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Normality of some binary linear codes
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Abstract. We show that all binary codes of lengths 16, 17 and 18, or redundancy
10, are normal. These results have applications in the construction of codes that
attain t[n, k], the smallest covering radius of any binary linear code.

1 Introduction

Covering radius is one of the fundamental parameters of a code and has im-
portant applications in Computer and Communication Sciences. Its study has
attracted many researchers for the past 30 years (see [1], the surveys [2],[3], and
the book [4]).

Normality and amalgamated direct sum (ADS) were introduced in [1] to
construct good ”covering codes”, i.e. codes with small covering radius com-
pared to others of the same length and dimension. That approach requires the
constituent codes to be normal, a difficult property to establish. Hence much
subsequent research has focused on the question: which codes are normal? The
purpose of this work is to prove the normality of the binary codes of lengths
16, 17 and 18 or redundancy 10.

2 Some preliminary results

Let Fn
q be the n-dimensional vector space over the finite field with q elements.

A linear code C is a k-dimensional subspace of Fn
q . The ball of radius t around

a word y ∈ Fn
q is defined by

{x|x ∈ Fn
q , d(x, y) ≤ t}.

Then the covering radius R(C) of a code C is defined as the least possible
integer number such that the balls of radius R(C) around the codewords cover
the whole Fn

q , i.e.
R(C) = max

x∈Fn
q

min
c∈C

d(x, c).

A coset of the code C defined by the vector x ∈ Fn
q is the set x+C = {x+c | c ∈

C}. A coset leader of x + C is a vector in x + C of smallest weight. When
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the code is linear its covering radius is equal to the weight of the heaviest coset
leader. We will denote by [n, k, d]R a code of length n, dimension k, minimum
distance d and covering radius R.

The function tq[n, k] is defined as the least value of R(C) when C runs over
the class of all linear [n, k] codes over Fq for a given q.

Definition 1 [4] Let C be a binary code of length n and covering radius
R. For i = 1, . . . , n let C

(i)
0 (respectively C

(i)
1 ) denote the set of codewords in

which the i-th coordinate is 0 (respectively 1). The integer

N (i)(x) = max
x∈Fn

2

{d(x, C
(i)
0 ) + d(x, C

(i)
1 )}

is called the norm of C with respect to the i-th coordinate and

Nmin = min
i

N (i)

is called the minimum norm of C. (We use the convention that d(x, 0) = ∞.)
The code C has norm N if Nmin ≤ N and the coordinates i for which N (i) < N
are called acceptable with respect to N .

The code C is normal if it has norm 2R + 1. If N (i) ≤ 2R + 1, then we say
that the coordinate i is acceptable with respect to 2R + 1, or that C is normal
with respect to the i-th coordinate. If C is not normal then it is an abnormal
code. An interesting question in this context is to determine which codes are
normal and which codes are abnormal.

In the following proposition results about the normality of binary linear
codes are summarized.

Proposition 1 (i) [5] If C is an [n, k, d] code with n ≤ 14, or k ≤ 5, or
d ≤ 4, or R ≤ 2 then C is normal. (ii) [7] All [n, k, d]R codes with d ≥ 2R− 1
or R = 3 are normal. (iii) [6] All binary [n, k, d] codes of n = 15 and n−k ≤ 9
are normal.

One of the main reasons for studying normal codes is the amalgamated direct
sum (ADS) construction introduced by Graham and Sloane [1].

Theorem 1 [4] Assume that A is a normal binary [nA, kA]RA code with the
last coordinate acceptable, and B is a normal binary [nB, kB]RB code with the
first coordinate acceptable. Then their amalgamated direct sum

A⊕̇B = {(a, 0, b)|(a, 0) ∈ A, (0, b) ∈ B} ∪ {(a, 1, b)|(a, 1) ∈ A, (1, b) ∈ B}

is an [nA + nB − 1, kA + kB − 1]R code with R ≤ RA + RB. More generally,
if the norm of A with respect to the last coordinate is NA and the norm of
B with respect to the first coordinate is NB, then the code A⊕̇B has norm
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NA+NB−1 and hence covering radius at most
1
2

(NA + NB − 1). In particular,

if the covering radius of A⊕̇B equals RA + RB, then A⊕̇B is normal and the
overlapping coordinate is acceptable.

This result is extended in [6].
Theorem 2 If A and B are normal with even norms, then R(A⊕̇B) =

R(A) + R(B)− 1 and A⊕̇B is normal.
Definition 2 The residual code of C with respect to a vector x, denoted

R(C; x), is the code obtained by projecting C on the complement of the support
of x.

The following result was proved in [3] by an extension of the idea of residual
code to a non-codeword.

Proposition 2 Let C be binary. If x is a coset leader of C of weight
R = R(C), then R(C; x) is an [n−R, k, d′ ≥ dd/2e] code.

The generalization of Proposition 2 is given in [6]. Let |x| stand for the
Hamming weight of the vector x.

Proposition 3 If x is a coset leader of C, then R(C; x) is an [n−|x|, k, d′ ≥
dd/2e] code.

Let Cσ be C shortened at i-th coordinate. Cohen, Lobstein, and Sloane [8]
give the following sufficient condition for normality.

Proposition 4 If for some coordinate i, R(Cσ) ≤ R(C) + 1, then C is
normal.

3 All binary linear codes of lengths 16, 17 and 18 or
redundancy 10 are normal

In [6] the following results about the normality of the binary linear codes of
length 16 or redundancy 10 are obtained.

Theorem 3 All binary linear codes of length 16 are normal except possibly
a [16, 6, 5 or 6]4 code having all its shortened subcodes of type [15, 5, 5 or 6]6.

Theorem 4 All codes of redundancy 10 are normal except possibly codes of
types
• [16, 6, 5 or 6]4
• [17 + j, 7 + j, 6]4, j = 0, 1, 2
• [17 + j, 7 + j, 5]4, 0 ≤ j ≤ 5
in which at each coordinate the shortened code has covering radius 6.

We extend this result to codes of lengths 17 and 18.
Theorem 5 (i)All binary linear codes of length 17 are normal except possibly

a [17, 6, 5 or 6]5 code having all its shortened subcodes of type [16, 5, 5 or 6]7.
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(ii)All binary linear codes of length 18 are normal except possibly a [18, 6, d ≥ 5]5
code having all its shortened subcodes of type [17, 5, d ≥ 5]7 and a [18, 7, 5 or 6]5
code having all its shortened subcodes of type [17, 6, 5 or 6]7.

Proof. (i) By Proposition 1 we may assume that [17, 6, d ≥ 5] are the
only codes for which we do not know are they normal or not. The maximum
minimum distance [9] of a [17, 6] code is 7. Let d = 7. Then Cσ is a [16, 5, d′ ≥ 7]
code and from [4, Table 7.1] and Proposition 3 we get that C is a [17, 6, 7]5 or 6
code with a shortened subcode Cσ of type [16, 5, d′ ≥ 7]5 or 6. Finally, by
Proposition 4 we may conclude that all [17, 6, 7] codes are normal. Let now
d = 5 or d = 6. Cσ is a [16, 5, d′ ≥ 5] code. According [4, Table 7.1] and
Proposition 3, 5 ≤ R(C) ≤ 7 and 5 ≤ R(Cσ) ≤ 7 and by Proposition 4 we get
that the only undecided case are [17, 6, 5 or 6]5 codes having subcodes of type
[16, 5, 5 or 6]7.

(ii) The undecided cases for length 18 are codes of dimensions 6 and 7 (see
Proposition 1). Let first C be a [18, 6, d ≥ 5] code. For d = 7 or d = 8,
5 ≤ R(C) ≤ 7 by [4, Table 7.1] and Proposition 3 and Cσ is an [17, 5, d′ ≥ 7]
code of R(Cσ) = 6 or 7 ([4, Table 7.1] and Proposition 3). These possibilities are
reduced to [18, 6, 7 or 8]5 with [17, 5, 7 or 8]7 subcodes by Proposition 4. In the
similar way we obtain for d = 5 or d = 6, that C could only be a [18, 6, 5 or 6]5
code with a [17, 5, d′ ≥ 5]7 subcode. Combining the results for d = 5 or 6 and
d = 7 or 8 we get that C could only be a [18, 6, d ≥ 5]5 code having shortened
subcode of type [17, 5, d ≥ 5]7. Let now C be a [18, 7, d ≥ 5] code. Its maximum
minimum distance is 7 ([9]). For the [18, 7, 7] codes R(C) = 5 or 6 and Cσ is
of type [17, 6, d′ ≥ 7]5 or 6([4, Table 7.1] and Proposition 3). By Proposition 4
all such codes are normal. If d = 5 or 6 [4, Table 7.1] and Proposition 3 gives
5 ≤ R(C) ≤ 7 and 5 ≤ R(Cσ) ≤ 7 and by Proposition 4 if a code of length 18
and dimension 7 is abnormal it must be a [18, 7, 5 or 6]5 code having subcodes
of type [17, 6, 5 or 6]7. �

To complete the proof for normality of the codes from Theorems 3,4 and
5 we have to construct all such codes and check if they are normal or not.
The classification results are obtained by the developed by Iliya Bouyukliev
package Q-EXTENSION [11] and determination of the covering radii of the
classified codes and checking are they normal or not by a programs developed
by the author. For example, to solve the case n = 16 we have to classify all
[15, 5, 5 or 6]6 codes. It turned out that there are 2638 such codes and 114 are
of covering radius 6. These 114 codes are extended by Q-EXTENTION to 5828
[16, 6, 5 or 6] codes. Among them 4 are of covering radius 4 and all of them
pass the check for normality. Unfortunately, this approach is not applicable to
the rest of the codes as the number of codes increases very fast. In order to
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make the classification feasible, we use the following result.
Proposition 5. Let B be an [n, k, d]R code and let extend it to an [n +

1, k + 1, d′ ≤ d] code B1. Then R(B1) ≤ R(B).
Proof. W.l.o.g. the generator matrix of B1 can be represented in the fol-

lowing way:

G(B1) =
[

A C

0 GB

]
,

where A is a [1, 1]0 code and C is a [n, 1] code. Then R(B1) ≤ R(B)+0 = R(B)
(see [10]).

Therefore, to check the normality of the codes from Theorem 4 we can start
with the already classified [15, 5, 5 or 6] codes of covering radius 6, to extend
them to [16, 6, 5 or 6]R ≤ 6 codes and to determine the [16, 6, 5 or 6]6 codes.
Then we extend these [16, 6, 5 or 6]6 codes to [17, 7, 5 or 6]R ≤ 6 codes. From
the obtained codes, we determine those of covering radii 4 and 6. We check
normality of the [17, 7, 5 or 6]4 codes and extend [17, 7, 5 or 6]6 codes in order
to obtain [18, 8, 5 or 6]R ≤ 6 codes. The same way we check normality of
[18, 8, 5 or 6]4 codes and extend [18, 8, 5 or 6] codes to [19, 9, 5 or 6]R ≤ 6
codes. We continue this chain until we get all [22, 12, 5]4 codes and check their
normality. In the similar way we construct the codes from Theorem 5 and check
are they normal or not. It turned out that all the codes are normal and we can
conclude that all binary codes of lengths 16, 17 and 18 or redundancy 10 are
normal.

An important result of this investigation is also that we have classification
of all normal codes of parameters given in Theorems 3, 4 and 5 and applying the
ADS construction to them we can obtain new codes with small covering radius.
Some of the codes have even norms and we can apply Theorem 2 to them in
order to get even better result. In many cases we can use this construction to
obtain codes having the least possible covering radius t2[n, k]. For example, it is
known [4, Table 7.1] that t2[19, 8] = t2[20, 9] = t2[21, 10] = t2[22, 11] = 4. The
ADS of the classified in this work normal [17, 7]4, [18, 8]4, [19, 9]4 or [20, 10]4
codes of norm 8 and a normal [3, 2]1 code of norm 2 is a [19, 8]4, [20, 9]4, [21, 10]4
or [22, 11]4 code, respectively.
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