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Abstract

Doubly resolvable 2-(v,k,λ) designs (DRDs) with small parame-
ters and their resolutions which have orthogonal resolutions (RORs)
are constructed and classified up to isomorphism. Exact values or
lower bounds on the number of the nonisomorphic sets of m mutually
orthogonal resolutions (m-MORs) are presented. The implemented
algorithms and the parameter range of this method are discussed,
and the correctness of the computational results is checked in sev-
eral ways.
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1 Introduction

For the basic concepts and notations concerning combinatorial designs and
their resolvability refer, for instance, to [3], [4], [8], [21], [39].

Let V = {Pi}v
i=1 be a finite set of points, and B = {Bj}b

j=1 − a finite
collection of k-element subsets of V , called blocks. If any 2-subset of V is
contained in exactly λ blocks of B, then D = (V,B) is a 2-(v,k,λ) design.
Each point of D is incident with r blocks.

Two designs are isomorphicif there exists a one-to-one correspondence
between the point and block sets of the first design and respectively, the
point and block sets of the second design, and if this one-to-one correspon-
dence does not change the incidence. An automorphismis an isomorphism
∗Part of the results were announced at IV International Workshop Optimal Codes and Related Top-

ics, 2005, Bulgaria; XI International Workshop Algebraic and Combinatorial Coding Theory, 2008,
Bulgaria; NATO Advanced Research Workshop, 2008, Bulgaria
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of the design to itself, i.e. a permutation of the points that transforms the
blocks into blocks.

A 2-(v,k,mλ) design is called an m-fold multiple of 2-(v,k,λ) designs if
there is a partition of its blocks into m subcollections B1, B2, ... Bm, which
form 2-(v,k,λ) designs D1, D2, ..., Dm.

A resolutionof the design is a partition of the collection of blocks into
parallel classes, such that each point is in exactly one block of each parallel
class. We denote by q the number of blocks in a parallel class. We shall
call two parallel classes of the resolution R, R1 and R2 equal (R1 = R2)
if each block of R1 is incident with the same points as some block of R2.
The design is resolvableif it has at least one resolution. Two resolutions
are isomorphic if there exists an automorphism of the design transforming
each parallel class of the first resolution into a parallel class of the second
one.

Let Zq = {0, 1, ..., q − 1}. A word of length r over Zq is an r-tuple
x = (x1, x2, ..., xr) ∈ Zr

q . The Hamming distance d(x, y) between two
words x, y ∈ Zr

q is the number of coordinates in which the words differ.
An equidistant (r, v, d)q code is a set of v words of length r over Zq, with
the property that the distance between any two distinct words is d. There
is a one-to-one correspondence [36] between the resolutions of 2-(qk,k,λ)
designs and the (r, qk, r − λ)q equidistant codes, q > 1.

Consider two resolutions R and T of one and the same design. A
parallel class Ti (i = 1, 2, ..., r) of T is orthogonal to R if the number of
blocks in Ti ∩ Rj is either 0 or 1 for all 1 ≤ j ≤ r. (blocks are labelled in
this case) The resolutions R and T are orthogonal if all classes of T are
orthogonal to R. Orthogonal resolutions may or may not be isomorphic
to each other. A doubly resolvable design (DRD)is a design which has at
least two orthogonal resolutions. We denote by RORa resolution which is
orthogonal to at least one other resolution, by m-MORa set of m mutually
orthogonal resolutions, and by m-MORs sets of m mutually orthogonal
resolutions. Two m-MORs are isomorphic if there is an automorphism of
the design transforming the first one into the second one. The m-MOR is
maximal if no more resolutions can be added to it.

There are already a lot of works on the existence or classification of
resolvable 2-(v,k,λ) designs with definite parameters, see for instance [11],
[19],[20], [21], [34], [31], [32]. A very good recent survey of the different
approaches for constructing and classifying design resolutions is contained
in [22]. It can be seen from this survey that the most popular construction
approach is to generate not the resolution itself, but the corresponding
equidistant code, and this is usually done word by word in lexicographic
order. Since rejection of equivalent partial solutions takes most of the
computation time, in some works it is only used up to a certain point,
and a clique search is applied next [22]. We also use the word by word
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orderly generation, but from some word on, we start applying an orthogonal
resolution existence (ORE) test before the equivalence (E) test, and this
makes it possible to prune a great number of partial solutions.

Papers on DRDs mainly deal with the existence problem – establishing
existence or nonexistence of DRDs with certain parameters and setting
lower bounds on m for the m-MORS with certain parameters. The starter -
adder method[35] is the most often and very successfully used one and plenty
of serious results have been obtained in this field. The newest achievements
and an extended bibliography and summary of previous works can be found
in [1]. For more details see for instance [9], [10], [12], [16], [25], [26], [27],
[28], [42]. Another approach that has been used by some authors is to
apply orthogonality tests to the resolutions of the classified designs with
certain parameters and sometimes additional properties (automorphisms,
etc.), see for instance, [7], [24], [37], [38]. A Room square of side n, RS(n),
is equivalent to a 2-MOR of a 2-(n + 1,2,1) BIBD. Full classification of
Room squares with small parameters is known [13], [15], [33]. We do not
know any other previous classifications of m-MORs, DRDs or RORs.

The aim of the present work is the classification up to isomorphism
of 2-(v,k,λ) DRDs and their RORs and m-MORs. The results might be
of interest for possible applications in cryptography, statistics, etc. For
some ways, in which MORs can be used see, for instance, [2], [5], [6],
[29]. Applications, however, often depend on properties of the underlying
design (block intersections for instance), or of the m-MOR (critical sets,
etc.), which may not follow from the design parameters. From that point
of view, classification results for doubly resolvable designs and orthogonal
resolutions might be very useful. We approach the problem by directly
constructing RORs. We then classify the DRDs and construct m-MORs.

2 Construction details and results

The problem of classifying orthogonal resolutions can be approached in
different ways. For instance, you may try and directly construct all pairs
of orthogonal resolutions of designs with certain parameters, which means
that you construct a structure twice bigger than the resolution itself, yet
for the backtrack search “twice bigger” is too much slower. In another
possible approach you may first find the DRDs, because their number is
smaller or equal to that of RORs, but you will have to establish whether
the design is doubly resolvable, or not, and this is more complicated than
the ORE test. In our opinion the classification approach you choose is
of greatest importance and it is possible that for some of the open cases,
approaches different from ours might be more suitable and leading to new
future results.
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We construct nonisomorphic RORs first, then classify the corresponding
DRDs, and find m-MORs last. This section presents a brief overview of
the computation methods used, and tables of results, from which the first
open cases can easily be found.

2.1 Construction of RORs and DRDs

2.1.1 Construction method

Since RORs are resolutions with some additional properties, we use the
most popular way of constructing design resolutions, i.e. we construct the
corresponding equidistant code by backtrack search word by word, so that
each word is lexicographically greater than the previous one. Without
loss of generality, we only use words whose coordinate entries are in lexico-
graphic order, and we fix the first symbol of each word (i.e. the first parallel
class of the resolution) (see [18], Section 5.2 for proof).

If the words are less than ne, we apply E test after each word. For more
than ne words the E test already costs too much computational time, so
we only apply it after constructing a whole ROR. Contrary to the E test,
the ORE test works faster if the number of words is greater, and we do
not apply it to less than no words. The efficiency of the algorithm is very
sensitive to the application of these two tests. Usually ne about 10, and no

between v/2 and 2v/3 leads to best speed.
Having constructed all nonisomorphic RORs, we consider them as de-

signs and take away the isomorphic ones by a design isomorphism test.
Thus only nonisomorphic DRDs remain.

2.1.2 Equivalence (E) test

Equivalent codes are obtained by permuting words, coordinates and sym-
bols coordinatewise. We check if there exists a partial solution equivalent
to the current one and lexicographically smaller than it. If we find such a
solution, we skip the current one. The details of such a technique are well
described, for instance, in [21], Section 7.1.2 and in [18].

2.1.3 Orthogonal Resolution Existence (ORE) test

If the whole resolution R is a ROR, a partial solution (of only n points)
obviously has an orthogonal partial solution too. Experimenting how the
ORE test works on partial solutions, we found out that if a resolution is
not a ROR, and we take partial solutions on n < 2v/3 points, they usually
have orthogonal partial solutions, and thus no pruning can be done by the
ORE test for a small number of codewords (points). The reason for this
is that some of the blocks of partial solutions may contain less points, and
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even no points at all and therefore there are much more ways for these
blocks to participate in different orthogonal parallel classes.

We have implemented two algorithms for the ORE test. They both
use backtrack search to partition the blocks of the partial resolution into
orthogonal parallel classes. The search stops if one such partition is con-
structed, or if all possibilities have been tested and no partition can be
found. In both algorithms we sort the blocks of the design in lexicographic
order. The first point is in the first r blocks. Thus without loss of general-
ity we assume that for i = 1, 2, ..., r the i−th block is in the i−th parallel
class of the orthogonal resolution. The first algorithm tries to construct an
orthogonal mate block by block (BB), while the second one class by class
(CC).

In construction BB we add the missing blocks to the first class of the
orthogonal resolution, then to the second,..., and finally to the r−th one.
Since an orthogonal parallel class should contain all points, at each step
we try to add only blocks containing the first missing point in the class,
and we check that the blocks in each orthogonal class are disjoint and from
different classes of the resolution.

In construction CC at the beginning we generate for each of the first r
blocks all possibilities for an orthogonal class containing this block. Then
we choose the i−th class of the orthogonal resolution among the classes
containing block i ≤ r,

Since we only check for the existence of one orthogonal mate, the speed
of the RORs generation using the BB or the CC construction does not
differ much, CC being a little faster if the number r of the parallel classes
is relatively small (some comparison statistics can be found in [40]).

2.1.4 Parameter specific restrictions

If q = 2, then a resolution is a ROR iff for each of its parallel classes,
there exists at least one more parallel class equal to it. We use this simple
observation to fix the first and second parallel classes equal to one another.
This does not change much the RORs generation software, but cuts off the
generation of a lot of resolutions that cannot be RORs and makes it possible
to classify RORs with parameters 2-(12,6,10), 2-(14,7,12), 2-(16,8,14), 2-
(12,6,15) and 2-(18,9,16).

We have tried to find and use parameter specific restrictions which
double resolvability imposes on the intersection possibilities of the parallel
classes (see [43] for more details). This speeds up the computation for some
of the already covered by the general approach parameters, and makes it
possible to classify by this method the RORs of 2-(20,10,18) designs.
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2.1.5 Classification results

The results are summarized in Table 1 where “Nr” is the number of noni-
somorphic resolutions known by now. The value is presented without any
comments if it is taken from [30]. It is followed by

√
if we have indepen-

dently obtained the same number by our programme too, and by ∗ if it is
obtained by our programme and we do not know a better bound calculated
by other authors. In the column “No” the number of the design in the
tables of [30] is given.

Table 1 presents a classification of RORs with q = 2, 3, 4 and 5, and
for each q the list starts with resolvable designs with k = 3 and goes
on with ascending values of k. We do not include designs that have no
resolutions according to [30]. For each pair q and k we cover the smallest
possible values of λ, cases with bigger λ are open. If for some q we have
not classified the RORs for some value(s) of k, but have accomplished the
classification for a bigger k, an empty row indicates the break in the eligible
parameters. Thus it is clear what the first not classified parameters are.
We should remark here that the tables in the present paper include only
full classification results. As it was already said in the introduction, there
are a lot of existence results due to plenty of other authors. These results
are not included in the following tables.

Let λB be the greatest number of points which are the same for two
arbitrary blocks of the design. Obviously 0 ≤ λB ≤ k. If λ = 1, then
λB = 1. Since doubly resolvable designs with smaller λB might be of
interest for possible applications, we present in Table 2 classifications for
some parameters. In some cases this is just an addition to the classification
of RORs with these parameters given in Table 1, in other cases we have no
classification results for the maximal possible λB , but only for some smaller
values. We present nonexistence results too. In Table 2 “Nr” is the number
of all resolutions with this λB . It is usually smaller than the number of
all resolutions of designs with these parameters, and if given, it is always
obtained by our programme.

2.2 Classification ofm-MORs

We start with a DRD and construct its resolutions block by block. For each
resolution R1 we check if it is isomorphic to a lexicographically smaller one,
and if not, we try to construct another resolution R2, which is lexicograph-
ically greater than R1 and orthogonal to it, then R3 orthogonal to both R1

and R2, etc. We apply isomorphism test after having constructed a class
of the resolution R1, or a whole resolution Ri, i > 1. We output a new
m-MOR if it is maximal.
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Table 1: Computational results for RORs and DRDs

q v k λ Nr RORs DRDs No
2 6 3 4 1

√
0 0 43

2 6 3 4n 1
√

1 1 2 ≤ n ≤ 13

2 8 4 3 1
√

0 0 15
2 8 4 6 4

√
1 1 101

2 8 4 9 10
√

1 1 278
2 8 4 12 31

√
4 4 524

2 8 4 15 82
√

4 4 819
2 8 4 18 240 * 13 13 -
2 8 4 21 650 * 16 16 -
2 8 4 24 1803 * 44 44 -
2 8 4 27 4763 * 70 70 -
2 10 5 8 5

√
0 0 195

2 10 5 16 27121734 5 5 891
2 10 5 24 ≥73534 * 6 6 -
2 12 6 5 1

√
0 0 58

2 12 6 10 545
√

1 1 319
2 12 6 15 ≥128284 * 1 1 743
2 12 6 20 ≥546 * 546 546 -
2 14 7 12 1363486 0 0 451
2 16 8 7 5

√
0 0 130

2 16 8 14 ≥1895 * 5 5 618
2 16 8 21 ≥5 * 5 5 -
2 18 9 16 ≥ 1 0 0 791
2 20 10 9 3

√
0 0 224

2 20 10 18 ≥ 4 3 3 1007
2 24 12 11 130 0 0 346
2 28 14 13 7570 0 0 499
2 32 16 15 ≥1 0 0 668
2 36 18 17 ≥91 0 0 855
3 9 3 1 1

√
0 0 2

3 9 3 2 9
√

0 0 21
3 9 3 3 426

√
5 3 66

3 9 3 4 149041
√

83 38 145
3 9 3 5 203047732 ≥76992 ≥27269 235
3 12 4 3 5

√
0 0 56

3 27 9 4 68 0 0 90
4 12 3 2 74700 70 20 55
4 16 4 1 1

√
0 0 5

4 16 4 2 339592 1 1 44
5 15 3 1 7

√
0 0 14

5 20 4 3 ≥ 204 220
5 25 5 1 1 0 0 11
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Table 2: Computational results for RORs and DRDs withλB < k

q v k λ λB Nr RORs DRDs No
3 9 3 3 2 22 2 1 66
3 9 3 4 2 287 9 3 145
3 9 3 5 2 3960 3944 13 235
3 9 3 6 2 ≥ 3543 ≥3543 ≥1 356
3 12 4 6 2 0 0 0 316
3 15 5 6 2 0 0 0 280
3 18 6 5 2 0 0 0 176
3 21 7 6 2 0 0 0 250
3 21 7 6 3 0 0 0 250
3 24 8 7 2 0 0 0 343
3 27 9 8 2 0 0 0 453
3 30 10 9 2 0 0 0 576
3 33 11 10 2 0 0 0 704
4 12 3 2 2 32 9 55

The results are presented in Table 3 and some results for smaller λB

in Table 4. The first value is the number of maximal m-MORs, and the
second one all m-MORs for m = 2, 3, 4.

The DRDs, RORs and m-MORs themselves can be downloaded from the
first author’s web page (presently http://www.moi.math.bas.bg/˜svetlana).

2.3 Parameter range

The number of RORs is often much smaller than the number of all resolu-
tions, and that is why early pruning of partial solutions is very important.
The ORE test, however, becomes applicable and efficient after about 2v/3
of the resolution points have been added to the partial solution. That is
why this construction method easily covers most parameters for which all
the resolutions have been classified, but it does not go much further.

The classification time for the results we present varies from several
minutes to several days, while classification of all the resolutions for some
of these designs has only been accomplished by means of parameter specific
approaches and/or within a lot of computer time [18], [19], [22], [31], [32].
There are only four parameter sets, for which full classification or enumera-
tion of the resolutions is known, but we cannot construct the RORs by our
general programme, namely 2-(9,3,5) [20], 2-(12,2,1) [14], 2-(14,2,1) [23]
and 2-(28,4,1) designs [22]. For the first three cases the expected number
of RORs is very big, while in the last case we find that there are no RORs
by applying ORE test to the resolutions of 2-(28,4,1) designs.
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Table 3: Classification results form-MORs by computer search

q v k λ RORs DRDs 2-MORs 3-MORs 4-MORs No
2 6 3 8 1 1 1 1 - - - - 236
2 6 3 12 1 1 0 1 1 1 - - 596
2 6 3 16 1 1 0 ≥15 0 ≥485 ≥485 ≥485 1078
2 8 4 6 1 1 1 1 - - - - 101
2 8 4 9 1 1 0 1 1 1 - - 278
2 8 4 12 4 4 7 17 0 60 60 60 524
2 10 5 16 5 5 5 5 - - - - 891
2 10 5 24 6 6 2 7 5 5 - - -
2 12 6 10 1 1 1 1 - - - - 319
2 12 6 15 1 1 0 1 1 1 - - 743
2 12 6 20 546 546 691 ≥ 701 0 ≥ 223 ≥ 223 ≥ 223 -
2 16 8 14 5 5 5 5 - - - - 618
2 16 8 21 5 5 0 5 5 5 - - -
2 20 10 18 3 3 3 3 - - - - 1007
3 9 3 3 5 3 2 7 5 5 - - 66
3 9 3 4 83 38 351 449 284 285 1 1 145
4 12 3 2 70 20 252 254 1 2 1 1 55
4 16 4 2 1 1 0 1 1 1 - - 44

Table 4: Classification results form-MORs by computer search,λB < k

q v k λ λB RORs DRDs 2-MORs 3-MORs 4-MORs No
3 9 3 3 2 2 1 2 2 - - - - 66
3 9 3 4 2 9 3 11 11 - - - - 145
3 9 3 5 2 3944 13 24668 27322 1178 1396 135 135 235
4 12 3 2 2 32 9 30 31 1 1 - - 55
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For q = 2 thanks to additional double resolvability restrictions (see
Section 2.1.4) we cover parameters, for which all the resolutions have not
been classified yet (in these cases only lower bounds for Nr are presented
in Table 1). Classification of the m-MORs in the way we do it, is not
possible for some of the parameters, for which we have classified the RORs.
One of the reasons for this is that due to multiple designs the number of
m-MORs grows very rapidly for higher values of λ. A lower bound on
their number can be computed if the number of inequivalent sets of q − 1
mutually orthogonal latin squares of side m is known [41]. For instance, by
this bound the 5-MORs of 2-(6,3,20) designs are at least 11, the 6-MORs
of 2-(6,3,24) at least 352716, the 7-MORs of 2-(6,3,28) at least 2 ·1015, and
the 8-MORs of 2-(6,3,32) at least 3 ·1042. The big number of m-MORs also
shows that our approach to classify RORs and DRDs first is quite suitable.

2.4 Correctness of the computational results

We checked the work of the resolution generating part of our software by
switching off the ORE test and obtaining all the resolutions of the design for
parameters, for which this was possible. We obtained the same number of
nonisomorphic resolutions as indicated in [30]. For 2-(8,2,1) and 2-(10,2,1)
designs we obtained the known number of nonisomorphic one-factorizations
of the complete graph on 8 and 10 vertices respectively [17].

In some cases, in which all nonisomorphic resolutions of the designs are
available, we obtained the number of RORs in two different ways, namely
on the one hand we directly generated them, and on the other hand we
applied the ORE test to all the nonisomorphic resolutions of designs with
these parameters.

For most design parameters we obtained the results for RORs twice
using first the BB and then the CC ORE test.

We ran the RORs generation software with parameters of designs that
cannot be doubly resolvable, and no RORs were generated. Affine designs
are such an example. A design is affine if it admits a resolution and a
positive integer µ such that any two blocks from different parallel classes
are incident to precisely µ common points. An affine design has a unique
resolution and can not be doubly resolvable.

Designs with parameters 2-(6,3,4n) are unique and have a unique res-
olution ([21], Theorem 6.30). We ran our software for n = 2, ..., 13 and
obtained a unique ROR.

We examined the structure of the constructed RORs of some multiple
designs with q = 2, and verified the number of DRDs in another way. Con-
sider as an example 2-(8,4,3n) designs. The unique up to isomorphism affine
2-(8,4,3) design has a unique resolution and is not doubly resolvable. De-
note by A1, A2, ..., A10 isomorphic 2-(8,4,3) designs. There are four noniso-
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morphic resolvable 2-(8,4,6) designs, namely A1A1, A1A2, A1A3 and A1A4,
each of them having a unique up to isomorphism resolution. Only A1A1

is doubly resolvable because for each parallel class there is a class equal to
it. The 2-(8,4,9) design has 10 nonisomorphic resolutions, namely A1A1A1,
A1A1A2, A1A1A3, A1A1A4 and six resolutions of the type A1AiAj , where
1 < i < j ≤ 10. The four 2-(8,4,12) DRDs are A1A1A1A1, A1A2A1A2,
A1A3A1A3 and A1A4A1A4, and the four 2-(8,4,15) DRDs - A1A1A1A1A1,
A1A1A2A1A2, A1A1A3A1A3 and A1A1A4A1A4. Ten 2-(8,4,18) DRDs are
obtained as true doubles of the 10 resolvable 2-(8,4,9) designs, and four
as true triples of the four resolvable 2-(8,4,6) designs. One of these DRDs,
namely A1A1A1A1A1A1, is obtained in both ways, and, of course as a 6-fold
multiple of the 2-(8,4,3) too. That is why the whole number of 2-(8,4,18)
DRDs is 13.

For some parameters we obtained in parallel the maximum m for which
m-MORs exist. For that purpose we generated all orthogonal mates of a
ROR by the CC algorithm, and then examined them for mutual orthogo-
nality.

A Room square of side n, RS(n) is equivalent to a 2-MOR of a 2-
(n+1,2,1) BIBD. The number of inequivalent Room squares IR(n) is known
for n ≤ 9, i.e. IR(3) = IR(5) = 0, IR(7) = 6, IR(9) = 257630 [13]. Applied
to 2-(n + 1,2,1) designs for n = 3, 5, 7 our m-MORs generating software
gives the same number of 2-MORs.
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