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Abstract

We prove that a linear binary code with parameters [34, 24, 5] does not exist. Also, we characterize
some codes with minimum distance 5.

1 Introduction

Let F n
2 be the n-dimensional vector space over the Galois field F2 = GF (2). The Hamming

distance between two vectors of F n
2 is defined to be the number of coordinates in which they

differ. A linear binary [n, k, d]-code is a k-dimensional linear subspace of F n
2 with minimum

Hamming distance d. The weight of the vector c (wt(c)) is the number of nonzero entries
in c.

A central problem in coding theory is that of optimizing one of the parameters n, k and
d for given values of the other two. Two versions are:

Problem 1: Find d2(n, k), the largest value of d for which there exists binary [n, k, d]-
code.

Problem 2: Find k2(n, d), the largest value of k for which there exists binary [n, k, d]-
code.

Another important problem is
Problem 3: Characterize all binary [n, k2(n, d), d] codes with given values of n and d.
Bounds for d2(n, k) were presented in [2]. The exact values of k2(n, d) are known for

d ≤ 4 and for d = 5, n ≤ 33.
In this paper, we investigate linear binary codes with minimum distance d = 5.
We have two basic results:

1. A linear binary code with parameters [34, 24, 5] does not exist and k2(34, 5) = 23.
2. There are at least four nonequivalent codes with parameters [33, 23, 5].

The bounds for binary codes with minimum distance 5 and 6 are strongly related because
of the parity check bits in binary case. Some results for d = 5 and d = 6 have been presented
in [3], [6], [7], [8], [9], etc. A linear binary [33, 23, 5] code was found in [3].

In this research, we use some theoretical and software tools. These tools are discussed
in section 2. In section 3 we give an algorithm for constructing of codes with fixed dual
distance and some other restrictions. Section 4 contains new results for codes with minimum
distance 5.
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2 Preliminaries and tools

Let (u, v) =
∑n

i=1 uivi ∈ F2 for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ F n
2 be the inner product

in F n
2 and C be a linear binary [n, k, d] code.

Definition 1 The dual code C⊥ of the code C is C⊥ = {v ∈ F n
q | (u, v) = 0, for all

u ∈ C}.
It is known that C⊥ is an [n, n−k, d⊥] code. Also, d⊥ is called dual distance of the code.
Definition 2 Let G be a generator matrix of a linear binary [n, k, d] code C. Then

the residual code Res(C, c) of C with respect to a codeword c is the code generated by the
restriction of G to the columns where c has a zero entry. If w = wt(c) we will also use the
notation Resw(C).

A lower bound on the minimum distance of the residual code is given by
Lemma 2.1 [4]: Suppose C is a binary [n, k, d]-code and suppose c ∈ C has weight w,

where d > w/2. Then Res(C, c) is an [n− w, k − 1, d′]-code with d′ ≥ d− w + dw/2e.
Let C be a binary [n, k, d] code and Bi denote the number of codewords of weight i in

its dual code C⊥.
Lemma 2.2 [5]: For a binary [n, k, d] code Bi = 0 for each value of i (where 1 ≤ i ≤ k)

such that there does not exist a binary [n− i, k − i + 1, d] code.
One of our tools is Q-Extension. The main problem which we solve in some cases

with this program is the problem to construct all inequivalent linear codes with length n,
dimension k, and minimum distance d.

If we can fix a part of the generator matrix, we will consider less cases. If the fixed part
is greater, the number of the considering codes which we will investigate for equivalence in
the end will be smaller. This fixed part can be the identity matrix of order k, since any
code has a generator matrix in systematic form or generator matrix of residual code. More
information on this topic can be found in [1]. In our research for some specific cases we use
another algorithm for constructing of codes.

3 An algorithm for constructing of codes with d⊥ > 2

Let C be a linear binary code with parameters [n, k, d] and dual distance (d⊥) greater
than 2. Let Cr = [n− d, k − 1,≥ dd/2e] be its residual Resd(C) code and let a code with
parameters [n−d+1, k−1, d′] and dual distance d⊥ does not exist. We consider a generator
matrix G of the code C in the following form:

G =

(
0..0 1..1
Gr X

)
(1)

Obviously, there are no d⊥ − 1 columns in G which are linearly dependent. We can
obtain G from Gr adding d vectors with length k in the form (1, a2, . . . , ak)

t. If we add
1, 2, . . . d vectors to Gr then the minimum distance of the code C will be 1, 2 . . . d. The
goal is: to find all possibilities for X (all columns from n − d + 1 to n in G). Doing that
we check only the dual distance not the minimum distance.
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The problem for constructing G if we know Gr can be defined as the following combi-
natorial problem - to find all vectors of length k in the form (1, a2, . . . , ak)

t such that there
are not d⊥− 1 vectors which are linearly dependent in the set of these vectors and the first
n− d vectors.

We present a back-track search. Let M be a set of vectors of length k such that no
d⊥− 1 between them are linearly dependent. In the beginning we have the set M = M0 of
n− d vectors from the generator matrix of the residual code Cr.

In the step t we find the set St which consists of all proper vectors for column n− d + t
if we have fixed the first n− d + t− 1 columns.

Obviously, in the first step, we can take S1 := {v}, where v is an arbitrary vector from
V k.

We will use the following notations for data variable types:
S is an array of set of vectors of length k.
Tree is an array of integers. This variable defines in step t < d the set M in the

following way. M contains M0 and the vector with number tree[1]+1 in set S1, the vector
with number tree[2]+1 in set S2, . . . , the vector with number tree[t]+1 in set St. If t = d
we have to use all vectors from Sd.

In procedure find S we determine the set St if we know St−1 and tree[lev] (the set M
in step t− 1).

const max = d;
var lev:integer;

S:array[1..max] of set of vectors;
tree:array[1..max] of integer;

1 begin
2 lev:=1; tree[1]:=1; fix S[1];
3 while (lev>0) do
4 begin
5 if (tree[lev]>0) and (lev<max) then
6 begin
7 if ((lev>2) and (S[lev][tree[lev]]<S[lev-1][tree[lev-1]+1])) or (lev ≤ 2) then
8 begin
9 tree[lev]:=tree[lev]-1;
10 lev:=lev+1; find S;
11 if lev= max then printM;
12 tree[lev]:=|S[lev]|;
13 end
14 else tree[lev]:=tree[lev]-1;
15 end (* if (tree[lev]>0) and (lev<max) *)
16 else
17 lev:=lev-1;
18 end;
19 end.
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In the level t, t > 2, we can take only these vectors which are smaller than the vector
S[t-1][tree[t-1]+1] (selected in previous level) under the naturally lexicographic ordering -
row 7 in the algorithm.

Actually we use this algorithm in more general case.

4 Structure of the codes

4.1 Nonexistence of linear binary code with parameters [34, 24, 5]

Let C be a putative linear binary code with parameters [34, 24, 5]. Lemma 2.2 and the
table in [2] give us that the dual distance d⊥ of the code C is greater than 10. We will
consider C⊥ which is [34, 10, 11] or [34, 10, 12] code.

In the first case, let C be an [34, 10, 11] code. From Lemma 2.1, the residual code
Res11(C) is [23, 9, d′] code, where 6 ≥ d′ ≥ 8 and dual distance 5. It is known that there is
a unique binary [23, 14, 5] code [9]. Hence, there exists a unique [23, 9, d′] code with dual
distance 5. Its minimum distance d′ is 8.

After the extension of this unique [23, 9, 8] code we obtain that:
– There are 672 nonequivalent binary [30, 10, 7] codes with d⊥ = 5.
– Binary codes with parameters [31, 10, 8], [32, 10, 9], [33, 10, 10], [34, 10, 11] and d⊥ = 5

do not exist.
In the second case we will consider a binary [34, 10, 12] code C34. Its residual code

Res12(C34) is [22, 9, 6], [22, 9, 7] or [22, 9, 8] code with dual distance 5.
To construct these codes we can start from the codes with parameters [16, 8,≥ 3],

[15, 8, 4] and [14, 8, 4]. It is easy to find that there exist a unique [16, 8, 5] code, six [15, 8, 4]
codes, and three [14, 8, 4] codes with dual distance 5.

The extension of these codes give us:
– There exist 101 nonequivalent binary codes with parameters [22, 9, 6] and d⊥ = 5.
– There exist 21 nonequivalent binary codes with parameters [22, 9, 7] and d⊥ = 5.
– Binary code with parameters [22, 9, 8] and d⊥ = 5 does not exist.
In the end, we obtain that:
– There are 2686 nonequivalent binary [31, 10, 9] codes with d⊥ = 5.
– Binary codes with parameters [32, 10, 10], [33, 10, 11], [34, 10, 12] with d⊥ = 5 do not

exist.
We can conclude:
Theorem 4.1 Linear binary code with parameters [34, 24, 5] does not exist and k2(34, 5) =

23.
Proposition 4.2 Linear binary codes with parameters [33, 10, 10] and [33, 10, 11] with

d⊥ = 5 do not exist.

4.2 Linear binary codes with parameters [33, 23, 5]

Let C be a linear binary code with parameters [33, 23, 5]. From Lemma 2.2, Proposition
4.2 and the table in [2] it follows that the dual distance d⊥ of the code C is 12. We consider
its dual [33, 10, 12] code.
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Let C33 be a linear binary code with parameters [33, 10, 12] and dual distance 5. Its
residual code Res12(C33) is [21, 9, 6], [21, 9, 7] or [21, 9, 8] code.

To construct these codes we can start from the codes with parameters [15, 8,≥ 3],
[14, 8, 4] and [13, 8, 4]. It is easy to find that there exist six [15, 8, 4] codes, three [14, 8, 4]
codes and a unique [13, 8, 4] code with dual distance 5.

After the extension of these codes we obtain that:
– There exist 1696 nonequivalent binary [21, 9, 6] codes with d⊥ = 5.
– Binary codes with parameters [21, 9, 7] and d⊥ = 5 do not exist.
– There exists a unique binary [21, 9, 8] code with d⊥ = 5.
The last code cannot be extended to the code C33.
After the extension of about a half of the [21, 9, 6] codes, we obtain four nonequivalent

codes with parameters [33, 10, 12] and d⊥ = 5. This calculation took about ten days of
CPU time on a 1800 MHz PC.

Therefore, we obtain:
Proposition 4.3 There exist at least four nonequivalent linear binary codes with pa-

rameters [33, 23, 5].
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