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Abstract

Resolvable designs with parallel classes of size ¢ correspond to equidistant
codes over Z(q), while doubly resolvable 2-(v.k.\) designs also correspond to Kirk-
man squares K Se(v;1, A). The problem of the existence of a doubly resolvable
Steiner triple system of order 21 (STS(21) or 2-(21,3,1) design) is still open with
21 being the smallest value for v, for which it is not known if a doubly resolvable
STS (v} exists or not. In this work we make some notes on the structure of a
doubly resolvable STS(21).

1 Introduction

For the basic concepts and notations concerning combinatorial designs refer, for
instance, to [1], [4]. [21].

Let V = {P;}]_, be a finite set of points, and B = {Bj}?=] — a finite collection
of k-element subsets of V, called blocks. We say that D = (V,B) is a design with
parameters t-(v.k,A}, if any t-subset of V is contained in exactly A blocks of B.

Two designs are isomorphic if there exists a one-to-one correspondence hetween the
point and block sets of the first design and respectively, the point and block sets of the
second design, and if this one-to-one correspondence does not change the incidence.

An qutomorphism of the design is a permutation of the points that transforms the
blocks into blocks,

One of the most important properties of a design is its resolvability, The design is
resolvable if it has at least one resolution.

A resolution is a partition of the blocks into subsets called parallel elasses such that
each point is in exactly one block of each parallel class. Two resolutions are isomorphie
if there exists an automorphism of the design transforming each parallel class of the
first resolution into a parallel class of the second one.

*This work was partiaily supported by the Bulgarian National Science Fund  under Contract No
1-1301/2003.
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BIBDs with definite parameters, see for instance (2], [8]. {10}, [17]. [18], [19]. It isf,
interesting to point out that in some recent works the classification was only possibled.
after using parameter-specific restrictions on the corresponding equidistant codes. & ]

Double resolvability is of particular interest. A 2-(v.k.X) design is doubly-resolvabled ‘
if it has two distinct resolutions (partner resolutions) such that each pair of paraliel-
clastes, one of the first, and the other of the second resolution, have at most onee
commmon block. Papers on doubly-resolvable designs mainly deal with the setting of»
the existence problem (5}, [6]. [7]. [16]-

A Steiner triple system of order v (STS(v)) is a 2 — {v.3,1) design. STS(v)s exist
for » = 1 or 3(mod6). A resolvable ST S {v) is called Kirkman triple system of order v
(KTS5(v}) and can exist for v = 3(mod6) . A doubly resolvable ST.S(v) does not exist
when v € {9. 15}, but exists for all v > 21 with v = 3(mod6) with 23 possible exceptions
[5]. The smallest possible exception occurs when v = 21, so that the smallest known
{nontrivial) doubly resolvable STS(v} has v = 27.

Steiner triple systems are fully classified for v <= 19. For the next value v =21 a
complete classification iy currently out of reach (13|, but various classification results
on STS(21) with additional properties exist (9], (11], [12). [14], [20], [15], [22}. AN
these authors also test the obtained STS(21)s for resolvability. However, the number
of the known KTS(21) was relatively small until 63745 KTS(21) were constructed in
3]. These include all KTS(21) possessing nontrivial automorphisms. The authors of [3]
have also made some investigations on the structure of these KTS(21)s. They solved
the problem posed in [1] for the determination of a quadrilateral-free KTS(21), ie -
they found four quadrilateral-free KTS(21)s (a quadrilateral or Pasch configuration is
a set of four triples on six elements which pairwise intersect in one element each). Yet
none of these 63745 KTS(21)s is doubly resolvable. ‘

We approach the problem by trying to construct only designs which are doubly
resolvable. In this work we consider some peculiarities of the structure of a KTS(21),
which help a lot for making the search space smaller. We split the problem into severall
cases. and for one subcase of them we have checked by computer that it doesn’t lead
to a doubly resolvable STS(21). i

There are already quite a lot of works on the existence or classification of resol ; ;i

2 On the structure of a KTS(21)

Lemma 1 Let D = (V, B) be a KTS5(21). Consider three of the triples of one parallel
class. They define a 9-element subset Vo of V. Let ty be the number of triples on the
points of Vo. Let Via = V' \ Vo.Let tiz be the mumber of triples on the points of Vag..

Then 1
a. 3 <y < 12 .
b t1p = 16 — Iy -

C.4Sf12£13

Proof. a.There are at lcast three triples of the chosen parallel class. while 12 triples:
form an STS(9). =
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b. Denote by a, the number of s-subsets on the points of Vy, where s = 0,1.2.3.
The design has 70 blocks and thus eg + @1 + a2 + a3 = 70. The number of pairs of
points, such that one of them is from V4, and the other one from Vy;, should be 9.12,
and thus 2a; + 2a; = 108. It follows that ag + as = 16. Yet ay is another name for {g
and ag for £;5.

c. Follows from a. and b.

Theorem 1 Let D = (V, B) be a KTS(21}). Then

1. There erists a 9-elemen! subset Vo of V, such that there are 3 or 4 triples on il
and three of them are nonintersecting.

2. Vy is contained in a 12-element subset Viz of V. such that there are 11, 12, or
13 triples on the points of V), ot least 4 of them being nonintersecting.

Proof.

1. Consider the triples t,,a = 1,2, ..., 7 of one parallel class and define a 12-element
subset Vi3 = t1 [ Jt2 | J2s|Jts. Consider 2 cases:

a) There are 12 or 13 triples on V5. Then by Lemma 1b there are 4 or 3 triples on
Vo=V Vi,

b) There are at most 11 triples on VY, i.e. the 4 triples ¢), £2. ¢3, t4 and at most 7
other triples. Let ¢, have a commen point with n, of these 7 triples (a=1,2,3,4). Then
ny +ng + ny + ng = 7.3 = 21. Without loss of generality we can assume that n4 is the
smallest of these 4 numbers. Then the maximal value of 74 is 5 (i.e. 5+54+5+6=21).
Each one of these ny triples is in one of the 3sets #1 |Jta | Jt4. £y Uta U ts, or f2 Yt |24
Denote by Vy this one of the three sets, which contains the least number of triples. Then
it contains at most one of them (i.e. 24+2+1=>5), i.e. the whole number of triples on
Vyis Jord,

2. Let Vy = t; | Jta{)ts. Without loss of generality we can assumne that there are
at most 4 triples on V4. Consider 2 cases:

a) There are 3 triples on Vy. Then there are 27 more pairs of points on Vg, which
form a triple together with a point outside V. Let m, be the number of triples with
a point of ty,a = 4.5,6,7. Then mq + ms + ms + my = 27. Assume my is the
maximal among these 4 numbers. Then my = 7,8, or 9 (i.e. 7T+7+74+6=27). Define
Wiz = Vy{Jma. Then Vi, contains 11,12, or 13 triples.

b) There are 4 triples on V. Then there are 24 more pairs of points on Vg, which
form a triple together with a point outside V4. Let m, be the number of triples with a
point of t,,a = 4,5,6,7. my + ms +mg + my = 24. Assume m, is the maximal among
these 4 numbers. Then m4 = 6,7, 8. Define V12 = Vg Jmy. Then Vi contains 11,12,
or 13 triples.

3 On the structure of a doubly resolvable STS(21)

Theorem 2 Let D = (V. B) be a doubly resolvable STS(21), and let R and R' be lwo
pariner resolutions. Consider three of the triples of one parellel class C'y of R. They
define a J-element subset Vy of V. Then there are af most 11 triples on the points of
.
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Proof. Suppose there are 12 triples on Vo as Lemma la allows. The parallel classes
are 10, so there is at least one parallel class of B with at least two triples on ¥y, and
thus with alse at least two blocks without poeints on V4. But all the 4 blocks without
points on Vy are in 7. and thus no two of themn can be in one of the same class of R

&

This result coincides with [15). whose authors claim that no STS{21) having a
Steiner triple subsystem is doubly resolvable.

4 Computer tests

Let us consider only the set V¥, of n points of a design resolution and all the design
blocks redefined ouly by the incidence with ¥,. We experimented how the double-
resolvability test works on this structure. If the whole design is doubly-resolvable, any
such structure is obviously doubly-resolvable too. If the design is not doubly-resolvable,
and we take less than two thirds of its points, we usually obtain a doubly-resolvable
structure.

We first developed an algorithm for random generation of the incidence of the blocks
of different KTS(21)s with the set V5 defined on five triples of one of its parallel classes.
None of them were doubly resolvable. So the problem is how to construct all 14-row
parts of the incidence matrix of a KTS(21). which if extended will give all doubly
resolvable STS(21)s. if such exist. Even with the strong restrictions from the above
two sections, this still remains a very hard computational problem.

Let D = (V. B) be a KT$(21). Consider the triples t,,a = 1,2,...,7 of one parallel
class. By Theorem 1 there are 5 different cases for the incidence of the blocks with Vi =
fU0t2 UJtsUta. In three of them there are 3 triples incident with ¥y = ¢ Ut2Uts
and respectively 11.12, or 13 triples incident with Via. In the other two there are 4
triples incident with Vi and respectively 11 or 12 triples incident with Vi (it can be
proved that 4 triples on Vy and 13 triples on Vi is equivalent to 3 triples on Vo and 12
triples on ¥j2).

We have checked that no doubly resclvable §TS(21) can be obtained fromn one
subcase of the 3 triples on V) and 13 triples on Vi, case. In addition for the KST(21)s
we require that

e there are 8 parallel classes of one and the same type up to the 6-th. 9-th. 12-th
and 15-th row. A class has one block incident with a pair of Vg, 4 blocks incident
with oue point of ¥y, and 2 blocks incident with no point of Vs; three blocks
incident with a pair of Vy, 3 blocks incident with one point of ¥y, and 1 block
incident with no point of Vy; three blocks incident with a pair of V12, 3 blocks
incident with one point of Vyz, and 1 block incident with a triple of Vi2, two
hlocks incident with a triple of V5, 4 blocks incident with two points of ¥15. and
1 block incident with one point of Vis.

e there are & triples on Vg, 9 on Vy1. 13 on Vi, 16 on Vig.and 19 triples incident
with V4.
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e any two triples on &:{J¢; [ J#x (4.4, k = 1,2,...,5) have no common point.

# the blocks of a paraliel class contain at most one pair of points from £ [ Jt; (i,j =
1.2....,5).

¢ We require that none of the triples on Vi5 contains a pair of points from ta () ts.

We construct the design resolutions in lexicographic order point by point (To do
it faster we actually construct word by word the corresponding equidistant code).
After each point we apply a test for equivalence of the partial solution to a previonsly
generated one, and a double-resolvability test after the 12-th point.
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