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Abstract. Let [n, k, d]q-code be a linear code of length n, dimension k and min-
imum Hamming distance d over GF (q). One of the most important problems
in coding theory is to construct codes with best possible minimum distances. In
this paper,we consider quasi-twisted (QT) codes, which are generalization of the
quasi-cyclic (QC) codes . Moreover, forty five codes over GF (7) and GF (9) are
constructed, which improve the best known lower bounds on minimum distance.

1 Introduction

Let GF (q) denote the Galois field of q elements. A linear code C over GF (q) of
length n, dimension k and minimum Hamming distance d is called an [n, k, d]q-
code.

A code C is said to be quasi-twisted (QT) if a constacyclic shift of a
codeword by p positions results in another codeword. A constacyclic shift of an
m-tuple (x0, x1, . . . , xm−1) is the m-tuple (αxm−1, x0, . . . , xm−2), α ∈ GF (q) \
{0}. The blocklength, n , of a QT code is a multiple of p , so that n = pm .

A matrix B of the form

B =


b0 b1 b2 · · · bm−2 bm−1

αbm−1 b0 b1 · · · bm−3 bm−2

αbm−2 αbm−1 b0 · · · bm−4 bm−3
...

...
...

...
...

αb1 αb2 αb3 · · · αbm−1 b0

 , (1)

where α ∈ GF (q) \ {0} is called a twistulant matrix. A class of QT codes can
be constructed from m × m twistulant matrices. In this case, the generator
matrix, G , can be represented as

G = [B1, B2, ... , Bp] , (2)

where Bi is a twistulant matrix[4].
The algebra of m × m twistulant matrices over GF (q) is isomorphic to the
algebra of polynomials in the ring GF (q)[x]/(xm − α) if B is mapped onto the
polynomial, b(x) = b0+b1x+b2x2+· · ·+bm−1x

m−1, formed from the entries in
the first row of B. The bi(x) associated with a QT code are called the defining
polynomials. If α = 1, we obtain the algebra of m×m circulant matrices, and
a subclass of quasi-cyclic codes[5].
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If the defining polynomials bi(x) contain a common factor which is also a
factor of xm − α, then the QT code is called degenerate. The dimension k of
the QT code is equal to the degree of h(x), where [4]

h(x) =
xm − α

gcd{xm − α, b0(x), b1(x), · · · , bp−1(x)}
. (3)

If the polynomial h(x) has degree m , the dimension of the code is m , and
(2) is a generator matrix. If deg(h(x)) = k < m, a generator matrix for the
code can be constructed by deleting m− k rows of (2).

Let the defining polynomials of the code C be in the next form

d1(x) = g(x), d2(x) = f2(x)g(x), · · · , dp(x) = fp(x)g(x), (4)

where g(x)|(xm−α), g(x), fi(x) ∈ GF (q)[x]/(xm−α), (fi(x), (xm−α)/g(x)) =
1 and deg fi(x) < m − deg g(x) for all 1 ≤ i ≤ p. Then C is a degenerate
QT code, which is one-generator QT code and for this code n = mp, and
k = m− deg g(x).

Similarly to the case of one generator quasi-cyclic codes(see[3],[2]), an p-QT
code over GF (q) of length n = pm can be viewed as an GF (q)[x]/(xm −
α) submodule of (GF (q)[x]/(xm − α))p [4]. Then an r-generator QT code is
spanned by r elements of (GF (q)[x]/(xm − α))p.

A well-known result regarding the one-generator QT codes are as follows.

Theorem 1.1 [4]: Let C be a one-generator QT code over GF (q) of
length n = pm. Then, a generator g(x) ∈ (GF (q)[x]/(xm − α))p of C has
the following form

g(x) = (f1(x)g1(x), f2(x)g2(x), · · · , fp(x)gp(x))

where gi(x)|(xm − 1) and (fi(x), (xm − α)/gi(x)) = 1 for all 1 ≤ i ≤ p.

Quasi-twisted codes form an important class of linear codes, which contains
the class of quasi-cyclic codes. A large number of record breaking ( and optimal
codes) are QT codes [1]. In this paper, seven new one-generator QT codes and
ten QC codes (p ≥ 1) are constructed using a algebraic-combinatorial computer
search, similar to that in [4]. Other codes are obtained through extension of
good QC codes. The codes presented here(Table 2), improve the respective
lower bounds on the minimum distance in [1].

2 The new QT codes over GF(7)

We have restricted our search to one-generator QT codes with a generator of
the form as in Theorem 1.1 with one generator polynomial g(x) and f1(x) = 1.
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Let q = 7,m = 100 and α = 6. Then

x100 + 1 =
26∏
i=1

h(i)

There are twenty four polynomials of fourth degree and two polynomials of
second degree. For k = 14, has 4048 possibilities to obtain g(x) of degree 86.
We checked for these possibilities consecutively (f1(x) = 1) and when g(x)=

16000134421466365353326230166335515411420613

5064054262505040503136515562066123220346161,

[100, 14, 63]7 constacyclic code is obtained. Similarly we get [100, 12, 66]7 code.
We note, that a cyclic [100, 12, 66]7 and [100, 14, 63]7 codes do not exist. More-
over, the constacyclic [100, 16, 60]7, [100, 18, 58]7, [100, 20, 55]7 and [100, 22, 50]7
codes, obtained by Grassl, are being motivated by the above two results.

Theorem 2.1: There exist one-generator quasi-twisted codes of type (4)
with parameters:

[96,6,75]7 [30,8,18]7 [72,8,51]7 [40,10,23]7
[90,10,61]7 [100,12,66]7 [100,14,63]7

Proof. The coefficients of the defining polynomials of the codes are as follows:
A [96, 6, 75]7-code:

643062265526521044100000,502013524005412325351000,

414154314333142246666110,621156660654165143155010;

A [30, 8, 18]7-code:

1010000000,5314421100,3241404110;

A [72, 8, 51]7-code:

226003441603514210000000,133543432540653642461000,123260664136540214021000;

A [40, 10, 23]7-code:

16460406461000000000,44060463136551426100;

A [90, 10, 61]7-code:

456300553336553006351000000000,651300552164114151301033010000,

605330452255426462023426510000;

A [100, 12, 66]7-code:

13321430144225611615316341116443230414121212120444

13335400604553563035121520443113341050100000000000;

3 The new QC codes over GF(7)

We illustrate the search method in the following example. Let m = 25 and
q = 7. Then the gcd(25, 7) = 1 and the splitting field of x25 − 1 is GF (74)
where 4 is the smallest integer such that 25|(74 − 1). One of the generating
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Table 1: Minimum distances of the [25p,8,d] quasi-cyclic codes over GF(7).

p 25p fp d dgr p 25p fp d dgr

1 25 1 12 13 3 75 1161256 53 52
2 50 10464 33 34 4 100 161123 73 72

polynomials for GF (74) is p(x) = x4 + 3x3 + x+ 5 and let β be a root of p(x).
Then

x25 − 1 =
6∏

j=0

(x− βj) =
7∏

i=1

h(x)

The minimal polynomials are:

h1(x) = x4 + 2x3 + 4x2 + 2x+ 1 h2(x) = x4 + 6x3 + 5x2 + 6x+ 1
h3(x) = x4 + 4x3 + 3x2 + 4x+ 1 h4(x) = x4 + x3 + x2 + x+ 1
h5(x) = x4 + 5x3 + 5x2 + 5x+ 1 h6(x) = x4 + 4x3 + 4x+ 1
h7(x) = x+ 6.

For k=8 we have 15 generator polynomials. Taken

g(x) = x17 + 5x16 + 2x13 + 2x12 + 3x10 + 2x9 + 5x8 + 4x7 + 5x5 + 5x4 + 2x+ 6,

we obtain a quasi-cyclic code [50, 8, 33]7 with f2(x) = x4 + 4x2 + 6x+ 4. After
that we make search for fp(x), p = 3, 4. With f3(x) = x6 +x5 +6x4 +x3 +2x2 +
5x+ 6 we find [75, 8, 53]7-code and with f4(x) = x5 + 6x4 +x3 +x2 + 2x+ 3 we
find [100, 8, 73]7-code. The results are given in Table 1.

Theorem 3.1: There exist one-generator quasi-cyclic codes of type (4)
with parameters:

[40,5,30]7 [56,5,43]7 [57,7,41]7 [80,7,59]7
[96,7,72]7 [32,8,19]7 [36,8,22]7 [64,8,44]7
[75,8,53]7 [96,8,70]7 [100,8,73]7 [96,9,68]7

[100,9,71]7 [33,10,18]7 [55,10,34]7 [96,10,66]7
[100,10,69]7

Proof. The coefficients of the defining polynomials of the codes are as follows:
A [40, 5, 30]7-code:

65210000,52123100,24636610,42222110,15343131;

Adding the columns (15621)t and (14631)t, the above code can be extended to a [42, 5, 32]7
code.

A [56, 5, 43]7-code:
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65210000,35543100,40446210,15226410,25642110,55552510,63540210;

Adding the columns (16611)t, (16161)tand (11661)t, the above code can be extended to a

[59, 5, 46]7 code.

A [57, 7, 41]7-code:

1436236116141000000,4542144052534101410,6351030314556061510;

Adding the columns (0532100)t and (1111111)t, the above code can be extended to a [59, 7, 42]7
code.

A [80, 7, 59]7-code:

6463164131000000,1611110235033100,6453240365635310,3432346551321000,2323510162165410;

A [96, 7, 72]7-code:

531622363566541040214315413166621526403041000000,

304644425155516156454653510125300505305613341000;

Adding the columns (6413641)t and (6512651)t, the above code can be extended to a [98, 7, 74]7
code.

A [32, 8, 19]7-code:

6346013410000000,2225651306201000 ;

Adding the column (36413641)t, the above code can be extended to a [33, 8, 20]7 code.

A [36, 8, 22]7-code:

610000000,312663610,623021000,521624100;

Adding the columns (42142142)t and (24124124)t, the above code can be extended to a

[38, 8, 24]7 code.

A [64, 8, 44]7-code:

6145261210000000,5420144154311000,6051062341331000,1055514663661000;

Adding the columns (66116611)t and (16611661)t, the above code can be extended to a

[66, 8, 46]7 code.

Remark: The defining polynomials of the some codes, which are missing in Theorem 3.1,

are given in [1]. All defining polynomials, generator matrices and weight enumerators are

available on request from the author.

Theorem 3.2: There exist quasi-cyclic codes of type (2) with parameters:

[21,7,12]7 [24,8,13]7 [20,8,10]7

Proof. The coefficients of the defining polynomials of the codes are as follows:
A [21, 7, 12]7-code:

4030100,3453301,4554631;

Adding the column (1111111)t, the above code can be extended to a [22, 7, 13]7 code.

A [20, 8, 10]7-code:

6041,5631,1221,1361,4251;

3121,2651,4100,1221,3001;

The above code has generator matrix, containing two circulants [5] with dimension four.

Adding the column (1111111)t, the above code can be extended to a [21, 8, 11]7 code.

A [24, 8, 13]7-code:

54346041,61136241,33612621;
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Table 2: Minimum distances of the new linear codes over GF(7)

.

code d dgr code d dgr code d dgr

[42,5] 32 31 [30,8] 18 17 [100,9] 71 70
[59,5] 46 45 [33,8] 20 19 [33,10] 18 17
[96,6] 75 74 [38,8] 24 23 [40,10] 23 22
[22,7] 13 12 [66,8] 46 45 [55,10] 34 33
[59,7] 42 41 [72,8] 51 50 [90,10] 61 60
[80,7] 59 58 [75,8] 53 52 [96,10] 66 65
[98,7] 74 73 [96,8] 70 69 [100,10] 69 68
[21,8] 11 10 [100,8] 73 72 [100,12] 66 65
[25,8] 14 13 [96,9] 68 67 [100,14] 63 62

Adding the column (1111111)t, the above code can be extended to a [25, 8, 14]7 code.

4 The new QC codes over GF(9)

For convenience, the elements of GF (9) are given as integers: 2 = β4, 3 = β,4 =
β7, 5 = β6, 6 = β5, 7 = β2,8 = β3, where β is a root of the primitive polynomial
y2 +y+2 over GF (9). We have restricted our search to one-generator QC codes
with a generator of the form as in Theorem 1.1 and f1(x) = 1. The main aim in
our search is to find good g(x), i.e. g(x) which gives better minimum distance
for p = 2 due to Theorem 1.1. When choosing g(x) we calculate the minimum
distance of the respective quasi-cyclic code D. After that we have compared the
dmin(D) with the minimum distance of the best known codes[1] and with the
given m and g(x) we search for fp(x), p = 3, 4, . . . . Depending of the degree
of g(x), we obtain improvements on minimum distances for some dimensions.
All results are given in Table 4.
We illustrate the search method in the following example. Let q = 9 and m = 8.
Then

x8 − 1 =
7∏

j=0

(x− βj)

Let now k = 6. There are 28 possibilities to obtain g(x) of degree two. By this
reason, we can use exhaustive search with all different codes in a given length.
Taken g1(x) = x2 + 2 and g2(x) = x2 + 8x + 3 we obtained 53 quasi-cyclic
D = [16, 6, 9]9 codes.(The best known code[1]is [16, 6, 10]9) Using these codes,
we received 198 good QC [24, 6, 16]9 codes. After that we checked all codes for
extendability and etc. The results are given in Table 3.
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Table 3: Extendibility of a good [8p, 6, d]9 quasi-cyclic codes

code number ext.code code number ext.code

[24,6,16] 198 [28,6,20] [80,6,63] 104 [81,6,64]
[32,6,22] 21604 [34,6,24] [96,6,76] 12479 [99,6,79]
[40,6,29] 4856 [43,6,32] [104,6,83] 7026 [107,6,86]
[48,6,36] 87 [49,6,37] [112,6,90] 2727 [114,6,92]
[56,6,42] 10861 [58,6,44] [120,6,97] 301 [123,6,100]
[64,6,49] 18131 [66,6,51] [128,6,104] 8 [129,6,105]

It is seen[1], that there are six new results: [43, 6, 32]9, [49, 6, 37]9, [107, 6, 86]9,
[114, 6, 92]9, [123, 6, 100]9 and [129, 6, 105]9.

Now, we present the new quasi-cyclic codes.

Theorem 4.1: There exist one-generator quasi-cyclic codes of type (4)
with parameters:

[32,5,24]9 [60,5,48]9 [64,5,51]9 [80,5,65]9 [40,6,29]9 [48,6,36]9
[56,6,43]9 [91,6,72]9 [100,6,80]9 [104,6,83]9 [112,6,90]9 [120,6,97]9

[128,6,104]9 [32,7,21]9 [104,7,81]9 [120,7,95]9 [126,7,100]9

Proof. The coefficients of the defining polynomials of the codes are as fol-
lows:
A [32, 5, 24]9-code:

80310000,14125410,57351510,16517310;

The above code can be extended to a [34, 5, 26]9 code adding of the columns (25721)t and

(21751)t.

A [60, 5, 48]9-code:

1877810000,7785216100,7251380810,2373417100,6662363810,5724131210;

The above code can be extended to a [62, 5, 50]9 code by adding twice the column (11111)t.

A [64, 5, 51]9-code:

4763881114410000,1571085464846100,5477036336437410,8284074810411510;

The above code can be extended to a [70, 5, 57]9 code by adding of the columns

(06010)t, (70601)t, (26541)t, (24761)t, (24761)t and (15271)t

A [80, 5, 65]9 code:

4036617687510000,5810512125876510,7120346383881510,6482888473553100,8756161888531410;

The above code can be extended to a [86, 5, 71]9 code by adding of the columns

(23611)t, (24421)t, (28731)t, (26541)t, (26541)t and (22361)t

A [40, 6, 29]9-code:

38100000,58256100,63765510,87830610,77263710;
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The above code can be extended to a [43, 6, 32]9 code by adding of the columns

(212121)t, (715271)t and (423581)t

A [48, 6, 36]9-code:

38100000,58256100,13311510,86555610,36352410,15730710;

The above code can be extended to a [49, 6, 37]9 code by adding of the column (324761)t.

A [56, 6, 43]9-code:

17270525100000,30470554833510,41832282450510,40518226278810;

A [91, 6, 72]9 code:

2010212100000,5685456551100,7277472885510,3883436540100,

3318214727100,6174421502610,8256678158310;

The above code can be extended to a [92, 6, 73]9 code by adding of the column (351351)t.

A [100, 6, 80]9-code:

74182771257878100000,28331102267186768100,51571377646037838810,

75868711326224636310,45242251813728824310;

The above code can be extended to a [102, 6, 82]9 code by adding of the columns (212121)t

and (517251)t.

A [104, 6, 83]9-code:

38100000,58256100,18272610,63744810,52244010,66147810,71505810,

23541210,66676710,34624410,13173810,42838110,30533610;

The above code can be extended to a [107, 6, 86]9 code by adding of the columns

(212121)t, (725172)t and (527152)t

A [112, 6, 90]9-code:

38100000,58256100,18272610,63744810,52244010,66147810,71505810,

23541210,66676710,34624410,57338610,84751110,82802610,27333510;

The above code can be extended to a [114, 6, 92]9 code by adding of the columns (212121)t

and (623162)t.

A [120, 6, 97]9-code:

38100000,58256100,18272610,63744810,52244010,66147810,71505810,23541210,

66676710,34624410,26734110,30533610,76845510,25744410,57152610;

The above code can be extended to a [123, 6, 100]9 code by adding of the columns (628731)t(823741)t

and (426781)t.

A [128, 6, 104]9-code:

38100000,58256100,18272610,63744810,52244010,66147810,71505810,23541210,

66676710,34624410,25461810,26084310,17124210,62437110,16683810,85266810;

The above code can be extended to a [129, 6, 105]9 code by adding of the column (423581)t.

A [32, 7, 21]9-code:

21000000,83222100,54653100,33576810;

The above code can be extended to a [34, 7, 23]9-code by adding of the columns (2121212)t

and (7826541)t.

A [104, 7, 81]9-code:

1222121000000,7802383510100,1372680321310,8611364411000,

4315314163100,8315508126210,5325315184210,3347133825610;

The above code can be extended to a [105, 7, 82]9-code by adding of the column (1111111)t.

A [120, 7, 95]9 code:
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Table 4: Minimum distances of the new linear codes over GF(9)

.

code d dgr code d dgr code d dgr

[36,4] 30 29 [49,6] 37 36 [123,6] 100 99
[34,5] 26 25 [56,6] 43 42 [129,6] 105 104
[62,5] 50 49 [92,6] 73 72 [34,7] 23 22
[70,5] 57 56 [102,6] 82 81 [105,7] 82 81
[86,5] 71 70 [107,6] 86 85 [120,7] 95 94
[43,6] 32 31 [114,6] 92 91 [126,7] 100 99

8122866351074765705613812460610071000000,2812562500167130822860221325245180310000,

4775477306678687477736251127612143632710;

A [126, 7, 100]9-code:

16557741000000,34211427224100,77568421415100,18428267536710,43450571601000,

87560250163410,18272264722110,10505313635310,63444841424310;

Theorem 4.2: There exist optimal [36, 4, 30]9 code.
Proof.There exist quasi-cyclic [28, 4, 22]9 code of type (2)[5] with defining poly-
nomials:
8721,8531,7101,8251,2621,4771,4881.

Adding the columns (5210)t, (5701)t, (1111)t, (2121)t, (0521)t, (7251)t, (2071)t and (5271)t,
the above code can be extended to an optimal [36, 4, 30]9 code with weight enu-
merator 013021763110243251233131234512351024.
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