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Abstract. The nonisomorphic sets of m mutually orthogonal resolutions (m-
MORs) of doubly resolvable 2 − (v, k, λ) designs with small parameters are con-
structed and lower bounds on the number of m-MORs of multiple designs are ob-
tained.

1 Introduction

For the basic concepts and notations concerning combinatorial designs and
their resolutions refer, for instance, to [2], [3], [7].

Let V = {Pi}v
i=1 be a finite set of points, and B = {Bj}b

j=1 − a finite
collection of k-element subsets of V , called blocks. If any 2-subset of V is
contained in exactly λ blocks of B, then D = (V,B) is a 2-(v,k,λ) design, or
balanced incomplete block design (BIBD). We shall call two blocks B1 and B2

equal (B1 = B2) if they are incident with the same set of points.
Two designs are isomorphic if there exists a one-to-one correspondence be-

tween the point and block sets of the first design and respectively, the point
and block sets of the second design, and if this one-to-one correspondence does
not change the incidence. An automorphism is an isomorphism of the design to
itself, i.e. a permutation of the points that transforms the blocks into blocks.

A 2-(v,k,mλ) design is called an m-fold multiple of 2-(v,k,λ) designs if there
is a partition of its blocks into m subcollections B1, B2, ... Bm, which form
2-(v,k,λ) designs D1, D2, ..., Dm. If D1 = D2 = ... = Dm we call the design true
m-fold multiple of D1.

A resolution of the design is a partition of the collection of blocks into
parallel classes, such that each point is in exactly one block of each parallel
class. We shall call two parallel classes of the resolution R, R1 and R2 equal
(R1 = R2) if each block of R1 is equal to a block of R2. The design is resolvable
if it has at least one resolution. Two resolutions are isomorphic if there exists

1This work was partially supported by the Bulgarian National Science Fund under Con-
tract No MM 1405.
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an automorphism of the design transforming each parallel class of the first
resolution into a parallel class of the second one.

There is a one-to-one correspondence [5] between the resolutions of 2 −
(qk, k, λ) designs and the (r, qk, r − λ)q equidistant codes, where r = λ(qk −
1)/(k − 1) and q > 1.

Two resolutions R and T of one and the same design are orthogonal if the
number of blocks in Ri ∩ Tj is either 0 or 1 for all 1 ≤ i, j ≤ r. Orthogonal
resolutions may or may not be isomorphic to each other. A doubly resolvable
design (DRD) is a design which has at least two orthogonal resolutions. We
denote by ROR a resolution which is orthogonal to at least one other resolution,
by m-MOR a set of m mutually orthogonal resolutions, and by m-MORs sets of
m mutually orthogonal resolutions. Two m-MORs are isomorphic if there is an
automorphism of the design transforming them into each other. The m-MOR
is maximal if no more resolutions can be added to it.

The newest results and an extended bibliography and summary of previ-
ous works on the existence of DRDs can be found in [1] and a method for
construction and classification of RORs and DRDs in [6].

The aim of the present work is the classification up to isomorphism of m-
MORs of 2-(v,k,λ) DRDs with small parameters and the establishment of some
lower bounds on their number for multiple designs.

2 m-MORs construction and classification

We start with a DRD and construct its resolutions block by block. For each
resolution R we check if it is isomorphic to a lexicographically smaller one, and
if not, we try to construct another resolution R1, which is lexicographically
greater than R and orthogonal to it. We next repeat the same for R1, R2,
etc, constructing at each step a resolution Rm orthogonal to all the resolutions
R,R1, ...,Rm−1, and checking if this m-MOR is isomorphic to a lexicographi-
cally smaller one. We output a new m-MOR if it is maximal.

The results are summarized in Table 1, where the last column shows the
number of the design in the tables [4] and a/b means that the number of noni-
somorphic MORs is b, a of them maximal.

3 m-MORs of multiple designs

We first recall definitions and notations concerning sets of orthogonal Latin
squares (see for instance [3]).



282 ACCT2008

Table 1: Classification of inequivalent m-MORs

q v k λ b r DRDs RORs 2-MORs 3-MORs 4-MORs No
2 6 3 8 40 20 1 1 1/1 - - 236
2 6 3 12 60 30 1 1 0/1 1/1 - 596
2 6 3 16 80 40 1 1 0/≥485 0/≥485 ≥485/≥485 1078
2 8 4 6 28 14 1 1 1/1 - - 101
2 8 4 9 42 21 1 1 0/1 1/1 - 278
2 8 4 12 56 28 4 4 7/17 0/60 60/60 524
2 10 5 16 72 36 5 5 5/5 - - 891
2 10 5 24 108 54 6 6 2/7 5/5 - -
2 12 6 10 44 22 1 1 1/1 - - 319
2 12 6 15 66 33 1 1 0/1 1/1 - 743
2 12 6 20 88 44 546 546 691/≥718 0/≥27 ≥27/≥27 -
2 16 8 14 60 30 5 5 5/5 - - 618
2 16 8 21 90 45 5 5 0/5 5/5 - -
2 20 10 18 76 38 3 3 3/3 - - 1007
3 9 3 3 36 12 3 5 2/7 5/5 - 66
3 9 3 4 48 16 38 83 388/495 333/334 1/1 145
4 12 3 2 44 11 20 70 319/321 1/2 1/1 55
4 16 4 2 40 10 1 1 0/1 1/1 - 44

A Latin square of side (order) n is an n×n array in which each cell contains
a single symbol from an n-set S, such that each symbol occurs exactly once in
each row and exactly once in each column. A Latin square exists for any integer
side n. An m× n Latin rectangle is an m× n array in which each cell contains
a single symbol from an n-set S, such that each symbol occurs exactly once
in each row and at most once in each column. An m × n Latin rectangle can
always be completed to a Latin square of side n.

Let L be a Latin square of side n on symbol set E3 with rows indexed by the
elements of the n-set E1 and columns indexed by the elements of the n-set E2.
Let τ = {(x1, x2, x3) : L(x1, x2) = x3}. Let {a, b, c} = {1, 2, 3}. The (a, b, c)-
conjugate of L, L(a,b,c) has rows indexed by Ea, columns by Eb, and symbols
by Ec, and is defined by L(a,b,c)(xa, xb) = xc for each (x1, x2, x3) ∈ τ .

Two Latin squares L1 and L2 are equivalent (isotopic) if there are three
bijections from the rows, columns and symbols of L1 to the rows, columns and
symbols, respectively of L2 that map L1 to L2. L1 and L2 are main class
equivalent if L1 is equivalent to any conjugate of L2.
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Two Latin squares of side n L1 = (aij) on symbol set S1 and L2 = (bij)
on symbol set S2 are orthogonal if every element in S1 × S2 occurs exactly
once among the n2 pairs (aij , bij), i, j = 1, 2, ..., n. A set of Latin squares of
side n, L1, L2, ..., Lm is mutually orthogonal( a set of MOLS), if Li and Lj are
orthogonal for i, j = 1, 2, ..., n, i 6= j. A set of MOLS of side n can have at most
n− 1 elements.

Different types of equivalence of MOLS can be defined. In this paper we use
the following definitions of conjugates and equivalence of MOLS:

Let M be a set of m MOLS L1, L2, ..., Lm of side n on symbol sets re-
spectively E3, E4, ..., Em+2 and with rows and columns indexed by the ele-
ments of the n-sets E1 and E2 respectively. Let τ = {(x1, x2, ..., xm+2) :
Li(x1, x2) = xi+2, i = 1, 2, ..., m}. Let {a1, a2, ..., am+2} = {1, 2, ..., m+2}. The
(a1, a2, ..., am+2) conjugate of M, M(a1,a2,...,am+2) contains the Latin squares
Li : Li(a1, a2) = ai+2, i = 1, 2, ...,m for each (x1, x2, ..., xm+2) ∈ τ .

Two sets of MOLS M1 and M2 are equivalent (isotopic) if there are three
bijections from the rows, columns and symbols of M1 to the rows, columns and
symbols, respectively of M2 that map M1 to M2. M1 and M2 are main class
equivalent if M1 is equivalent to any conjugate of M2.

Proposition 3.1 Let D be a 2-(v,k,λ) design and v = 2k.
1) D is doubly resolvable iff it is resolvable and each set of k points is either

incident with no block, or with at least two blocks of the design.
2) If D is doubly resolvable and at least one set of k points is in m blocks,

and the rest in 0 or more than m blocks, then D has at least one maximal
m-MOR, no i-MORs for i > m and no maximal i-MORs for i < m.

The proof is based on:
1) If one block of a parallel class is known, the point set of the second one

is known too. Suppose D has m-MOR R1,R2, ...Rm. Consider a block with
exactly p − 1 equal blocks. Denote by 1, 2, ..., p the parallel classes of R1, in
which these blocks are, the blocks themselves by 11, 21, ..., p1 and the second
blocks in the classes by 12, 22, ..., p2. Since block i1 should be with block j2

(i, j = 1, 2, ..., p) at most once in a parallel class of the m-MOR, the class
numbers of the second blocks form an m × p Latin rectangle. An example for
p = 4 and m = 3 is presented in Fig.1.

2) A 2×m Latin rectangle can be completed to a Latin square of order m.

Proposition 3.2 Let lq−1,m be the number of main class inequivalent sets of
q − 1 MOLS of side m. Let q = v/k and m ≥ q . Let the 2-(v,k,mλ) design D
be a true m-fold multiple of a resolvable 2-(v,k,λ) design d. If lq−1,m > 0, then
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Figure 1: 4 equal parallel classes of 3 mutually orthogonal resolutions, v = 2k

1 2 3 4 Latin rectangle
R1 1112 2122 3132 4142 1 2 3 4
R2 1122 2112 3142 4132 =⇒ 2 1 4 3
R3 1132 2142 3112 4122 3 4 1 2

D is doubly resolvable and has at least
( r

m
− 1 + lq−1,m

r

m

)
m-MORs.

The proof is based on:
Consider a resolution R1 of D, such that each parallel class of R1 is equal

to a parallel class of the resolution T of d. We can partition the collection of
parallel classes of R1 into subcollections P1, P2, ..., Pr/m of size m, such that the
classes in a subcollection are equal. m-MOR containing R1 can be constructed
as follows: the first block of each class equals the first block of the corresponding
class of R1 and the other blocks of Pi form a set Mi of q− 1 MOLS of side m.
An example for m = 4 and q = 3 is presented in Fig. 2a.

Figure 2: 4 equal parallel classes of 4 mutually orthogonal resolutions, v = 3k

a)relation to a set M of two MOLS of side 4
1 2 3 4 M = M(1,2,3,4)

R1 111213 212223 313233 414243 1 2 3 4 1 2 3 4
R2 112233 211243 314213 413223 =⇒ 2 1 4 3 3 4 1 2
R3 113243 214233 311223 412213 3 4 1 2 4 3 2 1
R4 114223 213213 312243 411233 4 3 2 1 2 1 4 3

b)automorphism α transforming first blocks into second blocks
1 2 3 4

R1 121113 222123 323133 424143

R2 122133 221143 324113 423123

R3 123143 224133 321123 422113

R4 124123 223113 322143 421133

c)relation to M(1,3,2,4) - the (1, 3, 2, 4) conjugate of S

1 2 3 4 M(1,3,2,4)

R1 111213 212223 313233 414243 1 2 3 4 1 2 3 4
R2 112243 211233 314223 413213 =⇒ 2 1 4 3 4 3 2 1
R3 113223 214213 311243 412233 3 4 1 2 2 1 4 3
R4 114233 213243 312213 411223 4 3 2 1 3 4 1 2

Permutation of design classes, numbers of equal classes, or resolutions of
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the m-MOR invokes respectively permutation of columns, symbols and rows
of all Latin squares in Mi. A nontrivial point automorphism α can invoke a
transformation of Mi into one of its conjugates (an example is presented in
Fig. 2b,c.) or into a conjugate of Mj , i, j = 1, 2, ..., r/m, i 6= j. Thus there are
at least lq−1,m inequivalent ways to fix Mi.

The number of different ways to choose u integers i1, i2, ...iu, such that i1 +
i2 + ... + iu = w is Q(u,w) =

(
u+w−1

w

)
.

Corollary 3.3 Let lm be the number of main class inequivalent Latin squares
of side m. Let v/k = 2 and m ≥ 2. Let the 2-(v,k,mλ) design D be a true
m-fold multiple of a 2-(v,k,λ) design d, and let d be resolvable, but not doubly

resolvable. Then D is doubly resolvable and has at least
( r

m
− 1 + lm

r

m

)
m-

MORs, no maximal i-MORs for i < m and no i-MORs for i > m.
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