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Abstract. Resolvable designs with parallel classes of size g correspond to equidis-
tant codes over Z(q), while doubly resolvable 2-(v,k,A) designs also correspond to
Kirkman squares K Si(v;1,A). In this work we construct doubly resolvable BIBDs
using the intersection possibilities between the parallel classes. We investigate the
structure of the resolutions of a design and make conclusions about the structure of
the resolutions of doubly resolvable designs. Next we consider by computer search
only structures, which can produce doubly resolvable designs. In this way we clas-
sify doubly resolvable 2-(16,8,7), 2-(24,12,11), 2-(28,14,13), 2-{16,8,14), 2-(32,16,15),
2-(18.,9,16) designs and resolvable 2-(12,6,10} designs.

1 Introduction

For the basic concepts and notations concerning combinatorial designs and
their resolvability refer, for instance, to [1], [2], (3], [5], [18].

Let V = {P};_, be a finite set of points, and B = {B_,,-};’.=1 — a finite
collection of k-element subsets of V, called blocks. We say that D = (V,B) is a
design with parameters t-(v,k,A), if any f-subset of V' is contained in exactly A
blocks of B.

Two designs are isomorphic if there exists a one-to-one correspondence be-
tween the point and block sets of the first design and respectively, the point
and block sets of the second design, and if this one-to-one correspondence does
not change the incidence.

An automorphism of the design is a permutation of the points that trans-
forms the blocks into blocks.

One of the most important properties of a design is its resolvability. The
design is resolvable if it has at least one resolution.

A resolution is a partition of the blocks into subsets called parallel classes
such that each point is in exactly one block of each parallel class. A parallel
class contains v/k blocks and a resolution R consists of r = (b * k/v) parallel
classes, R = Ry, ..., Rer.

Two resolutions are isomorphic if there exists an automorphism of the design
transforming each parallel class of the first resolution into a parallel class of the
second one.
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A parallel class T is orthogonal to the resolution R if TN'R; contains 0 or 1
block foreach1 <i<r. Let R =R,;,...., R and T = T3, ..., T be resolutions of
the same design. These two resolutions are orthogonal if the number of blocks
in R; T is either 0 or 1 for all 1 <4, < r. When a design has at least two
orthogonal resclutions, it is doubly resolvable.

A Kirkman square with index A, latinicity u, block size k, and v points,
KSi(v;p,A) isatxtarray (t = A(v—1)/u(k—1)) defined on a set V such that:
every point of V is contained in precisely p cells of each row and column; each
cell of the array is either empty or contains a k-subset of V; the collection of
blocks obtained from the non-empty cells of the array is a (v,k,A) BIBD. For
p=1, the existence of a K Sk(v;u,A) is equivalent to the existence of a doubly
resolvable 2-(v,k,A) design.

The existence question for K S (v; 1, A) has been completely settled for k = 2
and u = 1 [8]. The existence of K S3(v;1,2) for all v = 3(mod)12 is proved in
[9]. There are some particular results for k¥ > 3, u = 1 in [7], [4], [14], [15].

The intersection of parallel classes is used in [11}, [12] and [6] for the con-
struction of resolvable designs. In [11] and [12] it is used to produce initial
structures of the resolution of the designs and in [6] for partial verification of
the classification of resolvable 2-(14,7,12) designs.

Double resolvability sets additional restrictions on the intersection between
parallel classes. In the present work we use this to remove some of the con-
structions which cannot be doubly resolvable. It is especially effective for design
resolutions, which have 2 blocks in the parallel class. Then by computer search
we construct point by point resolutions which can have orthogonal partners and
check partial solutions of more than 2/3 of the points for double resolvability
[16]. This check consists of an attempt to construct a corresponding Kirkman
square [17).

2 Structure of a resolution of a design in terms of
PCIM

For two parallel classes ¢ = {C1,...,Cr} and t = {T3,...,7,,} on v points
{where n = v/k is the number of the blocks in the parallel class) we define the
intersection between them as an n x n matrix. This matrix is called the parallel
classes intersection matrix(PCIM)(6], {11], [12]. In this matrix P(e,t}uxn =
(pij(c,t)), where pij{(c,t) is the intersection size of blocks C; € ¢ and Tj € t.
For any two parallel classes ¢ and t, pj1(e, t) + piof{c,t) + ... + pin(c, t) = k for
1=1,2,...,n. In this way if we fix the first parallel class of the resolution as
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k0 0
0 k 0
00 ... k

by computer search we produce all possible inequivalent PCIMs for the second
parallel class. Let m be their number. We denote by z; the number of classes
of the resolution, for which the intersection matrix between the first class and
them is equivalent to the i-th PCIM, ¢ = 1,2, ...,,m.

Since a resolvable 2 —~ (v, k, A) design has r parallel classes, the first parallel
class meets other classes in (r-1) PCIMs.

S g=r - &)

i=1

Denote by 1; the number of pairs of points, which are contained in a block
of the first parallel class and in a block of a parallel class corresponding to the
i-th PCIM. Then

S s = vk — (A - 1/2 @

i=1

Solutions of these equations give the structure of the resolutions of a design.

3 Double resolvability restrictions

The existence of a Kirkman square requires at least two resolutions of the
design, such that the parallel classes of both of them have at most one common
block. We can analyse the obtained solutions and make conclusions about
possible double resolvability.

According to the type of the PCIMs we can say if the blocks of the parallel
classes of an initial resolution can be partitioned in different parallel classes of a
partner resolution. The condition for this is the occurrence of suitable PCIMs,
allowing a combination of blocks of different parallel classes. We consider all
types of PCIMs and find out solutions of the equations (1) and (2) which can
give an orthogonal resolution to the initial one.

In the case of resolutions with two blocks in a parallel class, we look for
PCIMs corresponding to classes with at least one block which intersects one of
the blocks of the first parallel class in k points. If no such PCIM exists, doubly
resolvable designs cannot be obtained. ‘
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4 Computer search and results

According to the obtained PCIM patterns, we construct the resolutions of a
design point by point. (Actually we construct word by word the corregponding
equidistant code [13].} We apply equivalence test after each point, and double
resolvability test if the partial solution is of more than 2/3 of the points [16].
This should be done because the solutions of equations (1) and (2) and the
double resolvability restrictions give only a necessary condition for the possible
existence of orthogonal resolutions. In this test we try to find a corresponding
Kirkman square with ¢z = 1. At first we find all possible variants for a parallel
class of an orthogonal resolution by choosing disjoint blocks from different par-
allel classes of the initial resolution until all points are covered. Then we try to
combine different variants for new parallel classes in a Kirkman square [17].

For the 2-(16,8,7) designs k = 8, so the PCIMs are:

8 0 71 6 2 5 3 4 4
0 8 17 2 6 35 4 4
In this case equations (1) and (2) give:

T1+Tast+z3+ T4+ 35=14
56.x1 + 42.29 + 32.23 + 26.24 + 24.25 = 336

There is only one solution - 21 = 29 = 23 = 4 = 0, z5 = 14. It shows
us that the design cannot be doubly resolvable - there is no parallel class,
which intersects a block of the first one in k points. Since the blocks of the first
parallel class have to be in different parallel classes of the orthogonal resolution,
they cannot be combined with blocks from other parallel classes of the initial
resolution.

We use this solution for the structure of the resolutions of this design to
restrict the search space and we find 5 nonisomorphic resolutions. We verify
this result constructing by exhaustive search all the resolutions of the design
with these parameters.

For the 2-(16,8,14) designs PCIMs are the same as for the 2-(16,8,7), so we
have:

Tt axet+ 3t xs+os =29
56.z1 +42.29 + 32.23 + 26.24 + 24.25 = 728

with the following 8 solutions:
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The first one only can give doubly resolvable designs. We investigate it by
computer search and we find 5 resolutions of doubly resolvable designs and 1895
resolutions of resolvable designs.

For the 2-(12,6,10)designs k = 6 and the PCIMs are:

6 0 5 1 4 2 3 3
0 6 1 5 2 4 3 3
In this case it holds:

Tt +z3+z4=21
30.x1 + 20.29 + 14.23 + 12,24 = 270

with 3 solutions

oo -
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<
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ot

We investigate the first one as possibly doubly resolvable and we find 1
resolution of 1 doubly resolvable design. This result coincides with our previ-
ous results in [14]. We also find altogether 545 nonisomorphic resolutions of
resolvable designs for afffthree solutions (the previous bound was > 400 [10]).

There are two blocks in the parallel class of 2-(24,12,11), 2-(28,14,13}, 2-
(32,16,15), and 2-(18,9,16) designs. So the PCIMs are:

(k 0)(k—1 1 )(k—2 2 )(k——z’ i ) ([k/2j Lk/?])
0 k 1 k-1 2 k-2 i k=i ]\ k/2) [k/2)

As a result of equations (1) and (2) there are only solutions without a PCIM
corresponding to a class with at least one block, which intersects one of the
blocks of the first parallel class in k& points. That is why such solutions cannot
give a doubly resolvable design. So we can conclude that doubly resolvable
design with parameters 2-(24,12,11), 2-(28,14,13), 2-(32,16,15), and 2-(18,9,16)
do not exist.
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The obtained results are summarized in Table 1. The first column shows
the number of the design in the table of [10], the second its parameters. In
the third column we present the number of nonisomorphic resolutions "Nr”,
followed by * if the result is not ours, but from [10]. In the column "drNr”
we present the number of nonisomorphic resolutions of the doubly resolvable
designs with these parameters.

No | BIBD. Nr | drNr
130 | (16,8,7) 5

319 | (12,6,10) | 545
346 | (24,12,11) | > 129
499.| (28,14,13) | >4*
618 | (16,8,14) | > 1895
668 | (32,16,15) | >1*
791 | (18,9,16) | >6*
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