
CTA’2011

Classification of optical orthogonal codes and
spreads by backtrack search on a parallel com-
puter

Tsonka Baicheva tsonka@math.bas.bg

Svetlana Topalova svetlana@math.bas.bg
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
P.O.Box 323, 5000 V.Tarnovo, BULGARIA

Abstract. Backtrack search based algorithms are often used for the construction
of different types of combinatorial structures, namely codes, designs, design resolu-
tions, etc. In this paper we discuss on our implementation of backtrack search on
a parallel computer for two different classification problems. We used this software
on BlueGene/P for the classification of spreads of PG(7, 2) with definite properties
and of optimal optical orthogonal (v, 5, 2, 1) codes.

1 Introduction

The software meant to work on a multiprocessor computer has to be designed
in such a way that to make as small as possible both the time lost in communi-
cation among processors and the time when a processor has nothing to do (idle
time). The speed-up S(n) of a parallel algorithm is defined as

S(n) =
ts
tn

where ts is the time needed by the sequential algorithm, and tn is the time the
parallel algorithm works on n processors. Backtrack search can be successfully
implemented on parallel computers with a speed-up within a small constant
factor from optimal [1]. Two main types of parallel backtrack search (PBS) are
considered in [1], namely randomised or with global control. In global control
PBS one or several processors are only used to manage the communication,
while in randomised PBS an idle processor asks for work a randomly chosen
other processor.

Although the two problems and sequential programmes (about spreads and
optical orthogonal codes (OOCs)) were very different, the changes we made to
parallelize them were very similar. These changes are subject of the present
note.

2 CTA’2011

2 Parallelizing of the backtrack search

Consider search in depth implemented by a stack. By the sequential algorithm
we always expand the upper node from the stack (namely we put it in the
current solution, remove it from the stack, and insert its children in the stack).
To parallelize the search we replace the stack with a deque – double ended
queue. We perform the search in just the same manner. We always expand the
last node from the deque. When we are asked to give work to an idle processor,
we give the first node, and remove it from the deque. The other processor
starts expanding the given node. If we omit the details, the principal C + +
implementation of PBS looks like that:

#include <deque>

struct choose
{

int num;
int val;

};
deque<choose> D;
choose C, C1, C2, ...;
...
while(!D.empty())
{

C = D.back(); // take the last element of the deque
D.pop back(); // remove the last element
if(C.num==N) WriteRes(); // write a result
else
{

... // find the possibilities C1, C2 ... for element C.num+1
D.push back(C1); //insert C1 in the deque
D.push back(C2); //insert C2 in the deque
...

}
...
if(flag) //must give work to another processor
{

Cf = D.front(); //take the first element from the deque
D.pop front(); //remove the first element from the deque
... // donation: send Cf and the current solution to the idle processor

}
}

Baicheva and Topalova 3

We obtain solutions in lexicographic order. When expanding a node, we
check the partial solutions for possible equivalence to lexicographically smaller
ones, and thus add to the deque only children nodes of solutions for which such
equivalence has not been established. The donation message contains the node
to be expanded and the current partial solution. This is enough for the idle
processor to start work again. We donate the node of the lowest possible level,
which is likely to need the longest time to be fully worked out and will this way
keep the other processor busy for long.

3 Global control PBS

In our Global control PBS implementation we choose the processor with number
0 to be the manager. The manager does not expand nodes.

The manager:

• Knows which processor has work of lowest level.

• When a processor finishes his work, the manager

– tells him from which processor to receive work.

– tells him to stop.

Each of the other processors:

• Sends a message to the manager on remaining without work.

• Sends a message to the manager on change of his first node level.

• Shares work with another processor if the manager tells him to.

4 Results management

We let each processor write the results in a separate file. We compress the files,
copy them to the PC and then sort and summarize them on the PC. But it is
convenient to know some of the main results right after the application finishes.
So the processors send a summary of the results (the number of the constructed
objects, etc.) to the manager before they terminate and the manager writes a
small summary in a file.

For some parameters the programme might need more time than it is al-
lowed. That is why from time to time the manager tells all the processors to
write the current content of their deque in a file, so that next time the compu-
tation can start from that place on.

4 CTA’2011

5 Initialization

In the spreads classification programme processor number 1 starts the search,
and the rest are idle at the beginning. This adds a constant factor to the speed
of the computation. In the OOCs classification we reduce this constant by first
constructing on all processors all the possible first level nodes. Let their number
be F . So each processor with number p < F starts expanding the pth first level
node.

We provide an option for continuation of a programme that has already run
up to some state. In this case the initialization constant is very small, because
each processor reads its deque elements from a file and starts work very fast.

6 Changes and additions to the sequential software

Most of the software remains unchanged. We add communication functions to
the function implementing the backtrack search and change the stack by deque.
We also add communication functions to main. The Message Passing Interface
(MPI) is initialized there at the beginning, and finalized before exit. The other
communication in main depends on the number of the processor, on which
this copy of the programme runs. Small changes should also be made in the
functions which write the results, and a function writing the current deque in
a file might be added to enable continuation of the computation.

Acknowledgement. We are grateful to the Bulgarian National Super-
computing Centre for the permission to use its resources, and for the detailed
instructions supplied by their team [2].

References

[1] Karp, R.M., Zhang, Y. Randomized parallel algorithms for backtrack
search and branch-and-bound computation. J. Assoc. Comput. Mach.
(USA), vol.40, (no.3), July 1993. p.765-89.

[2] http://www.scc.acad.bg/articles/bluegene-quick-guide.pdf

