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Some New Results for Optimal Ternary Linear Codes contains classifications of some strongly optimal codes. The correspon-
dence ends with tables containing classification results for codes that
lliya Bouyukliev and Juriaan Simonis are not strongly optimal.

Abstract—tet ds(n, k) be the maximum possible minimum Ham- Il. THE SOFTWARE TOOLS

ming distance of a temary [n, k, d]-code for given values ofr and There are two main approaches for the classification of codes. The
k. We describe a package for code extension and use this to prove, . . o . . .

some new exact values ofls (n, k). Moreover, we classify the ternary first is theoretical and it is based on algebraic-combinatorial or geo-
[r, k, ds(n, k)]-codes for some values of and k. metrical arguments. This method has been used for the classification
of specific codes or families of codes with specific properties like the
generalized MacDonald codes, the Reed—Muller codes, the Hamming
codes, and the Golay codes. In the nonbinary case, minihypers have
. INTRODUCTION been used to classify projective codes meeting the Griesmer bound.
tFor more information the reader is referred to [21] and [13]. In almost
&l other examples, the authors have used a computer in some steps of
their proofs.

There are many computer packages for linear codes, for instance,
GUAVA, SPLIT, MAGMA, QLC, etc. They provide a construction of
codes with a given structure, computations of some code parameters,
) . . etc., by means of the method of linear programming for finding bounds
largest value ofl for which ag-ary [, k.’ d)-code eX.'StS' A code W!th on theycode parameters. Our goal wasto?jesign aguniversal r%]ethod for
parametergn, k. dq(n, k)] is called (distance)-optimal. Another im-y, . |aqcification of codes. We are not interested in the structure of the

portant problem is to classify all optimal codes with given parametercsodes but only in their parameters. We use restrictions on the possible

of course, this is feasible only if the number of inequivalent codes fonzero weights and the dual distance of the code and its subcodes.
relat|ve_|y small. . . . For the classification and the construction of codes, we use the ex-
In this correspondence, we investigate ternary linear codes. The ¥¥ision of codes with smaller parameters. There are two kind of ex-

tematic research of ternary optimal codes has been initiated by Hill at%%sions. The first is the extension up to length, which is the construc-
Newton in [17]. Now there is complete information @(n) for k < 5 tion of an[n, k, d]-codeC on the basis of a — l’U k— 1, d']-code

and good progress_fdr - 6 . a residual code of), or on the basis of af — i, k, d']-code. The
There are some interesting classification examples of temary co Tond is the extension up to dimension which is the extension of an

meeting the Griesmer bound. A classification of optimal codes of small -, d]-code to arfn + i, k + i, dJ-or [n +i + 1, k + i, d]-code

lengths was given by van Eupen and Lisonek in [12]. They used a g¢7~ i’s a generator matrix for a[ni . d]-code, we ;extendv it to

ometrical approach for the classification of codes of dimensicausd B '

3. In dimensionst and5, their main tool was a computational method

based on finite group action. < * Ii) or < * |14 )

Index Terms—Code extension, optimal codes, ternary linear codes.

Let F; be then-dimensional standard vector space over the fini
field F,. The (Hamming) distance between two vectors pis defined
to be the number of coordinates in which they differgfary linear
[n, k, d]-code is &-dimensional linear subspacefgf with minimum
distanced.

A central problem in coding theory is to fint},(n, k). This is the

In this correspondence, we classify optimal ternary codes for 20 dif- Galo G 0
ferent parameter sets and find some new exact valués(of k). Our
main approach is an algorithm for the extension of codes using thgjfere; is the identity matrix and. is the all-one column vector of
residual codes. Extra information on the codes, such as its dual dist thi.
and weight set, is very important for this algorithm to work effectively. o, algorithm for the second kind of extension is similar to the al-
The algorithm EXTENSION has been used successfully in the Bjorithm for the first kind. So we describe the first one. This algorithm
nary case in [5] and [6]. Using EXTENSION and David Jaffe’s propas two main parts. The first is finding the solutions, and the second
gram language SPLIT, the authors have finished the problem of findiginding the inequivalent solutions amongst them. In the binary case,
th_e exact values of;(n, 8), gnd hr_:lve classified many binary (_:Ode?rinding the solutions is fast enough and it takes up a small part of the
with lengths up tol28 and dimension up 1. We have generalized ¢ompuytation time. For the second part, we only have to deal with per-
this algorithm for the nonbinary case and have realized it in the prgy,iation equivalence.
gram package Q-EXTENSION. ~ The generalization of the binary version of EXTENSION to Q-EX-
In Section II, we describe the package Q-EXTENSION and givPENS|ON was a nontrivial problem. The algorithm consists of many
some information on its complexity. Section Il reports some nonexypalgorithms like computing the weight distribution of a code, the
istence and existence results derived from this package. Moreoveggitk of a matrix, orbits of codewords which generate the code under
the action of a permutation group, and so on. So it is difficult to deter-
mine the complexity of EXTENSION, and even more so of Q-EXTEN-
SION. In the next paragraphs we shall only compare the complexity of
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So Q-EXTENSION contains some new ideas that made it possibitetrix of the code in systematic form. In théh step, we obtain an
to decrease the computation time a few hundred times with respecfite-k+r, r, d]-code. The matrixd can contairi proportional columns

its basic algorithm. onlyifan[n — k 4+ r — ¢, r — 1, d]-code exists. So we can obtain
an upper bound for the number of the proportional columns in each
A. The Construction of Codes interval. Then the complexity in the binary case will be about

Let C. be an|n, k, d]-code and letCy be its residual code .«
Res (C, w) with respect to a codeword of weightv with ]
w < d 4+ [w/q]. In this subsection, we describe how to construct all (min{s/—1, mi—1,1, i} + 1).
[n, k, d]-code< with the set of nonzero weight¥” = {w, ..., ws}
if we know the residual cod&,. The problem of obtaining the codes
C coincides with that of constructing their generator matrices.

Let Go be a generator matrix of te', k — 1, d’']-codeCs. ThenC
has a generator matrix of the following form:

= (min{sy, m1,2, i} + 1)(min{ss, ms,4, i} +1)--

If the investigated code is projective, we have 1 in the last step. In
some cases, the possible number of proportional columns depends on
the minimum distance of the dual code. For example, if we construct a
code with dual distance four, there cannot be proportional columns in
the (k — 1)th step.

bl L2 00 Remark 2: Is it necessary to know the whole veetdo see that
""""" it is not a solution?For any[n, k, d]-code, two codewords have at
G=|[ e Go leastd different coordinates and so they have at mest d equal
coordinates. This is important for optimal codes of large length and
--------- small dimension.
This matrix has two parts, a fixed right-hand one, with rews= 0, Remark 3: What type of generator matrix of the residual code will
uz, ..., ur, and a free left-hand on&;., (from positionl to w = be more suitableThe number of the solutions strongly depends on
n — n'). The first row ofG,, is the all-one vector. the form of the matrixG,. If we use a matrix7, so that the first

We shall describe the algorithm for the binary case. It is easy (Ibpws generate a subcode of dimensiavith minimum effective length
means of exhaustive search) to find how many ones the second, dheong the-dimensional subcodes of the residual code then the number
third, up to thekth row, can contain. Suppose that the second row coof the solutions will be smaller. We make a hierarchy of subcodes such
tainsz2 ones. Without loss of generality, we can put these in thedirst that any of them have a minimum effective length. An open question is
coordinates of the second row@f, . So the columns of the constructedhow to find an optimal solution.
part of matrixG,, are lexicographically ordered. This will be the case
in each step. In each stage, the coordinate inde@sé ..., w) will
be partitioned into intervals corresponding to constant columns.

Suppose that we know the firsst- 1 rows of ... Letus denote them  Remark 5: Restriction on the possible weighfis.find the solu-

Remark 4: The dual distance of the residual code must be equal to
or greater than the dual distance of the code to be constructed.

by i, vz, ..., vi—1. A solutionfor the rowi (i > ) is any vector  tions, we can use additional information on the codes. We can use all
(Iexicographically ordered in the intervals) for which the matrix withhe traditional methods for the restriction of weights. This is an impor-
rows tant part of Jaffe’s language SPLIT in the binary case [18].

(viy wr)y (v2, wa)s ooes (Uit i), (v, i) B. Code Equivalence

generates afn, ¢, d]-code with its nonzero weights in the dét. To In our algorithm, we use two types of equivalences depending on

each solution, we can associate a vedtbwhose length is the number the dimension of the code corresponding to the real solutionyLet
of the intervals and such that its coordinates show us the number of offBd¢2 be two real solutions for theth row with corresponding codes

in each interval. When = #, we call the solutiomeal, otherwise, we Cv1 @ndC,,. These codes are generated from the firsows of G.

call it possible We use a back-track algorithm to find all real solutions/Vhent < k, we say thay, andy: areequivalent up to extensidh

Estimate of the Complexity of the Algorithra basis operation is a 7172(C'1) = Cy., for some permutations, of the firstw coordinates
check whether a vector is a solution or not. The question is how mafijdo2 € Aut (Co). If # = k, we have the usual equivalence between
operations we should perform to obtain all successors of one possibigar codes. _ _ _
solution. Suppose that up to thth step each interval was divided into Let L denote the set of all linear codes. We will use the notation from

two subintervals. Obviously, if any interval was not divided into subir22]-
terValS, we haVe Only one pOSSIbIlIty for |t So we Consider the worst Deﬁnition 6: An invariant over a sel/ is deﬁned to be a mappn‘]g

case. If we haveintervals with lengths,, s», ..., si, the complexity 7, . E such that any two equivalent codes take the same values.

in an exhaustive search#:= (s1 + 1)(s2 +1)--- (s, + 1) opera- ] ) o

tions. LetM := (m1.2, ms.4. ..., mi—1.;) be a possible solution in ~ The use of invariants helps us to determine in an easy way whether

the previous step. To find the next solutions following from this solyWo codes are inequivalent. Any invariant is a global property of the

tion, the complexity will be code. We need to define a local property, which will be a specific char-

acterization of any coordinate position.

S* := (min{s1, my,2} + 1)(min{ss, mgz 4} +1)--- Let C be a code of length. The automorphism grouput (C) of

(min{si—1, mi—,.(} +1). € acts on the set of coordinatés = {1, 2, ..., n} as a group of

permutations and divides it into disjoint orbits so that two coordinates
This idea can be easily extendeﬁd1 to the nonbinary case. The canyare in the same orbit if and only if there exists a permutatifrom
plexity in theq-ary case is about™” . this group for whichr (i) = j.

The following remarks also hold for codes over arbitrary fidids L . .
wing v itrary fidid Definition 7: A signatureS over a setf’ is a map from the set of

Remark 1: How many proportional columns can any interval have®ordinates of’ into F' such thatS(i) = S(j) if i andj are in the
Without loss of generality, we can take the fixed part of the generateame orbit ofAut (C).
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One of the main problems is how to divide the code coordinates intoTheorem 10: No ternary code with parametdf, 6, 22] exists.
disjoint orbits without knowing its automorphism group, only using  Proof: Van Eupen and Lisonek [12] have proved that there
different signatures. As signatures, we use different kind of weight erexist exactly four inequivalent ternaryl5. 5, 8]-codes. Using
merators of the reduced codes. (Reduction is defined a few lines belod@EXTENSION, we see that no one of them can be extended to a
We consider codes with relatively small dimensions and it is easy [&V, 6, 22]-code. O
compute their weight enumerators.

Any signatureS defines an equivalence relation in the coordinate
index set of a cod€ and hence a partitio§i/; (5), ..., I:(S)}. This
partition will match with any other obtained from a ca@eequivalent
toC. Any setl; consists of one or more orbits 6f If we have two dif-
ferent partitions{ I (S+), ..., I+;(S1)} and{I: (S2), ..., I+,(S2)}
we can take the meet partition.

The signatures help us to easily obtain an isomorphism between tw@Recently, an independent proof of this result was given by Hamada
equivalent codes. If the two codes have trivial automorphism groups weal. [14].
can partition all coordinates into different orbits using an appropriate
signature (this is the support splitting algorithm in [22]).

We use the following invariants and signatures in our algorithm.

Theorem 11: No ternary code with parametdes, 6, 16] exists.
Proof: Since no ternary26, 5, 16]-code exists, it follows that
any putative[28, 6, 16]-code has dual distance at le&@stAfter the
extension of thd6, 4, 2; 3]-codes with dual distance 3 we obtain
exactly five codes with parametefrss, 5, 6] and with dual distance
> 3. None of these can be extended @@ 5, 16; 3]-code. O

Theorem 12: No code with parametefds, 6, 30; 3] exists.

Proof: Since no ternary45, 4, 30]-code exists, it follows that
any putative[48, 6, 30]-code has dual distance at ledstSince no
1) If there are intervals of length more tharin the real solution ternary codes with parameters

L e are ) oot e ke e SBIeSSIANG O 5., (1, 5,51, 19,5, . 5.4 7 5., o552
need a vector to show us how many times any coordinate wagXist, it follows that any putativg4s, 6, 30]-code does not contain
taken. This vector is a signature, and if we order it lexicographgodewords of weights31, 34, 35. 40, 41, or 43. Van Eupen and

cally, is an invariant for the code. With this reduction, we usuall{isonek have proved that there exist exactly seven inequivalent ternary
destroy the optimality of the corresponding code. [18, 5, 10]-codes. All of them have dual distande But no one of

2]
2) The weight enumerator of,, is another invariant of the code. them can be extended 8, 6, 30]-code. -

3) For each coordinate we can find the weight enumerator of theRecently, an independent proof of this result was given by Hill and
code without this coordinate. These polynomials are signaturé@nes [16].
for the code, and |exicographica”y ordered they present an in_The next Corollary follows from the above theorems and Brouwer's

variant. table [7].

We use a subsell of C which generates the code as a vector space Corollary 13: ds(35, 6) = 20, ds(37, 6) = 21, d3(28, 6) = 15,
and which is stable under the actionfiit (C). We preferably takd/ ~ andds (48, 6) = 29.
as th(_a set of the cgdewo_rds of minimum weight. Qur_alg_orlth_m USes aNrpaorem 14: There exists a unique terada, 7, 12] code.
algorithm for matrix equivalence, and we extend it with invariants and

. Proof: The standard residual code argument tells us that any
signatures.

putative [23, 7, 12]-code does not contain codewords of weights
Remark 8: The procedure for equivalence of matrices contains &, 14, 16, or 17. There exist at most 35fL1, 6, 4]-codes and a

source code of Kapralov. We also use some procedures from the ptaique([11. 6, 5]-code. Using the restriction on the weights and these
gram package QLC [2]. codes of lengthL1l, we obtain a unique ternaf23, 7, 12]-code. A

generator matrix of this code is
11111111111100000000000

lll. REsuLTS 11112222000011110000000

We have two kinds of results. The first one consists of bounds for 2000122022012001110000

the functionds (n, k), and the second one of classification results. 21200200212001201201000

22000011012012102200100

A. New Bounds fods(n, k) 02122212102012202100010

Bounds ford;(n, k) for 1 < k < n < 243 have been published in 01020121122002200200001

Brouwer's tables in [7L and its weight enumerator is

We have proved the nonexistence of several codes with given pa- 14472212 410202 + 6682 + 26221 O

rameters and in this way we have found new upper bounds for the func-
tionds(n, k). We also have constructed a ternary code with parameters .
[23, 7, 12]. The existence of this code proves that23, 7) = 12. B. Strongly Optimal Codes
Ifan[n + 1, k+ 1, d]-code exists, we can obtain gn %, d]-code
beK/ shortening it in one position. Similarly, if gn + 1, &, d + 1]-code
ists, we can obtain gn, k, d]-code by puncturing it. So, following
[8], we define a lineafn, k, d]-code to bestrongly optimaif no [n +
1, k+ 1, d]-codes offn + 1, k, d 4+ 1]-codes exist.
In the next theorems we classify some ternary strongly optimal
codes.

Theorem 9: No ternary code with parametdfb, 6, 21] exists.
Proof: Van Eupen and Lisonek [12] have proved that there exi
exactly 236 inequivalent ternafy4, 5, 7]-codes. Since there are no
ternary[13, 5, 7]-and[7, 5, 3]-codes, a hypotheticg5, 6, 21]-code
cannot contain vectors of weight® and28. Using Q-EXTENSION
we infer that none of these codes can be extende{B@ &, 21]-code
without codewords of weight&2 and28. O
Theorem 15: There exists a unique terngip, 5, 18]-code.

1 An updated version can be found on his regularly updated web page at Proof: Using Q-EXTENSION, itis easy to verify that there exist
http://www.win.tue.nl/math/dw/voorlincod.html. exactly eight ternanf11, 4, 6]-codes. After the extension of these
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TABLE | TABLE 11l
BOUNDS FORd3(n, k) FORk = 4, 5, 6 AND CLASSIFICATION OF SCHEME OF THEEXTENSIONS
SOME OPTIMAL CODES 351 — DB.3.2 = (1,40
g=3 k=4 k=5 k=6 331 5 63,2 =
n d number d number d number —  [12,4,6]
6| 2 p) 1 3,31 — 1[6,3,3]
71 3 412 2 2 3,31 — [834
8| 4 3[12) 3 319 2 - [20,4,12]
9| 5 1]9 4 119 3 3[12] (3,3,1] — [8335]
| 6 109 5 1[12] 4 119 331 — [93,5 23,4, 14]
11 6 8 6 1 Dual Golay 5 1 Golay N
12 6 361 6 9 6 1 Extended Golay 13,3,1 — [9,3,6] [24,4,15]
13 7 72 [12] 6 6 10 2,21 — 422
4] 8 14[17 7236 12 6 - [10,3,6] — [28,4,18
15 9 3[12] 8 412 7 22 2,21 - [423
16 9 320 9 112 7 221 — 523 — [1237
17 10 18 [12] 9 8 N [3374121]
18 11 2 [12] 10 7[12] 9 2,2,1] — [42,3] — [12,3,8
19| 12 1[13] 11 212 9 2,2,1] — 1523 - [13,3,§
20 12 85 12 2 (15 10 374,24
212 12 1 2,21 — (423 — [13,3,9]
22| 13 12 12 5129
23| 14 165 13 12 o
4| 15 17 14 444 13 221 - 624 - [16310 - 146,4,30]
25 | 16 1[13] 15 23 14 2 i S 64 = 550
ol A < 152 331 = 532 = [10.43 5,19
(13] 16 11 15 .
o I n o . 4,41 — [10,4,6] 125,5,15]
30] 19 8[3 18 17 [27,5,16]
31| 20 2 {13% 18 18 3,3, — [532 — [11,4,6] — [28,5,17
2 21 113 19 18 29,5,18
33| 21 74 20 18-19 33,1 — 163,38 — [13,4,7 — [34,521
34| 22 313 21 442 19-20 3.3,1] — 633 — [1448 — [37,523
35| 25 113 71 20 38,5,24
36| 24 103 22 20 331 — (734 — [17410 — [47,530
37| 24 17 23 2 21 441 - [541]
38| 25 113 24 1 22 - 152 - [13,6,6]
39| 26 1[13] 24 23 4,41 — [542
40| 27  1[(13) 24 2 4,41 — [541]
41| 27 25 24 - 353 — [156,7
a2 | 27 26 25 4,41 — [542]
43| 27 27 26 4471 = 7642 — [1L55
44| 28 27 27 - [25,6,14)
45 | 29 243 28 27 55,1 — [11,56] 26, 6,15
46| 30 27 29 27-28 5,5,1] — [6,51]
47| 30 30 2 28 - [8,6,2] — [13,7,9]
48| 31 30 29 551 — [6,52]
5,51 — [7,52] — [12,6,5]
- [27,7,15]
6,6,1] — [12,6,6]
TABLE I [57 5, 1] — [6, 5, 1]
CLASSIFICATION OF SOME TERNARY CODES - [86,2 — [18,7,5] — [27,8,14]
OF DIMENSION AT LEAST 7 5,51 — [6,5,2] [28,8,15]
[n,k,d] | number
[13,7,5] 6
g?; }i} ; Proof: Van Eupen and Lisonek [12] have classified the ternary
[27,8,14] 1 [14, 4, 8]-codes. Using Q-EXTENSION, we obtain a unique
28,8, 15] 1 [38, 5, 24]-code. This code was constructed in [1]. O

Theorem 19:There exist exactly two inequivalent ternary
47, 5, 30]-codes.
Proof: Van Eupen and Lisonek [12] have classified the ternary
[17, 4, 10]-codes. After extension of these codes, we obtain exactly
Remark 16: Thisis the second example of a unique strongly optimalvo inequivalenf47, 5, 30]-codes. One of these codes was constructed
code withd < ¢*~* which is not projective. The first example wasby van Eupen [9], and the other by Boukliev [3]. O
given by Hill and van Eupen in [11].

codes, we obtain a unique code of paramefg9s 5, 18]. Hence this [
code is unique. It was constructed by van Eupen [10]. O

Theorem 20: There exists a unique ternary code with parameters
Theorem 17: There exist exactly 442 ternary codes with parametefgs, 8, 15].
[34, 5, 21]. Proof: There exist exactly six ternat3, 7, 5]-codes. Exten-
Proof: Van Eupen and Lisonek [12] have classified the ternarsion leads to a uniques, 8, 15]-ternary code. |
[13, 4, 7]-codes. After extension of these codes we obtain exactly
442 self-orthogonal inequivalens4, 5, 21]-codes. Recently, it has c. Other Results
been shown by Jones in his Ph.D. dissertation [19] that all ternary

[34, 5, 21]-codes are divisible and hence are self-orthogonal. [ In this subsection, we give some classification results of optimal
> b .

codes which are not strongly optimal. We describe these results
Theorem 18: There exists a unique terna3g, 5, 24]-code. briefly in tabular form. We summarize all known results for functions
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ds(n, 4), ds(n, 3), andds(n, 6) for n < 48 in Table I. The number [22] N. Sendrier, “Finding the permutation between equivalent codes: The
of all inequivalentin < 48, k = 4, 5, 6, d3(n, k)] codes is given support splitting algorithm,TEEE Trans. Inform. Theoryol. 46, pp.
when this is known. The new results are in bold type. In Table 11, ~ 1193-1203, July 2000.

we give the number of all inequivalefi, &, ds(n, k)] codes for

k = 7 and8, andn = 13, 23, 27, 28. In Table Ill, we present a

scheme for the hierarchy of the extensions which we use to produce

our classification results given in Tables | and 1.

Remark 21: Codes with the same number of words for each nonzero Optimal Covering Polynomial Sets Correcting Three

weight (BWD codes) were studied by Langevin and Zanotti [20] (see Errors for Binary Cyclic Codes
also [4]). Here, we classify ternafg0, 4, 12]-codes with weight dis-
tribution Ag = 1, A2 = A5 = 40. There are exactly four inequiva- Wonjin Sung and John T. CoffeMember, IEEE

lent codes with these parameters and weight distribution. Two of them
are not cyclic. It follows that there are BWD codes which cannot be o o | | method | .

i inlicati Abstract—The covering polynomial method is a generalization of error-
constructed via a subgroup of the multiplicative grdﬁgp ' trapping decoding and is a simple and effective way to decode cyclic codes.
For cyclic codes of rateR < 2/, covering polynomials of a single term
suffice to correct up to + errors, and minimal sets of covering polynomials
are known for various such codes. In this correspondence, the caseof=
[1] G. Bogdanova and I. Boukliev, “New linear codes of dimension 5 oved and of binary cyclic codes of rateR > 2/3 is investigated. Specifically,

GF(3),” in Proc. 4th Int. Workshop ACCT-|\Wovgorod, Russia, Sept. a closed-form specification is given for minimal covering polynomial sets

11-17, 1994, pp. 41-43. for codes of rate2/3 < R < 11/15 for all sufficiently large code length
[2] G. Bogdanova, Pl. Christov, and S. Kapralov, “The new version oft; the resulting number of covering polynomials is, if R = 2/3 4 p

QLC—A computer program for linear codes studying,”Rmoc. Int. with p > 0, equaltonp + 2./mp + (1/2) log,(n/p) + O(1),

REFERENCES

Workshop OCRT'95S0zopol, Bulgaria, 1995, pp. 11-14. where ¢ = (1 4+ +/5) /2. For all codes correcting up to three errors, the
[3] I. Boukliev, “New ternary linear codes,” iRroc. Int. Symp. Information number of covering polynomials is at leastnp + 2,/7p + O(log n);
Theory Whistler, BC, Canada, 1995, p. 135. covering polynomial sets achieving this bound (and thus withirO(log =)
[4] ——, “Cyclotomic description of some optimal codes,” roc. Int.  of the minimum) are presented in closed-form specifications for rates in the
Workshop ACC TPskov, Russia, 1998, pp. 52-56. range11/15 < R < 3/4.
[5] 1. Bouyukliev and D. Jaffe, “Optimal binary linear codes of dimension . . . .
at most seven,Discr Math vol. 226, pp. 51-70, 2001. Index Terms—Covering polynomial, cyclic codes, error-trapping

[6] I. Bouyukliev, D. Jaffe, and V. Vavrek, “The smallest length of eight-decoding, Kasami decoding.
dimensional binary linear codes with prescribed minimum distance,”
IEEE Trans. Inform. Theoryol. 46, pp. 1539-1544, July 2000.

[7] A. E. Brouwer, “Bounds on the size of linear codes,Hiandbook of |. INTRODUCTION
Coding TheoryV. Pless and W. C. Huffman, Eds. Amsterdam, The . . . .
Netherlands: Elsevier, 1998. ISBN:0-444-50 088-X [Online] Available: ErTor-trapping decoding [7], [9], [12] is one of the simplest schemes
http://www.win.tue. nl/math/dw/voorlincod.html. to decode cyclic codes of rate < 1/7, wherer is the maximum

(8] S. M. Dodunekov and J. Simonis, “Constructions of optimal lineasumber of errors to be corrected. It identifies and corrects any cor-
codes,” in Numbers, Information and ComplexityNorwell, MA:  yactaple error pattern of 4n, k] cyclic code if there is a set éf(cycli-

Kluwer, 2000, pp. 245-263. I ti f bols in th tt
[9] M.van Eupen, “Some new results for ternary linear codes of dimensiorft y) consecutive error-free symbols in the error pattern.

and 6,”|EEE Trans. Inform. Theorwol. 41, pp. 2048-2051, Nov. 1995.  Several variations of error-trapping decoding have been proposed to
[10] —, “Five new optimal ternary linear codes|EEE Trans. Inform. extend its usefulness to codes of ré&e> 1/7, e.g., permutation de-
Theory vol. 40, p. 193, Jan. 1994. coding [8], [1], [3], [17], systematic coset search [11], [6], and a sim-

[11] M. van Eupen and R. Hill, “An optimal ternary [69, 5, 45] code an : . : :
related codes,Des., Codes, Cryptogol. 4, pp. 271282, 1994. OIIar approach using two complementary information sets [15]. The cov

[12] M. van Eupen and P. Lisonek, “Classification of some optimal terna@ring polynpmial methoq suggested by Kasar_ni [5] quifies error-trap-
linear codes of small lengthDes., Codes, Cryptogrol. 10, pp. 63—84, ping decoding by guessing the error patterns information sets, con-

1997. sisting of all sets of: (cyclically) consecutive symbols. These guesses

[13] N.Hamada, “A survey of recent work on characterization ofminihyperéan be represented by a set of polynomials, catieeering polyno-

'Jn ggréﬁi#)lﬁg:mgggég&g?a{g 05; Slgfﬂ'gf’t?gg%.”esmer boundmigls and thg decoder co_mplexity i_s determir_leql by the number Qf re-
[14] N. Hamada, T. Helleseth, H. M. Martinsen, and @. Ytrehus, “There @uired covering polynomials. Detailed descriptions of the algorithm
no ternary[28, 6, 16] code,”|[EEE Trans. Inform. Theorwol. 46, pp. can be also found in many textbooks [9], [7], [10]. We will assume that
18] ’{1553;:”5;45 J_L;'ng?eos-eth and @. Ytrehus, “There are exactly t the reader is familiar with the covering polynomial algorithm, and refer
nonequivalent[20, 5, 12; 3]-code#\ts Comb.vol. 35, pp. 3-14, 1993.\,\[[% these teXtPOOkS for deFaIIS' .
[16] R. Hill and C. Jones, “The nonexistence of ternary [47, 6, 29] codes,” 1he covering polynomial method can be applied to codes of rate
Information from Brouwer's database [7]. R < 2/7 by using a set of polynomials with a single term (called
[17] R. Hilland D. E. Newton, “Optimal ternary linear code8gs., Codes,
Cryptogr, vol. 2, pp. 137-157, 1992.
[18] D.B. Jaffe. (Version 0.4,1997, Apr.) Binary linear codes: New results on Manuscript received January 20, 2000; revised August 29, 2001. The material
nonexistence. Dept. Math. Statist., Univ. Nebraska, Lincoln. [Onlinein this correspondence was presented in part at the IEEE International Sympo-

Available: http://www.math.unl.edu/djaffe sium on Information Theory, Trondheim, Norway, 1994.
[19] C. M. Jones, “Optimal ternary linear codes,” Ph.D. dissertation, Univ. W. Sung is with the Department of Electronic Engineering, Sogang Univer-
Salford, Salford, U.K., 2000. sity, Seoul, 121-742, Korea (e-mail: wsung@sogang.ac.kr).

[20] P.Langevinand J. P. Zanotti, “Linear codes with balanced weight distri- J. T. Coffey is with the Wireless Networking Business Unit, Texas Instru-
bution,” Appl. Algebra Eng. Comm. Computol. 6, pp. 299-307, 1995. ments, Santa Rosa, CA 95401 USA (e-mail: coffey@ti.com).

[21] F. J. MacWilliams and N. J. A. Sloan€he Theory of Error-Correcting Communicated by R. M. Roth, Associate Editor for Coding Theory.
Codes Amsterdam, The Netherlands: North-Holland, 1977. Publisher Item Identifier S 0018-9448(02)01943-0.

0018-9448/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Nedyalko Nedyalkov. Downloaded on June 7, 2009 at 10:45 from IEEE Xplore. Restrictions apply.



