
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002 981

Some New Results for Optimal Ternary Linear Codes

Iliya Bouyukliev and Juriaan Simonis

Abstract—Let () be the maximum possible minimum Ham-
ming distance of a ternary []-code for given values of and

. We describe a package for code extension and use this to prove
some new exact values of (). Moreover, we classify the ternary
[()]-codes for some values of and .

Index Terms—Code extension, optimal codes, ternary linear codes.

I. INTRODUCTION

Let n

q be then-dimensional standard vector space over the finite
field q. The (Hamming) distance between two vectors ofn

q is defined
to be the number of coordinates in which they differ. Aq-ary linear
[n; k; d]-code is ak-dimensional linear subspace ofnq with minimum
distanced.

A central problem in coding theory is to finddq(n; k). This is the
largest value ofd for which aq-ary [n; k; d]-code exists. A code with
parameters[n; k; dq(n; k)] is called (distance)-optimal. Another im-
portant problem is to classify all optimal codes with given parameters.
Of course, this is feasible only if the number of inequivalent codes is
relatively small.

In this correspondence, we investigate ternary linear codes. The sys-
tematic research of ternary optimal codes has been initiated by Hill and
Newton in [17]. Now there is complete information ond3(n) for k � 5
and good progress fork = 6.

There are some interesting classification examples of ternary codes
meeting the Griesmer bound. A classification of optimal codes of small
lengths was given by van Eupen and Lisonek in [12]. They used a ge-
ometrical approach for the classification of codes of dimensions2 and
3. In dimensions4 and5, their main tool was a computational method
based on finite group action.

In this correspondence, we classify optimal ternary codes for 20 dif-
ferent parameter sets and find some new exact values ofd3(n; k). Our
main approach is an algorithm for the extension of codes using their
residual codes. Extra information on the codes, such as its dual distance
and weight set, is very important for this algorithm to work effectively.

The algorithm EXTENSION has been used successfully in the bi-
nary case in [5] and [6]. Using EXTENSION and David Jaffe’s pro-
gram language SPLIT, the authors have finished the problem of finding
the exact values ofd2(n; 8), and have classified many binary codes
with lengths up to128 and dimension up to7. We have generalized
this algorithm for the nonbinary case and have realized it in the pro-
gram package Q-EXTENSION.

In Section II, we describe the package Q-EXTENSION and give
some information on its complexity. Section III reports some nonex-
istence and existence results derived from this package. Moreover, it

Manuscript received August 9, 2000; revised March 7, 2001. This work was
supported in part by the Bulgarian National Science Foundation under Contract
MM-901/1999.

I. Bouyukliev is with the Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences, 500 Veliko Tarnovo, Bulgaria (e-mail: stefka_illya@
yahoo.com).

J. Simonis is with the Department of Mediamatics, Faculty of Information
Technology and Systems, Delft University of Technology, 2600 GA Delft, The
Netherlands (e-mail: J.Simonis@its.tudelft.nl).

Communicated by S. Litsyn. Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(02)01936-3.

contains classifications of some strongly optimal codes. The correspon-
dence ends with tables containing classification results for codes that
are not strongly optimal.

II. THE SOFTWARE TOOLS

There are two main approaches for the classification of codes. The
first is theoretical and it is based on algebraic-combinatorial or geo-
metrical arguments. This method has been used for the classification
of specific codes or families of codes with specific properties like the
generalized MacDonald codes, the Reed–Muller codes, the Hamming
codes, and the Golay codes. In the nonbinary case, minihypers have
been used to classify projective codes meeting the Griesmer bound.
For more information the reader is referred to [21] and [13]. In almost
all other examples, the authors have used a computer in some steps of
their proofs.

There are many computer packages for linear codes, for instance,
GUAVA, SPLIT, MAGMA, QLC, etc. They provide a construction of
codes with a given structure, computations of some code parameters,
etc., by means of the method of linear programming for finding bounds
on the code parameters. Our goal was to design a universal method for
the classification of codes. We are not interested in the structure of the
codes but only in their parameters. We use restrictions on the possible
nonzero weights and the dual distance of the code and its subcodes.

For the classification and the construction of codes, we use the ex-
tension of codes with smaller parameters. There are two kind of ex-
tensions. The first is the extension up to length, which is the construc-
tion of an[n; k; d]-codeC on the basis of an[n�w; k � 1; d0]-code
(a residual code ofC), or on the basis of an[n � i; k; d0]-code. The
second is the extension up to dimension which is the extension of an
[n; k; d]-code to an[n + i; k + i; d]- or [n + i + 1; k + i; d]-code.
If G is a generator matrix for an[n; k; d]-code, we extend it to

� Ii

G 0
or

� 1 Ii

G 0

whereIi is the identity matrix and1 is the all-one column vector of
lengthi.

Our algorithm for the second kind of extension is similar to the al-
gorithm for the first kind. So we describe the first one. This algorithm
has two main parts. The first is finding the solutions, and the second
is finding the inequivalent solutions amongst them. In the binary case,
finding the solutions is fast enough and it takes up a small part of the
computation time. For the second part, we only have to deal with per-
mutation equivalence.

The generalization of the binary version of EXTENSION to Q-EX-
TENSION was a nontrivial problem. The algorithm consists of many
subalgorithms like computing the weight distribution of a code, the
rank of a matrix, orbits of codewords which generate the code under
the action of a permutation group, and so on. So it is difficult to deter-
mine the complexity of EXTENSION, and even more so of Q-EXTEN-
SION. In the next paragraphs we shall only compare the complexity of
some parts in the binary and in the nonbinary case. The search of solu-
tions in the nonbinary case increases exponentially with the field size.
Moreover, for binary codes we can use a bit presentation of the vec-
tors, which is not the case for nonbinary codes. In the binary case, two
codes are equivalent if and only if one can be obtained from the other
by permuting the coordinates. In the nonbinary case, we have in addi-
tion the multiplication of the elements in a given position by a nonzero
element of q and application of a field automorphism to the elements
in all coordinate positions.

0018-9448/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Nedyalko Nedyalkov. Downloaded on June 7, 2009 at 10:45 from IEEE Xplore. Restrictions apply.

982 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

So Q-EXTENSION contains some new ideas that made it possible
to decrease the computation time a few hundred times with respect to
its basic algorithm.

A. The Construction of Codes

Let Cx be an [n; k; d]-code and letC0 be its residual code
Res (C; w) with respect to a codeword of weightw with
w < d + dw=qe. In this subsection, we describe how to construct all
[n; k; d]-codesC with the set of nonzero weightsW = fw1; . . . ; wsg
if we know the residual codeC0. The problem of obtaining the codes
C coincides with that of constructing their generator matrices.

LetG0 be a generator matrix of the[n0; k� 1; d0]-codeC0. ThenC
has a generator matrix of the following form:

G =

1 1 � � � 1 0 � � � 0 0

� � � � � � � � �

� � � � � � � � � G0

� � � � � � � � �

:

This matrix has two parts, a fixed right-hand one, with rowsu1 = 0;
u2; . . . ; uk; and a free left-hand one,Gw (from position1 to w =
n � n0). The first row ofGw is the all-one vector.

We shall describe the algorithm for the binary case. It is easy (by
means of exhaustive search) to find how many ones the second, the
third, up to thekth row, can contain. Suppose that the second row con-
tainsx2 ones. Without loss of generality, we can put these in the firstx2
coordinates of the second row ofGw . So the columns of the constructed
part of matrixGw are lexicographically ordered. This will be the case
in each step. In each stage, the coordinate index set(1; 2; . . . ; w) will
be partitioned into intervals corresponding to constant columns.

Suppose that we know the firstt�1 rows ofGw . Let us denote them
by v1; v2; . . . ; vt�1. A solutionfor the rowi (i � t) is any vectorv
(lexicographically ordered in the intervals) for which the matrix with
rows

(v1; u1); (v2; u2); . . . ; (vt�1; ut�1); (v; ui)

generates an[n; t; d]-code with its nonzero weights in the setW . To
each solution, we can associate a vectorM whose length is the number
of the intervals and such that its coordinates show us the number of ones
in each interval. Wheni = t, we call the solutionreal, otherwise, we
call it possible. We use a back-track algorithm to find all real solutions.

Estimate of the Complexity of the Algorithm:A basis operation is a
check whether a vector is a solution or not. The question is how many
operations we should perform to obtain all successors of one possible
solution. Suppose that up to therth step each interval was divided into
two subintervals. Obviously, if any interval was not divided into subin-
tervals, we have only one possibility for it. So we consider the worst
case. If we havel intervals with lengthss1; s2; . . . ; sl, the complexity
in an exhaustive search isS := (s1 + 1)(s2 + 1) � � � (sl + 1) opera-
tions. LetM := (m1; 2; m3; 4; . . . ; ml�1; l) be a possible solution in
the previous step. To find the next solutions following from this solu-
tion, the complexity will be

S� := (minfs1; m1; 2g+ 1)(minfs3; m3; 4g+ 1) � � �

(minfsl�1; ml�1; lg+ 1):

This idea can be easily extended to the nonbinary case. The com-
plexity in theq-ary case is aboutS� .

The following remarks also hold for codes over arbitrary fieldsq .

Remark 1: How many proportional columns can any interval have?
Without loss of generality, we can take the fixed part of the generator

matrix of the code in systematic form. In therth step, we obtain an
[n�k+r; r; d]-code. The matrixG can containi proportional columns
only if an [n � k + r � i; r � 1; d]-code exists. So we can obtain
an upper bound for the number of the proportional columns in each
interval. Then the complexity in the binary case will be about

S�� = (minfs1; m1; 2; ig+ 1)(minfs3; m3; 4; ig+ 1) � � �

(minfsl�1; ml�1; l; ig+ 1):

If the investigated code is projective, we havei = 1 in the last step. In
some cases, the possible number of proportional columns depends on
the minimum distance of the dual code. For example, if we construct a
code with dual distance four, there cannot be proportional columns in
the (k � 1)th step.

Remark 2: Is it necessary to know the whole vectorv to see that
it is not a solution?For any [n; k; d]-code, two codewords have at
leastd different coordinates and so they have at mostn � d equal
coordinates. This is important for optimal codes of large length and
small dimension.

Remark 3: What type of generator matrix of the residual code will
be more suitable?The number of the solutions strongly depends on
the form of the matrixG0. If we use a matrixG0 so that the firstt
rows generate a subcode of dimensiontwith minimum effective length
among thet-dimensional subcodes of the residual code then the number
of the solutions will be smaller. We make a hierarchy of subcodes such
that any of them have a minimum effective length. An open question is
how to find an optimal solution.

Remark 4: The dual distance of the residual code must be equal to
or greater than the dual distance of the code to be constructed.

Remark 5: Restriction on the possible weights.To find the solu-
tions, we can use additional information on the codes. We can use all
the traditional methods for the restriction of weights. This is an impor-
tant part of Jaffe’s language SPLIT in the binary case [18].

B. Code Equivalence

In our algorithm, we use two types of equivalences depending on
the dimension of the code corresponding to the real solution. Lety1
andy2 be two real solutions for thetth row with corresponding codes
Cy andCy . These codes are generated from the firstt rows ofG.
Whent < k, we say thaty1 andy2 areequivalent up to extensionif
�1�2(Cy) = Cy for some permutations�1 of the firstw coordinates
and�2 2 Aut (C0). If t = k, we have the usual equivalence between
linear codes.

LetL denote the set of all linear codes. We will use the notation from
[22].

Definition 6: An invariant over a setE is defined to be a mapping
L! E such that any two equivalent codes take the same values.

The use of invariants helps us to determine in an easy way whether
two codes are inequivalent. Any invariant is a global property of the
code. We need to define a local property, which will be a specific char-
acterization of any coordinate position.

Let C be a code of lengthn. The automorphism groupAut (C) of
C acts on the set of coordinatesIn = f1; 2; . . . ; ng as a group of
permutations and divides it into disjoint orbits so that two coordinates
i, j are in the same orbit if and only if there exists a permutation� from
this group for which�(i) = j.

Definition 7: A signatureS over a setF is a map from the set of
coordinates ofC into F such thatS(i) = S(j) if i andj are in the
same orbit ofAut (C).

Authorized licensed use limited to: Nedyalko Nedyalkov. Downloaded on June 7, 2009 at 10:45 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002 983

One of the main problems is how to divide the code coordinates into
disjoint orbits without knowing its automorphism group, only using
different signatures. As signatures, we use different kind of weight enu-
merators of the reduced codes. (Reduction is defined a few lines below.)
We consider codes with relatively small dimensions and it is easy to
compute their weight enumerators.

Any signatureS defines an equivalence relation in the coordinate
index set of a codeC and hence a partitionfI1(S); . . . ; It(S)g. This
partition will match with any other obtained from a codeC0 equivalent
to C. Any setIj consists of one or more orbits ofC. If we have two dif-
ferent partitionsfI1(S1); . . . ; It (S1)g andfI1(S2); . . . ; It (S2)g
we can take the meet partition.

The signatures help us to easily obtain an isomorphism between two
equivalent codes. If the two codes have trivial automorphism groups we
can partition all coordinates into different orbits using an appropriate
signature (this is the support splitting algorithm in [22]).

We use the following invariants and signatures in our algorithm.

1) If there are intervals of length more than1 in the real solution
y (there are equal coordinates), we take one representative from
each coordinate. We call this the reduced codeCy . However, we
need a vectorz to show us how many times any coordinate was
taken. This vector is a signature, and if we order it lexicographi-
cally, is an invariant for the code. With this reduction, we usually
destroy the optimality of the corresponding code.

2) The weight enumerator ofCy is another invariant of the code.

3) For each coordinate we can find the weight enumerator of the
code without this coordinate. These polynomials are signatures
for the code, and lexicographically ordered they present an in-
variant.

We use a subsetM of C which generates the code as a vector space
and which is stable under the action ofAut (C). We preferably takeM
as the set of the codewords of minimum weight. Our algorithm uses an
algorithm for matrix equivalence, and we extend it with invariants and
signatures.

Remark 8: The procedure for equivalence of matrices contains a
source code of Kapralov. We also use some procedures from the pro-
gram package QLC [2].

III. RESULTS

We have two kinds of results. The first one consists of bounds for
the functiond3(n; k), and the second one of classification results.

A. New Bounds ford3(n; k)

Bounds ford3(n; k) for 1 � k � n � 243 have been published in
Brouwer’s tables in [7].1

We have proved the nonexistence of several codes with given pa-
rameters and in this way we have found new upper bounds for the func-
tiond3(n; k). We also have constructed a ternary code with parameters
[23; 7; 12]. The existence of this code proves thatd3(23; 7) = 12.

Theorem 9: No ternary code with parameters[35; 6; 21] exists.
Proof: Van Eupen and Lisonek [12] have proved that there exist

exactly 236 inequivalent ternary[14; 5; 7]-codes. Since there are no
ternary[13; 5; 7]- and[7; 5; 3]-codes, a hypothetical[35; 6; 21]-code
cannot contain vectors of weights22 and28. Using Q-EXTENSION
we infer that none of these codes can be extended to a[35; 6; 21]-code
without codewords of weights22 and28.

1 An updated version can be found on his regularly updated web page at
http://www.win.tue.nl/math/dw/voorlincod.html.

Theorem 10: No ternary code with parameters[37; 6; 22] exists.
Proof: Van Eupen and Lisonek [12] have proved that there

exist exactly four inequivalent ternary[15; 5; 8]-codes. Using
Q-EXTENSION, we see that no one of them can be extended to a
[37; 6; 22]-code.

Theorem 11: No ternary code with parameters[28; 6; 16] exists.
Proof: Since no ternary[26; 5; 16]-code exists, it follows that

any putative[28; 6; 16]-code has dual distance at least3. After the
extension of the[6; 4; 2; 3]-codes with dual distance� 3 we obtain
exactly five codes with parameters[15; 5; 6] and with dual distance
� 3. None of these can be extended to a[26; 5; 16; 3]-code.

Recently, an independent proof of this result was given by Hamada
et al. [14].

Theorem 12: No code with parameters[48; 6; 30; 3] exists.
Proof: Since no ternary[45; 4; 30]-code exists, it follows that

any putative[48; 6; 30]-code has dual distance at least4. Since no
ternary codes with parameters

[17; 5; 10]; [14; 5; 8]; [13; 5; 7]; [8; 5; 4]; [7; 5; 3]; or [5; 5; 2]

exist, it follows that any putative[48; 6; 30]-code does not contain
codewords of weights31; 34; 35; 40; 41; or 43. Van Eupen and
Lisonek have proved that there exist exactly seven inequivalent ternary
[18; 5; 10]-codes. All of them have dual distance4. But no one of
them can be extended to[48; 6; 30]-code.

Recently, an independent proof of this result was given by Hill and
Jones [16].

The next corollary follows from the above theorems and Brouwer’s
table [7].

Corollary 13: d3(35; 6) = 20, d3(37; 6) = 21, d3(28; 6) = 15,
andd3(48; 6) = 29.

Theorem 14: There exists a unique ternary[23; 7; 12] code.
Proof: The standard residual code argument tells us that any

putative [23; 7; 12]-code does not contain codewords of weights
13; 14; 16; or 17. There exist at most 354[11; 6; 4]-codes and a
unique[11; 6; 5]-code. Using the restriction on the weights and these
codes of length11, we obtain a unique ternary[23; 7; 12]-code. A
generator matrix of this code is

11111111111100000000000

11112222000011110000000

2000122022012001110000

21200200212001201201000

22000011012012102200100

02122212102012202100010

01020121122002200200001

and its weight enumerator is

1 + 472z12 + 1020z15 + 668z18 + 26z21

B. Strongly Optimal Codes

If an [n+ 1; k+ 1; d]-code exists, we can obtain an[n; k; d]-code
by shortening it in one position. Similarly, if an[n+1; k; d+1]-code
exists, we can obtain an[n; k; d]-code by puncturing it. So, following
[8], we define a linear[n; k; d]-code to bestrongly optimalif no [n+
1; k + 1; d]-codes or[n + 1; k; d+ 1]-codes exist.

In the next theorems we classify some ternary strongly optimal
codes.

Theorem 15: There exists a unique ternary[29; 5; 18]-code.
Proof: Using Q-EXTENSION, it is easy to verify that there exist

exactly eight ternary[11; 4; 6]-codes. After the extension of these

Authorized licensed use limited to: Nedyalko Nedyalkov. Downloaded on June 7, 2009 at 10:45 from IEEE Xplore. Restrictions apply.

984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

TABLE I
BOUNDS FORd (n; k) FOR k = 4; 5; 6 AND CLASSIFICATION OF

SOME OPTIMAL CODES

TABLE II
CLASSIFICATION OF SOME TERNARY CODES

OF DIMENSION AT LEAST 7

codes, we obtain a unique code of parameters[29; 5; 18]. Hence this
code is unique. It was constructed by van Eupen [10].

Remark 16: This is the second example of a unique strongly optimal
code withd < qk�1 which is not projective. The first example was
given by Hill and van Eupen in [11].

Theorem 17: There exist exactly 442 ternary codes with parameters
[34; 5; 21].

Proof: Van Eupen and Lisonek [12] have classified the ternary
[13; 4; 7]-codes. After extension of these codes we obtain exactly
442 self-orthogonal inequivalent[34; 5; 21]-codes. Recently, it has
been shown by Jones in his Ph.D. dissertation [19] that all ternary
[34; 5; 21]-codes are divisible and hence are self-orthogonal.

Theorem 18: There exists a unique ternary[38; 5; 24]-code.

TABLE III
SCHEME OF THEEXTENSIONS

Proof: Van Eupen and Lisonek [12] have classified the ternary
[14; 4; 8]-codes. Using Q-EXTENSION, we obtain a unique
[38; 5; 24]-code. This code was constructed in [1].

Theorem 19: There exist exactly two inequivalent ternary
[47; 5; 30]-codes.

Proof: Van Eupen and Lisonek [12] have classified the ternary
[17; 4; 10]-codes. After extension of these codes, we obtain exactly
two inequivalent[47; 5; 30]-codes. One of these codes was constructed
by van Eupen [9], and the other by Boukliev [3].

Theorem 20: There exists a unique ternary code with parameters
[28; 8; 15].

Proof: There exist exactly six ternary[13; 7; 5]-codes. Exten-
sion leads to a unique[28; 8; 15]-ternary code.

C. Other Results

In this subsection, we give some classification results of optimal
codes which are not strongly optimal. We describe these results
briefly in tabular form. We summarize all known results for functions

Authorized licensed use limited to: Nedyalko Nedyalkov. Downloaded on June 7, 2009 at 10:45 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002 985

d3(n; 4), d3(n; 5), andd3(n; 6) for n � 48 in Table I. The number
of all inequivalent[n � 48; k = 4; 5; 6; d3(n; k)] codes is given
when this is known. The new results are in bold type. In Table II,
we give the number of all inequivalent[n; k; d3(n; k)] codes for
k = 7 and8, andn = 13; 23; 27; 28. In Table III, we present a
scheme for the hierarchy of the extensions which we use to produce
our classification results given in Tables I and II.

Remark 21: Codes with the same number of words for each nonzero
weight (BWD codes) were studied by Langevin and Zanotti [20] (see
also [4]). Here, we classify ternary[20; 4; 12]-codes with weight dis-
tributionA0 = 1, A12 = A15 = 40. There are exactly four inequiva-
lent codes with these parameters and weight distribution. Two of them
are not cyclic. It follows that there are BWD codes which cannot be
constructed via a subgroup of the multiplicative group�

q
.

REFERENCES

[1] G. Bogdanova and I. Boukliev, “New linear codes of dimension 5 over
GF(3),” in Proc. 4th Int. Workshop ACCT-IV, Novgorod, Russia, Sept.
11–17, 1994, pp. 41–43.

[2] G. Bogdanova, Pl. Christov, and S. Kapralov, “The new version of
QLC—A computer program for linear codes studying,” inProc. Int.
Workshop OCRT’95, Sozopol, Bulgaria, 1995, pp. 11–14.

[3] I. Boukliev, “New ternary linear codes,” inProc. Int. Symp. Information
Theory, Whistler, BC, Canada, 1995, p. 135.

[4] , “Cyclotomic description of some optimal codes,” inProc. Int.
Workshop ACCT, Pskov, Russia, 1998, pp. 52–56.

[5] I. Bouyukliev and D. Jaffe, “Optimal binary linear codes of dimension
at most seven,”Discr Math, vol. 226, pp. 51–70, 2001.

[6] I. Bouyukliev, D. Jaffe, and V. Vavrek, “The smallest length of eight-
dimensional binary linear codes with prescribed minimum distance,”
IEEE Trans. Inform. Theory, vol. 46, pp. 1539–1544, July 2000.

[7] A. E. Brouwer, “Bounds on the size of linear codes,” inHandbook of
Coding Theory, V. Pless and W. C. Huffman, Eds. Amsterdam, The
Netherlands: Elsevier, 1998. ISBN:0-444-50 088-X [Online] Available:
http://www.win.tue. nl/math/dw/voorlincod.html.

[8] S. M. Dodunekov and J. Simonis, “Constructions of optimal linear
codes,” in Numbers, Information and Complexity. Norwell, MA:
Kluwer, 2000, pp. 245–263.

[9] M. van Eupen, “Some new results for ternary linear codes of dimension 5
and 6,”IEEE Trans. Inform. Theory, vol. 41, pp. 2048–2051, Nov. 1995.

[10] , “Five new optimal ternary linear codes,”IEEE Trans. Inform.
Theory, vol. 40, p. 193, Jan. 1994.

[11] M. van Eupen and R. Hill, “An optimal ternary [69, 5, 45] code and
related codes,”Des., Codes, Cryptogr., vol. 4, pp. 271–282, 1994.

[12] M. van Eupen and P. Lisonek, “Classification of some optimal ternary
linear codes of small length,”Des., Codes, Cryptogr., vol. 10, pp. 63–84,
1997.

[13] N. Hamada, “A survey of recent work on characterization of minihypers
in PG(t; q) and nonbinary linear codes meeting the Griesmer bound,”
J. Combin. Inform. Syst. Sci., vol. 18, pp. 161–191, 1993.

[14] N. Hamada, T. Helleseth, H. M. Martinsen, and Ø. Ytrehus, “There is
no ternary[28; 6; 16] code,” IEEE Trans. Inform. Theory, vol. 46, pp.
1550–1554, July 2000.

[15] N. Hamada, T. Helleseth, and Ø. Ytrehus, “There are exactly two
nonequivalent [20, 5, 12; 3]-codes,”Ars Comb., vol. 35, pp. 3–14, 1993.

[16] R. Hill and C. Jones, “The nonexistence of ternary [47, 6, 29] codes,”
Information from Brouwer’s database [7].

[17] R. Hill and D. E. Newton, “Optimal ternary linear codes,”Des., Codes,
Cryptogr., vol. 2, pp. 137–157, 1992.

[18] D. B. Jaffe. (Version 0.4, 1997, Apr.) Binary linear codes: New results on
nonexistence. Dept. Math. Statist., Univ. Nebraska, Lincoln. [Online].
Available: http://www.math.unl.edu/djaffe

[19] C. M. Jones, “Optimal ternary linear codes,” Ph.D. dissertation, Univ.
Salford, Salford, U.K., 2000.

[20] P. Langevin and J. P. Zanotti, “Linear codes with balanced weight distri-
bution,”Appl. Algebra Eng. Comm. Comput., vol. 6, pp. 299–307, 1995.

[21] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[22] N. Sendrier, “Finding the permutation between equivalent codes: The
support splitting algorithm,”IEEE Trans. Inform. Theory, vol. 46, pp.
1193–1203, July 2000.

Optimal Covering Polynomial Sets Correcting Three
Errors for Binary Cyclic Codes

Wonjin Sung and John T. Coffey, Member, IEEE

Abstract—The covering polynomial method is a generalization of error-
trapping decoding and is a simple and effective way to decode cyclic codes.
For cyclic codes of rate 2 , covering polynomials of a single term
suffice to correct up to errors, and minimal sets of covering polynomials
are known for various such codes. In this correspondence, the case of=
3 and of binary cyclic codes of rate 2 3 is investigated. Specifically,
a closed-form specification is given for minimal covering polynomial sets
for codes of rate2 3 11 15 for all sufficiently large code length

; the resulting number of covering polynomials is, if = 2 3 +
with 0, equal to + 2 + (1 2) log () + (1),
where = (1 + 5) 2. For all codes correcting up to three errors, the
number of covering polynomials is at least + 2 + (log);
covering polynomial sets achieving this bound (and thus within (log)
of the minimum) are presented in closed-form specifications for rates in the
range11 15 3 4.

Index Terms—Covering polynomial, cyclic codes, error-trapping
decoding, Kasami decoding.

I. INTRODUCTION

Error-trapping decoding [7], [9], [12] is one of the simplest schemes
to decode cyclic codes of rateR < 1=� , where� is the maximum
number of errors to be corrected. It identifies and corrects any cor-
rectable error pattern of an[n; k] cyclic code if there is a set ofk (cycli-
cally) consecutive error-free symbols in the error pattern.

Several variations of error-trapping decoding have been proposed to
extend its usefulness to codes of rateR � 1=� , e.g., permutation de-
coding [8], [1], [3], [17], systematic coset search [11], [6], and a sim-
ilar approach using two complementary information sets [15]. The cov-
ering polynomial method suggested by Kasami [5] modifies error-trap-
ping decoding by guessing the error patterns inn information sets, con-
sisting of all sets ofk (cyclically) consecutive symbols. These guesses
can be represented by a set of polynomials, calledcovering polyno-
mials, and the decoder complexity is determined by the number of re-
quired covering polynomials. Detailed descriptions of the algorithm
can be also found in many textbooks [9], [7], [10]. We will assume that
the reader is familiar with the covering polynomial algorithm, and refer
to these textbooks for details.

The covering polynomial method can be applied to codes of rate
R < 2=� by using a set of polynomials with a single term (called

Manuscript received January 20, 2000; revised August 29, 2001. The material
in this correspondence was presented in part at the IEEE International Sympo-
sium on Information Theory, Trondheim, Norway, 1994.

W. Sung is with the Department of Electronic Engineering, Sogang Univer-
sity, Seoul, 121-742, Korea (e-mail: wsung@sogang.ac.kr).

J. T. Coffey is with the Wireless Networking Business Unit, Texas Instru-
ments, Santa Rosa, CA 95401 USA (e-mail: coffey@ti.com).

Communicated by R. M. Roth, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(02)01943-0.

0018-9448/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Nedyalko Nedyalkov. Downloaded on June 7, 2009 at 10:45 from IEEE Xplore. Restrictions apply.

