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Abstract. A spread is a set of lines of PG(d, q), which partition the point set.
A parallelism is a partition of the set of lines by spreads. There is a one-to-one
correspondence between the parallelisms of PG(3, 4) and the resolutions of the 2-
(85,5,1) design of its points and lines. We construct 482 non isomorphic parallelisms
with automorphisms of order 7.

1 Introduction

For the basic concepts and notations concerning combinatorial designs, projec-
tive spaces, spreads and parallelisms, refer, for instance, to [1], [2], [4], [6], [8],
or [14].

Let V = {Pi}vi=1 be a finite set of points, and B = {Bj}bj=1 a finite col-
lection of k-element subsets of V , called blocks. D = (V,B) is a 2-design with
parameters 2-(v,k,λ) if any 2-subset of V is contained in exactly λ blocks of B.

Two designs are isomorphic if there exists a one-to-one correspondence be-
tween the point and block sets of the first design and the point and block sets
of the second design, and if this one-to-one correspondence does not change the
incidence. An automorphism is an isomorphism of the design to itself, i.e. a
permutation of the points which maps blocks into blocks.

A parallel class is a partition of the point set by blocks. A resolution of the
design is a partition of the collection of blocks by parallel classes. Two reso-
lutions are isomorphic if there is an automorphism of the design mapping the
first one into the second. An automorphism of a resolution is an automorphism
of the design, which maps parallel classes into parallel classes.

Two resolutions of one and the same design are mutually orthogonal if any
two parallel classes, one from the first, and the other from the second resolution,
have at most one common block.

A spread in PG(d, q) is a set of lines which partition the point set. A
parallelism is a partition of the set of lines by spreads. There can be line
spreads and parallelisms if d is odd.

The incidence of the points and t-dimensional subspaces of PG(d, q) defines
a 2-design (see for instance [13, 2.35-2.36]), i.e. the points of this design corre-
spond to the points of the projective space, and the blocks to the t-dimensional
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subspaces. An automorphism of PG(d, q) is a bijective map on the point set
that preserves collinearity, i.e. maps lines into lines, and thus t-dimensional sub-
spaces into t-dimensional subspaces. Therefore all related designs have the full
automorphism group of the projective space. There is a one-to-one correspon-
dence between parallelisms and the resolutions of the related point-line design.
Isomorphism, automorphisms and orthogonality of parallelisms are defined as
for resolutions. A parallelism is called transitive if it has an automorphism
group, which is transitive on the spreads.

Parallelisms of PG(3, 4) can be obtained by Beutelspacher’s general con-
struction of parallelisms in PG(2n − 1, q) [3] , and a pair of orthogonal ones
by Fuji-Hara’s construction for PG(3, q) [7]. All parallelisms of PG(3, 2) are
known. Parallelisms with predefined automorphism groups have been classified
by Prince in PG(3, 3) [11] and PG(3, 5) [12]. Before the present work q = 4
was the smallest q, for which no automorphism classification of parallelisms
was done. One of the reasons is the nonexistence of transitive parallelisms [5],
which are the easiest case to classify.

We construct parallelisms of PG(3, 4) with automorphisms of order 7 and
establish that up to equivalence their number is 482.

Our programmes performing the computer computations, are based on the
exhaustive back track search techniques (see for instance [9, chapter 4]).To filter
away isomorphic parallelisms, we find the normalizer of the subgroup of order
7 in the automorphism group of the projective space.

We use design approach to the problems. We actually make all the com-
putations on the related to PG(3,4) designs, namely, we choose the 17 spread
elements among the 357 blocks of the 2-(85,5,1) point-line design, and construct
the parallelisms as its resolutions. We find a generating set of the automorphism
group of PG(3,4), and a subgroup of order 7 and its normalizer as automor-
phism groups of the related 2-(85,21,5) point-hyperplane design.

2 Construction and results

There are 85 points and 357 lines in PG(3, 4). The full automorphism group
of PG(3, 4) is of order 1974067200. A spread has 17 lines which partition the
point set and a parallelism has 21 spreads.

To construct PG(3, 4) we use GF (4) with generating polynomial x2 = x+1.
The points of PG(3, 4) are then all 4-dimensional vectors (v1, v2, v3, v4) over
GF (4) such that if vk = 0 for all k > i then vi = 1. We sort these 85 vectors in
ascending lexicographic order and then assign them numbers such that (1,0,0,0)
is number 1, and (3,3,3,1) number 85. We then construct the related designs
and find the generators of their full automorphism group G.
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Since 7 divides the order of G, but 72 does not, by Silow’s Theorem 2 (see,
for instance[10, 7.2.4] ) all subgroups of order 7 are conjugate, and we can
choose an arbitrary one of them. Denote it G7. It is cyclic and fixes one point,
while the other 84 points are in 12 orbits of length 7 (Table 1). G7 partitions
the lines into 51 orbits of length 7.

We sort the 357 lines (blocks of the 2-(85,5,1) design) in lexicographic order
defined on the numbers of the points they contain and assign to each line a
number according to this order. Then the first point is in the first 21 lines. We
begin with a construction of all spreads, which contain each of these 21 lines,
and for which all spread lines are from different orbits of G7. For that purpose
we perform a backtrack search. If there are already n elements in the spread,
we choose the n + 1-st one among the lines containing the first point, which
is in none of the n spread elements. The spread elements are lexicographically
ordered, and any spread we construct is lexicographically greater than the ones
constructed before it.

For each spread we already know the other 6 spreads of its orbit under G7.
We call the first spread orbit leader. To obtain a parallelism we need 3 orbit
leaders which cover all orbits. Without loss of generality we assume that the
first orbit leader contains the first line. We choose the next spread such that
it begins with the first line from the first non used orbit. It follows from the
construction above that the three orbit leaders are ordered lexicographically,
and that the orbit leaders sequence of the current parallelism is lexicographically
greater than the sequences constructed before it.

This way we construct 26028 parallelisms. Our next task is to filter away
isomorphic ones. Let ϕ ∈ G. Let P1 be a parallelism with automorphism
group GP1 , and let P2 = ϕP1. Denote by GP2 the automorphism group of the
parallelism P2. Let α ∈ GP1 and β ∈ GP2 . Then βϕP1 = ϕαP1 and thus
β = ϕαϕ−1 and GP2 = ϕGP1ϕ

−1. In our case GP2 = GP1 = G7 and therefore
we are interested in the normalizer N(G7) of G7 in G, which is defined as
N(G7) = {g ∈ G | gG7g

−1 = G7}. If an automorphism ϕ ∈ G transforms one
of the constructed parallelisms into another one, then ϕ ∈ N(G7).

The normalizer N(G7) is a group of order 378. Let G54 = N(G7)\G7

(Table 1). For each parallelism we obtain, we check if an automorphism of G54

transforms it into a parallelism with a lexicographically smaller orbit leader
sequence, and drop it if so. This way 482 non isomorphic parallelisms remain,
i.e. the 26028 parallelisms are in 482 orbits of length 54 under G54. We also
established that there are no pairs of orthogonal ones among them.
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Table 1:
Generator of G7:
(1,30,23,31,5,2,22)(3,26,24,33,37,27,29)(4,34,25,32,28,35,36) (6)
(7,46,39,47,15,14,38)(8,78,71,79,20,18,70)(9,62,55,63,13,10,54)
(11,74,40,81,69,59,45)(12,50,73,48,60,67,84)(16,58,72,65,53,43,77)
(17,82,57,80,44,51,68)(19,66,41,64,76,83,52)(21,42,56,49,85,75,61)

Generators of G54:
(1,3,23,37,31,29)(2,33,30,24,22,27)(4,36,28)(5,26)(6)
(7,21,55,69,79,77)(8,16,39,85,63,45)(9,11,71,53,47,61)(10,81,78,72,38,75)
(12,84,60)(13,74,20,58,15,42)(14,49,62,40,70,43)(17,52,44,19,68,76)
(18,65,46,56,54,59)(25,32,35)(34)(41,80,83,57,64,51)(48,67,73)(50)(66,82)

(1,4,29)(2,32,27)(3,23,28)(5,34,26)(6)(7,12,61,8,17,45,9,19,77)
(10,64,43,14,48,75,18,80,59)(11,55,76,16,39,60,21,71,44)(13,66,58,15,50,42,20,82,74)
(22,35,24)(25,33,30)(31,36,37)(38,67,56,70,51,40,54,83,72)
(41,65,46,73,49,78,57,81,62)(47,84,85,79,68,69,63,52,53)

(1)(2)(3,4)(5)(6)(7)(8,9)(10,18)(11,19)(12,21)(13,20)(14)(15)(16,17)
(22)(23)(24,25)(26,34)(27,35)(28,37)(29,36)(30)(31)(32,33)(38)(39)(40,41)
(42,50)(43,51)(44,53)(45,52)(46)(47)(48,49)(54,70)(55,71)(56,73)(57,72)
(58,82)(59,83)(60,85)(61,84)(62,78)(63,79)(64,81)(65,80)(66,74)(67,75)(68,77)(69,76)

(1)(2)(3)(4)(5)(6)(7,8,9)(10,14,18)(11,16,21)(12,17,19)(13,15,20)(22)(23)
(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38,70,54)(39,71,55)
(40,72,56)(41,73,57)(42,74,58)(43,75,59)(44,76,60)(45,77,61)(46,78,62)(47,79,63)
(48,80,64)(49,81,65)(50,82,66)(51,83,67)(52,84,68)(53,85,69)
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