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Abstract. Optimal (v, 5, 2, 1) optical orthogonal codes (OOC) with v ≤ 104 are
classified up to equivalence.

1 Introduction

Since the introduction of fundamental principles of optical code-division multiple-
access (OCDMA) using on-off pulses as signature sequences, the search for pow-
erful code structures began. Among the most famous codes introduced to date
are optical orthogonal codes (OOCs). They also have applications in mobile
radio, frequency-hopping spread-spectrum communications, radar, sonar sig-
nal design, constructing protocol-sequence sets for the M-active-out-of T users
collision channel without feedback, etc.

OOCs may also be viewed as constant weight error-correcting codes in which
any two codewords are cyclically distinct. Also, some balanced incomplete block
designs satisfy the requerements of an OOC.

2 Preliminaries

For the basic concepts and notations concerning optical orthogonal codes and
related designs we follow [3] and [5]. Let us denote by Zv the ring of integers
modulo v.

Definition 2.1 A (v, k, λa, λc) optical orthogonal code (OOC) can be defined
as a collection C = {C1, . . . , Cs} of k-subsets (codeword-sets) of Zv such that
any two distinct translates of a codeword-set share at most λa elements while
any two translates of two distinct codeword-sets share at most λc elements:

|Ci ∩ (Ci + t)| ≤ λa, 1 ≤ i ≤ s, 1 ≤ t ≤ v − 1 (1)
|Ci ∩ (Cj + t)| ≤ λc, 1 ≤ i < j ≤ s, 0 ≤ t ≤ v − 1. (2)
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Condition (1) is called the auto-correlation property and (2) the cross-
correlation property. The size of C is the number s of its codeword-sets. The
larger the size of the code is, the greater its usefulness.

Consider a codeword-set C = {c1, c2, . . . , ck}. Denote by 4′C the multiset
of the values of the differences ci − cj , i 6= j, i, j = 1, 2, . . . , k. The auto-
correlation property means that at most λa differences are the same. Denote
by 4C the underlying set of 4′C. The type of C is the number of elements of
4C, i.e. the number of different values of its differences. If λc = 1 the cross-
correlation property means that ∆C1

⋂
∆C2 = ∅ for two codeword-sets C1 and

C2 of the (v, k, λa, 1) OOC. A (v, k, λa, 1) OOC is perfect if |
⋃s

i=1 ∆Ci| = v− 1,
that is if all nonzero differences are covered.

In [9] it is shown that the size of a (v, k, λa, 1)-OOC cannot exceed λa

⌊
v−1
k

⌋
but this bound is, in general, far from the tight. (v, 4, 2, 1)-OOCs have been
deeply investigated in [1, 3, 6, 8].

The following Theorem has been proved recently in [4].

Theorem 2.2 If s is the size of a (v, 5, 2, 1)-OOC, then we have:

s ≤
{ ⌈

v
12

⌉
for v ≡ 1 (mod 132) or v ≡ 154 (mod 924)⌊

v
12

⌋
otherwise.

It is natural to say that a (v, 5, 2, 1)-OOC is optimal when its size s reaches
the upper bound given in the Theorem. The authors of [4] present one optimal
(v, 5, 2, 1)-OOC for any length v ≤ 62 when it exists. They also give many direct
and recursive constructions for infinite classes of optimal (v, 5, 2, 1)-OOCs.

In our work we extend the results from [4] by constructing new OOCs with
v > 62 and classifying all perfect and optimal OOCs with v ≤ 104.

Two (v, k, λa, λc) optical orthogonal codes are multiplier equivalent if they
can be obtained from one another by an automorphism of Zv and replacement
of codeword-sets by some of their translates.

3 Classification of (v, 5, 2, 1)-OOCs up to multiplier
equivalence

We classify the (v, 5, 2, 1)-OOCs up to multiplier equivalence applying the well-
known techniques of back-track search with minimality test on the partial solu-
tions [7, section 7.1.2]. We first arrange all possibilities for codeword-sets with
respect to a lexicographic order defined on them.

We assume that c1 < c2 < c3 < c4 < c5 for each codeword-set C =
{c1, c2, c3, c4, c5}. Define a lexicographic order on the codeword-sets implying
that: C ′ = {c′1, c′2, c′3, c′4, c′5} is lexicographically smaller than C ′′ = {c′′1, c′′2, c′′3, c′′4,
c′′5} if the type of C ′ is smaller than that of C ′′, or if the types of the two code-
words are the same and c′i = c′′i for i < a and c′a < c′′a. If we replace a
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codeword-set C ∈ C with a translate C + t ∈ C, we obtain an equivalent OOC.
That is why without loss of generality we assume that each codeword-set of the
optimal (v, 5, 2, 1)- OOCs is lexicographically smaller than the codeword-sets of
its translates. This means that c1 = 0 and when we say that C1 is mapped to
C2 by the permutation ϕ, we mean that C2 is the smallest translate of ϕ(C1).

Let ϕ0, ϕ1, . . . , ϕm−1 be the automorphisms of Zv, where ϕ0 is the identity.
We construct an array of all sets of 5 elements of Zv which might become
codeword-set vectors, i.e. which answer the autocorrelation property and are
smaller than all their translates. We find them in lexicographic order. To each
constructed set we apply the permutations ϕi, i = 1, 2, . . . ,m − 1. If some of
them maps it to a smaller set, we do not add the current set since it is already
somewhere in the array. If we add the current set to the array, we also add
after it the m− 1 sets to which it is mapped by ϕ1, ϕ2, . . . , ϕm−1.

We then apply backtrack search to choose the codeword-sets of the OOC
among all these possibilities for them. We use a parallel implementation of
the backtrack search on BlueGene/P [2]. The above described ordering of all
the possible codeword-sets allows repeated sets in the array, but makes the
minimality test of the partial solutions very fast. By the minimality test we
check if the current solution can be mapped to a lexicographically smaller one
by the automorphisms of Zv.

We also apply a type test to the partial solutions. Suppose we have already
found r codeword-sets of the code. Let T be the type of the r-th codeword-
set, and let d be the number of distinct differences covered by the r sets. We
only look for optimal codes, i.e. codes with s codeword-sets. The type of the
remaining codeword-sets (of the array we choose them from) is at least as big
as that of the r-th chosen one. That is why d+ (s− r)T ≤ v − 1. If this does
not hold, we look for the next possibility for the r − 1-st codeword-set.

In this way we classify the OOCs up to multiplier equivalence.
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instructions supplied by their team [10].
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