
Corrigendum

In the following conference paper we erroneously an-
nounced that there are no transitive deficiency one par-
allelisms in PG(3, 4). This was the result of an error
in our computation of the orders of the automorphism
groups. In fact there are four transitive deficiency one
parallelisms in PG(3, 4). More details are given in the
paper:

S. Topalova, S. Zhelezova, On point-transitive and tran-
sitive deficiency one parallelisms of PG(3, 4), Designs
Codes and Cryptography (2013),
online first at: DOI : 10.1007/s10623-013-9887-3.
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Abstract. A spread is a set of lines of PG(d, q), which partition the point set.
A parallelism is a partition of the set of lines by spreads. Some constructions of
constant dimension codes that contain lifted MRD codes are based on parallelisms
of projective spaces.
A parallelism is transitive if it has an automorphism group which is transitive on the
spreads. A parallelism is point-transitive if it has an automorphism group which is
transitive on the points. If the automorphism group fixes one spread and is transitive
on the remaining spreads, the parallelism corresponds to a transitive deficiency one
partial parallelism.
In PG(3, 4) there are no transitive parallelisms. No examples of point-transitive
and no examples of transitive deficiency one parallelisms of PG(3, 4) are known. We
construct all 28270 nonisomorphic parallelisms with automorphisms of order 5. None
of them is point-transitive. There are 28100 ones with an automorphism group fixing
exactly one spread, but none of them is transitive on the remaining spreads. We
conclude that there are no point-transitive parallelisms and no transitive deficiency
one parallelisms in PG(3, 4).

1 Introduction

For the basic concepts and notations concerning combinatorial designs, projec-
tive spaces, spreads and parallelisms, refer, for instance, to [1], [2], [5], [8], [11],
or [19], and for the application of parallelisms in constructions of constant di-
mension codes that contain lifted MRD codes refer to [16] and [17].

A spread in PG(d, q) is a set of lines which partition the point set. A
parallelism is a partition of the set of lines by spreads. There can be line spreads
and parallelisms if d is odd. A deficiency one parallelism is a partial parallelism
with one spread less than the parallelism. Each deficiency one parallelism can
be uniquely extended to a parallelism.

A subgroup of the automorphism group of the projective space, which maps
each spread of the parallelism to a spread of the same parallelism is called auto-
morphism group of the parallelism. A (partial) parallelism is called transitive if
it has an automorphism group, which is transitive on the spreads. A transitive
deficiency one parallelism corresponds to a parallelism with an automorphism
group which fixes one spread and is transitive on the remaining spreads.
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Let V = {Pi}v
i=1 be a finite set of points, and B = {Bj}b

j=1 a finite col-
lection of k-element subsets of V , called blocks. D = (V,B) is a 2-design with
parameters 2-(v,k,λ) if any 2-subset of V is contained in exactly λ blocks of B.

A parallel class of a design is a partition of the point set by blocks. A
resolution is a partition of the collection of blocks by parallel classes. The
incidence of the points and t-dimensional subspaces of PG(d, q) defines a 2-
design (see for instance [18, 2.35-2.36]). There is a one-to-one correspondence
between the parallelisms of PG(3, 4) and the resolutions of the 2-(85,5,1) design
of its points and lines.

Parallelisms of PG(3, 4) can be obtained by Beutelspacher’s general con-
struction of parallelisms in PG(2n − 1, q) [3] , and a pair of orthogonal ones
by Fuji-Hara’s construction for PG(3, q) [9]. All parallelisms of PG(3, 2) are
known. Parallelisms with predefined automorphism groups have been classified
by Prince in PG(3, 3) [14] and PG(3, 5) [15]. Parallelisms of PG(3, 4) with
automorphisms of order 7 were classified by Topalova and Zhelezova [20].

There are no transitive parallelisms of PG(3, 4) [6], [20]. No examples of
transitive deficiency one parallelisms of PG(3, 4) are known. Properties of the
automorphism groups and the spreads of transitive deficiency one parallelisms
of PG(3, q) are derived by Biliotti, Jha, and Johnson [4], and Diaz, Johnson,
and Montinaro [7], who show that the deficiency spread must be Desarguesian,
and the automorphism group should contain a subgroup of order q2.

A parallelism of PG(3, 4) has 21 spreads. That is why the order of the
automorphism group of a transitive deficiency one parallelism must be divisible
by 20, and therefore it must have automorphisms of order 5. There are 85
points in PG(3, 4). That is why a point-transitive parallelism must have an
automorphism of order 5 too. We construct all (up to isomorphism) parallelisms
of PG(3, 4) with automorphisms of order 5. We classify them by the order
of the full automorphism group. None of them is point-transitive, and none
corresponds to a transitive deficiency one parallelism.

Our programmes performing the computer computations, are based on the
exhaustive back track search techniques (see for instance [12, chapter 4]). To
filter away isomorphic parallelisms, we find the normalizers of the subgroups of
order 5 in the automorphism group of the projective space.

We use design approach to the problems. We actually make all the com-
putations on the related to PG(3,4) designs, namely, we choose the 17 spread
elements among the 357 blocks of the 2-(85,5,1) point-line design, and construct
the parallelisms as its resolutions. We find a generating set of the automorphism
group of PG(3, 4) as generating set of the automorphism group of the related
2-(85,21,5) point-hyperplane design.
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2 Construction and results

2.1 PG(3, 4)

There are 85 points and 357 lines in PG(3, 4). Denote by G the full automor-
phism group of PG(3, 4). It is of order 1974067200. A spread has 17 lines which
partition the point set and a parallelism has 21 spreads.

To construct PG(3, 4) we use GF (4) with generating polynomial x2 = x+1.
The points of PG(3, 4) are then all 4-dimensional vectors (v1, v2, v3, v4) over
GF (4) such that if vk = 0 for all k > i then vi = 1. We sort these 85 vectors in
ascending lexicographic order and then assign them numbers such that (1,0,0,0)
is number 1, and (3,3,3,1) number 85. We then construct the related designs
and find the generators of their full automorphism group G.

2.2 Sylow subgroup of order 25

Since 52 divides the order of G, but 53 does not, by Sylow’s Theorems (see,
for instance [13, 7.2.4] ) all subgroups of order 25 are conjugate, and we can
choose an arbitrary one of them. We use GAP [10] to find a Sylow subgroup
of order 25. We denote it G25. It partitions the lines in 21 orbits, namely 13
orbits of length 25, 6 orbits of length 5, and 2 fixed lines. That is why the
existence of parallelisms invariant under G25 is impossible. G25 is generated
by an automorphism of order 5 without fixed points and an automorphism of
order 5 with 5 fixed points. Denote the subgroups generated by each of these
automorphisms by G50 and G55 respectively. We consider one by one the results
about these two groups below. In the next subsection we denote by G5 any of
these two subgroups when we consider properties holding for both of them.

2.3 Construction

We sort the 357 lines (blocks of the 2-(85,5,1) design) in lexicographic order
defined on the numbers of the points they contain and assign to each line a
number according to this order. We construct the spreads by backtrack search.
If there are already n elements in the spread, we choose the n+1-st one among
the lines containing the first point, which is in none of the n spread elements.
If a spread is fixed by the automorphism group, then if we add a line, we add
the lines of its orbit too. If a spread is not fixed, we choose lines with orbits of
one and the same length. Any spread we construct is lexicographically greater
than the ones constructed before it.

For each spread, which is not fixed by the automorphism group, we already
know the other 4 spreads of its orbit. We call the first spread orbit leader
(a fixed spread is also an orbit leader). To obtain a parallelism we need to
construct only the orbit leaders.
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The rejection of isomorphic solutions is an important part of the compu-
tation. Let ϕ ∈ G. Let P1 be a parallelism with automorphism group GP1 ,
and let P2 = ϕP1. Denote by GP2 the automorphism group of the parallelism
P2. Let α ∈ GP1 and β ∈ GP2 . Then βϕP1 = ϕαP1 and thus β = ϕαϕ−1

and GP2 = ϕGP1ϕ
−1. To filter away isomorphic solutions we want to check

if there is some permutation ϕ ∈ G such that it maps a parallelism with G5

to another parallelism with G5. Thus we obtain G5 = ϕG5ϕ
−1 and therefore

we are interested in the normalizer N(G5) of G5 in G, which is defined as
N(G5) = {g ∈ G | gG5g

−1 = G5}. If an automorphism ϕ ∈ G transforms one
of the constructed parallelisms with G5 into another one, then ϕ ∈ N(G5). For
each parallelism we obtain, we check if an automorphism of N(G5) transforms
it into a parallelism with a lexicographically smaller orbit leader sequence, and
drop it if so.

We obtain G25 and the normalizers of G50 and G55 by GAP [10]. The other
computer results are obtained by our own C++ programs. Most of them are
checked by two different programmes (algorithms) developed independently by
the two authors.

2.4 Automorphism of order 5 without fixed points

The group G50 fixes 17 lines. The remaining 340 lines form 68 orbits of length
5. Two types of parallelisms invariant under G50 are possible:

1. Type 1: Parallelisms with

• one fixed spread made of the 17 fixed lines and

• four orbits of five spreads each

2. Type 2: Parallelisms with

• 1 fixed spread with 7 fixed lines and 2 orbits of 5 lines and

• 5 fixed spreads with 2 fixed lines and 3 orbits of 5 lines and

• three orbits of five spreads each

The normalizer N(G50) is a group of order 81600. Since this order is divisible
by 85, point-transitive parallelisms can be expected. We obtain 176 parallelisms
of type 1, and 170 of type 2. The results are summarized in Table 1, where all
the different orders of the full automorphism groups of the obtained parallelisms
are presented in column Aut. In the next three columns we give the number of
parallelisms with this order of the full automorphism group, which are obtained
with G50 and of type 1, with G50 and of type 2, and with G55 .
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2.5 Automorphism of order 5 with 5 fixed points

The group G55 fixes 2 lines. The remaining 355 lines form 71 orbits of length
5. The parallelisms invariant under G55 have:

• one fixed spread containing 2 fixed lines and 3 orbits of 5 lines and
• four orbits of five spreads each
The normalizer N(G55) is a group of order 3600. We construct 27924 par-

allelisms (Table 1). The full automorphism groups of order 20 partition the
spreads in 4 orbits, while those of order 60 - in 3 orbits, so these parallelisms
do not correspond to transitive deficiency one parallelisms.

2.6 Summary

Table 1: The order of the full automorphism group of the parallelisms

Aut \ G5 G50 type 1 G50 type 2 G55 All
5 156 170 27836 28162
10 8 40 48
15 4 12 16
20 30 30
30 8 2 10
60 4 4
All 176 170 27924 28270

The classification results show that there are no transitive deficiency one
parallelisms and no point-transitive parallelisms in PG(3, 4).
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