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Abstract. A spread is a set of lines of PG(n,q), which partition the point set.
A parallelism is a partition of the set of lines by spreads. Some constructions of
constant dimension codes that contain lifted MRD codes are based on parallelisms
of projective spaces. We construct all (321) parallelisms in PG(3,5) with automor-
phisms of order 13 and find the order of their full automorphism groups.

1 Introduction

The relation to translation planes [4] has been one of the main reasons for the
consideration of t-spreads and t-parallelisms. There are applications of spreads
and parallelisms in Coding Theory too. For instance, parallelisms are used in
constructions of constant dimension error-correcting codes that contain lifted
MRD codes [5]. The relation of parallelisms to resolutions of Steiner systems
leads to a cryptographic usage for anonymous (2, ¢ + 1)-threshold schemes [13].

For the basic concepts and notations concerning spreads and parallelisms of
projective spaces, refer, for instance, to [4], [7] or [15].

A t-spreadin PG(n, q) is a set of distinct ¢-dimensional subspaces which par-
tition the point set. A t-parallelism is a partition of the set of t-dimensional sub-
spaces by t-spreads. Usually 1-spreads (1-parallelisms) are called line spreads
(line parallelisms) or just spreads (parallelisms). There can be line spreads and
parallelisms if n is odd.

Two parallelisms are isomorphic if there exists an automorphism of the
projective space which maps each spread of the first parallelism to a spread of
the second one.

A subgroup of the automorphism group of the projective space which maps
each spread of the parallelism to a spread of the same parallelism is called
automorphism group of the parallelism. A parallelism is called transitive if it
has an automorphism group which is transitive on the spreads.
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Let V = {P;};_, be a finite set of points, and B = { B, }?:1 a finite collection
of k-element subsets of V', called blocks. D = (V,B) is a 2-design with param-
eters 2-(v,k,\) if any 2-subset of V' is contained in exactly A blocks of B. A
parallel class is a partition of the point set of the design by blocks. A resolution
of the design is a partition of the collection of blocks by parallel classes.

The incidence of the points and ¢-dimensional subspaces of PG(n, q) defines
a 2-design (see for instance [15, 2.35-2.36]). There is a one-to-one correspon-
dence between the parallelisms of PG(3,5) and the resolutions of the 2-(156,6,1)
design of its points and lines.

A construction of parallelisms in PG(n,2) is presented by Zaicev, Zinoviev
and Semakov [19] and independently by Baker [1], and in PG(2" — 1,q) by
Beutelspacher [2]. Several constructions are known in PG(3,¢q) due to Dennis-
ton [3], Johnson [7], Penttila and Williams [9].

Several computer aided classifications of ¢-parallelisms are available too.
Prince classified parallelisms of PG(3,3) with automorphisms of order 5 [10],
and parallelisms of PG(3,5) with automorphisms of order 31 [11]. Stinson and
Vanstone classified parallelisms of PG(5,2) with a full automorphism group of
order 155 [14], Sarmiento with a point-transitive cyclic group of order 63 [12],
and Zhelezova with a cyclic group of order 31 [20]. Topalova and Zhelezova
classified parallelisms of PG(3,4) with automorphisms of orders 7 [17] and
5 [18], and 2-parallelisms of PG(5,2) with automorphisms of order 31 [16].

A regulus of PG(3,q) is a set R of ¢ + 1 mutually skew lines such that any
line intersecting three elements of R intersects all elements of R. A spread S of
PG(3,q) is regular if for every three distinct elements of S, the unique regulus
determined by them is a subset of S. A parallelism is regular if all its spreads
are regular. Each regular parallelism of PG(3,q) corresponds to a translation
plane of order ¢* [8].

In 1998 Prince constructed all 45 transitive parallelisms of PG(3,5). They
are cyclic and possess automorphisms of order 31. Among them there are two
regular parallelisms. A little later in 1998 Penttila and Williams constructed two
regular cyclic parallelisms of PG(3,¢q) for any ¢ = 2 (mod 3) [9]. All presently
known examples of regular parallelisms are among them and the existence of
other regular parallelisms is an open question.

We check all the constructed parallelisms for regularity. There are no regular
ones among them.

Our C++ programmes performing the computer computations are based
on the exhaustive backtrack search techniques. To filter away isomorphic par-
allelisms, we find the normalizer of the chosen subgroup of order 13 in the
automorphism group of the projective space.

We use design approach to the problem. We actually make all the com-
putations on the related to PG(3,5) designs, namely, we choose the 26 spread
elements among the 806 blocks of the 2-(156, 6, 1) point-line design, and con-
struct the parallelisms as its resolutions. We find a generating set of the au-
tomorphism group of PG(3,5) as generating set of the automorphism group of
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the related 2-(156, 31, 6) point-hyperplane design.

2 Construction of the parallelisms

There are 156 points and 806 lines in PG(3,5). Denote by G the full automor-
phism group of PG(3,5). It is of order 29016000000 = 2°.32.56.13.31. A spread
has 26 lines which partition the point set and a parallelism has 31 spreads.

To construct PG(3,5) we use the 4-dimensional vector space over GF(5).
The points of PG(3,5) are then all 4-dimensional vectors (vy,v2,vs,v4) over
GF(5) such that v; = 1 if ¢ is the maximum index for which v; # 0. We
sort these 156 vectors in ascending lexicographic order and then assign them
numbers such that (1,0,0,0) is number 1, and (4, 4,4, 1) number 156. We then
construct the related designs and find the generators of their full automorphism
group G.

By Sylow’s Theorems all subgroups of order 13 are conjugate, and we can
choose an arbitrary one of them. We use GAP [6] to find a Sylow subgroup of
order 13 and denote it G13.

We sort the 806 lines (blocks of the 2-(156,6,1) design) in lexicographic
order defined on the numbers of the points they contain and assign to each
line a number according to this order. (13 partitions the points in 12 orbits
of length 13 and the lines in 62 orbits of length 13. We look for line orbits
whose lines contain each point at most once. This holds for 26 line orbits, and
therefore G135 cannot fix more than 13 spreads. It follows that parallelisms with
an automorphism of order 13 have

e 5 fixed spreads made of 2 line orbits and
e 2 orbits of 13 spreads each.

We construct the spreads by backtrack search. The first element in each
spread is a line, containing point 1. If there are already m elements in the
spread, we choose the m + 1-st one among the lines containing the first point
which is in none of the m spread elements and we take in consideration the orbits
of the spread lines. Any spread we construct is lexicographically greater than
the ones constructed before it. Each spread determines all the other spreads of
its orbit. We call the first spread orbit leader. To obtain a parallelism with G113
we need to construct only the seven orbit leaders.

The rejection of isomorphic solutions is an important part of the computa-
tion. We construct only parallelisms which are invariant under G13. Therefore
we have to check if there is some permutation ¢ € G such that it maps a
parallelism with G713 to another parallelism with Gi3.

Let P and P’ be two of the constructed parallelisms such that P’ = ¢P.
Let a € Gi3. Then ¢P = apP and thus P = ¢ lapP, namely ¢ lap is
also an automorphism of P. That is why P is invariant both under Gi3 and
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under o 'Gi3p. If ¢ G130 = Gi3, then ¢ is in the normalizer N(G13) of
G13 in G, which is defined as N(G13) = {g € G | gG1397 " = Gi3}. If ¢ is
not in the normalizer, then ¢~ !G13¢p is a conjugate subgroup and since ¢ is
not an automorphism of P, there must exist an automorphism v of P such
that o 1Gi3p = G139~ . Then Gi3 = G130 ¢~ ! and therefore iy €
N(G13). Since pypP = ¢P, to establish isomorphism of two of the constructed
parallelisms it is enough to consider only automorphisms from N(G13).

For each parallelism P we obtain, we check if an automorphism of N(Gi3)
maps it to a parallelism with a lexicographically smaller orbit leader sequence,
and drop it if so.

If some element of N(G13) maps P to itself, it is its automorphism. So by the
isomorphism test we also obtain some of the automorphisms of this parallelism.
If P has an automorphism ¢ ¢ N(Gi3), then it is invariant under G319 ~L.
That is why we check if P is invariant under some conjugate subgroup of G13. In
fact we establish that none of the constructed parallelisms are invariant under
conjugate subgroups.

3 Classification results

We obtain 321 non-isomorphic parallelisms. All of them have automorphisms
of order 13 only. We find out that there are no regular ones among them.

Since software mistakes are always possible, we obtained the number of non-
isomorphic parallelisms by two different C++ programmes (written by the two
authors).
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