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Abstract. Let F denote the finite field with two elements. We describe a con-
struction of partitions of F n, for n = 2m − 1, m ≥ 4, into cosets of pairwise distinct
Hamming codes (we call such codes nonparallel) of length n. We give a lower bound
for the number of different such partitions.

1 Introduction

We describe a method to construct partitions of the set Fn of all binary vectors
of length n into cosets of pairwise distinct (we call them nonparallel) Hamming
codes of length n. In the case of length n = 7, Phelps [8] found a family
of Hamming codes satisfying this property. Using his result we can produce
rather many such families of Hamming codes for lengths greater than n = 7.
For example for length n = 15 we show that the number of distinct partitions
of F 15 into cosets of nonparallel Hamming codes is greater than 1.93 · 254.

A Hamming code is a linear perfect code, i.e. a subspace of Fn, such that
every word of length n differs in at most one coordinate position from a unique
word of H. Let ei, for i = 1, 2, . . . , n, denote the word with just one non zero
coordinate, the ith coordinate. If a word x does not belong to H then this
word x belongs to exactly one of the cosets ei + H, i = 1, 2, . . . , n, of H, or
equivalently that the sets in the family P = {H, e1 + H, e2 + H, . . . , en + H},
partition the set Fn.

The problem of the classification of all partitions of the set Fn
q of all q-ary

vectors of length n, q ≥ 2, into perfect codes is closely related to the classical
problem to classify all perfect codes. Note that the case q = 2 is investigated
much more deeply than the case q > 2. Constructions of partitions, see the
list of references, can also be useful to create new classes of codes, in particular
perfect. In Ch. 11, [4], a good survey of the constructions of perfect q-ary codes
is presented. One can find there several constructions using some partitions of
Fn

q into perfect codes. Two constructions of partitions of Fn into perfect codes
are given in [10]. For any admissible n > 15 one of these construction allowed to
get not less than 22(n−1)/2

different partitions of Fn into perfect binary codes of
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length n, see [11, 1], the exact number of different partitions for the case n = 7
can easily be obtained from [8], for the case n = 15 the bound is also valid,
see [14]. In [1] a switching construction of the partitions of Fn into pairwise
nonequivalent perfect binary codes of length n is presented for any n = 2k − 1,
k ≥ 5.

2 Preliminaries

We will be concerned with the dual space of a Hamming code. The scalar
product of two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of Fn is
defined as x · y = x1y1 + x2y2 + · · · + xnyn (mod 2). The dual space V ⊥ of a
subspace V of Fn is V ⊥ = { x ∈ Fn | x · c = 0 for all c ∈ V }. Every
Hamming code H is the dual space of its parity check matrix H.

We remind that the row space of the parity check matrix of any Hamming
code is a simplex code S of length n = 2m − 1, i.e. a subspace of Fn with the
property that every non zero word of S has weight (n + 1)/2. Let us give an
example of a Hamming code H given by its parity check matrix

H =

 1 1 1 0 0 0 1
1 1 0 1 1 0 0
1 0 1 1 0 1 0

 . (1)

This particulary Hamming code H we will essentially use below.

Lemma 1 If H and H ′ are Hamming codes of any length n such that H+ei =
H ′ + ej , then H = H ′ and i = j.

Corollary 1 Assume that P and P ′ are two partitions of Fn into cosets of
the set of Hamming codes in the two families H = {H0, H1, H2, . . . ,Hn} and
H′ = {H ′0, H ′1, H ′2, . . . ,H ′n} respectively. If H 6= H′, then P 6= P ′.

Lemma 2 For any two codes C and D of length n, if v = (v1, v2, . . . , vn) ∈
< C >⊥ ∩ < D >⊥ then, from vi 6= vj follows (ei + C) ∩ (ej + D) = ∅, and
from vi 6= 0 we have C ∩ (ei +D) = ∅.

To get the lower bound for the number of partitions Fn into cosets of non-
parallel Hamming codes, we will use a partition PPh of F 7 found by Phelps [8].
We describe the partition by giving a set of generators for the dual code of each
of these Hamming codes:

H0 =< 0111100, 1101010, 1011001 >⊥, H1 =< 1110100, 0111010, 1011001 >⊥,
H2 =< 0111100, 1110010, 1010101 >⊥, H3 =< 1111000, 1010110, 0110101 >⊥,
H4 =< 1110100, 1101010, 0111001 >⊥, H5 =< 1011100, 0101110, 1100101 >⊥,
H6 =< 0111010, 1100110, 1010011 >⊥, H7 =< 0101101, 0110011, 1001011 >⊥ .



Heden, Solov’eva 89

It is easy to check, e.g. using Lemma 2, that the codes in the family HPh =
{H0, H1, H2, . . . ,H7}, are nonparallel and give a partition of F 7. We also ob-
serve that the words of weight four, that are not contained in any of the dual
spaces of the Hamming codes Hi, for i = 0, 1, 2, . . . , 7, will be exactly the words
of weight four in the dual space of the Hamming code H given in equation (1)
of the introduction. So if W4 denotes the set of words of weight four in F 7,
then

H⊥ \ {0} = W4 \ (
7⋃

i=0

H⊥i \ {0}). (2)

Let S7 denote the set of all permutations of the set of the seven coordinate
positions and let GL(m, 2) denote the general linear group. Taking into account
that the automorphism group of a Hamming code of length 7 is isomorphic to
GL(3, 2) of order 168 and the well known fact that the Hamming code H is
unique up to isomorphism we immediately get the following

Proposition 1 For each i = 0, 1, 2, . . . , 7 there are 168 distinct permutations
π in S7 that maps the Hamming code H of length 7 onto the Hamming code Hi

of length 7 in HPh: |{ π ∈ S7 | π(H) = Hi }| = 168.

Denote by Π the set of all possible 1344 such permutations, i.e.

Π = ∪7
i=0{π ∈ S7 | π(H) = Hi},

where H is the Hamming code given by the parity check matrix (1).

Proposition 2 For any π ∈ Π and for any i = 0, 1, 2, . . . , 7, π(Hi) 6∈ HPh.

3 Construction

In this section we will give some more necessary lemmas. In lemmas 3–5 we will
construct families H of Hamming codes of length n of which certain cosets will
constitute a partition of Fn into perfect codes. By Corollary 1, different such
families will give different partitions. Using this construction we will calculate
the number of different such partitions.

For each family H of nonparallel Hamming codes of length n, that will
appear here, we take a simplex code S = SH of length n, dimension log2(n +
1)− 3, such that ⋂

H∈H
H⊥ = S. (3)



90 OC2009

Let us fix a simplex code S of length n and dimension log2((n + 1)/8). If
a set of basis vectors for the simplex code S constitutes the rows of a matrix
M then each possible non zero word of length log2((n + 1)/8) will appear as
a column in this matrix exactly eight times and the zero column exactly seven
times. Without loss of generality, and for the purpose to simplify the notation,
we assume that the columns are placed in lexicographical order with the zero
column first. When we will count the number of possibilities for partitions that
we get by using this construction method, we will consider different distributions
of these columns.

We now describe the Hamming codes of the family H. We will use the fol-
lowing notation, related to the choice of ordering of the above set of n columns.
For any word x of length n and t = (n+ 1)/8− 1 we let

x = (x01, x02, . . . , x07 | x10, x11, . . . , x17 | x20, x21, . . . , x27 | · · · | xt0, xt1, . . . , xt7).

Let the codes in the family H be denoted by Hi,j , where i = 0, 1, 2, . . . , t
and j = 0, 1, 2, . . . , 7. The dual space of the Hamming code Hij will be spanned
by the rows of M and all words u that satisfy

ui0 = 0, i = 1, 2, . . . , t;

(ui1, ui2, . . . , ui7) ∈ H⊥j , j = 0, 1, 2, . . . , 7

and for k ∈ {0, 1, 2, . . . , t} \ {i}, and some πi
k ∈ Π:

(uk1, uk2, . . . , uk7) = πi
k((ui1, ui2, . . . , ui7)).

For i we put πi
i = id.

Lemma 3 Every code Hi,j for i = 0, 1, 2, . . . , t and j = 0, 1, 2, . . . , 7 in the
family H, defined above, is a Hamming code of length n.

Lemma 4 The Hamming codes in the family H are nonparallel.

Theorem 1 The sets eij + Hij, for i = 0, 1, 2, . . . , t, and j = 0, 1, 2, . . . , 7,
constitute a partition of Fn into nonparallel Hamming codes.

From all previous lemmas, propositions and Theorem 1 we get

Theorem 2 For each n = 2m − 1, where m ≥ 4, the number of different
partitions of Fn into nonparallel Hamming codes is at least

(1344t)t−1 · (8t− 1)!
7! · 8!t−1 · |GL(log2(t+ 1), 2)|

, where t = (n+ 1)/8.
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By more careful counting the bound given in Theorem 2 can be improved.
We will thereby make use of the following

Lemma 5 The number of different partitions of F 7 into cosets of nonparallel
Hamming codes of length 7 is equal to 1920.

¿From this lemma we deduce

Theorem 3 The number of partitions of F 15 into cosets of nonparallel Ham-
ming codes is at least

1, 93 · 254.
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