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Abstract. We classify doubly resolvable designs with small parameters by a mod-
ification of a known algorithm for classification of the binary equidistant constant
weight codes which correspond to resolvable designs with these parameters. For
each of these designs we next construct all the sets of mutually orthogonal reso-
lutions. We also derive lower bounds for some parameters beyond the application
range of this general approach and check the correctness of the computational re-
sults in several ways.
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Introduction

Let Z, = {0,1,..,¢—1}. A word of length r over Z, is an r-tuple * =
(r1,22,...,7,) € Z;. The Hamming distance d(z,y) between two words ,y € Z; is
the number of coordinates in which the words differ. An equidistant (r, v, d), code is a
set of v words of length r over Z,, with the property that the distance between any two
distinct words is d.

For the basic concepts and notations concerning combinatorial designs and their re-
solvability refer, for instance, to [1], [2], [31, [4], [5].

Let V = {F;}; | be a finite set of points, and B = {Bj};f:l — a finite collection
of k-element subsets of V', called blocks. If any 2-subset of V' is contained in exactly A
blocks of B, then D = (V. B) is a 2-(v,k,A) design, ot balanced incomplete block design
(BIBD).

A 2-(v,k,mA) design is called an n-fold multiple of 2-(v.k,)\) designs if there is a
partition of its blocks into m subcollections, which form 2-(v.k.)) designs.

A resolution of the design is a partition of the collection of blocks into parallel
classes, such that each point is in exactly one block of each parallel class. A design is
resolvable if it has at least one resolution. There is a one-to-one correspondence [6] be-
tween the resolutions of 2 — {gk, k, A) designs and the (7, gk, — A)4 equidistant codes,
g > 1.

Some of the known applications of design resolutions in cryptography concern
anonymous (2.k)-threshold schemes from resolvable 2-(v,k,1) designs [7], [8], syn-
chronous multiple access to channels by resolvable 2-(v,3,1) designs [9], and uncondi-
tionally secure commitment schemes [10].
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Existence and classification of resolvable 2-(v,k,)) designs with definite parameters
has been extensively studied, see for instance {113, [12], [13], [14], 14}, [15]., 16}, [171.
A very good recent survey of the different approaches for constructing and classifying
design resolutions is contained in [18].

Two resolutions of one and the same design are orthogonal if each pair of parallel
classes, one from the first, and one from the second resolution, have at most one commaon
block. A doubly resolvable design (DRD) is a design which has at least two orthogonal
resolutions. We denote by ROR a resolution which is orthogonal to at least one other
resolution, and by m-MOR a set of mutually orthogonal resolutions. The m-MOR is
maximal if no more resolutions can be added to it.

Sets of mutually orthogonal resolutions can be used for the construction of perfect
secret sharing schemes [19], [20]. They also appear in product association schemes [21].

Cryptographic applications of resolutions often use the fact that each resolution class
is uniquely defined by any of its blocks, and that for some designs the block itself is
uniquely defined by a proper subset of its points. Consider as an example a resolution
of a 2-(v,3.1) design. In this case a block is defined by any 2 of its points. And if you
construct a threshold scheme, for instance, you can have r secrets corresponding to the r
parallel classes, each of them uniquely determined by two of the 3 shares corresponding
to one of its blocks.

While a resolution parallel class is uniquely determined by any of its blocks, a paraliel
class of the m-MOR is uniquely determined by any pair of its blocks, and that is why
m-MORs can be used for cryptographic applications in ways similar to those in which
resolutions are used. If the resolution has r classes, the m-MOR has m.r parallel classes.
But, of course, this can work well, only if the underlying design has some additional nice
properties considering the point sets that uniquely define a block. In some cases their
size is known from the design parameters, but in others some of the designs might be
useful for such purposes, some may not. In a similar way, the constructions from [19]
and [20] depend on properties of the 9_MOR which do not follow from iis parameters
(i.e. on the critical sets of the Room squares used). Therefore classification results for
doubly resolvable designs and orthogonal resolutions might be of major interest for any
possible further cryptographic applications.

Existence of DRDs and bounds on m for their m-MORS have been intensively stud-
ied in the last two decades [22], [23], [24], [25], [26], [27], 1281, [29], [30}, 131}, [32].
When classifying resolutions with certain parameters some authors have also searched
for orthogonal ones among them, see for instance [33], [34]. [35], [36]. A Room square
of side n, RS(n), is equivalent to a 2_MOR of a 2-(n + 1,2,1) BIBD. Full classification
of Room squares with small parameters is known [371. 381, [39].

We present here recent classification results for 2-(2,k,A) DRDs and their RORs and
m-MORs [40], [41].

1. Construction Method, Classification Results, Parameter Range

We first construct RORs [40]. and then classify the DRDs and construct m-MORs
[41]. Most people who have constructed resolutions, actuaily construct their correspond-
ing equidistant codes. So do we. We use the word by word orderly generation, but from
some word on, we start applying an orthogonal resolution existence (ORE) test. For de-
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signs with v = 2k we also use parameter specific double resolvability restrictions [42).
Having constructed all non isomorphic RORs, we apply a standard design isomorphism
test to obtain the non isomorphic DRDs. For each DRD we next find all its maximal
m-MORs. We use two different algorithms for the ORE test [43], and partially check the
correctness of the results in several ways.

The m-MOR classification results are summarized in Table 1, where the number of
maximal (left value) and all (right value} m-MORs is presented in the columns m-MORs
for m = 2.3,4. In the column "No" the number of the design in the tables of [44] is
given, RS(7) means that the 2-MORs correspond to Room squares of side 7.

Table 1. Classification results for m-MORs by computer search [41]

gl v k A |RORs}DRDs| 2-MORs 3-MORs 4-MORs No
216 3 3 1 1 11 [ -l- 236
216 3 120 1 1 o 1|1 -|- 596
206 3 6] I 1 0[>15 0| >485 | >485|>485 [ 1078
2|8 4 1 1 11 - 101
2] 8 4 1 1 0]1 11 -1- 278
2|8 4 12 4 4 717 0|60 60 (60 524
21105 16| 5 =] 5|5 - 891
2110 5 24| 6 6 2|7 5(5 -

212 6 10f 1 1 11 -|- -1- 319
2{12 6 15| ! 1 0]1 1{1 -1- 743
2112 6 20| 546 | 546 (691|> 701 O|> 223|> 223|> 223 -

2[16 8 4 5 515 -1- 618
216 8 21 5 5 5|5 - -

2{20 10 18 313 -|- 1007
3 3 3 2(7 515 66

3 3 4| 83 38 [351|449 2841285 11 145
4 2 1 4 i 4/6 I1 -1- RS(7M
4{12 3 21 70 20 (252|254 1|2 111 55

4|16 4 2| 1! l 01 1|1 -1- 44

The RORs construction programme covers most parameters for which all the res-
olutions have been classified. Exceptions are the RORs of 2-(9,3,5), 2-(12,2,1) and 2-
(14.2,1) designs, for which full classification or enumeration (for ¥ = 14) of the resolu-
tions is known ([45], [46]), but the expected number of RORs is very big. By applying
ORE test to the recently classified resolutions of 2-(28,4,1) designs [18], we find that
there is no ROR among them, but we cannot obtain the result by our RORs classifica-
tion programme. For ¢ = 2 with additional double resolvability restrictions we cover
RORs with parameters for which all the resolutions have not been classified yet, namely
2-(10,5,24), 2-(12,6,15), 2-(12,6,20), 2-(16,8,14}, 2-(16,8,21), 2-(20,10,18). Classifica-
tion of the m-MORs in the way we do it, is not possible for some of the parameters, for
which we have classified the RORs. One of the reasons is the fast growth of the number
of RORs and m-MORs of designs with some of the next parameters due to multiple de-
signs. A relation between the number of n-MORs of multiple designs and the number
of inequivalent sets of v/k — 1 mutually orthogonal latin squares of size m is obtained
in [41]. Using it lower bounds on the number of RORs and m-MORs are computed
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for some small parameters. The growth of their number is well illustrated by the lower
bounds presented in Table 2.

Table 2. Lower bounds on the number of m-MORs

[+ &k X [ DRDs | m | lowerboundon m-MORs
g8 4 15 82 5 8
8 4 18| 240 | 6 31824
g8 4 21| 650 7 33.1010
g8 4 24| 1803 | 8 20,1672
g 4 271 4763 | 9 19.1087

References

{11

(21
[3]

(4
[5]
(6]
(M
18]
91
(10]
[11]
(12}

113]

[14]
[s)
[16]
(17
118]
[19]

{20

E.EIr. Assmus, 1.D. Key. Designs and their Codes, Cambridge Tracts in Mathematics, Vol. 103, Cam-
bridge University Press, 1992,

Th.Beth, D.Jungnickel, H.Lenz, Design Theory, Cambridge University Press, 1993.

C.].Colbourn and J.H.Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca
Raton, FL., 2007.

P Kaski and P.Qstergard, Classification algorithms for codes and designs, Springer, Berlin, 2006.
V.D.Tonchev, Combiratorial configurations, Longman Scientific and Technical, New York, 1988.
N.V.Semakov, V.A Zinoviev, Equidistant g-ary codes with maximal distance and resolvable balanced
incomplete block designs, Problems Inform. Transission 4 (1968) no. 2, 1-7.

W. Kishimotoa, K. Okadab, K. Kurosawa, W. Ogata. On the bound for anonymous secret sharing
schemes, Discrete Applied Marhematics Vol. 121, Issues 1-3 (2002), 193-202.

D.R. Stinson, 5.A. Vanstone, A combinatorial approach to threshold schemes, SIAM Journal on Discrete
Mathematics Vol. 1, Issue 2 (1988), 230 - 236, DOI 10.1137/0401024.

C.J. Colbourn, J.H. Dinitz. D.R. Stinson, Applications of Combinatorial Designs to Communications,
Cryptography, and Networking, 1999. preprint.

C. Blundo, B. Masucci, D. R. Stinson and R. Wei. Constructions and bounds for unconditionally secure
non-interactive commitment schemes. Designs, Codes and Cryptography 26 (2002), 97-110.

D.J Curran. S.A.Vanstone, Resolvable designs from generalized Bhaskar Rao designs. Discrete Mathe-
matics 73 (1988/89), 49-63.

P.Kaski, Isomoprph-free exhaustive generation of combinatorial designs, Helsinki University of Tech-
nology Laboratory for Theoretical Computer Science, Research Reports 70, 2002,

P Kaski, L.Morates,P.Ostergard, D.Rosenblueth, C.Velarde, Classification of resolvable 2-(14,7,12) and
3-(14,7,5) designs, Journal of Combinatorial Mathematics and Combinatorial Computing 47 (2003),
65-74.

P Kaski. P.Ostergard, Enumeration of 2-(9,3.1) designs and their resolutions, Designs, Codes and Cryp-
tography 27 (2002). 131-137.

L.Morales, C.Velarde, A complete classification of (12,4,3)-RBIBDs, Journal af Combingatorial Designs
vol.9.issue & (2001), 385-400.

L.Morales, C.Velarde, Enumeration of resoivable 2-(10,5,16) and 3-(10,5,6} designs, Journal of C ombi-
natorial Designs vol.13, issue 2 (2005), 108-119.

P{stergard, Enumeration of 2-{12.3.2) designs, Australasian Jouwrnal of Combinatorics 22 (2000), 227-
231.

P Kaski and POstergird, Classification of resolvable balanced incomplete block designs - the unitals on
28 points, Mathematica Slovaca, to appear.

G.R. Chaudhry, J. Scberry, Secret sharing schemes based on Room squares, Combinatorics, Complexity
and Logic, Proceedings of DMTCS '96, Springer-Verlag Singapore (1996), pp. 158-167.

G.R. Chaudhry. H. Ghodosi. J. Seberry, Perfect secret sharing schemes from Room squares, J. Combin.
Math. and Combin, Compuring (JCMCC), Canada 28 (1998}, pp.55-61.



[43]
144]
(45)

[46]

§. Topalova and 8. Zhelezova / Classification of Doublv Resolvable Designs

W.J. Martin, Desigus in product association schemes,Designs, Codes and Cryptography Vol. 16, Num-
ber 3 (1999), 271-289. DOI 10.1023/A;1008340128973.

R.J.R.Abel, E.R.Lamken, J.Wang, A few more Kirkman squares and doubly near resolvable BIBDS
with block size 3, Discrete Mathematics 308 (2008), 1102-1123.

C.J.Colbourn, E.Lamken, A.Ling, W.Mills, The existence of Kirkman squares - doubly resolvable
(v,3.1)-BIBDs, Designs, Codes and Criptography 26 (2002), 169-196.

C.J.Colbourn, A. Rosa, Orthogonal resolutions of triple systems, Australasian J. Combin. 12 (1995) pp.
259(7269.

M.Deza, R.C.Mullin, S.A.Vanstone, Orthogonal systems, Aequationes Marh. 17 (1978), 322-330.
R.Fuji-Hara, 5.A Vanstone, On the spectrum of doubly resolvable designs, Congressis Numerantium 28
(19803, 399-407.

E.R.Lamken, Coverings, orthogonally resolvable designs and related combinatorial configurations,
Ph.D. Thesis, Univ, of Michigan (1983).

E.R.Lamken, Constructions for resolvable and near resolvable (v,k.k-1)-BIBDs, D.K. Rayv-Chaudhuri
fed.}. Ceding Theory and Design Theory. Part I Design Theory, Springer {1990), 23601250,
E.R.Lamken, 5.A Vanstone, Designs with mutually orthogonat resolutions, Europ.J.Combinatorics
(1986) 7, 249-257.

E.R.Lamken , 5.A.Vanstone, The existence of a class of Kirkman squares of index 2, J. Ausral. Math.
Soc. (Series A) 44 (1988), 33-41,

A Rosa, 5.A Vanstone, Starter-adder technigues for Kirkman squares and Kirkman cubes of small sides,
Ars Combin, 14 (1982}, 199-212.

S.A Vanstone, Doubly resolvable designs, Discrete Math. 29 {1980), 77-86.

M.Cohen, C.J.Colboum, Lee A.Ives, A.Ling, Kirkman triple systems of order 21 with nontrivial auto-
morphism group., Math. Comput. 71(238): 873-881 (2002).

P.Kaski, POstergard, S.Topalova, R Zlatarski, Steiner Triple Systems of Order 19 and 21 with Subsys-
tems of Order 7, Discreie Mathematics, Vol 308 (2008), 2732-2741, doi:10.1016/j.disc.2006.06.038.

D. R. Stinson, 8. A. Vanstone, Orthogonal packings in PG(5,2), Aequariones Marh, 31 (1986). 159-168.
V.D.Tonchev, Steiner triple systems of order 21 with awtomorphisms of order 7, Ars Combinatoria 23
(1987) 93-96.

I.H.Diinitz, Room squares, The CRC Handbook of Combinatorial Designs, Boca Raton, FL., 2007, 584-
590.

J.H. Dinitz, D.R. Stinson, Room squares and related designs. L.H. Dinitz (ed.) D.R.Stinson (ed.), Con-
temporary Design Theory: A Collection of Surveys , Wiley {1992).

R.C.Mullin, W.D. Wallis, The existence of Room squares, Aequationes Math. 13 (1975), 1-7.

S. Topalova, S, Zhelezova, On the classification of doubly resolvable designs, Proceedings of the Fourth
[ntemational Workshop on Optimal Codes and Related Topics, Pamporovo,Bulgaria, 2005, 265-268.

S. Topalova, S. Zhelezova, Sets of mutually orthogonal resolutions of BIBDs, Proceedings of the
Elevenh International Workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgania
(2008), 280-285.

S.Zhelezova, PCIMs in constructing doubly resolvable desi mns, Proc. V Intern. Workshop OCRT, White
Lageon, Bulgaria, 2007, 260-266.

S.Topalova, §.Zhelezova, On an algorithm for a double resolvability test, Proc. Intern. Conference on
Theory and Applications of Mathematics and Informatics, Alba lulia, Romania, 2007, 323-330.
R.Mathon, A.Rosa, 2-(vk.A) designs of small order, The CRC Handbook of Combinatorial Designs,
Boca Raton, FL., 2007, 25-57.

1. H. Dinitz, D. K. Garnick, B.D.McKay, There are 526,915,620 nonisomorphic one-factorizations of
K12, L Combin. Des. 2 (1994), 27300285.

PKaski and P.Ostergard. There are 1,132,835,421,602.062,347 nonisomorphic one-factorizations of
K14, Journal of Combinatarial Designs, DOL: 10.1002/jcd.20188, to appear.



