 : 2X + 4) (1 : 3X + 4 : X + 1)
(1 : 3X + 2 : 3X + 2) (1 : 3X + 3 : 1) (1 : 1 : 3X + 3)
(1 : 2X + 3 : 4X + 2) (1 : 4X + 3 : 3X + 4) (1 : 2X + 4 : 2X + 2)
(1 : 4X + 2 : 2X + 3) (1 : 2X + 2 : 2X + 4) (1 : 3X + 4 : 4X + 3)

(1 : 1 : 1).
Again, the rotation ρ of the coordinate axes is an automorphism of kS5 , and

each row in the point list consists of one orbit under the group action of 〈ρ〉, so
there are 7 orbits of size 3 and the fixed point (1 : 1 : 1). But in this case the
full automorphism group Aut(kS5) is bigger than 〈ρ〉, another automorphism of
kS5 is given by

τ = 〈v〉 7→

〈 1 X −X
X 1 −X

2X + 2 2X + 2 −X − 1

 v

〉
τ has order 2, ρτ has order 5 and together, ρ and τ generate Aut(kS5): Aut(kS5) =
〈ρ, τ〉 ∼= PSL(2,F5) ∼= A5, where A5 denotes the alternating group on a set of
size 5.

While the ring Z25 has a trivial automorphism group, Aut(S5) is cyclic of
order 4 and generated by the linear extension of X 7→ 2X. So PGL(3,S5) �
PΓL(3,S5). But Aut(kS5) < PGL(3,S5), so all the automorphisms of kS5 are
purely linear. Under the action of Aut(kS5), kS5 splits into 2 orbits O1 and O2.
O1 has size 12 and contains the points above the horizontal line in the list, O2

has size 10 and contains the points below the horizontal line.
The 12 points in O1 are contained in 6 point neighbor classes, each class

containing 2 points of O1. The image of these 6 point neighbor classes under φ
is the oval

O = {(0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 0), (−1 : 1 : 1), (1 : −1 : 1) : (1 : 1 : −1)}
in PG(2,F5). Each pair of points within the same point neighbor class is aligned
in the tangent direction of the oval O.

The 10 points in O2 are all in separate point neighbor classes, and their
φ-images are exactly the internal points of the oval O. The 15 point neighbor
classes corresponding to the external points of O are empty.

5 Computation
The arcs were found by a fast backtracking search.
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One problem are the huge automorphism groups of the projective Hjelm-
slev planes4, which cause ”the same” point constellation to appear in billions
of isomorphic copies during a naive depth-first search. On the other hand, a
complete elimination of isomorphic copies would be too expensive, so the com-
promise was to filter out isomorphic copies in the first 7 levels of the search, and
to do an additional isomorphism test for the leaf nodes of the search. These iso-
morphism tests and the determination of the automorphism groups were done
implementing the Leiterspiel [13], see also [11].

Another bottleneck is the test in the innermost loop of the algorithm if
a certain point can be added to the current point set without violating the
2-arc property. Here we exploit the fact that k ⊆ P(PHG(2, R)) is a 2-arc
if and only if all the 3-element subsets of k are a 2-arc: For any set S ⊂
P(PHG(2, R)) and any four points P1, P2, P3, P4 ∈ P(PHG(2, R)) \ S it holds
that a := S ∪ {P1, P2, P3, P4} is a 2-arc if and only if a1 := S ∪ {P1, P2, P3},
a2 := S ∪ {P1, P2, P4}, a3 := S ∪ {P1, P3, P4} and a4 := S ∪ {P2, P3, P4} are
2-arcs. So in each node of the depth-first search we do a local breadth-first
search for 3 levels. The overhead of this additional search is compensated by
the fact that the search depth of the outer depth-first search is reduced by 3.
Now when the backtrack algorithm goes forward from the search node S to the
search node S ∪ {P1}, the breadth-first search for the node S ∪ {P1} can be
performed easily only by doing look-ups in the breadth-first data of the node
S. This process can be seen as merging the 4 arcs a1, a2, a3 and a4 into the
bigger arc a. The merging technique is a general idea to avoid repeated tests
within a backtracking search. In [10] it was used on pairs of integral point sets,
and then in [8] on triples of polyominoes.

6 Conclusion and future research

Up to isomorphism, the given 2-arcs were the only ones of size 21 respectively 22
that showed up in our search. Since we did not investigate the complete search
space, there might still exist other isomorphism types or even bigger 2-arcs.
But the current situation is quite remarkable: When we started our search,
in the tables of the best known u-arcs in uniform projective Hjelmslev planes
over finite chain rings all the u-arcs in planes over Galois rings were at least
as large as the u-arcs in the Hjelmslev planes over the other rings R with the
same parameter q, suggesting this being true in general. The Hjelmslev plane
PHG(2,S5) admitting a 2-arc of size 22 on the one hand and the Hjelmslev
plane PHG(2,Z25) with its best known arc of size 21 on the other hand could
be a counterexample to this conjecture.

Of course, the definitive knowledge of the biggest 2-arcs in PHG(2,Z25)
and PHG(2, S5) would be great. We think that it might be computationally
feasible to exhaustively search the complete search space by further exploiting

4# Aut(PHG(2,Z25)) = 145312500000 and # Aut(PHG(2, S5)) = 581250000000
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the homomorphism φ of group actions

(PΓL(3, R),PHG(2, R))→ (PGL(3,F5),PG(2,F5))

via the homomorphism principle [12]: In a first step, all the PGL(3,F5)-re-
presentatives for the images in PG(2,F5) are generated. At this point we
can make use of some restrictions, for example that the empty point neigh-
bor classes form a blocking set in PG(2,F5). Then for each such image k̄, we
need to exhaustively search all the 2-arcs among the preimages in φ−1(k̄) up to
PΓL(3, R)-isomorphism. In fact it is enough to consider the preimage of the
PGL(3,F5)-stablilizer of k̄ as the operating group. Usually this group is much
smaller than the full group of all collineations, a fact that benefits canonization
and isomorphism tests.

Furthermore, the question arises if a generalization of the arc kZ25 or kS5 to
uniform Hjelmslev planes over chain rings of higher order is possible. We hope
that our analysis of the structure could be a first step into this direction.
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