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Abstract. A family of subsets F of an n-set is r-union-free, if the unions of at
most r-tuples of the elements in F are all different. F ⊆ 2[n] is r-cover-free, if no
set in F is covered by the union r others. In this paper we give new bounds on
the maximum size of these families in the regular case. In coding theoretical set-
ting union-free families and cover-free families correspond to superimposed designs
and codes. Since the nature of this problem is rather combinatorial we follow the
combinatorial notation.

1 Introduction

Union free families were introduced by Kautz and Singleton [16]. They studied
binary codes with the property that the disjunctions (bitwise ORs) of distinct
at most r-tuples of codewords are all different. In information theory usually
these codes are called ‘superimposed’ and they have been investigated in several
papers on multiple access communication (see, e.g. [6, 15]). Alon and Asodi
[1, 2], and De Bonis and Vaccaro [5] studied this problem in a more general
setup.

The same problem has been posed – in different terms – by Erdős, Frankl
and Füredi ([8], [9]) in combinatorics and by Sós [23] in combinatorial number
theory. One can find an easy proof of the best known upper bound of these
codes in the papers by Füredi [12] and Ruszinkó [22]. We also have to mention
here that this problem has a direct geometry application: a union-free family
defines a set of points of exponential size in Rn such that arbitrary three of
them span a triangle with all angles sharp.

A F ⊆ 2[n] of size t is a union-free family with parameters (n, t, r) (UF (n, t, r))
if for arbitrary two distinct subsets A and B of F with 0 ≤ |A|, |B| ≤ r⋃

A∈A
A 6=

⋃
A∈B

B.
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A F ⊆ 2[n] of size t is a cover-free family with parameters (n, t, r) (CF (n, t, r))
if for arbitrary A0, A1, A2, . . . , Ar ∈ F

A0 6⊆
r⋃
i=1

Ai.

One can easily see that if F is CF (n, t, r) then it is UF (n, t, r), and if F is
UF (n, t, r) then it is UF (n, t, r−1). The degree of an element x ∈ {1, . . . , n} =
[n] is the number of members in F containing x. A family UF (n, t, r) (CF (n, t, r))
is UF (n, t, r, k) (CF (n, t, r, k), resp.) if the maximum degree is k.

Quite recently, D’yachkov and Rykov [7] introduced the concept of what
they called optimal superimposed codes and designs (CF , UF , resp). They
observed [7] the following two Propositions.

Proposition 1 (D’yachokov, Rykov [7]) For an arbitrary CF (n, t, r − 1, k)
(and thus for an arbitrary UF (n, t, r, k)) with t > k > r ≥ 2, n ≥ drt/ke
holds.

A CF (n, t, r−1, k) or UF (n, t, r, k) is called optimal in [7] iff in Proposition
1 equality holds. Although equality only in a very special range of parameters
of a CF (n, t, r − 1, k) or UF (n, t, r, k) may hold. Thus to avoid any confusion
we will call these regular ones.

Proposition 2 (D’yachokov, Rykov [7]) In an arbitrary regular CF (n, t, r −
1, k) or UF (n, t, r, k)

• The size of every set is r (r-uniform);

• The degree of every element is k (k-regular);

• The maximum pairwise intersection is 1 (1-intersecting).

Dy’achkov and Rykov [7] considered the case when r divides n (i.e. n = rq,
and so t = kq) and obtained several sufficient conditions for the existence
of a regular UF , CF , resp. They investigated the maximum k which still
guarantees the existence of a regular UF (rq, kq, r, k) or CF (rq, kq, r, k). On
the other hand, equivalently, but following the traditions in extremal set or
coding theory, we consider the maximum size t = t(r, n) (t′ = t′(r, n) for which
a regular UF (n, t, r, k) (UF (n, t, r, k)) still exists assuming n = rq, and t = kq.
(Since t and k are proportional, the two approaches are equivalent.) In order
to have a clear comparison with our results we will restate the older ones in
our terms. Since regular union-free families rise in our opinion more interesting
questions then cover free ones, the main part of this paper deals with bounds
on t = t(r, n). log stands for the logarithm in base 2.
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2 New bounds in the graph case

Dy’achkov and Rykov [7] showed the following

Theorem 1 Let n be an even integer. Then

1. for t ≤ n2/4 (i.e., k ≤ n/2) there exists a CF (n, t, 1, k);

2. for t ≤ n (log(n + 2)− 2) /2 (i.e., k ≤ log(n + 2) − 2) there exists a
UF (n, t, 2, k).

This theorem can be sharpened as follows.

Proposition 3 If n is a positive integer then

1. for t ≤ n(n− 1)/2 =
(
n
2

)
(i.e., k ≤ n− 1) there exists a CF (n, t, 1, k);

2. for t ≤ n
2

√
n
2 + o

(
n3/2

)
(i.e., k ≤

√
n
2 + o (

√
n) ) there exists a

UF (n, t, 2, k).

Proof (1) It is well-known (and obvious), that for n is even, and n > k there
exists a k-regular graph on n vertices. Indeed, by Baranyai’s Theorem [4] the
edge set of Kn can be decomposed into n − 1 perfect matchings. Take k of
them. For odd n (and k even) by Tutte’s theorem Kn can be decomposed into
(n− 1)/2 2-factors. Take k/2 of them. �

(2) For a fixed k consider the following bipartite graph G = (A, B; E). Let
q = q(k) be the smallest integer such that {0, 1, . . . , q − 1} contains a Sidon
set size k, i.e., a set of non-negative integers X ⊆ A such that for arbitrary
quadruple i, j, m, l ∈ X,

i + j 6≡ m + l (mod q).

Erdős and Turán [11] showed that q(k) = k2 + o(k2). (For more details on
this topic see, e.g, the excellent paper of Babai and Sós [3]). Let A = B =
{0, 1, . . . , q − 1} and take a Sidon set X in A of size k. Define

E = {(a, a + x (mod q)) : a ∈ A, x ∈ X}.

Obviously, a graph G is a UF (2q, kq, 2, k) iff it contains no C3 or C4. G is
bipartite so it does not contain any triangle. We will show that G contains no
C4 either, i.e. it is UF (2q, kq, 2, k). Indeed, assume to the contrary that there
is a C4 = (a1, b1, a2, b2), where ai ∈ A and bi ∈ B. Then, by the construction,

b1 ≡ a1 + i ≡ a2 + l (mod q)
b2 ≡ a1 + m ≡ a2 + j (mod q),
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from which i+ j ≡ m+ l (mod q) follows, a contradiction. By the choice of the
parameters, n = 2q, k =

√
n
2 + o (

√
n), t = n

2

√
n
2 + o

(
n3/2

)
, as claimed. �

For a family of graphs G let ex(n;G) be the maximum number of edges
in a graph with n vertices containing no copy of a graph in G. By theo-
rems Kővári, T. Sós, Turán [17] and Reiman [21] ex(n; {C4)} ∼ n3/2/2, i.e.,
our construction in magnitude is tight. To determine the right constant here
seems to be a very difficult open question. By Erdős and Simonovits [10]
ex(n; {C4, C5}) = ex(n; {C4, C3, C5, . . . C2k+1 . . . }) ∼ n3/2/(2

√
2), i.e., forbid-

ding C5 in magnitude is the same a forbidding all non-bipartite graphs. But this
is not clear for triangles, it follows that n3/2/(2

√
2) ≤ ex(n; {C4, C3}) ≤ n3/2/2,

but the right constant is not known.

3 New bounds in the hypergraph case

For r ≥ 3 Dyachkov and Rykov [7] showed that

Theorem 2 For r ≥ 3 if

t ≤
(n

r

)r/(r−1)
≤ c

r
n1+1/(r−1)

(
i.e., k ≤

(n

r

)1/(r−1)
)

(1)

then there exists a UF (n, t, r, k).

(Here to make the bound more transparent we bound r−1/(r−1) by an absolute
constant c.) In our main theorem we improve this as follows.

Theorem 3 1. (r = 3) For t ≤ cn3/2 (i.e., k ≤ cn1/2) there exists a
UF (n, t, 3, k);

2. (r > 3) For t ≤ n2e−βr
√

logn (i.e., k ≤ ne−βr
√

logn) there exists a
UF (n, t, r, k).

Notice that for r = 3 our bound matches the one of Dyachkov and Rykov. On
the other hand, for larger values of r our bound is much stronger: it is almost
quadratic in n, while the one in 1 is close to linear. Also notice that a quadratic
bound would be the best possible. Indeed, by Proposition 2 a regular union-free
family is 1-intersecting. So the sets A1, A2, . . . , Ak containing a given element
x all disjoint outside {x}. Thus n ≥ | ∪ Ai| = 1 + (r − 1)k. In the quite
complicated proof of Theorem 3 we use the famous construction of Behrend of
large sets of integers with no three term arithmetic progression.
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[10] P. Erdős, M. Simonovits, Compactness results in extremal graph theory,
Combin. 2, 1982, 275-288.
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