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On the least covering radius of the binary
linear codes of dimension 6

TSONKA BAICHEVA, ILIYA BOUYUKLIEV tsonka,iliyab@math.bas.bg
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
P.O. Box 323, 5000 Veliko Tarnovo, BULGARIA

Abstract. In this work a heuristic algorithm for obtaining lower bounds on the
covering radius of a linear code is developed. Using this algorithm the least covering
radii of the binary linear codes of dimension 6 are determined. Upper bounds for
the least covering radii of binary linear codes of dimensions 8 and 9 are derived.

1 Introduction

In this work we address two problems: the mathematical question of determin-
ing ta[n, k|, the smallest covering radius of any binary linear [n, k] code, and
the more practical problem of constructing codes having a specified length and
dimension and the least covering radius. More precisely we determine all values
of the function tg[n, 6] and give constructions for such codes. An important part
of the determination of the values of t3(n, 6] is the suggested heuristic algorithm
for computation of lower bound of the covering radius of a lincar code. We also
derive upper bounds for t3[n, 8] and ta[n, 9].

2 Some preliminary results

Let F7' be the n-dimensional vector space over the finite field with ¢ elements.
A linear code C is a k-dimensional subspace of F'. The ball of radius ¢ around
a word y € F' is defined by

{z|z € F',d(z,y) < t}.

Then the covering radius R(C) of a code C is defined as the least possible
integer number such that the balls of radius R(C) around the codewords cover
the whole Fi7, i.e.

R(C) = max mind(z. ¢).
z€FD ceC
A coset of the code C defined by the vector z € F is the set +C = {z+c|c €
C'}. A coset leader of @ + C' is a vector in @ + C of smallest weight. When
the code is linear its covering radius is equal to the weight of the heaviest coset
leader.
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The function t4[n, k] is defined as the least value of R(C') when C' runs over
the class of all linear [n, k] codes over Fy for a given q.

Definition. [1] Let C be a binary code of length n and covering radius
R. Fori=1,...,nlet C‘é” (respectively C'lm) denote the set of codewords in
which the i-th coordinate is 0 (respectively 1). The integer

NG max {d(, Cs) + d(z,C)}

is called the norm of C' with respect to the i-th coordinate and

Newin = m_in N{:)
i

is called the minimum norm of C. (We use the convention that d(x,0) = c0.)
The code C has norm N if Nyin < N and the coordinates i for which N < N
are called acceptable with respect to N.

The code C is normal if it has norm 2R + 1. If N®) < 2R + 1, then we say
that the coordinate ¢ is acceptable with respect to 2R + 1, or that C is normal
with respect to the i-th coordinate.

In the following theorem results about the normality of binary linear codes
are summarized.

Theorem 1. [1] If C is an [n,k,d] code withn <15, k <5 orn—k <9,
then C is normal. ;

One of the main reasons for studying normal codes is the amalgamated direct
sum (ADS) construction introduced by Graham and Sloane [2].

Theorem 2 [1] Assumne that A is a normal binary [na, ka|RA code with the
last coordinate acceptable, and B is a normal binary [np,kp|Rp code with the
first coordinate acceptable. Then their amalgamated direct sum (ADS)

AZ2B = {(a.0,b)|(a,0) € 4,(0,b) € B} U{(a,1,b)|(a,1) € A, (1,b) € B}
is an [na +np — 1,ka + kg — 1]R code with R < Rs + Rp. More generally,
if the norm of A with respect to the last coordinate is N4 and the norm of
B with respect to the first coordinate is Np, then the code ASB has norm

1
- Na+Np—1 and hence covering radius at most §(NA + Np —1). In particular,

if the covering radius of A& B equals Ry + Rp, then A®B is normal and the
overlapping coordinate is acceptable.

3 Least covering radius of the binary linear codes of
dimension 6

The results about the least covering radius of binary linear codes are summa-
rized in Table 7.1 from [1] where the exact values or bounds for ¢3[n. k] for codes
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of lengths up to 64 are given. We use this table as a source of our investigation
and give the results for codes of dimension 6 in the following table.

Bounds on t3[n, 6] for n < 64

n ¥ & 9 0, .11 125 1508 4 115 s
t2m, 6] | 1 1 1 2 2 3 3 3 4 4

n T 450 90 a0l s 3wt 200 . 5. | 240 .95, 28

t2[n,6] |5 5 5 6 6 s 7800 (5 .89
n 27 28 200,030 0k 33: B, 841 85 98

t2m,6]| 80 910 9-10 9O-11 10-11 10-12 1112 11-13 11-13 1214
n ar 98 89 40 41 43 43 44 45 46

t2n,6] | 1214 1315 1315 1416 1416 14-17 15-17 15-18 16-18 16-19
n 47 48 49 50 51 B2 17 5800540 1’55 156

ta[n, 6] | 17-10 17-20 17-20 18-21 1821 19-22 1922 20-23 20-23 20-24
n 57 58 59 60 Bl 62 68 64

t2n,6] | 21-24 21-25 22-25 22-26 23-20 23-27 23-27 24-28

The values of tz[n, k] for codes of dimensions up to 5 are determined in
[2] and also an upper bounds for t3[n, k] for codes of dimensions 6 and 7 are
derived. Namely, in [2, Theorem 23] it is proved that

= 10 —i8)
ta[n, 6] < [n—z—J for n > 18, and t2[n, 7] < [Ez—J for n > 19.

In this work we show that the bound for codes of dimension 6 is sharp.
The approach we use is similar to the approach from [2] and it is based on the
determination of the covering radii of the projective codes of dimension 6. We
will note that the covering radii of the binary projective codes of dimensions
up to 5 are determined in [3] and [4].

8
Theorem 3. t3[n,6] = \‘n—z— +.forim = 18,

Proof. For codes of lengths 18-21 values of t[n,6] are known and they
fulfill the condition of the Theorem. For the rest of the codes of lengths up
to 64 the upper bounds from the Table coincide with the value given in the
theorem. What remains is to prove that these upper bounds are sharp. Let us
consider the first open case [22,6] codes. If a (22, 6] code C' contains a repeated
coordinate, then R(C) > £2[20,6] + 1 = 7. Thus, if there exits a [22,6] code
of covering radius 6 it must be a projective one. Classification of all binary
projective codes of dimension up to 6 is done in [5]. We use the results of
this classification where 2852541 nonequivalent binary [22,6] codes are found,
to show that there is no code of covering radius 6 among them. Therefore
t5[22,6] = 7. Let now C be a [24,6] code. The same reasoning shows that
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t2[24, 6] = 8 and as 1225, 6] > 15]24, 6] we get t5[25, 6] = 8. We repeat this until
t2{54, 6} = tg[55,6] =5

Let C be a [56, 6] code. If it contains a repeated coordinate, then R(C) >
t2[54,6] +1 = 23 + 1 = 24. Otherwise, C' is a shortened version of the [63, 6]
Simplex code whit covering radius 31 and thus R(C) > 31 — 7 = 24. Therefore
t2[56,6] = 24 and £5[57,6] = 24. Similarly t5[58, 6] = £,[59, 6] = 25, £2[60, 6] =
£2[61,6] = 26 and £,[62, 6] = ¢[63, 6] = 27.

For n >- 64, every [n,6] code must contain a repeated coordinate and
ta[n, 6] > ta[n—2, 6]+ 1, which implies t5[n, 6] > [(n—8)/2] for all n. Therefore
the upper bound is sharp, which completes the proof. O

The other aim of our investigation is to construct codes having covering radii
equal to the least one. Here we will show how to do this. It is proved in [6]
that the constructed in [2] [14,6. 5|3 code is unique. A [16,6]4 or [18,6]5 code
can be obtained by the [14,6]3 code by adding repeated coordinates. Again
~in [2] the generator matrix of [19,6,7]5 code is presented. As [19,6]5 codes
must be projective (¢3(19, 5] > 2[17,6] + 1 = 6), we use the classification from
[5] to determine the covering radii of all 366089 projective [19,6] codes. It
turned out that there is only one code with covering radius 5 and therefore the
[19,6,7]5 code is unique. Then every [n,6] code for n > 19 having the least
covering radius can be obtained from the [18, 6]5 or [19, 6]5 codes by adding the
necessary number of repeated coordinates. By adding repeated coordinates to
the [9,6]1 code we can obtainu [11,6]2, [13,6]3. [15,6]4 and [17,6]5 codes, and
to the [8,6]1 code we can get [10,6]2 and [12,6]3 codes. We classify all [8, 6]
and [9, 6] codes and among the 25 [8, 6] and 99 [9, 6] nonequivalent codes there
are correspondingly 16 and 4 of covering radius 1.

4 A heuristic algorithm for lower bound of the cov-
ering radius of a linear code

In the proof of Theorem 1 we use a computer to show the nonexistence of codes
of lengths 22 < n §'54. n odd, and given covering radius. There are 236779414
such codes and if we try to determine their covering radii using one of the known
for us algorithms it would take years. Here we present a heuristic algorithm
which alows us to show the nonexistence of an [n, k]R code C in a reasonable
time.

The idea of the algorithim is as fast as possible to find a coset leader of
the investigated code of weight greater than R, which means that the covering
radius of the code is at least R + 1. It starts with a randomly chosen vector
¢ from a coset K. = {c+ C}. We use the evaluation function f to find the
current best solution, where the aim is to minimize the number of vectors of
minimum weight in the coset. The function f = wt(K,)2F — A(K,) depends on
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the weight of the coset wt(K.) and the number A(K.) of vectors of minimum
eight in K,. Then we search in the set of neighbors N(c) consisting of vectors
which differ from c in one coordinate. If in this procedure we obtain a coset of
weight greater than R, we are done. Otherwise, we add some noise to ¢ and
again try to find a coset of weight greater than K.

Algorithm, LOWERBOUNDCOVERINGRADIUS(Rmin)
c,c': vector;
brp,br: integer:
{

b?‘:] = U:

while brg < consty

bro i= bry + 1:
b=
Select a feasible solution ¢
while br < const
{
b= br—tl;
while exists ¢ € N(c) such that f(¢') > f(¢) do ¢:=¢/;
if wt(K.) > Rmin break;
Add some noise to c;

5 Upper bounds for the covering radii of linear codes
of dimensions 8 and 9

n— 10
2

Theorem 4. ta[n, 8] < forn > 16 and t2[n,9] < LEE—IEJ for n > 25.

Proof. Let us consider the direct sum of two [9, 4]2 normal codes. According
to Theorem 9 from [2] we obtain [18,8]4 normal code and the existence of
(18 + 2i, 8]4 +i codes for i > 0 follows from (2, Theorem 20]. The same way the
direct sum of [8,4]2 and [9,4]2 normal codes gives [17, 8]4 normal code and there
exist [17 + 2¢,8]4 + i codes for i > 0. From [1, Table 7.1] we have 5[16,8] = 3
which completes the proof for the first upper bound.

Let us now consider the amalgamated direct sum of [7,4]1 and [14, 6]3 nor-
mal codes. The result is a [20, 9]4 code which according to Theorem 2 is normal.
A [25,9]6 normal code can be obtained by an ADS of [7,4]1 code and the con-
structed in [2] and proved to be unique in this work [19,6]5 code. As in the
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previous case. we can conclude that the [20 + 27,9]4 + i and [25 + 27,9]6 + ¢
codes for i > 0 exist and the upper bound for #3[n. 9] follows. |
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KRASSIMIR MANEV! manev@fmi.uni-sofia.bg
Faculty of Mathematics and Informatics. Sofia University, BULGARIA and
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,

8 G. Bonchev str., 1113 Sofia, BULGARIA

Abstract. The problem of efficient computing of binary and ternary positive (or
zero) polarity Reed-Muller (PPRM) transform is important for many areas. The
matrices, determining these transformns, are defined recursively or by Kronecker
product. Using this fact, we apply the dynamic-programming strategy to develop
three algorithms. The first of them is a new version of a previous our algorithm for
performing the binary PPRM transform. The second one is a bit-wise implementa-
tion of the first algorithm. The third one performs the ternary PPRM transform.
The last two algorithins have better time complexities in comparison with other
algorithms, known to us.

1 Introduction

A well-known theorem in the theory of Boolean functions states that any
Boolean function f(z,—1,%n—2,-..,%p) can be represented in an unique way
by its Zhegalkin polynomial:

flonais®n_g:..-sZo) = apT o120 axth Sazt1Lo D, .. (1)

B ;T .. Tj BB ar1Tn-1Tn-2 .. T0,

where the coefficients a; € {0,1},0<i<2" - 1,1 = 201 4292 ps 2K G >
ja > +++ > jk, and all variables are positive (uncomplemented). This canonical
form is also known as Positive Polarity Reed-Muller (PPRM) expansion. If
each variable z;, 0 < i < n — 1, in (1) appears either uncomplemented, or
complemented throughout, we obtain a Ficed Polarity Reed-Muller (FPRM)
expansion. Let p; € {0, 1} denotes the polarity of z;, 0 < i <n —1, i.e. when
pi = 0 the polarity is positive (z; is uncomplemented), and when p; = 1 the

"This work was partially supported by the SF of Sofia University under Contract
171/05.2008.
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polarity is negative (z; is complemented). The function f(zp—1,%n-2,...,%0)
has a FPRM expansion of polarity p,0 < p < 2™ — 1, when the integer p has
a n-digit binary representation pn—1,pn—2...po and p; is the polarity of z;, for
i=n—1,n—2,...,0. Thus f has 2* FPRM possible expansions, each of them
is a canonical form.

The FPRM binary transform is an important and known XOR-based ex-
pansion, having many applications in digital logic design, testability, fault de-
tection, image compression, Boolean function decomposition, error correcting
codes, classification of logic functions, and development of models for decision
diagrams [2, 4, 5]. Because of the increasing interest in multiple-valued logic
(MVL), the binary FPRM expansion has been extended to represent multiple-
valued funetions as well. Their FPRM expansions have also many applications
in the just mentioned areas.

Every ternary function f(z) of n-variable can also be represented by its
canonical FPRM polynomial expansions as follows:

3r—=1

e e a
fp(\rn__l,;r.,,,_g, sl ,;r[].} = Z ﬂ,‘,j.if.’n_ll L e SEUD, (2)
i=0

where:

o all additions and multiplications are in GF(3);

e i is the decimal equivalent of the n-digit ternary number k,_1kn—2 ... Ao;

o #j =x; +p; € {xj,r; +1.x; + 2} is the literal of the j-th variable, in de-
pendence of the polarity p;. The required polarity is given (fixed) by the integer
p, 0 < p < 3" — 1, which n-digit ternary representation is pn—1,pn—2 - . po;

e the coefficient a; € {0, 1,2}, a; = a;(p) because it depends on the given
polarity p;

o 80 =1, 3} = &; and 2} = 2;.3;.

Optimization of FPRM transforms is an important problem in the area of
logic design and spectral transforms. It concerns development of methods for
determining the best FPRM representation of a given function among all pos-
sible FPRM expansions of it. The best is this one, which has minimal number
of product terms or minimal number of literals. There are many approaches to
perform such optimization.

Here we consider the problem: "A Boolean (or ternary) function is given by
its vector of functional values. Compute the vector of coefficients of its PPRM
ezpansion”. We represent three algorithms for fast solving of this problem.
They can be used for computing of the rest FPRM expansions of a given func-
tion, as do this the algorithins and method in {4, 8]. The main idea of the
proposed algorithms can be extended and applied for obtaining of other FPRM
expansion, for computing PPRM expansions of MVL funetions over other finite
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fields, and also for fast computing of matrix-vector multiplication when the
matrix is defined recursively (by Kronecker product).

2 Binary PPRM transform

Many scientists investigate the computing of binary FPRM transform — by
applying of coefficient maps (Karnaugh maps folding, when the number of vari-
ables n < 6), coefficient matrix and tabular techniques [1, 6, 8, 10, 11]. All they
consider algorithms for computing the PPRM transform in particular, and most
of them apply a coefficient matrix approach. Let f be a n-variable boolean
function, given by its vector of values b = (by, b1, ...,ben—1). The forward and
inverse PPRM transforin between the coefficient vector a = (ag, a1,-..,a2n—1)
of Eq. (1) and the vector b is defined by the 2™ x 2" matrix M, as follows
[6, 9, 10]: :

af = M, b*, and &7 = M;'.a® over GF(2). (3)

The matrix M, is defined recursively, as well as by Kronecker product:

n

M; = ( i‘l’ ) M, = ( i‘}r":: ff’;—__ll ) or Mp=M ®My_y= @Ml, (4)
where M,,_ is the corresponding transform matrix of dimension P
and O,y is a 2" ! x 2! zero matrix. Furthermore M,, = M ' over GF(2),
and hence the forward and the inverse transform are performed in an uniform
way. So we shall consider only the forward one. In all papers known to us, there
are not complete description of the algorithm for computing of such transform,
defined by equalities (3) and (4). These equalities are derived in [6] (Theorem 2)
and computing of the transform is illustrated by an example, almost the same is
done in [9]. In [1] some equalities, which concern computing of the coefficients of
the vector a and relations between them, are derived. Computing of the PPRM
transform in [10] is illustrated by its "butterfly” (or "signal flow”) diagram only.

Ten years ago we have proposed an algorithm for fast computing the PPRM
transform (called by as ”Zhegalkin transform”) [7]. We developed this algorithm
independently of other authors, because their papers in this area were unknown
(unaccessible) to us at this time. Here we propose another version of this
algorithm, created by the dynamic-programming approach. We also comment
its bit-wise implementation, which improves significantly the previous time and
space complexity. The same approach will be applied for fast computing of the
PPRM transform over GF(3).

Let v be a vector, v € {0,1}*". We could consider each position of the
vector v labeled with the corresponding vector of {0, 1}", so that the labels are
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ordered lexicographically. Let a € {0, l}k, 1 < k < n. We will denote by V[a)
the sub-vector of these positions in v, first k-coordinates of labels of which are
fixed to a. We can rewrite Eq. (3) as follows:

T ar 3T [ Mna On— bja]
a =N ( My, 1 M, ) ( b[%] %

i Mq}_l‘b[g] ety a;;! .
M-_-,__]_.b[ﬂ] @ ﬂI -1-2][11 a[ll

ai]} = ﬂfn_l.b'}(;], 8 . .
GII — Jnl'f-n__].b[n] ﬂ" ﬂfn..]_‘b[l] = G-[n} 23] ﬂjﬁ-l.b[ll

Therefore:
(6)

The last two equalities define recursively the solution of the problem. They
demonstrate how it can be constructed by the solutions of its subproblems. So
the problem exhibits the optimal substructure property — the first key ingredient
for applying the dynamic-programming strategy. The second one — overlapping
subproblems — is also shown iu (6). If we are computing a recursively, we have
to compute first aj (recursively). Then we have to compute af (recursively)
and this will imply computing of ajg again.

To apply the dynamic-programming strategy we will replace the recursion
Iy an iteration and will compute the vector a “bottom-up”. The main idea can
be drawn from last two equalities — if we make one more step, expressing M,,_
by M, and replacing ajo) by (ajoq}, @jo1))s a1 by (@10}, @j111)s bo) by (broo) bjox)
byyy by (bjaoys baa)): and so on. We conclude that the iteration should perform n
steps. Starting from the vector b (as an input), at k-th step, k =1,2,...,n, we
consider the current vector b as divided into two kinds of blocks: source and
target, which alternate with each other. All they have a size, equal to ok=1 At
each step, every source block is added (by a component-wise XOR) to the next
block, which is its target block. The result is assigned to the current vector b.
So, after these n steps, the vector b is transformed to the vector a. Assuming
that the vector b is represented by an array b of 2" bytes, the pseudo code of
this algorithm is:

Binary_PPRM (b, n)
1) blocksize = 1;
2) for k =1 to n do 3) source = 0; //start of the source block
4) while source < 2°n do
5) target = source + blocksize; //start of the target block
6) for i = 0 to blocksize - 1 do
//component-wise XOR over current blocks
7) bltarget + i] = b[target + i] XOR b[source + il;
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//start of the next source block

8) source = source + 2 * blocksize;
9) blocksize = 2 * blocksize;

10) return b; //b is transformed to a

The correctness of the algorithm can be proved easily by induction on n.
In its k-th step, 1 < k < n, there are 2"k source blocks and so many target
blocks, each of size 28!, The algorithm adds (XORs) these source blocks to
the corresponding target blocks, and so it performs 2¥-1.27~% = 27=1 XORs in
the k-th step. Therefore, when the input size is 2", the algorithm has a time
complexity ©(n.2" ') and ©(2") space complexity. They are many times better
than the corresponding complexities, which we shall obtain if we generate the
matrix M,, and compute directly the matrix-vector multiplication, given by Eq.
(3).

Now we discuss a new version of the given algorithm, obtained by applying
a bit-wise representation of the vector b and bit-wise operations. Let d=2
be the size (in bits) of the computer word. Then m = [2"~7] computer words
are sufficient to represent the vector b. For simplicity, let n = j (i.e. m = 1),
and we denote by B the representation of b as a binary number. We use an
additional integer temp, initialized by temp = B. In temp we set the values
in the target blocks to zero — i.e. we mask them by zeros, and the values
in the source blocks we remain the same — we mask them by ones. For that
purpose, in the k-th step (k = 1,2,...n) we should use a mask: mask[k]=
11...100...0---11...100...0, where 2°~1 is the block size. After that, we

ok—1 k-1 ak—1 k-1

"shift right” them by 2¥~! positions and so the source blocks are moved to
the places of the target blocks, corresponding to them. Finally, we compute a
bit-wise XOR between B and temp and store the result in B. So, the body of
the main cycle in row 2 of the given above pseudo code (i.c. the rows 3, 4,...,
9) could be replaced by:

3) temp = B AND mask[k]; //masks the blocks;
4) temp = temp SHR blocksize; //shift right
5) B = B XOR temp; //X0R between all blocks.

6) blocksize = blocksize SHL 1; //double the blocksize

We have only four bit-wise operations, repeated n times. Therefore the time
complexity of this version of the algorithm is ©(n). The array mask consists
of n computer words and they can be pre-computed once in O(n?) time and
not considered as a part of algorithm. When n > j then m = Jiae S|
words of memory will be necessary. In this case, during the steps 1,2,...,7,
the instructions 3, 4 and 5 of the algorithm will be executed for each word
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separately. During the steps j+1,7+2,...,n the masks are no more necessary,
because the blocks are composed of whole words. In such way only m/2 XOR
operations will be necessary on each of these steps. Finally, the time complexity
becomes ©(m.n) generally, which is the best one, known to us.

To compare these two versions we have generated all Boolean functions of 5
variables and perform the PPRM transform over each of them. When the new
version of the algorithm uses a 32-bit computer word and generates the masks
only ouce, it runs 22 times faster.

3 Ternary PPRM transform

The ternary FPRM and some other transforms are investigated intensively by
Falkowski, Fu. etc. [2, 3, 4, 5]. These transforms are determined by the corre-
sponding matrices, defined recursively or by Kronecker product. These matrices
arc uscd for building recursive algorithms, performing these expansions. Com-
puting of the ternary PPRM transform is an important part for some of them
or for other fast algorithms [4]. Let f(zn_1,2n—2,...,%p) be a ternary func-
tion, represented by its vector of values b = (b, b1, ...,b3n_1). Analogously to
the binary case, the ternary forward PPRM transform between the coefficient
vector @ = (agp, ay,...,az»—1) and the vector b is defined by the 3" x 3™ matrix
T, as follows [2, 3, 4]:

a® =T,.bT over GF(3). (7)

The matrix T}, is defined recursively, or by Kronecker product:

100 Thi Or=i 0 On=3 "
Ti = ( 021 ) R S ( (o I s S B ) Jor T =Ty T =0 T,.(8)
222 R o S (R =1
where T,,_; is the corresponding transform matrix of dimension 3"~ ! x 37~1,
and Op—1 is a 3" x 3" ! zero matrix. It is easy to see that T, # T;'!, and so
the forward and inverse ternary PPRM transforms do not coincide.

Let v be a vector, v € {0,1,2}*". We consider each position of v labeled
with the corresponding vector of {0,1,2}", so that the labels are ordered lexi-
cographically. Let the vector a € {0,1,2}* and 1 < k < n. We denote by Via)
tHe sub-vector of these positions in w, first k-coordinates of labels of which are
fixed to . Using Eq. (8), we rewrite Eq. (7) as:

ba
Tt Ony (.)n—l b[”_

On—1 2.Th=1 Ti—1 by | = (9)
2-T‘n—'l 2an--l 2-?‘” -1 li)?:,

T T.

Ty 1.by, 1 ) "ipl
S .1.-'{’,1 + Tl = i GF(3),

2Tp—y.bL, 42T, bl 2T v;f_j] ag)

{{U]

GT e i ,br

H
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Therefore:

afy = Tn-1.bfy _
a;}' = E.T”_.]<b:[1; == Tn—l'b[lz (10)
UTZ] = 2.(Tn_1.b10] =E Tﬂ-—l'bu] + T _1-b'[1;])

The last equalities determine the solution recursively. The reasons to apply
the dynamic-programming strategy are the same as in the binary case. The
final solution can be obtained by the solutions of its subproblems (i.e. when
the matrix-vector multiplications of the type Tn_l,b?;] are already computed)
by 3 additions of vectors and 2 multiplications of vector by a scalar in GF(3).
Thinking about them as source and target blocks, we shall replace them by
4 additions between blocks in GF(3), as it is shown in Fig. 1, for n = 1.
Obviously, some source and target blocks (of size 1, when n = 1) change their
roles.

................ AL =l A IV

__I:L . btl l if] b(l i bi) bl]
g TR S b = * 2b+b,l + | 2b+b, 2b by i=a

| b, b +b;] | btb, |« bitbitb,le + |2(bgtbitb,)

Figure 1: For n = 1, vector b is transformed to vector a by 4 additions in

GF(3).

The same model of computing will be valid if we expand the equalities
(9) and (10) completely for n = 2. In the first step we apply the scheme of
additions in Fig. 1 for cach of sub-vectors b, byj and byg. In the second step
we consider the resulting sub-vectors as blocks of size 3, labeled by 0,1, and
2. respectively. We compute component-wise additions between the blocks,
following the scheme in Fig. 1 and so we obtain the vector a.

We can extend this model of computing for an arbitrary n. Thus we obtain
an algorithm, which starts from the given vector b (as an input) and performs
n stops. At cach step, the current vector b (as a result of a previous step)
is divided into blocks of size 3!, where k is the mumber of the step. The
blocks are labeled by 0.1,...,3""¥*1. For each triple of consecutive blocks the
algorithm performs component-wise additions (in GF(3)) between the blocks
in the triple, following the scheme in Fig. 1. So, before the last step, the sub-
vectors (blocks) T”_],b-[‘:, labeled by i = 0,1,2, are already computed. In the
last step. the algorit lun performs the additions between the blocks in the last
triple. as they are given in Fig. 1. and so it obtains the vector a. If the vector
b is represented Ly an arrav b of 3" bytes. the psendo code of this algorithm is:
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Ternary_PPRM (b, n)
1) blocksize = 1;
2) for k = 1 to n do

3) base = 0; //start of the O-blocks in a current triple

4) while base < 37n do

5) first = base + blocksize; //start of 1-block

6) second = first + blocksize; //start of 2-block

7) AddBlock(first,second,blocksize ); //adds 1-bl. to 2-bl.
8) AddBlock(second,first,blocksize ); //adds 2-bl. to 1-bl.
9) AddBlock(base,second,blocksize ); //adds 0-bl. to 2-bl.
10) AddBlock(second, second,blocksize ); //adds 2-bl. to itself
11) base = base + 3*blocksize; //start next triple
12) blocksize= 3*blocksize;

13) return b; //b is transformed to a

Procedure AddBlock (s, t, size) adds the block (sub-vector), starting
from coordinate s, to the block, starting from coordinate t. It performs size
component-wise additions by a table look-up (of additions in GF'(3)), since this
is faster than modular arithmetic.

The arguments above the pseudo code and equalities (9) and (10) imply
the correctness of the algorithm. Following them, it can be proved strongly
by induction on n. The space complexity of the algorithm is ©(3"), the same
as the size of input. Its time complexity is derived easily. In the k-th step,
1 < k < n, the size of the blocks is 3*~1, and for each triple of blocks the
algorithm performs 4.3¥=1 additions. There are 3"/(3.357!) = 3"=¥ triples,
and so the additions in the k-th step are 4.35=1.37"—% = 4.37"~1. Therefore the
time complexity is ©(n.3"~1). For comparison, in [4] the authors refer to an
algorithm for fast computing of ternary PPRM transform, which performs Tl
additions and 4n.3"~! multiplications.

The matrix T} can be expressed by equalities analogous to these in (8),
hence the inverse transform can be performed in way, similar to the performing
of forward transform.

4 ~Conclusions

Here we have used the dynamic-programming strategy to develop three algo-
rithms. They are based on matrices, defined recursively or by Kronecker prod-
uct, which determine the PPRM transforms over GF(2) and GF'(3). The model
of building the given algorithms can be extended and applied for fast computing
of other FPRM expansions over the considered fields, for other finite fields with
prime number of elements, or for fast computing of matrix-vector multiplication
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when the matrix is defined recursively. Proposed algorithms have better time
complexities in comparison with other algorithms, known to us.
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Abstract. Using lower bounds on distance spectrum components of a code on

the Euclidean sphere, we improve the known asymptotical upper bounds on the
cardinality of multiple packings of the sphere by balls of smaller radii.

Let R™ be the n-dimensional Euclidean space, and S"~1(r) € R™ be the
(closed) Euclidean sphere of radius r with the center in the origin. Let further
S™=1(r @) be the open ball of radius r centered in a € R". Multiple L-packing
K(I.t) by balls of radius ¢ is a finite set (=code) K C §"~'(1), such that for
any subset {Z1,...,Zr4+1} C K of L+ 1 points (=codewords) we have

L+1

N 5"tz =0.
i=1

Tt other words, any point on the unit sphere can be at distance not exceeding
t from at most L points from K.

Let R(K(L,t)) = h—'-lﬁff’—m be the rate of the multiple packing. The problem
is to find bounds on the value

Ry (t) = lim sup max R(KC(L, t)).
n—oo

The value Ry (t) has been studied before, e.g. in connection with list decoding
in Gaussian channel, see [1, 2] and references therein. The best known bounds
are as follows.

Theorem 1
1 L 1 1
>lpg—4t —In—-. 1
Rz et P ena-2) )
1 L
< -ln——. 2

'Supported in part by RFBR grant (06-01-00220
*Supported in part by ISF 553-03 grant
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Bound (1) was proved in [1], while bound (2) was first proved in [2] and later
in [1] using an essentially different approach. In this work we present further
improvement of the upper bound (2).

Throughout we identify a point in R” with the vector from the origin to the
point. Denote

ap(f) = 2arcsin 51;(!?{‘/92)‘ B,(6) = arccos %,
i) = @+t () - (G + VITRIE -0 )
(1+2y)z + /(1 + 2y)%a% — 4y(1 +y)
+(1+2y)In 20+ ) ;

where H(z) = —z2Inz— (1 —2z)In(1 — z). z € [0, 1]. For a given R denote by pz,
the unique solution of
P
R=(1+4+pH|—],
(+om (2]
and denote by 0f the unique solution of

1+sinfy, (1 —sim?;,)

il 0, 1+ sinfy,

Note that
2v/pr(pL +1)

1+ 2pp,

and if # is the minimal angle between a pair of points from K c §"~1(1), the
rate of this code satisfies [3]:

= cosfy,

R < R(6). (3)

Denote also

bels.eli=

tl

{a:wfnexxx:mawmwwmm=z}

where (@,0) = a1by + ... + anb, stands for the scalar product. We will use the
following result from [4].

Theorem 2 For K € §"~(r), with In|K| = Rn(1 + o(1)), and p and ¢ satis-
fying
0<p< pr(R+sing), et @< /2,

there erists €. and @ € K. such that

2/p(1 +p)/(1 +2p) < cosay(d) <1
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and
1
Hb;c(cos 0,¢) > R+ 2Insin g + Insin G,(0) — j(cos a,(0), p).

It is easy to see that by(cos @, ) is the number of codewords in the cross-section
of the unit sphere by the hyperplane orthogonal to the vector ¢, and intersecting
& in the point r - cos @ - &/||2||.

Now we describe a recursive procedure of constructing a simplex of L+1
codewords having sufficiently small pairwise distances. We start with a code
K ¢ S™1(1) and consider the cross-section of S§"=1(1) by the hyperplane.
Then for each ¢ and p, as in Theorem 2, there exists f, as in Theorem 2, such
that for the cross-section of S"~1(1) by the hyperplane which is orthogonal to
some vector ¢ and being at distance cos @ from origin, bi(cos @, €) satisfies (4).
Note that the cross-section of the sphere by hyperplane is again a sphere of
dimension n — 2, having radius r - sinf and centered in 7 - cos @ - ¢/||c||. Next
we shift the center of this new sphere to the origin, and once again consider the
cross-section of this sphere by the hyperplane as in the previous step. Now, the
new code K; has at least bx(cos@,¢) codewords and its cross-section contains
at least by, (cos 61.21) codewords. Notice that on the second step we choose
new i1 and pp. The procedure can be continued.

Let us provide a formal description of the procedure. On the 0-th step we
have a code Ko € S"1(1), In|Ko| ~ [nR]. On i—th step, i > 1, we obtain a
code K; of rate

In|K;|/n ~ R; > Ri-1 +2Insing; — In 3,,(6:) — j(cos ay, (6:). pi)-

We implement this action L + 1 times, and on the i-th step, i > 1, we find
(if R; > 0) a new codeword ¢; such that its distance from €;,0 < j < ¢, is
d; = 2rj - sin f;/2. We stop when we fix L + 1 codewords & € K; € K, 1 =
0,1,...,L. Note also, that Ky C Kgp—1 C *++ C K. What should be done
next, is to optimize the set d;, j =0, 1,...,L, in such a way that the simplex
&, i = 0,1,...,L, to be contained in a closed ball of the minimum possible
radius t. This means that there exists a point on S"-1(1) which is covered by
I + 1 balls, which yields that an arbitrary code of rate R on the Euclidean
sphere is L-packing by the balls of radius strictly less than ¢. Note that it is
necessary to optimize over ; and p; in such a way that R; > 0. It is unlikely
that this can be done analytically, however this is an affordable task for the
computer. One can easily derive the expression for ¢t as a function of pairwise
distances d;; = d;j = ||G — Cjll,J < i, see e.g. [5]).

Consider the simplest case of L = 2. Let us have a code Ko C SP=1(1) of
rate Ro. Set wo = 7/2, po = pr — &, for some € K pr. The function j(z, p) is
increasing with z € [0,1].

j(lp) =1+ p)H (-pi—l)-
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Then for the rate R; and some 8y < 6, + 0,

PL
R>R—-(1 H = €1.
3= (1+ pr) (PL‘Q‘I)-[-EI €1
Next, for the code K; € S ?(sinfy) of rate R; we choose #; = /2. We have
do = 2sin(6y/2), di = v/2sinby. The points &, ¢ and ¢ are the vertices of a
triangle with edges dg, dg and d;. The minimal radius ¢ of the circle passing
through these vertices is

d_ _V2sin(o/2)
2\/1—d9 V1 +sin?(60/2)

4dy

o

Then
2v2t4/1 — 12

sinfy = 52

Since 8y ~ # from (3), we obtain

2- 2 po/ayi—, [1- 22402
72 2/2/1-t2
421 -t 14 226 x/t”

Comparing it to the specification of (2) for L = 2,

Ry(t) < (4)

In

1
$)ies = i
Rz{)_2 35

we conclude that (4) is tighter.
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Abstract. We consider the problem of classification of optimal ternary constant-
weight codes. We use combinatorial and computer methods to find inequivalent
codes for some cases for 3<d <n < 9.

1 Introduction

A ternary (n,M,d) code consists of M vectors (called codewords) of length
n over the alphabet {0,1,2}. such that any two codewords differ in at least d
positions.

A code is called constant weight if all the codewords have the same Ham-
ming weight. Constant weight codes have been studied by many authors
[10].[11],[7),[2].[1].

We will use the following notation for the parameters of a ternary constant-
weight (TCW)code: (n, M,d,w). Let As(n,d,w) denote the largest possible
value M. for which there exists an (n, M, d,w) code. TCW codes of size M =
Asz(n,d,w) are called optimal.

Initially, bounds and exact values of the function As(n,d,w) were presented
in [7] and the recent results may be found in [8]. In this paper we explore the
problem of enumerating (up to equivalence) optimal TCW codes with 3 < d <
= 9.

Combinatorial and computer methods can be used to classify optimal codes,
Enumeration of TCW codes by computer methods is presented in Section 2.
The results which have been obtained are presented in Section 3.

2 'Enumeration of TCW codes by computer
methods

Definition 1 Twe ternary constant-weight codes are equivalent if one of them
can be obtained from the other by transformations of the following types:

- permutation of the coordinates of the code:

- permutation of the alphabet symbols appearing in « ficed position.

"This work was partly supported by Bulgarian National Science Fund (the number of
project [0-03-02/2006)
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Bounds and exact values for the size of the codes could be found in [8, 5].

A known upper bound As(n,d,w) < M may be improved after an exhaus-
tive computer search for a code with these parameters and size M. This search
cau in fact be conveniently described as a search for a clique of size M in the
following graph. Consider the graph where the vertex set corresponds to the
words of length n and Hamming weight w and two vertices are joined by an
edge if the Hamming distance between the corresponding words is greater than
or equal to d. With a maximum clique algorithm, we would find the exact value
of A4(n,d,w) but this direct approach is computationally feasible only for very
small parameters. We may then perhaps relax the goal and just try to lower the
upper bound. In auy case. to speed up the search, it is essential to handle the
large automorphism group of the constructed graph. This may be done in the
following way by utilizing the Johnson-type bounds and removing equivalent
copies of partial codes, We know that an (n, M.d,w) code can be shortened to
get (n— 1, M'.d.w) and (n — 1, M",d,w — 1) subcodes, where

T w

MM > ——— M
“nlg—1)

Therefore. we may construct a code C by classifying all such subcodes (for one
of these two alternatives), and then use the clique-finding approach to find the
rest of the words in C.

The method we use is described in [7], [8], (3] and [9].

The two basic steps are:

- PFinding all inequivalent possibilities for subcode @l

- Extending any of them to the size of C.

For the application of this method it is crucially important to have an
ctfvetive algoritlin for determining code equivalence,

We implement the steps 1 and 2 using our own, specifically developed.
computer algorithms and programs. These algorithms are implemented in the
computer package QPlus [4]. Some of the results are also verified using Q-
Extension soltware [6].

3 Results

Let #(n, M, d. w) denote the number of inequivalent TCW codes with the spec-
ificd parameters. The computer results are described by the following Theorem:

M >

Theorem 1 #(3.3.3,2)=1, #(4,4,3,2)=1, #(4,2.4,2)=1, #(4,8,3.3)=1,
#(4,2.4.8)=1. #(5.5,9.2)=1, #(5,2,4,2)=1, #(5,12,3,3)=1, #(5,5.4,3)=1,
#(5.2.5.3)=1. #(5,10.3,4)=64. #(5,5,4.4)=1, #(5,2,5,4)=1, #(6,6,3,2)=2,
#(6.9.4.2)=1, #(6,18.3.3)=54, #(6.8,4,3)=3, #(6,4.5,3)=1, #(6,2,6.3)=1,
H(6.15.4.4)=1. #(6,4.5.4)=1, #(6,3,6.4)=1, #(6,24,3,5) > 20, #(6,12,4.5)=1,
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#(63?5r5):1 #(6r21615)'=1: #{77r3:2):2! #(7*3‘{!2):'1r #(?1144;3):-!:
#(7.4,0,3)=2, #(7.2,6,3)=1, #(7,7,5,4)=45. #(7,3,6,4)=3, #(7.2,7,4)=1,
#(7,8,6,5)=4, #(1,2.7,5)=1I, #(7,9,5,5)=2, #(7,14,4,6) > 74, #(1,79,6)=1,
#(7.2,6,6)=1, #(7,2,7.6)=1, #(8,8,3,2)=3, #(8,4,4,2)=1, #(8,5,5,8)=1,
#(8’21'6!3):1! #(8,5, 6:4)"_’2: #(8:2- 7,1;)=2, #(8.2,8,4):1, #(8,8,5,5)=5,
#(8.3,7,5)=3, #(8.2.8,5)=1, #(8,8,6,6)=22, #(8,3,7,6)=2, #(8,2,8,6)=1,
#(8:16!5:7):1: #(&4:6‘:7):2: #(8,52_.7,7)=2, #(8,2,8,7):1, #(9:9:'?:2):4:
#(934:412):1: #(96,5;3):2, #(‘91336:3):1: #(g:‘?f?:‘ll):'fr #(9!2:8!4):1:
#(9.5,7,5)=1,#(9,3,8,5)=1, #(9,2,9,5)=1, #(9.6,7,6)=12, #(9.9,8.6)=4,
#(9.3,9,6)=1, #(9.5,7,7)=11, #(9.3,8,7)=1, #(9.2,9,7)=1, #(9,3.7,8)=1,
#(9.2,8,8)=2, #(9.2,9.8)=1.
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Abstract. The result on the weight distribution of minimal codewords in the
second order binary Reed-Muller code RM (2, m), was announced for the first time
by Ashikhmin and Barg at ACCT’94. They gave only a sketch of the proof and later
on a short and nice complete proof of geometric nature was exhibited in their paper:
A. Ashikhmin and A. Barg, "Minimal Vectors in Linear Codes”, IEEE Trans. on
Information Theory, vol. 44, September 1998, pp. 2010-2017. The paper presents a
different comprehensive proof of this result based on Dickson’s Theorem.

1 Introduction

For the first time the sets of minimal codewords in linear codes were considered
in connection with a decoding algorithm [8]. A more detailed description of the
role of minimal codewords in the so-called "gradient-like” decoding algorithms
can be found in [2] and [3, Ch 7]. Recently, the interest in minimal codewords
with respect to decoding algoritlins was resumed by [12]. Additional interest
to them was sparked by the work of J. Massey [10], where it was shown that
minimal codewords describe so-called minimal access structure in secret-sharing
schemes based on linear codes (see e.g. [11] for definitions).

It seems to be quite difficult to desceribe the set of minimal codewords for an
arbitrary linear code even in the binary case. The problem has been completely
solved only for g-ary Hamming codes and for the second order binary Reed-
Muller codes [1]. An attempt to characterize minimal codewords for two-error-
correcting binary BCH codes ended with only a partial result [4],[5]. Another
partial result was established in [6] for the number of non-minimal codewords of
weight 2dmin in the 7" order binary Reed-Muller code RM (r,m). The weight
distributions of minimal codewords in some third-order binary Reed-Muller
codes are determined by computer assistance in [7] and [13].

In this note, we return to the problem of describing the set of minimal/non-
minimal codewords in the second order binary Reed-Muller code, A short and
nice proof for this case suggested by Juriaan Simonis was exhibited in [2]. That
proof is of geometric nature while here we present another comprehensive proof
founded on Dickson’s Theorem.
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2 Background

We assumne the reader is familiar with basic definitions, notations and facts
about linear codes [9]. We shall need the following definitions.

Definition 2.1 A support of an n-vector c over the finite field Fy is defined
as the subset of its nonzero coordinates. A support of a Boolean function is the
support of its truth table.

Definition 2.2 A nonzero codeword ¢ of a binary linear code C is called mini-
mal in C if its support does not cover the support of another nonzero codeword.
Otherwise. ¢ is called non-minimal.

Proposition 2.3 ([1/, [4])

1) If ¢ is minimal codeword in a linear [n,k|-code then its weight satisfies
wh(c) <n—k+1.

2] Any non-minimal codeword ¢ in a binary linear code can be represented as
a sum of two codewords ¢y and ¢y having disjoint supports contained in the
support of c.

3) The automorphisms of a linear code preserve the property of the codewords
to be munimal or not.

L1 All codewords of a binary linear code with weight < 2dmin are minimal.

For basic definitions and facts about second order binary Reed-Muller code
(including Dickson’s Theorem) we refer to [9, Ch. 15.2].

Let A, be the number of codewords of weight w in RM (2, m). Then 4,, =0
unless w = 2m1 or w = 2m"1 £ 2mk-1 for some h, 0 < h < |m/2].

Here. we shall remind also the theorem for weight distributions of the cosets
of RM(1,m) in RM(2,m).
Theorem 2.4 If the symplectic matriz determining coset B of RM(1,m) in
RM (2.m) has rank 2h then the weight distribution of B is as follows:

Weight Number of Vectors
gm—1 _ 2m.—h.—1 22!r.

2m~1 2m+1 1L} 22?1+l

2m—1 Ui 2m.--h—1 22}1

From Theorem 2.4 it follows immediately the corollary.
Corollary 2.5 The number of codewords of weight 21 in the cosets having
rank 2h is equal to Agm—1_gm-n-1 (27721 _ 9),
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3 The proof

We shall make use of the following lemma.

Lemma 3.1 The rank of symplectic malriz corresponding to the sum of two
codewords in RM(2,m) is less than or equal to the sum of the ranks of sym-
plectic matrices associated with these codewords.

Proof. Let c; and cg be two arbitrary codewords of RM(2,m). According
to [9, Ch. 15.2] the corresponding Boolean functions associated with them are
of the form: Si(v) = vQiv! + Liv+¢; and Sa(v) = vQavT +Lav + ¢35, where
Q1. Qs arc upper triangular binary matrices, Ly, Lo arc binary rn-vectors,
€1, €2 are binary constants, and v = (v1,...,vmn) is the vector of variables.
Their corresponding symplectic matrices are:

B1=Q; + Q7 and By = Q2 + Q27

Therefore the symplectic matrix corresponding to the sum:
S1(v) + S2(v) = v(Q1 + Q2)v’ + (L1 + L2)v + (e1 + €2)
is:
B =(Qi1+Q2)+(Qi+Q2)" =B1+Bz

Taking into account, the well-known inequality for the rank of sum of two
matrices. we complete the proof. O

Now, let us recall the result stated by Ashikhmin and Barg in [1].
Proposition 3.2 Let C = RM(2,m) be the second order binary Reed-Muller
code, and A,. My be the number of its codewords and its minimal codewords
of weight w, respectively. Then for w = 2™ 4 2m=1=h b =0,1,2 and w =0
there are no minimal codewords (M,, = 0). Otherwise, My, = Ay, except for
the case w = 2", where

Lm/2)
Mw = Z A«Zm-i_zm—h—l (2m_2h+l — 2) (1)
h=2

Herein, we present a proof of this proposition different from exhibited in [2].

Proof. The smallest two weights in C are w; = 2™2 and wp = 2™°! —
23 (corresponding to h = 1,2). By Proposition 2.3 Part 2), the smallest
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weights of C where non-minimal codewords could exist are 2w; = 2™1 and
wy + wy = 2™"1 4 2m=3_ Now, we shall show that all codewords of weight
w > 2m=1 4 om~h=1 whenever h = 0,1 or 2, are non-minimal in C. Let ¢
be such a codeword. There are three cases to be considered accordingly to the
values of h.

e (1) wt(c) = 2™ (h = 0). The only codeword of this kind is the all-one
vector 1 which is obviously non-minimal.

e (2) wt(c) =2™1 4 2™2 (h = 1). The corresponding symplectic matrix
has rank 2. By Dickson’s Theorem [9, Ch. 15.2] it follows the existence of
an affine transformation by which the Boolean function associated with
the codeword ¢, is reduced to the form wyiys + 1. So, the considered
codeword is affinely equivalent to concatenation of identical codewords
from RM(2,2) having weight 3. Hence, its property to be minimal or
not, is the same as the latter one’s property because of Proposition 2.3
Part 3). But the non-minimality of the codewords in RM(2,2) of weight
> 1 (like of that considered here) is obvious.

e (3) wt(c) =271 4+ 2m=2 (h = 2). The corresponding symplectic matrix
has rank equal to 4 and the Boolean function associated with such a
codeword is affinely equivalent to y1yz + ysys4 + 1. Similarly to the case
(2), the non-minimality follows by that of the corresponding codeword in
RM(2,4) but this time according to Proposition 2.3 Part 1), since the
weight of the latter equals 10 which is > 16 — dim(RM(2,4)) + 1 =6.

So, it remains to consider the codewords of weight 2™~!, Since the minimum
weight of C is 2™~2 by Proposition 2.3 Part 2), we conclude that any non-
minimal codeword ¢ of weight 2™~ must be sum of two codewords of weight
2m=2 gay c; and cp. Since the symplectic matrices corresponding to c;, i = 1,2
have rank 2, by Lemma 3.1 it follows the symplectic matrix B corresponding
to ¢ has rank < 4 (i.e. the possible rank of B is 2/ for some i = 0,1 or 2).
Hence, there are again three cases to be considered:

e (1) h = 0. According to Dickson's Theorem the corresponding Boolean
function is affinely equivalent to f(y) = 1. The non-minimality of such
an “affine” codeword (i.e. € RM(1.m)) follows by the fact that Boolean

- functions yyys and y; (y2 +1) have disjoint supports and their sum is equal
to f. By Corollary 2.5 the number of these codewords is Ag(2™*! — 2).

e (2) h = 1. The correspouding Boolean function is affinely equivalent to
fly) = wiye + y3 and the non-minimality of ¢ follows by Proposition
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2.3 Part 1), since the weight of the corresponding codeword in RM (2, 3)
equals 4 which is > 8 — dim(RM(2,3)) +1 = 2. For instance, f can
be represented as a sum of Boolean functions yoys + y3 and y1y2 + yoys
having disjoint supports which are subsets of the support of f. Note that
by Corollary 2.5 the number of codewords of this kind is Agm-2 (@t —a),

e (3) h = 2. The Boolean function corresponding to ¢ is affincly equivalent
to f(y) = y1y2 +ysya+ys. Let Boolean functions corresponding to ¢; and
¢y be fi and fa, respectively. Let us also consider ¢ as a concatenation
of two codewords ¢/, ¢” of RM (2, m — 1) over the hyperplanes ys = 0 and
ys = 1. The subfunction f(y|ys = 0) is equal to y1y2 + ysys and thus
wi(e) = 2772 =274 < 272 = 9% 2™ 3 = 2« dim(RM(2,m ~ 1))
Hence, ¢’ is minimal in RM (2, m — 1) and therefore wlog we can assume
that fi(ylys = 0) = 0. So, fi(y) is of the form ysL(y), where L depends
essentially only on y1., ¥z, y3 and y4 and its algebraic degree is strictly less
than 2. Then, clearly: f(ylys = 1) = filylys = 1) + fa(ylys = 1) =
L(y) + fa(ylys = 1). Since fi(ylys = 1) = L(y) and wit(cy) = 22, it
follows that L is an affine function of weight 2™~2. Furthermore, obviously
wt(c”) = 22 + 24 and thus the weight of fa(ylys = 1) = g,
But this is impossible weight for quadratic function in m — 1 variables.
Therefore ¢ must not be non-minimal codeword i.e. all codewords of this
kind are minimal,

Finally, by the above deductions and Corollary 2.5, for the number of minimal
codewords of weight 2™~! in RM (2, m), we obtain:

1

Mym-1 = Agm-1 — Z Asmoitmnin=n QAN L=
h=0

Lm/2]

S Ay geeatar iR,

h=2

Il

which completes the proof. O
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Abstract, We obtain riew nonexistence results for spherical 7-designs of odd car-
dinality. Our approach continues similar investigations for smaller strengths. We
combine polynomial technigues with some geometric argument to obtain restric-
tions of the structure of 7-designs with fixed cardinality.

1 Introduction

A spherical 7-design (2] is a spherical code C' C S™~1 such that for every point
y € 8"~ ! and for every real polynomial f (t) of degree at most 7, the equality

Y f({z.y) = flCl. (1)
=0

holds, where fy is the first coefficient in the expansion f(t) = Zf___u ffﬂ-(")(t} in
terms of the Gegenbauer polynomials [1, Chapter 22]. The number 7 is called
strength of C. When y € C, (1) becomes

> ) = hiCl = fQ), (2)

#eC\{y}

where t;(z) < ta(z) < -+ < tjg|-1(x) are the inner products of x € C with all
other points of C.

Polynormial techniques use suitable polynomials in (1) and (2) for obtaining
bounds on some inner products. Restrictions on the structure of spherical de-
signs via polynomial techniques were described in 1997 by Fazekas-Levenshtein
8] (see also [9]) and proved to work for nonexistence results by Boyvalenkov-
Danev-Nikova [6] (see also [3, 4, 5]). In this paper we continue investigations
from [5] by obtaining new nonexistence results for T-designs in dimensions
n < 20.
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2 Preliminaries
Let C' c S™ ! be a 7-design. Then

ic‘|22(ﬂ;’-2):?’1(ﬂ+1)(n+2) 3)

3
by the Delsarte-Goethals-Seidel bound [2].
We use some results and notations from [3, 4, 5, 8, 9]. The parameters a;
are roots of certain Jacobi polynomials and the definition of the weight pp can
be found in [9].

Lemma 1. [3] Let C C S"! be a t-design with odd T = 2e — 1. Then
for every point € C we have t1(z) < ag and tjc|—1 (%) = qe-1. In particular,
we have s(C) > ao_1. If |C| is odd then there exist a point x € C' such that
tz(m‘) S Q.

Lemma 2. [4] Let C C S"! be a 7-design with odd T = 2e—1 and odd car-
dinality |C|. Then there ezist three distinct points x,y,z € C such that ti(z) =
t1(y) and ta(z) = t1(2). Moreover, we have t|cj_1(z) = max{a._1,208 —1}. In
particular, we have s(C) > max{ae_1,20% — 1}.

Theorem 3. [3] If C € 8"~ is a T-design with odd T = 2¢ —1 and odd |C]|
then po|C| = 2.

It is proved in [5] that the necessary condition pg|C| > 2 can be replaced
by the stronger pp|C| > 3 for 3-designs (with a few exceptions) in dimensions
8 < n < 50 and for 5-designs in dimensions 5 < n < 25. In this paper we prove
that pg|C| > 3 is necessary for T-designs of odd cardinalities in dimensions
5 < n < 20. Moreover, we obtain nonexistence results in several cases where
polC| > 3.

It is convenient to use the following notation: Us;(z) (respectively L-i(x))
for any upper (resp. lower) bound on the inner product ti(x). When a bound
does not depend on = we omit z in the notation. For example, the first bound
from Lemma 1 is ¢1(z) < U1 = ap and the last bound from Lemma 2 is
ticj-1(2) = Ly ¢|-1(2) = max{ae. 1,208 — 1}

3 Brief description of the algorithm
Assuming the existence of a 7-design on S”~* with odd |C| and 202 — 1> ag,

we consider a special triple of points z,y,z € C as in Lemma 2. We focus on
the inner products in I(z). Sometimes we need to consider the point u € c
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such that (u,2z) = t2(z). We consecutively obtain bounds L71(z) < #1(2),
ta(z) < Ura(z) and L73(z) < t3(z) using suitable polynomials.

Sometimes we get contradictions at the beginning — already from the first
bounds t1(2) > L71(z) > Uri(z) = ag > t1(z) (this happens in cases where
p0|C| is close from above to 2) and further by tz2(z) < Ur2(2) < L7.1(2) < t1(2).
When Ura(z) > Lri(z), we consider two cases for the location of t2(z) with
respect to ay.

Case 1. If t3(2) € [an, Ur2(z)] (this can happen only when ag < Uz2(2))
then we obtain new upper bound #1(z) < Ur,1(2) < ag which can be used for
obtaining a contradiction. If necessary (in a few cases) we organize an iteration
procedure.

Case 2. 1If ty(2) € [ti(z). a0, then we consider the point u € C such
that ts(z) = (z,u). It follows from [5, Section 4] that some special quadru-
ple {z,y,z,u} C C exists such that max{t|g|_2(2),t|c|-2(x)} = 202 —1. In
both cases we continue with new bounds L7 3(z) and Uz,1(z) which can be used
for obtaining a contradiction. In some case we need more careful consideration
of the location of some inner products and iteration procedures.

All symbolic and numerical calculations were performed by MAPLE with
high enough precision. All programs and results (symbolic and numerical) are
available upon request.

4 The new nonexistence results

After [4], there are 291 open cases in dimensions 3 < n < 20, with odd
|C] and 2 < p|C| < 3. In every such case we have 208 —= 1 > as, ie.
tic-1(2) = L3 c)-1(2) = 2a% — 1 by Lemma 2. Applying our algorithm we
obtain nonexistence in all cases with only one exception — the case n = 4,
|C| = 43. There are 18 cases of nonexistence with po|C| > 3 as well.

In the table below we give lower bounds on

Bygd(n, 7) = min{|C]| : C C S"! is a 7-design, |C] is odd}.

The bounds from [7] (the second column in the table) come from pure
linear programming and arc better than the Delsarte-Goethals-Seidel bound
(3) in dimensions 5, 6, and 7 only. No examples in small dimensions are given
in [6, 3, 4] but we know that the best bounds come by the method from [4]
(the third column in the table). In the fourth column we give the results from
the method from Section 3 when pg|C| € [2,3) and the fifth column gives the
results from the method from Section 3 when po|C| > 3. So the best bounds
are the last entries in the rows.
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Table. Lower bounds on Bgq(n. 7), 3 <n < 20.

oo I T This paper | This paper
mlC| € [2,3) | polC] 23

3 23 23

4 43 43

a3 75 il

6 A 119 123

il e s ) O i 183

o) 253 261

9 347 359

10 463 477

117 601 619 621
12 765 789

13 957 985 987
14 1175 1213 1215
15 1427 1471 1475
16 1713 1767 1769
17 2031 2097 2101
18 2393 2467 2473
19 2791 2879 2885
20 3233 3333 3341

In [6], the asymptotic lower bound Bygq(n,7) 2 {1_+?\{{M ~ 0.35068n° was
proved. This was obtained again in [3] despite the results in small dimensions
from [3] are better than those from [6]. The best known asymptotic lower bound
is Byga(n, 7) 2 0.35314n3 from [4]. The results from this paper suggest that
further improvements are possible by our method. However, we still could not
overcome the technical difficulties on this way.
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Notes on automorphisms of extremal codes
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Abstract. We prove that if a putative extremal self-dual [2dm, 12m, 4m + 4] code
has an automorphism of odd prime order p with ¢ cycles and f fixed points then
¢ > f. In case p > 12m the results we have obtained so far give some evidence that
m must be 1 or 2.

1 Introduction

Let C' be an extremal (doubly-even) self-dual [24m, 12m, 41 + 4] binary code.
By the results of Zhang [9], we know that m < 153. However, the existence of
such codes is proved only for m = 1 and m = 2, and in these cases we have the
extended [24, 12, 8] Golay code with automorphism group Ma4 and the extended
quadratic residue code [48,24,12] with automorphism group PSL(2,47). In
[1] we proved that the automorphism group of a binary self-dual doubly-even
[72, 36, 16] code is a solvable group of order 5,7, 10, 14,56, or a divisor of 72.

Here we investigate primes which may occur in the order of the automor-
phism group G = Aut(C) and the cycle structure of permutations in G. Let
o € G be a permutation of order p where p is an odd prime. The action of
o on the positions produces, say ¢ cycles of length p and f fixed points and
in this case we call o of type p — (¢, f). In Section 2 we prove that ¢ > f for
any automorphism of C of order p. In Section 3 we investigate the possibility
c=f=1

2 The main result

First we consider the case p = 3. Let C be a binary self-dual code of length n
with an automorphism o of order 3 with exactly c independent 3-cycles and
f = n — 3c fixed points in its factorization. Let ¢ = 28...9., where
Q1,Qs,...,9., are independent cycles of length 3. Two particular subcodes
of C play an important role in the following investigations.
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Let F,(C) = {v € C : vo = v}. Clearly, v € F,(C) iff v € C is constant on
each cycle. Let w: F (C) — Fg”f be the projection map where if v € F,(C)
then (vr); = v; for some j € 4,i=1.2.....,c+ f.

We consider furthermore the vector space

E,(C)={veC:wt®)=0 (mod2),i=1,...,cu;=0,j= 3ct+1,...,n};

where v|§; denotes the restriction of v on £;. Let P be the set of even-weight
polynomials in Fa[z]/(2® + 1), and let v|€2; = (vo,v1,v2) correspond to the
polynomial vy + v1x 4 vex? of P for i = 1,...,c. Thus we obtain a natural map
¢ : E,(C)* — P°. In our particular case, P = {0,e =z + x?, ze, ze} = Fy.

Theorem 1 [2] A binary code C with an automorphism o is self-dual if and
only if the following two conditions hold.
(i) Cr = m(F,(C)) is a self-dual binary code of length c+ [
(i) Cy = ¢(E+(C)) is a Hermitian quaternary self-dual code of length c
gver the field P = Fy.

For the minimum distance of the quaternary Hermitian self-dual codes we
have the following bound.

Theorem 2 [5] If C is an [n.n/2,d] Hermitian self-dual code over Fy, then
d < 2|n/6]+ 2.
Using the above theorems we obtain

Corollary 3 If C' is an extremal binary self-dual [24m,12m, 4m + 4] code and
o is an automorphism of C of type 3 — (¢, f) then ¢ > f.

Proof: By Theorem 1, Cy must be a Hermitian quaternary self-dual code of
length ¢ over the field P = F4. Since d(C) = 4m + 4, the minimum distance of
C'y cannot be less than 2m + 2. By Theorem 2, 2m+2 < 2|¢/6] +2 < 2¢/6+2,
hence ¢ > 6m. It follows that f = 2dm — 3¢ < 24m — 18m = 6m < c. O

To restrict the possible automorphisms for particular codes we need the
following theorem.

Theorem 4 [8] Let C' be a binary self-dual [n,k,d] code and let o € Aut(C)
be of type p — (c. f), where p is an odd prime. If g(s) = Z:;é I'%] then

(i) pe > g(%‘c) and

(i) f > g(455) for f > c.
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Now let n = 24m and d = 4m + 4. Then g(1) = 4m + 4, g(2) = 6m + 6,
g(3) = Tm + 7, and for s > 4 we have

g(s)=§{4m2fﬂ —?m+?+2[4m+ﬂ =Tm+T+ Z[mﬁ].

i=0 i=3

If2' < m+1<27 for I € Ny then

=3 = 31

=Tm+7+ (m+ 1)v =(m+1) 25—3

g(s) =2 Tm+ 7+

For i > [ we have %ﬂ < 2M1-% < 1 and therefore [-’“2#] = 1. Hence for
s — 3 > [ the following inequality holds

o) =g +3)+s-3-1> (8- 5 )m+1)~1-3+s=A+s

Using the above inequalities and Theorem 4 we prove the main result

Main Theorem 5 If C is an extremal self-dual [24m,12m, 4m + 4] code and
o is an automorphism of C of type p — (¢, ). where p is an odd prime, then
(e

Proof: By Corollary 3, we may assume that p > 5. Suppose that f > ¢. We
know that this is impossible if m < 3. Let m > 4, hence | > 2. By Theorem 4,
we have the following inequalities

pez (T L) wa r20(15)

(a) We claim P;—lc >14+3: If '-‘lg—lr-. <1+ 3 then e < ;J“f} < P_T since by
Zhang, m < 153, hence | < 7. This inequality is possible only in the
following cases: p=H,c <5 p=T,c< 3 p=11, ¢ < 2; p= 13,17,19,
¢ = 1. But for p > 5 we have pc > g(%—c) > ¢(2) = 6(m+1) > 30 which

does not hold in all cases.

(b) 5~ <1+3 then f —c <20 and so f < 21. But

Vi Q(L'EE)”E g(1) = 4(m - 1) > 20, a contradiction.

As f = 24m — pe we obtain, by (a) and (b), that

(p+1)e
5

pc>A+pﬂ1c and 24m —pc> A+ 12m —
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honcc T=cs M and therefore A(p —1) < (12m — A)(p+ 1) or

(24 — 12m)p < 12m. Since

A—6m = (8—Z)m+1)—1—-3—6m
> 8—1(m+1)—1-3-6m=1Tm+19-4l)>0
i Gm < 24m = 24m h
A A Tl A e e T
o 2 W19 M A, 9 24 249 96

ool SRR e /s Tt ki e, T o e O
& i e ) = e

Thus p = 5 and moreover by (a), we have 5¢ > g(2¢) > A + 2¢, hence
3c > A. The inequality f = 24m — 5¢ > ¢ implies ¢ < 4m. Furthermore,
f = 24m — 5¢ > g(12m — 3¢). Since 12m — 3¢ > [ + 3, by (b), we have
24dm — JC > A+ 12m — 3¢, hence (12 —a)m —b > 2¢c > %(um + b), where

a=8—5.b=a—-1-3 A=am+b Hence (36 — 5a)m > 5b and therefore
(36 — 40 + J/Z")m > 5(5 —1) — 5/2' which implies (4.2 — 5)m < 5.2/(1 —5) +5,
a contradiction. This proves that ¢ > f. O

3 Automorphisms of prime order p > 12m

Now suppose that p > 3 = 12m. Thus, by Theorem 5, ¢ is of type p — (1,1).
Hence n = 24dm = p + 1 and in particular p = —1 mod 8. The later yields
that -”— is odd. As usual let s(p) denote the smallest number s € N such that
pl& =1L

Lemma 6 Forp > § = 12m we have s(p) odd.

Proof: Since p = —1 mod 8 the prime 2 is a square mod p. This yields that
9% = { mod p. As s(p) | p—— and '”— is odd the proof is complete. O

Lemma 7 For the group algebra Fy(a), the trivial module is the only irreducible
self-dual module.

Proof: By Lemma 6, we know that s(p) is odd. The assertion now follows
directly by Theorem 2.7 of [7]. O

Using Maple we easily find all primes p of the form 2m — 1 for m < 153. It
turns out that apart from six primes, we always have s(p) = *”%1

Theorem 8 Apart from the siz exceptions C is an extended QR code.
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Proof: Let K = F5. The ambient space K™ of C' can be written as
K"=K(o) @ K.

Since s(p) = p;—] the non-trivial irreducible K{o)-modules are of dimension
%1. Thus by Maschke, we have the decomposition

(+) K(o)=KoV oW

with irreducible modules V' and W both of dimension s(p) = ”—5—1 By Lemma
7, we have V' 22 V* and W % W*. Since a group algebra is always selfdual
we obtain W = V*. Furthermore, the decomposition in () is unique since the
three modules are non-isomorphic. On the other hand, we know that

Klo)=K®QaN

where @ is the code associated to the squares mod p and N to the non-squares.
Since @ is equivalent to N we may assume that V = Q. Finally, if Cp is the
subspace of C with 0 in the last position then C' = (Cp, ¢) where c is the all one
word. This shows that C' is an extended QR code. O

Problem 9 Is an extended QR of length p+ 1 = 24m extremal only for m =1
and m = 27

By known results [4], this is true for m < 21. But we have to check up to
m = 153. Fortunately, we do not need to compute the minimum distance in
these remaining cases. Instead we only have to find a codeword of weight smaller
than 4m + 4. Apart from the largest case, i.e. m = 153, this is always possible
if s(p) = P;—l splits up into a nontrivial product of primes which holds true
in about half of the cases we have to consider. Here the Karlin-MacWilliams
algorithm (see [3] or [6], chap. 16, section 6) is applicable and the computations
have been done partly by Malevich (Minsk) and independently by O’Brien
(Auckland). In the other half of cases in which s(p) = P;—I is a prime the Karlin-
MacWilliams algorithm does not work and further theoretical investigations are
needed to answer Problem 9.

Summarizing the above theoretical and computational results there is some
evidence to

Conjecture 10 If a binary extremal code C of length 24m has an automor-
phism of prime order p > 12m thenm =1 orm = 2.
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Abstract. Linear binary thrce—dimensional array codes that can correct three—
dimensional clusters (or bursts) of errors are presented. New constructions of three-
dimensional 2 x 2 % 2-cluster—error—correcting array codes with excess redundancy
F,H,,Q,HJ{E,Q,Q] = 17 are given.

1 Introduction

There are data transmission and storage systers with multidimensional data
structures that suffer from multidimensional clusters of errors. Correction of
two- and three-dimensional error clusters is required in holographic storage.
Two-dimensional and three-dimensional array codes are very suitable for cor-
recting cluster errors in such data structures. In this paper we consider three-
dimensional array codes that can correct three-dimensional 2 x 2 x 2-clusters
of errors.

For integers mny. | = 1,2,3 we consider the linear space V(n1,ngz,n3)
of all binary three-dimensional ni X ng X ng arrays. A linear k-dimensional
(k < nyngnz) subspace C(ny,n2.n3) of the space V(n1,na,n3) is called a
linear binary three-dimensional array [n1 x ng x ns, k] code of size (or area)
ny X ng X ng with &k information symbols and r = ningng — k parity-check
symbols. Thus, a codeword of the binary linear three-dimensional array code
C(ny,n2,n3) is a three-dimensional array ¢ = (cijn) where cijn=0,1 for
P03, ot — 1 3= 01 = 0oy ma—1.

A three-dimensional array e = (e;;.5) of size np X na X ng is called a
rectangular cluster of size by x bz % D3 ( by xbax bs-cluster) if nonzero components
of e = (eijn) are confined to a rectangular parallelepiped of size by % by X ba.

By analogy with two-dimensional array codes ([1]) for by x by x bs-cluster-
error-correcting array codes whose sizes ny X nz X ng are much larger than
by % bg x by the criterion of the excess redundancy can be used. We define the
excess redundancy of the by x by % bs-cluster-error-correcting array [ny % ng x
ns, k] code C(ny,ng,n3) as

'Fn.l Mg (bl . b‘Z-. !}3) == [?" ot 10g2 ”1“2“‘311 (1)
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where r = ningng — k is the redundancy of the code C(n1,n2,n3) and [x] is
the least integer equal or more than x > 0. Now if n = ningna and n — oo we
can define for a class C' of codes C(ny,n2,13) the excess redundancy

Fc[bl, bg, 53) =l ('J" = 10g2 ﬂlng?‘l;;), (2)
n—oo
if such limit exists. If this function is unbounded, we take T (b1, b, b3) = 0.
For any class of three-dimensional by x by x bs-cluster-error-correcting array
codes
i?'(f*(b1 Jbo, 53) > bibobs — 1. (3}

For b; =2, i=1,2,3 the excess redundancy
Fol22.2)> & (4)

In [2] we had shown that there exist linear three-dimensional by % by x by-
cluster-error-correcting array codes with small excess redundancy To(br, be, bg) >
3b1bobs — 5 for all by, bs, bs. Constructions of the codes are based on the con-
structions [3] and used the approaches [4], [5].

In this paper we give new constructions of linear three-dimensional 2 x2x 2-
cluster-error-correcting array codes with the excess redundancy 7¢(2,2,2) =
b6

2 Three-dimensional interleaved array codes

For constructing linear binary three-dimensional array 2 x 2 x 2-cluster-error-
correcting codes with small excess redundancy we can use one-dimensional 2-
burst-error-correcting codes with the same property.

Let C'(n1.n2,n3) be a binary linear three-dimensional array code such that
for any code array word ¢ = (¢; j5) we have

na—1mng—1 ny—1ny—1 ny—1lns—1
SPEL s 3 S S
7=0 h=0 =0 j=0 =0 h=0

The code C(ny,ny, ng) is the single-error-correcting-double-error-detecting
(SEC-DED) array [n; x na X ng, k] code with & = nyngng — ny —ny —ng + 2
information symbols [6].

The parity-check symbols of the code C(n1,ng,n3) are Cojhy Cipn and
Cigo where ¢ =0,...,m —1, =0 ... ng—1, h= 0,...,n3—1.
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Given the three-dimensional SEC-DED array [n; xngxns, k| code C(ny,ng, n3)
we can construct the three-dimensional single-cluster-error-correcting-double-
cluster-error-detecting
(SCEC-DCED) array [bini X bang X bang, bibabsk] code Z(biny, bang, byng)
by the rectangular three-dimensional interleaving.

The parity-check symbols of the code Z(bini,beng, bang) are zi jn, zij .
and 25 where i = 0,...,b1(ny —1), j = 0,..0,b6(na—1), h =
O st — 10N =00 =1 =00 s — 1 =0, ... . be =1,
The sets of parity-check symbols 2,4, 25 and =z, are confined to
rectangular parallelepipeds (zyjn). (2ij.n) and (2;;) of size by x ng x
ng, N1 X b Xng, ny Xngxbs, respectively. The intersection of these rectangular
parallelepipeds is the rectangular parallelepiped (zy jo /) of size by X by X bs.

3 Constructions of linear array codes correcting
2 x 2- and 2 x 2 x 2-clusters of errors

At first we consider the two-dimensional construction.

Let
Co,0 €o.1 S Cp.2ny,—2 €0.2ny—1
C1.0 C1,1 cee Cl2ns—2 C1 2nz—1
e 5 ! 4
Cany—20 C2ng—21 ... CIn1—22n,—-2 C2n;—22n;—1
Con1—1,0 C2ny—1,1 --+ C2pi—12n:—2 C2n1—12nu—1

be a codeword of the binary two-dimensional array code C(2n,2n3) con-
structed by the rectangular three-dimensional interleaving of the two-dimen-
sional array code C(nj,nz). If the code C'(ny,ng) is the direct product of
two simple parity-check codes C; and Cy, then the code C(li,lz), where
li=2n1—1o0r2n1, la=2ny—1or2n3, can correct 2 x 2-clusters of errors.

Let U and V be one-dimensional cyclic (or shortened cyclic) 2-burst-
error-correcting [ly, k;] and [lo. k2] codes over GF(2%). respectively.

Let u = (up.u1,...,%,-1) and v = (vg,v1,...,v,-1) be code words of

codes U and V, wu,; = (_'u.?(.l),ug?)) and v; = (-ulgl}, u;z)) be binary representations

of elements wu;,v, € GF(2%). Suppose that Zi;}ll uElJ = Zf‘____ul uifz) =0 for
all uel.
Let "z = (z;;) bethe [; xly array such that
il forcge=0,. .. h=38, 3=1.....l5~—3,
1)

Zida—2 = Cila—2 + '”--E forii=1,....11 =3,
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Zila—1 = Cily—2 + ng) for = Liaisss ll — 3,
2 -2, = Ch-23 7+ U§l} for 7 = Ly 52 — 08

2 ; .
2y—15 = Clh—14+ 11} ) foreg = 1. o5ls —3,
(1) 1 2 1
2 —20h=2 = Cly =202 T _ o +'u£(.}_12, Ai—tle-2 = Czl—|.£,—z+'u-§£.2+v}212
(2) (2) (2) (2)

I =21 = 611_2‘[3_1+TL£1_2+U L Al B c;l_.ug_l+u£'1_2+'u£2_1.

Iz
Lemma 1 The set of arrays (z.;) is a binary linear two-dimensional array
2 x 2-cluster—error—correcting [y % la,lila — 2(l1 = k1) — 2(l2 — ko) + 4] code
Z(h s "32)

We can use one-dimensional cyclic 2-burst—error—correcting Fire codes over
GF(2%) as codes U and V. Furthermore we can use the following lemma.

Lemma 2 Let p(z) be a irreducible polynomial of degree m over GF(2°9).
Then the polynomial g(z) = (z* + 1)p(x) generate the one-dimensional cyclic
2 burst error correcting code over GF(2°) of length 2(%1_1-1_1 -
Bk . o 2{22!“1_1)
Example. Let my,m2 be positive integers and § = ==F— lo
&_m}:_—” Let U and V be cyclic [li, k] and [l ko] codes over GF(2%),
satisfying lemma 2. Then the binary two-dimensional array code Z(ly,l) of
size I3 X o with r=2my +2mg +4 parity—check symbols can correct single
error clusters of size 2 x 2. The excess redundancy of the code Z(ly,l2) is

IFfl'l__”‘z(zg 2) =

Now we consider the construction of three-dimensional array 2x 2x 2-cluster-
error-correcting codes. For constructing the linear binary three-dimensional
" array codes with small excess redundancy we use one-dimensional cyclic (or
shortened cyclic) 2-burst-error-correcting codes over GF(2*) with the same
property.

Let a be a primitive element of the Galois field G F(21). There is a one-to-
one correspondence between elements o' and binary arrays of size GF(2%).
Therefore we can represent the cyclic 2-burst-error-correcting [, k] code L over
GF(2%) as the binary three-dimensional array [l x 2 x 2,4k] code Uy, correcting
92 % 2 x 2-clusters of errors. A code word of the code Uy, is the the rectangular
parallelepiped (u; ;) of size | X 2 X 2.

Theorem 1 Let C(l1,15.13) be the binary hinear three-dimensional twice inter-
leaved array code correcting 2 x 2 x 2-clusters of errors. Let Li,L; and Ly be
the cyclic 2-burst-error-correcting [Lins Kin)s [l kng) and [lij, ki ;] codes over
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GF(2%), satisfying Lemma 2, respectwely. Then the sum of the codes C(ly,l2,13)
and Uy,. Ur,, Uy, is the binary linear three-dimensional array code Z(ly,13,13)
of size ly x ly X I3 with v = 4(lij — ki) + 4(Lin — kip) + 4(lhs — kng) — 16
parity-check symbols that can correct single error clusters of size 2 x 2 x 2.

The excess redundancy of the code Z(ly, I, l3) is

Py bl (2521 2) =17.
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Abstract. Let [n.k,d], code be a linear code of length n, dimension k and Ham-
ming minimum distance d over GF(q). In this paper record-breaking codes with pa-
rameters [30, 10, 15]5, [33, 11, 16}5, [41,10,22]s, [24, 14, 8]7, [40, 11, 22}, [60, 10. 38)7,
(60,13, 347, [88.8,63]+. [96,11,64]7, [96, 13, 61]7 and [96, 15.58]7 are constructed.

1 Introduction

Let GF(q) denote the Galois ficld of g clements and let V(n,q) denote the vector
space of all ordered n-tuples over GF(q). The Hamming weight of a vector z,
denoted by wt(z). is the number of nonzero entries in . A linear code C of
length n and dimension k over GF(q) is a k-dimensional subspace of V(n,q).
Such a code is called [n, k,d], code if its minimum Hamming weight is d. For
linear codes, the minimum distance is equal to the minimum weight of the
nonzero codewords. The orthogonal code C+ of C' is the set of words of length
i that are orthogonal to all codewords in C, w.r.t. the ordinary inner product.

A k x n matrix G¢ having as rows the vectors of a basis of a linear code C
is called a generator matrix for C.

To obtain a g-ary linear code which is capable of correcting most errors for
given values of n, k. and ¢, it is sufficient to obtain an [n, k,d], code C with
maximum minimum distance d among all such codes or for given values of k,
d, and ¢. to obtain an [n, k.d]; code C whose length n is a smallest one. The
codes with snch parameters are called optimal.

Let A, denote the number of codewords of C' with weight i. The weight
distribution of C is the list of numbers A;. The weight distribution Ag =1,
Ag=a. .... Ay, = is expressed as 0'd®...n" also.

T the last years many good linear codes over GF(5) and GFE(7) were con-
structed. In [2] Daskalov and Gulliver constructed 44 good codes and presented
a table with lower and bounds on the minimun distances for 1. <k <81 <
n < 100. In [3] Daskalov. Hristov and Metodieva constructed 32 QC and QT
codes. Grassl and White presented 28 new cades in [4] and 55 in [5]. Maruta

U This work was partially supported In the Ministrv of Education and Science under con-
tract in TU-Gabrovo.
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et al. constructed in [6], [7] and [8] cighteen, twenty four and twenty six new
codes respectively. Six new codes were constructed in [9]. Fifty eight new lin-
ear codes over GF(T) are constructed and a table for the minimum distances
(k <7, n <100) is presented in [10]. Thirty tree linear codes over GF(7) are
constructed in [11]. New lincar codes (n < 50) over GF(7) are constructed
in [12], [13], [14]. Good linear codes, including and some high-rate codes, are
presented also in [15] and [16].

In the presented paper we continue our investigation from [15] and [16].
In the time of construction the codes presented in this paper improved the
respective lower bounds on the minimum distances in Grassl's tables [17] and
now are the best-known such codes.

2 Quasi-cyclic codes

The basic object in our considerations is the class of quasi-cyclic codes. A code
C is said to be guasi-cyclic (QC or p-QC) if a cyclic shift of a codeword by
p positions results in another codeword. The length, n. of a p-QC code is a
multiple of p, so hat n = pm [18]. With a suitable permutation of coordinates
[19] a class of QC codes can be constructed from m x m circulant matrices. In
this case, C' has a generator matrix of the following form

G = [By, By, ., Byl, (1)

where B; arce circulant matrices.

The algebra of m x m circulant matrices over GF(q) is isomorphic to the
algebra of polynomials in the ring GF(q)[z]/(z™ — 1) if B is mapped onto the
polynomial, b(z) = b+ by + bea? + - + byn—12™" !, formed from the entries
in the first row of B [1]. The polynomials b;(2), associated with a QC code are
called the defining polynomials [18]. )

The dimension k of the QC code is equal to the degree of h(zx) [20], where

gl
-~ ged{z™ — 1,bg(x), bi(z), -, bp_r(T)}

If degh(x) = m, then the dimension of the code is m, and (1) is a generator
matrix. If degh(x) = k < m, then the matrices B; in (1) are near circulant
matrices i.e. circulant matrix with m — k rows deleted. In this case the QC
code is called degenerate [18].

h(x)

3 The new codes over GF(5) and GF(7)

Theorem 3.1 There erist QC codes with parameters [30.10,15]5. [33,11, 16]5.
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Proof: The coefficients of the defining polynomials and the weight distribu-
tions of the codes are:
A [30,10,15]; code:

0000000001, 1124204402, 1121400003;
© Ol 152080 1GTU20 722520 | Q05280 1 gl4Y8E0 546292 o] 660040 Hol08IR00 §a1508400 41746660

251679120 261291840 27772280 28329420 2988350 3012532

A [33,11,16]; code:
01222012441, 10100324344, 00000000001;

1 142420 129460 4 30844 | 93764 5261800 51651068 551430108 5o2T17T4R o 14668872 o 6545024
0" 1t it . 11 i s R 23 247 257
) s s BRI AN GO0 OsG 3 e
9EBOTEIG §THI004d ogTIBEIDL HdOB8IGE gnRGEGTO0 511025048 35254188 2a30T16

Theorem 3.2 There exist a code with parameters (41,10, 22].
Proof: The generator matrix and the weight distribution of a code are:

10000000001124204402112140000311231314300
01000000002112420440311214000001123131434
(0100000000211242044031121400030112313140
00010000004021124204003112140043011231314
00001000004402112420000311214014301123134
00000100000440211242000031121431430112311
00000010002044021124400003112113143011234
00000001004204402112140000311231314301120
000000001024204402]1214000031123131430113)

00000000011242044021121400003112313143011
Ol 9971 933161 949868 5=25452 §EB1314 7131916 5g273636 HgASE300 5782716 511110920

3213ﬂﬂﬁlﬁ 3-31!'11.':936 341423136 ?51140754 16758828 -374104'.’4 38173954 3952795 401067‘2 411108

Theorem 3.3 There exist high rate code with parameters [24,14, 8]7.

Proof: The generator matrix and the weight distribution of a code are:

( 128610423610000000000000 \
465201465201000000000000
026330435400100000000000
564363535200010000000000
610616214000001000000000
061061621400000100000000
561536654500000010000000
125603034200000001000000
643040234600000000100000
410214446300000000010000
256361652200000000001000 |
656116026400000000000100
550341464300000000000010
263304354000000000000001 /
Ul 83554 950533 10425059 13\85'333 1220322340 13] 15439688 14544238'344 152]75055200

16?34&[53“96 172[!738832!143 ls-lRE!D-H 405164 199] GRGRITI04 20 137H3RGI0156 21 1GTIR1317612

22 L28GO6224630 -23670978-5(i00U 24167745I 4044
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Theorem 3.4 There exist QC codes with parameters [40, 11, 22]7, [60, 10, 38]7,
(60,13, 34]7, [88,8,63]7, [96,11,64]. [96,13,61]7 and (96,15, 58]7.

Proof: The coefficients of the defining polynomials and the weight distribu-
tions of the codes are:

A [40,11,22]; code: 15564400610000000000, 35414452362321136401;
gl 224560 9321600 5496180 9EI64080 51 21TRED 573RT0000 HT0NIBI0 HREARIG0 4)HR1TISAE

2 : 50 a2 . iT02 : 293IETY! g
31142771200 35189940560 5276569400 34341670240 35351016728 3202879380 97189980400 3g89863260
a7 %
327894680 44162126

A [60,10, 387 code: 331000000000, 250210261351, 403105264111, 514042322401,

560440523051
! 382376 gqvu12 430276, 496336 49249240 4gGu3BE0 41450476 453045432 456031620 410754712

e At % . S !
JRITA6698 425622610 533956676 17139910032 £od1353470 5437137768 5429186076 5519092096
1022956 ; A8 ¢ ’

510220562 504301448 £01338048 5I6TH0G GN2ERTH

A [60, 13, 34]+ code: 12344321000000000000. 42613561501564230031, G 15661452241504230031;
(! 343730 3515600 3674280 3274920 4QI0174R0 g0ARTIZ00 410644720 1) F124K600 JoRAORTI20

(GRLBINITO0 g (494IGTEA0 451054182360 462064203500 |7 IURT2NON60 fQB902207590 JoRKOL551960

~(}} 1621292600 5113672393620 £911198102010 5312850026600 5410002538320 5547491720 5EIR0T03TU0
:-JTl-lTl-'z.'raﬂﬁi‘ EH-FH"‘J“IURAHI 59“:”7.‘1.‘12“ {')-U'.].'{T";ﬂJh

A [88,8,63]; code: 12306036, 14510603, 00012525, 00106412, 00001432, 13513142, 15511022,
11123235, 12025240,

11011353, 00000001, E
O} §31032 GAT12 GuRAB ERlB6AR EoA4128 GEBSIA0 FQLOGTOL 7pITd4RO 71268656 £oBRI204 an0332K

GUAAGE e GT214d —aTUIE4d meGBAT20 ~oh50TTE =qd27056 gn28I6T0 g1 GTY2 goB6TIL ¢quT28 013576
T4 o 76 77 T8 79 80 81 82 83 84

ys 1128 bbﬁ 10

A [96.11.64]7 code: 252515410631061400146055015306112605410000000000,

360041143201301113525200615232245635252211622261;
0! G42TH GRO912 GGIBITE rTAO2 (U1RA216 (GIRTISE 7916560 711975968 794000140 45071200

15012432 G381 184 43720848 GRUQUBS6 99434445 136235242 174901780 205THRA80
T4 75 76 T 78 79 30 81
82'2?{.8-1?15‘-2 83228733? 44 84312396592 851?9650368 861 38030048 8705439168 SBGRZHDTDB 893151555?
9014('1(5'.!41':'4 91."‘132‘.14“3 921H514l).'i2 934!]71{?” 94‘.!‘2.’192 95120611 gﬁlﬂ.’;{i

A [96,13,61]7 code: 241032224613566136166433536636253451000000000000,
024624513023516333062555644066503435351451450361;

O} 1604 GITEs2 GASTOR g 1ATHIN GEeas23D ATIREAS0 (r3004560 Gg7RO1200 GQINTTIN0
7454160 =1 IRIBNO00 70195956064 73303837040 7, (T34I6TE00 751204106352 76214432192
7EI0103968 g1 1491214240 ¢ | IKIG3YSE20 go226415108 grd6T422468 gqI5426T45302 ¢)T19256860
(12535332206 (993211066 (921076704 4692351 (5611136 12486

A [96, 15,58]7 code: 6031440652312601:3545321530234002 1100000000000000,

640313561105404512343502661561 165326411261 121651; _ -
O} 54120 5l 1H0R GSTTAL g1 203HIN ()GAGIIR (G2 NI GgBO4INTI (5 106RKI0L (AT

571452307% 68117'12-15‘.'41 69“""“”“‘““"' I—”'.Jl.i‘rlrr:'-_-- - B JUU4 2486 T._,ll'l-l.‘nl.l-‘i?-’.‘ ?33125%?:30
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74184.'!945448 76195.‘1003-1.’}& —‘-7406025532 70680604032 80424402100 813670550?2 32133304'32?2 867030908?2
87929886970 90937?'.}7508 gllUEUSU‘iﬁ!J! 922W7150544 93117470UTJ!5 942246'.’[:03'.’ 9533479744 gﬁl'l"'r'O'_!lU
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Abstract. For projective spaces PG(n, ¢) of small dimension, new sizes of complete
caps including small these are obtained. The corresponding tables are given. A
generalization of Segre’s construction of complete caps in PG(3,2") is described. In
PG(2,q), for g = 17, § = 4, and ¢ = 19,27, § = 3, we give complete (3(g +3) +d)-
arcs other than conics and sharing é(q + 3) points with an irreducible conic. We
have proven they are unique up to collineations.

1 Introduction

Let PG(n.q) be the projective space of dimension n over the Galois field Fj
of ¢ elements. A k-cap in PG(n,q) is a set of k points, no three of which are
collinear. A k-cap in PG(n,q) is complete if it is not contained in a (k+1)-
cap of PG(n,q). If n =2, then a k-cap is called a k-arc. We use the following
notations for PG(n,q): ma(n, q) is the size of the largest complete cap, mb(n,q)
is the size of the second largest complete cap, and ta(n,q) is the size of the
smallest complete cap. The corresponding best known values are denoted by
mz(n, q), Ms(n,q), and £2(n, q).

In all tables new bounds and sizes of complete caps obtained in this work
are marked by the asterisk + and are written by the bold font.

For the spectrum of possible sizes of complete caps in the spaces of small
dimension, the known results are collected in [3].[6]. Using recent results from
literature and computer search done in this work we obtained new upper bounds
on ty(n,q) and new sizes of complete caps. As result, we essentially updated
tables of [3],[6], see Tables 1-4 below.

Also we generalize Segre’s construction [19] of complete caps in PG(3,2M)
basing on ideas of unpublished manuscript [16], see Theorem 4.
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2 Complete arcs in planes PG(2,q)

The smallest known sizes 2 = £5(2, ¢) are given in Table 1. For ¢ = 27, see [12].
Table 1: The smallest known sizes o = 75(2, q) < 4,/q of complete arcs in

planes PG(2,q). Ay = [4,/G —12(2,9)]

ACCT2008

q |tz |Ag q |tz |A, q |tz |Ag q |tz |Ay q| tz2|Ag
314. [ 2 [[101[30 [10 |[[256 [56 [ 8 [[439 |78 | 5 (641 99 2
416. |2 [[103[31[9 [[257 (56 [ 8 [[443 (79 | 5 |[643 | 99 2
5 [6. 12 J1107[32 9 [[263 (56 [8 [[449 (80 | 4 |[647 | 99 2
716 [4 [|1109]32 |9 [[269 |57 [ 8 [[457 |21 | 4 |[653 (100 | 2
816. |5 |[113[33 ]9 [[271[58 [ 7 [[461 [81 | 4 [|659 | 100 | 2
916. | 6 [|121 [34 |10 |[277 [59 [ 7 [[463 (82 [ 4 ||661 [100 | 2
117, |16 [[125[35]9 [[281[59 | 8 |[467 |82 [ 4 ||673 [102 | 1
13 |8 | 6 ]/127 |35 |10 [[283 |59 8 [[479 (83 [ 4 [|677 | 103 | 1
16 (9. |7 ||128 |34 |11 ||289 [60 | 8 [[487 [84 [ 4 ||683 [103 | 1
17 110,16 |[131 (36 [ 9 [[293 [61 [ 7 |[491 |84 [ 4 [[691 | 104 | 1
19 110. | 7 1137 |37 [ 9 ||307 [62 | 8 ||[499 |85 [ 4 |[701 [104 | 1
23 110. | 9 (13937 [10 [[311 (63 [ 7 ([503 [85 | 4 [[700 105 | 1
25|12, | 8 [[149[39 ]9 313163 [ 7 (50985 |5 [[719 [ 106 | 1
27 [12. | 8 |[151 139 |10 ||[317 163 | 8 |[512 |86 |4 [[727 | 106 | 1
29 [13. [ 8 [1157 [40 |10 [|331[65 | 7 ([521 |86 [ 5 |[729 [ 104 | 4
31|14 | 8 [[163 [41 [10 [[337 |66 | 7 |[523 |86 |5 ||733 | 107 | 1
32114 [ 8 [[167]42 |9 |[343]67 | 7 |[529 [88 [ 4 (739|107 | 1
3715 |9 (1169 |42 [10 [[347 [67 [ 7 [[541 |89 [ 4 [[743 [108 | 1
41 |16 | 9 jj173 |44 | 8 (349 |67 | 7 ||547 |89 | 4 751 | 108 | 1
43 |16 |10 [|179 [44 | 9 [[353 |68 | 7 [[557 |90 [4 ||757 | 100 [ 1
47 (18 [ 9 [[181[45]8 [359[69 | 6 [[563 (92 [ 2 |[761 | 100 | 1
49 118 [10 [[191 146 [ 9 [[361 (69 | 7 [[569 (93 [ 2 (769|110 | 0
93 [18 |11 1193 |47 | B 1367 |70 [ 6 [[571 [93 | 2 773 1111 0.
99 [20 [10 [[197 [47 [ 9 373 |71 | 6 (577 [93 | 3 [[78&7 | 1120
61120 [11 [[199147 [ 9 [[379 |71 [ G |[587 |94 [ 2 |[797 |112| O
64 122 110 1211 (49 | 9 [[383 |71 |7 [[593 (95 [ 2 [[809 | 113 [ 0
67123 |9 (1223 |51 | 8 [[389 |72 | G [[599 [95 [ 2 [[811 (113 ] 0
71122 |11 [[227[51 ]9 (397 |73 | G (601 |96 [ 2 |[821 [114] 0
75124 |10 [[229 [52 [ 8 ||401 |74 [ 6 |[607 [96 | 2 |[823 [114 | 0
79126 |9 (1233152 [ 9 [[409 (75 [ 5 [[613 (97 |2 (827 |115 [0
81126 |10 ||239 [53 | 8 [[419]76 | 5 [[617 [97 [ 2 [[829 (115 |0
83 (27 |9 [|241 |53 |9 |[421 [76 | G [|619 (97 | 2 (839|115 | O
89128 |9 (1243 |54 | 8 [[431 [77 | 6 [[625 (96 [ 4 [[841 [112 ] 4
97130 | 9 [[251 |55 | 8 [|433 (77 |G (631 |98 [ 2

Through the paper for new computer results we used the randomized greedy
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algorithms [3, Sec.2],[6. Secc.2]. the back-tracking algorithms [3, Sec.2], the
breadth-first algorithm, algorithms combining orbits of groups, and other geo-
metrical algorithms.

Theorem 1 In PG(2,q) we have t2(2,q) < 4/q for3<q < 841. In addition,

t2(2,¢) <4/g—8 for 23 < q < 269, q = 281,283,289, 307,317;
t2(2,q) < 4/q—T7 for 19<¢g< 353, q = 361,383;

t2(2.q) <4yg—6 for 9<q<401, q=421,431,433;

t2(2,q) <4/q—5 for 8<g<443, q=509,521,523;

t2(2,q) <4G—4 for T=q= 557, q = 625,729,841;

t2(2,q) <4/G—2 for 3<q<66L;

t5(2,q) <4,/g—1 for 3<g<T6L
Theorem 2 There exist the following complete k-arcs in PG(2,q) with k <
my(2, q):

PG(2,64): 22 <k <35, k=42 (5] ; k=57
PG(2.128) : 34 < k < 67. PG(2,163): 41 <k <85
PG(2.167) : 42 <k <87

Theorem 3 In PG(2,q), ¢ odd, we denote by Kq(0) a complete (%(q+3) +4)-
are other than conic and sharing %(q + 3) points with an irreducible conic.
Let A, be the mazimal possible value of 0. Then Ayy = 4, Ag = A7 = 3,
Ay = Ags = Agg = Az = 2. There is no any arc Ki7(3). For § = 3.4 and
q < 27, the arcs Kq(0) are umque up to collineations.

Theorem 3 is proved by an exhaustive computer search. Note also that
Ags = 2 [14], as 252 = 1 (mod 16), and As3 = 4 [1]. One can compare the
results of [17],[18] with Theorem 3 and the arcs Kq(A,) written below. The
unique 14-arc K17(4) is a counterexample to [18]. The 14-arc K19(3) is obtained
in [18] but we have proven that it is unique. Finally, the unique 18-arc K7(3)
is new.

Points of the unique l4-arc Kj7(4) are given in [7: { (1,10,12),(1,6,8);
(1,0,6),(1,0,11), (1,1.4),(1,1.13),(1,6,9),{1,10,5),(1,14‘3},(1,3,14); (0,1,3),(0,1,0),
(1.5.1),(1,14,10)}. The first ten points lie on the conic 372 4 x5 = 2xj and the
last four are placed outside it. By semicolon we separate orbits of the stabilizer
group. For Ky7(4) the stabilizer is the dihedral group Dy of order eight.

The unique 14-arc Kjy(3) obtained in this work may be represented with the
following coordinates: {(1,5,6). (1,2,4); (1,0.0), (1,7.11),(1,13,17); (1,1,1),(1,3,9),
(14,16),(1,6.17), (1,9,5),(1,17,4); (1,13,6), (1.1,11).(1,6,8)}. The first 11 points
lie on the conic .rf = Tas.

The unique 18-arc Ky7(3) may be represented with the following coordi-
nates: {(1,14,1). (1,12,23),(1,10,19); (1,0,0). (0,0,1),(1,2,3),(1,22,17),(1,13,25),
(1,11,21); (1,8,15),(1,20,13), (1,19,11),(1,16,5),(1,4,7),(1,5,9); go,1,0),(1,6‘8),
(1,21,12)}. The field Fo7 is generated by the polynomial 23— 22 —2. Elements of
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Fs7 are represented as follows: 0= 0. of =i+ 1, where a is a primitive clement
of the field. The first 15 points of K97(3) belong to the conic x? = z0T2.

The stabilizer group of the arcs K19(3) and Ky7(3) is the symmetric group
Sz of order six. In Kj7(4), K19(3), and K77(3) the points outside the conic lic
on the same stabilizer group orbit.

3 Small caps in PG(n,q), n >3

In [19] Segre constructed complete (3¢ + 2)-caps in PG(3, 2"). In unpublished
manuscript [16], connected with the paper [15] and cited in [13, Table4.8], it is
remarked t2(3, ¢) < 2¢ + t2(2,q), ¢ = 2" > 4. We generalize ideas of [19],[16].
Theorem 4 Let g > 4 be even. For every complete ko-arc in the plane PG(2,q)
there is a complete (2q + ka)-cap in the space PG(3,q).

Table 2 : The sizes t2(n, g) of the known small complete caps in PG(n, q)

n| q |ta(n,qg) | ta(n,q) | new [n[q[ta(n,q) [T2(n,q) [ new
A4 19<| 20 | P 15]4f <[ &0

4175 2T = ol 9|0 00 < 82 *
417 20 < 56 e s L 70 < 174 *
4] 8 o0 S ] I BT o< 181 *
419 94 < 87 o [0 II5= aU2 >
4111 02 < 121 * 0|3 ad < 44

4113 67 < 162 R 0l < 114 &
4116 9l<| 153 4] 16]5 30< | 131

4717 Too< 259 = 2 A T A [ 049

2 3 2= 22 68| 256 <| 437 *

Table 3 : The sizes 12(3, ¢) of the known small complete caps in PG(3, q)

q |t2(3.q) t2(3.q) new | ¢ |ta(3,q) t2(3,q new

7 Y= =1 I3[ 63< (35 F 25 = 153 %

5] 1A 3¢g—4=20 471 69 <3¢ +F 28 =169 *

Y Ib<| 3¢g—3=214 49 2 <3¢+ 33 =180 *
11 <] dg=3=30 23 | 77T < [3q+36=195 -
I 2<nmdg— 3 =ab od | 86 < |3g +43 =220 &
16 26| 29 F9=41 61 89 <3¢ + 47 =230 *
e 2hs 3g =51 64| 93 <[2¢+22=150 Th 4
197 28] 3g+ 1T =5H8 o7 97 < [3q + 56 = 257 *
73] 35<| J¢F3="T2 71 103 < [3¢ F 62 =275 e
%5 | 38<| 3¢F6=8L | = [ 73106 < [3g 68 =287 i
27| AI< [ 3gF8=89 | * [ 79| 11d<dq—a=312 *
290 43<] 3g+9=96 * Sl ' IIT < Tdg—3 =321 *
ol < 13g+1T=T047] = 33 | 120 <[ 4q —2 =330 *
32] 8L [2qF+14=78 [Tho4|[ 89| 128< [d¢g—1 =355 *
S| B<[3gFIT=T128] * 97T 140 < [dg +6 =394 &
1| 60<|3¢+22=145] » I3 2 + 34 = 290 [[12], Th.4
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Theorem 5 It holds that t5(3.q) < 3¢ if 2 < ¢ < 1T; t2(3,¢q) <4g if2 < g <
89.

4 On the complete cap sizes in PG(n,q), n >4

Theorem 6 The upper bound on the smallest size ty(n, 3) of a complete cap in
the ternary projective space PG(n,3) has the form ta(n,3) < 11274 n > 4.

Theorem 7 There are the following bounds: ma(5.4) < 153, m9(6,4) < 607,
ma(7,3) < 404, my(8,3) < 1208, ma(9,3) < 3247, t2(4,7) < 56, £5(6,4) < 114,
534 < my(8, 3).

Table 4 gives sizes of the known complete caps in PG(n,q),n > 4, ¢ >
3. We used sizes and bounds from [2],[6. Table 2],[8]-[11],[13, Table 4.5],[15,
Table I]. The result 19 < t3(4,4) and a complete 21-cap in PG(4, 4) are obtained
in [2].

Table 4: The sizes of the known complete k-caps in PG(n,q), n>4,q>3

n|q |t2(n,q) | Sizes k of the known complete  [m5(n.q) [ma(n,q) [new
caps with ta(n,q) < k < mh(n,q)

4 (3 11 k=1land 16 <k <19 19 20

4 14 19 £ 20< k<40 40 41 | [2]
4[5 21 < 31 <k <66 < 83| #
4 |7 200 [T B <k < 124ad k= 126,132 < 238 »
5|3 20 < k=22 and 26 < k < 48 48 bo | *
5 |4 b= [ 50 <k <108 and k= 112,126 <153 | *
6|3 34 < [k =44 and 46 < k < 103, k=112 =< 136 [
6 |4 61 < 114 < k < 288 < 607 |
T3 A8 < | 88 <k <238 and 243 < k < 248 <404 | *
83 | 100 < 176 < k < 532 and k = 534 < 1208 | *
9i 13 [ 172 < 352 < k <1214 and k = 1216 < 3247 |
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Abstract. We propose geometrical methods for constructing square 0l-matrices
with the same number n of units in every row and column, and such that any
two rows of the matrix have at most one unit in the same position. In terms of
Design Theory, such a matrix is an incidence matrix of a symmetric configuration.
Also. it gives rise to an n-regular bipartite graphs without 4-cycles, which can be
used for constructing bipartite-graph codes so that, both the classes of their vertices
are associated with local constraints (constituent codes). We essentially extend the
region of parameters of such matrices by using some results from Galois Geometries.
Many new matrices are either cirenlant or consist of circulant sulnnatrices: this
provides code parity-check matrices consisting of circulant submatrices, and hence
quasi-cvelic bipartite-graph codes with simple implementation.

1 Introduction

Bipartite-graph codes are studied in the context of low- density parity check
(LDPC) codes, see [1],[2],[4],[6]-[8], and the references therein.

In [7] Tanner pr oporaed to associate a bipartite graph T to an [N, K] code C
m the following way. Fix a positive integer U, and for auy i = 1,...,U choose
a set of n; distinct positions of codewords of C, that is a subset jy,... v in; Of
{1,...,N}. One class of vertices {V{, ..., V{} of T correspond to the positions
of the codewords of C. Let {V{", V... ., V{/} be the other class. A vertex V;” has
degree n; and is adjacent with Vs e V] . The [n;, ki] subcode C; obtained
from C by projection to the positions correapondmo t0 J1,...,Jn, is called a
local constraint on variables, while the vertices V{, ..., V{, are said to be the
variable vertices of T. If n; — k; = 1 holds for all subcodes C;, one can build
the graph T directly using the U7 x N parity-check matrix H of the code C :
the jth column (ith row) of H is identified with a vertex V) (V") and every
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nonzero entry into H implies an edge of T'. Usually, such variant of T is called
the Tanner graph of the code C [8].

We consider the following modification of the construction of [7] , see [2],[1].
Let G be an n-regular bipartite graph with two classes of vertices {V1,...,V;,}
and {Viut1,...,Vom} (i.e. any vertex is adjacent to exactly m vertices, but
any two vertices from the same class are not adjacent). Let C; be an [n, ki]
constituent code, t = 1,2,...,2m. A bipartite-graph code C = C(G; C1,...,Com)
is a linear [N, K| code with length equal to the number of edges of G, that is
N = mn. Coordinates of C are in one-to-one correspondence with the edges of
G. In addition. the projection of a codeword of C to the positious corresponding
to the n edges incident to the vertex V; must be a codeword of the constituent
code C;. We call G a supporting graph of the bipartite-graph code C.

To a supporting graph G it can be naturally associated a square 0l-matrix
M(m,n) of order mn with n units in every row and column. The ith row (jth
column) of M (m,n) corresponds to the vertex V; (Vin4;). The entry in position
(i,7) is 1 if and only if V; and Vi,4; are adjacent. It is easily seen that the
graph G is 4-cycle free if and only if the matrix M (m,n) does not contain the
2 x 2 submatrix Jy consisting of all units. A matrix without submatrix Jy is
called a Jy-free matriz.

In order to improve the performance of the code, it is desirable to increase
the girth of the graph [7],(8]. We study supporting graphs with girth at least
six (i.e. with no 4-cycles). It should be noted that if the supporting graph of a
bipartite-graph code has girth at least siz, then the girth of the Tanner graph
of this code is at least ten.

Parameters of the bipartite-graph codes depend on the values of m and n.
The goal of this work is to construct Js-free matrices M (m.n) with distinct
parameters m,n.

Jy-free matrices for LDPC codes are considered in many papers, see e.g.
[1],[4],[8] and the references therein. Mainly, non-square matrices are inves-
tigated. It is also known that both symmetric and resolvable non-symmetric
2-(v, k, 1) designs [3] can be used for obtaining Js-free matrices M (v, &). The
reason is that in a 2-(v, k, 1) design every pair of elements is contained in ez-
actly one block. Actually, in order to obtain a Jy -free matrix M(m,n) it is
enough that every pair of elements is contained in af most one block. An inci-
dence structure with this property is said to be a configuration [3, Sec. IV.6].
If a configuration is symmetric, then its incidence matrix is a Jy -free matrix
M(m, n.).

Even though Jy-free matrices M (m,n) have already been studied in litera-
ture, the region of parameters of the constructed matrices is not wide enough
if compared to the permanently growing needs of practice, when often exact
values of m,n are necessary. Also, it should be considered that distinct con-
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structions of matrices have distinct properties, and clearly some choice can be
useful.

In this work we propose a number of constructions of both square and
non-square Js-free matrices based on incidence structures in projective spaces
PG(v,q) over Galois fields Fy (see [3].[5] for basic facts on Galois Geometries).

We essentially extend the region of parameters of Jy-free square 01l-matrices
with the same number of units in every row and column. The obtained matrices
have new structures that gives wide choice for code implementation. Many of
them cither arc circulant or consist of circulant submatrices: this provides
code parity-check matrices consisting of circulant submatrices which give rise
to quasi-cyclic (QC) bipartite-graph codes. QC codes can be encoded with
complexity linearly proportional to code length (4],[6].

2 Construction A: a single orbit of a collineation
group

Construction A. Take any point orbit P under the action of a collineation
group in an affine or projective space of order g. Choose an integer n < ¢+ 1
such that the set £(P,n) of lines meeting P in precisely n pbints is not empty.
Define the following incidence structure: the points are the points of P, the
linios are the lines of £(P.n). the incidence is that of the starting space. Let M
be the incidence matrix of such a structure.

Theorem 1 In Construction A the number of lines of L(P,n) through a point
of P is a constant ryn. If n = ry, the matriz M in Construction A is a Jy-free
matriz M(|P|,n).

Example 2 i) We consider a conic K in PG(2,4q), ¢ odd [5, Sec. 8.2]. Let P
be the set of %q(q —1) internal points to K. It is an orbit under the collineation
group Gx fizring the conic. Let n = 3(q+1). Then L(P, n) is the set of lines
external to K. We obtain

M(m,n):m=3q(g—1), n= %(q +1), g odd.
Another orbit Py of the group G is the set of %q(q + 1) external points to K.
We form the set L(Ps, %(q— 1)) from %q(q+1) bisecants. As a result, we obtain

a matriz

M(m,n):m = %q(q +1), n= %(q —1), q odd.

i) Let P be the complement of a Baer subplane 7 of PG(2,q), ¢ a square.
It is an orbit of the collineation group fizing =. The set L(P,q) is the set of
tangents to . We obtain
M(m,n) :m=q®— /G, n=4q. ¢ square.
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iii) In PG(2,q), q a square, let P be the complement of the Hermitian curve
[5, Sec. 7.3]. It is an orbit of the group PGU(3,q) fizing the point (0,0,1). We
obtain

M(m,n) :m=q¢*>+q— 4\/q, n=q— \/q, q square.

It should be noted that Construction A works for any 2-(v, k. 1) design D
and for any group of automorphisms of D. The role of g + 1 is played by the
size of any block in D.

3 Construction B: an union of orbits of a Singer sub-
group

We treat points of PG(2,¢) as nonzero elements of Fis. Elements a,b of Fs
correspond to the same point if and only if a = ab, & € F,,. Let a be a primitive
element of Fa. The point represented by «' is denoted by F;. Then PG(2,q) =
LR AP - Py} The map o : B — Py (mod ¢2+¢+1) 18 @ projectivity of
PG(2,q). The group S of order ¢? + ¢ + 1 generated by o is called the Singer
group of PG(2,q) [5, Sec. 4.2]. Clearly, P; = o' (P).
__ For any divisor d of ¢® + ¢ + 1, the group S has a unique cyclic subgroup
S, of order d, namely the group generated by of, t = (¢* + q+ 1)/d. Tt is well
known that under the action of a cyclic collineation group the point set and the
line set of a projective plane have the same cyclic structure.

Let Op,O1,...,0;_1 be the orbits of points of PG(2,¢) under the action
of the subgroup 5 Clearly, |0;] = d. We arrange indexes so that Py € Oy.
Oy = d"(Op). Then

0; = {P.c'(B),c®(P),...,a' " VYP)}, i=0,1,...,t — 1. (1)
Let £y be a fixed line of PG(2,q) and let ¢; = ¢'({y). Then the set of lines of
PG(2,q) is L = {&y.0y.b,..... le2+q}- Let Ly, ..., Li_y be the orbits of the set
L under the action of Sy. Clearly, |L;| = d. We arrange indexes in such a way
that fo € Lg, Ly, = ¢"(Lg). Then

L = {604 (&), c®(&),....a' e}, i=0,1,...,t— 1. (2)

Theorem 3 Lett = (¢>+q¢+1)/d and let Oy, ...,0_1 (resp. Lo,....Li_1) be
the point (resp. line) orbits under the action of the Singer subgroup . of order
d. Assume that for points. lines, and orbits, indexes ure arranged as in (1) and
(2). Then for any i and j, every line of the orbit L; meets the orbit O; in the

same number of points w;_; (od 1), where wy, = |[loNO,|. u=0,1,...,t=1.
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Corollary 4 Let d and t be as in Theorem 3. The Jy-free incidence (¢*+q+
1) x (¢? + g + 1) matriz V of the plane PG(2,q) can be represented as follows:

Con ~ Gox . oz | .0 Gy
v Crnd B e S ety
Ciiv Ci-ii Ciip --- Gi-1e

where C; ; is a Jy-free binary circulant d x d matriz of weight W;_; (mod t)-
Weights w, of the submatrices C;i; can be written as the circulant t X ¢
matriz

Wy wy ws wz ... Up_3z Wi
Wi-1 W wp Wg ... Wiz W2
W (V)= MR ; ;
un Wy w3 wWqg ... W wn

Remark 5 We use in the sequel the following natural decomposition of square
circulant 0f-matrices, cf. [8, Sec. IV, BJ. From now on, we assume that in
circulant matrices rows are shifted to the right. A binary circulant d x d matriz
C of weight w is defined by the vector s(C) = (s1,52,. . .y 8w) where the s; s
are the positions of the units in the first row of C, arranged in such a way that
S1 < 83 < ... < se. Let Iy = I4(0) be the identity matriz of order d and let
I;(¢) be the circulant permutation d x d matriz obtained from Iy by shifting of
every row by v positions. The matriz C' can be treated as the superposition of
w matrices Ly(si). i = 1....,w. From the matriz C' one can obtain a circulant
matriz C of weight w—23 using the superposition of any w—4 distinct matrices
I4(s;). It should also be noted that if the starting matrix C is Jy -free then any
matrix (') is Jy-free too.

Construction B. Fix some integers tg, ..., ur, 0 < u; <t—1. Let V' bea
matrix obtained from V by replacing the circulant submatrices C; ; such that
J —i = u, (mod t) with d x d matrices C‘g:}"“) as in Remark 5. Here, and in
the rest of the paper, the subscript difference j — i is calculated modulo t. Let
W(V') be the matrix W (V) in which corresponding elements w;—; are changed
by w)_; = wj—i — dj—i. If an 7 x 7 submatrix of W (V') is such that the sum
of clemerits of every row and every colunn is equal to the same number n, then
the corresponding submatrix of V' is a Jy-free matrix M(m,n).

Example 6 The matriz C-’I.[j-J. obtained from the submatriz C,; of V' as in Re-
mark 5, is a circulant matriz M(d, w;—i—08). So, we can form a family of Jy -free
circulant matrices.

M(m,n):m=d n=w,—0, u=0,1,....0 =1, d=0,1...,wy — 1. (3)
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Example 7 By Remark 5, from the matriz V' several famailies of Jy-free ma-
trices M(m,n) can be obtained. Significantly, every such matriz consists of
circulant submatrices. Sometimes some conditions on weights w!, of submatri-

ces CI-{";?_*) are needed. Here, we provide a list of parameters m,n of some of
these families of Jy-free matrices M(m,n).

i) m= q2+q+1. n= zf;_:l[)(?”u_ﬁﬂ) =q+1_ PI--G()-!‘“ Ou —O s
i) m=ed, n=(c=hw,e=1,2,...; |'%‘| =il e =il
(forsl =an = .= =w, k=92 )

iii) m =ced, n = wp — g+ (c— h)w, &g =0,1,...,wg, ¢ =2,3,...,t—1,
= Al S

(forwp=wo—0p #Fw, Wy =...=w_; =w );
iv) m=2d, n=2w
(for wi = Wiy = Wi ik = Wipopp =w, k21, m>1);
v) m=(k+1)d, n=wy+wi +...+w.
(for wiq = Wy Whyg = Wiy, Wy, =Wy g, k> 1).
Remark 8 Assume that M (m,n) is a circulant matriz, see e.g. Ezample 6.

Let M(m,n) be defined by the vector s(M(m,n)) = (s1,8z,-..,8n), see Remark
5. We consider M(m,n) as a superposition of n circulant permutation m X m

matrices Im(si), i = 1,...,n. Assume that for constituent [n, k] codes C; we
haveCi=...=6Cq, Cm+1 = Co,y. Letry =n—ki. Let also [c[t%c?% cgtltl
be the th cchtmn of a pm*aty rhpck matriz H; of the g-ary code C;. Finally,
let Hy = \o0 = HpHpley =00 = Hen W Then. the perity check mairic H
cormspu-udmy to the code assocmtfﬂd to the matriz: M(m,n) has the form
1 1 ]
C%li) PES C-(_g_l}fm cae f«, )1Ln
e di) iy Lgl,)lfm " c,L‘li T

(m+1)jr ( 1) Cgr;+”fm (32) b (m»H)Im (Sn)

m m 7 ) : 1 '

{1 1‘::}.)1 Iin(51) C‘.{?,r,‘ri), Ln(s2) -+ Cﬁan;fﬁr}t Iin(sn) ]

The matriz H consists of circulant submatrices, and therefore it defines a QC
code, cf. [4],/8]. QC codes can be implemented with relatively small complexity
[6].
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Abstract. For a prime power ¢ and for integers R.npwith R >0, 0<n< R-1,
let AE.;‘_L = (Cn,): denote au infinite sequence of g-ary linear [n;,n; — ri], R codes
C., with covering radius R and such that the following two properties hold: (a) the
codimension r; = fit; + 1, where (£;); is an increasing sequence of integers; (b) the
length n; of C; coincides with f;"]{r,), where fi") is an increasing function, In this
paper, sequences AE,?’L with asymptotic covering density bounded from above by a
coustant independent of g are constructed for an arbitrary . and for cach value
of 7€ {0.1,...,R — 1}, under the condition that ¢ = (¢')". The key tool is the
description of new small saturating sets in projective spaces over finite fields, which
are the starting point for the ¢™-concatenating constructions of covering codes. A
new concept of N-fold strong blocking set is introduced. Several upper bounds on
the length function of covering codes and on the smallest sizes of saturating sets are
improved.

1 Introduction

Denote by Fy the Galois field with ¢ elements, Let Fj' be the n-dimensional
vector space over Fy. Denote by [n,n — 1], a g-ary linear code of length n and
codimension 7. The covering radius of an [n,n — |, code is the least integer
R such that F' is covered by spheres of radius R centered on codewords. An
[n,n—r],R code is an [n, n—r], code with covering radius R. For an introduction
to coverings of vector spaces over finite fields. see [1] .

The covering quality of an [n,n — r(C)];R code C can be measured by its
covering density

R
i)
g1 B C) = g~ E (g — 1)‘“(1,) > (1)
t=()

From the point of view of the covering problem, the best codes are those with
small covering density.
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For given integers R,n with R > 0, 0 < 5 < R — 1, and for a fixed
prime power g, let AE;L = (Cpn,): denote an infinite sequence of g-ary linear
[ni, n; — riloR codes C,, with covering radius R and such that the following two
properties hold:

(a) the codimension r; = Rt; + 1. where (¢;); is an increasing sequence of
integers;

(b) the length n; of C; coincides with fé”}(r,-}, where f{" is an increasing
function.

We call AEEL an infinite family of covering codes or an infinite code family, or
simply infinite family.

Considering familics of type Afrg}q is a standard method of investigation of
linear covering codes, see [1]-[5], and the references therein. In particular, it
is related to the fact that families with distinct values of n often have dis-
tinct properties. Throughout the paper, distinct families AE{L with the same

(m) A('?)

paraiucters 7, R, ¢ will be denoted as follows: Ap" 1, Ag, 5. and so on.

For an infinite code family Ag{)q, its asymptotic covering density is defined

as follows:
Tig(R, AR) = lim inf p1g(ni, R, Cn,). 2)
1 11— 00

The size ¢ of the base field F, is fixed for a given family, but, when an infinite
set of families is considered, the value of ¢ can infinitely grow. A central problem
tor covering codes is the following: for fixed R and n find a sel of sequences
AE{I_L of g-ary codes with ¢ running over an infinite set of prime power, such
that the asymptotic covering density of every sequence is bounded from above
by a constant independent of g. Each sequence of such a set is said to be good.
Accordingly. an [n, n—r]q R covering code is called good or short if n = O(q%).

By (1) and (2), a sequence A}‘;}_] consisting of good codes is good. So far, the

problem has been solved only for n = 0 and arbitrary R and ¢, for R=2, =1
and ¢ a square [3. formula (33)], and for R =3, 7= 1 and ¢ a cube [4, p. 540].

The main result of the paper is the construction of good infinite families
AJ_L for arbitrary R and allp = 0,1,2...., R—1, under the condition ¢ = (¢’)*.
A kev tool in our investigation is the connection between linear covering codes
and saturating sets in projective spaces over finite fields.

Let PG(v,q) be the v-dimensional projective space over F},. We say that a
set of poiuts S € PG(v,q) is p-saturating if for any point € PG(v,q) there
exist g+ 1 points in S generating a subspace of PG(v. ¢) containing x, aud g
is the smallest value with such property [2, Definition 1.1], [6]. In the literature
saturating sets are also called saturated sets [2].[3], spanning sets, and dense
sets,

Points of an (R —1)-saturating set I\ of size n in PG(r—1.q) can be viewed
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as columns of a parity check matriz of an [n,n —r|,R related covering code Cx
[2]-[6]. A saturating set K will be said to be small if the related covering code
Ck if short.

A basic tool to obtain an infinite family of codes with good covering prop-
erties from a covering code are the so-called g™-concatenating constructions [1.
Section 5.4]-[5].

The good infinite families of covering codes provided in this paper are ob-
tained by applying the ¢"-concatenating constructions to covering codes related
to new small saturating sets. The construction of such sets relies on a new no-
tion of N-fold strong blocking sct.

The length function £,(r. R) is the smallest length of a ¢ -ary linear code
with codimension r and covering radius R [1]. Existence of an [n,n —r],R code
or, equivalently, of an (R — 1) -saturating n-set in PG(r — 1,¢), implies the
upper bounds £4(r, R) < n. Denote by k,(v, p) the smallest possible size of a
p-saturating set in the space PG(v,q). Clearly, {y(r, R) = kg(r — 1, R —1).

The small saturating sets and the infinite code families obtained in this
paper provide an improvement on the previously known upper bounds on the
length function £,(r, R), and on the corresponding value of k,(v. ).

2 Infinite families A(I?_)q of [n,n — Rt],R codes

(0)

3, are given in [5]. By using them in the

The best known families A{zug and A
direct sum construction [1], we obtain an infinite family Af,g_)q of [n,n — rlyR
codes with parameters

ARl : B> 4, n=Rt>5R, 427,448 n:Rq%Jr[?]q"nm,r#aR.

The main term of the asymptotic density 7, (R, AE?L) is %;?—' and it does not

depend of q.
The codes of the family A(Ig}q are shorter than those of the family arising

from the direct sum of the [9‘?_—11 qL,ll ~ ml,1l perfect Hamming codes, see,
e.g., [2, formula (5)].

3 Small p-saturating sets in the spaces PG(p + 1,q)

We introduce a new concept of N-fold strong blocking set.

Definition 3.1 A subset B of a projective space PG(N, q) is an N-fold strong
blocking set if every hyperplane of PG(N,q) is spanned by N points in B.
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Theorem 3.2 Let ¢ = (¢')P. Any (p + 1)-fold strong blocking set in a sub-
space
PG(p+1,¢") € PG(p+1.q) is a p-saturating set in the space PG(p+1,q).

Theorem 3.3 Let ¢ = (¢')!. In PG(2,q) there is a 1 -saturating set of size
2/G+24/G+2.

Theorem 3.4 Let ¢ = (¢")°, ¢ prime, ¢ < 73. In PG(2,q) there is a 1-
saturating set of size 2./q+2Yq +2¥q+ 2.

Let o, 1, T2, 73 be homogenous coordinates for the points in PG(3,¢) and
let Iy, I, I3 be lines in PG(3, q) with equations l; : zo = 22 = 0;lo : 1 = 23 = 0
ls : zp = x3, £1 = Ty. The lines are contained in the hyperbolic quadric @ :
Toz1 = Tox3. Let g be any line disjoint from Q. We denote B=LUlUl3Ug.
The following can be proved.

Theorem 3.5 The set B of size 4q + 4 is a 3-fold strong blocking set in
PG(3,q).

The following result shows that N-fold strong blocking sets can be obtained
by an inductive construction . Each inductive steps consists of embedding the
blocking set in a higher dimensional space, and then adding the union of some
properly chosen lines.

Theorem 3.6 Assume that there exists an N-fold strong blocking set in PG(N, q)
of size k. Then there exists an (N + 1)-fold strong blocking set in PG(N+1,q)
of size

k+1+(N+1)(g—1).

Corollary 3.7 In PG(N.q), N > 3, there exists an N-fold strong blocking set
of size
N(N+1

Corollary 3.8 Let ¢ = (¢)°t}, p > 1. Then there exists a p-saturating set in
PG(p+1,q) of size

(ﬂ+\l/a_1)(w_2) +p+6‘

4 Infinite families Ay, of [n,n — (Rt + 1) R codes

We use p-saturating sets in the spaces PG(p + 1,¢), obtained in the previous
section, as starting points for the ¢"-concatenating constructions of [2]-[5]. To
this end, it is useful that the set B described in Section 3 and the p-saturating
set of Corollary 3.8 consist of lines.



T4 ACCT2008

Theorem 4.1 There ezist infinite families A q of [n,n —7]gR codes with the
following parameters:
Aigr + R=2,r=24128,¢= (@), n=2(/a+ ¥3+ 0T + |7,
R P L
.2, A 24—+ — =,
hilial) SRS s S
Ajga ¢ R=2r=2+123, 1= (@)%, ¢ prime, ¢ <73, 19,15,
n=2(g+ Yg+ Yq+1)q +2Lq3f

A Ry r=3f+1>7,q=(q’)3264,ﬂ-=4(\"7§+1)f15
ﬁ 3 q'z 3q
r=(R+1)
r(RE1) =1
App @ R24 r=Ri+1 g= ()" n=npeg~ " + (R - 372 qn—1 :
1
nqu=(f"q—1)(£(—}-z;—)—2)+R+5,tzlaﬂdtztg, q‘”“lann_q.

Y3 P
The main term of the asymptotic density i, (R, .Am ) is %;}%)— Signifi-
cantly, it does not depend on q.

5 Infinite families AR w of [n,n — (Rt + n)],R codes,
N=2.3, . 0~ 1

We construct small p-saturating sets in PG(N, (¢)?*1), N = p+2. p+3,...,2p—
13

Lemma 5.1 Fiz 1 <k < N. Let By, be the subset of PG(N.q) consisting of
points whose weight is m‘ most N —k + 1. i.c. By is the union of the (N —

k)-dimensional subspaces of equation Ty = .. = @, = 0. Then every k-
dimensional subspace of PG(N,q) is generated by k + 1 independent points in
By.

Theorem 5.2 Let p be any positive inlcger. Let ¢ = (¢')+1. Let N > p + 1.
Then in PG(N, q) there exists a p -saturating set of size

’ I' V" 1 _1 1\‘! -
Ve (N + qu__ 1»“"' ) e (J :])q%ﬁ, where Vy(a,b) = Z(fi —1)1( )
i=0)
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For a parameter n € {2,3..... p} we take N = p+n. Then the length of the
R.qn MR — (R +1)]gR code rclated to the p-saturating set of Theorem 5.2
is equal to

n+1 o
(Ecoa-m) -1 |

i=0 (R gk

fg—1 R-1 '

The code is an (R, £)-object with £ > 3, see [2, Section II] for definitions of
(R, ()-objects and (R, {)-partitions. We use it as the starting code of the ¢"-
concatenating constructions of [2, Th. 3.1, Condition A2] with the trivial (R, {)
-partition.
Theorem 5.3 Let ¢ = (¢/)% and let R > 4. We fix the parameter n € {2,3,...,
R — 1}. Then there is an infinite family .AE,;L of [n,n — r]qR codes with the
following parameters

ARgy =

r—(R+n)
o r—{A+n) q e
AELRZ‘L r=Rt+mn. q:(ql’)R‘ n=TRgrgend =~ +(R_3) ] .
t=1andt>to, ¢ >TRgy
(Rn) R =R

The main term of the asymptotic covering density 7, (R, Ag’r‘,) is (B-LDFR
which does not depend of g.
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1 Introduction

A lincar code is said to be proper in error detection over a symmetric mem-
oryless channel if its undetected error probability is an increasing function of
the channel symbol error probability. A proper code performs well in crror
detection in the sense that the better the channel, the better the performance,
which makes the code appropriate for use in channels where the symbol error
probability is not known cxactly. '

A g-ary linear code may be optimal in different ways. Of most interest are
codes whose parameters are in some sense extremal. For example, Maximum
Distance Separable (MDS) codes are distance-optimal among the g-ary lincar
codes of the same length and dimension. Codes may be also length-optimal
and size-optimal.

Studies have shown that many linear codes which are optimal in some sense,
or close to optimal, arc also proper, and most often their dual codes are proper,
too. For example, proper are the Perfect codes over finite ficlds, MDS codes
and some Near MDS codes, many Griesmer codes, and Maximum Minimum
Distance codes and their duals. Could it be the case that properness and
optimality are closely related? What kind of relation would this be?

It is most natural to start the study of these questions by looking for optimal
codes which are not proper. In this work we present some preliminary results
in this direction. We have studied some binary linear codes of optimal length
which cannot be obtained by shortening or puncturing other binary linear codes.
The codes turn out to be proper. together with their dual codes. Morcover, like
most of the codes listed above, these binary codes satisfy certain conditions
that imply properncss. These conditions are expressed in terms of the so called
extended binomial moments, which are just lincar combinations of the clements
of the weight distribution of the codes. One interesting observation based on

'Partially supported by Rescarch Platform MP2 of the University of Gothenburg.



Dodunekova, Xiaolei Hu 77

computer graphs is that the extended binomial moments of these binary proper
codes arc rather close to a certain general lower bound.

2 Preliminaries

Error detection with linear codes. Let C be a linear [n, k, d|, code over
the finite field GF(q) of ¢ elements, i.e., a k-dimensional subspace of the n-
dimensional vector space GF'(q)" over GF(g), with minimum Hamming weight
d. Suppose C is used to detect transmission errors on a g-ary discrete memory-
less channel. In such a channel, any symbol transmitted has a probability 1 —«
of being received correctly and a probability q%l of being transformed into cack
of the ¢ — 1 other symbols. Naturally. it should be more likely for a symbol to
remain unchanged during the transmission than to change into another symbol,
which leads to the restriction 0 < £ < 9;—1.

Let x € C be the code word transmitted and y € GF(q)" be the vector
received. In error detection, when y is not a codeword the decoder makes the
correct decision that a transmission error has occurred, and asks for a retrans-
mission. When y is a codeword, the decoder decides that y was sent. Such a
decision is of course incorrect when y and z are different, thus a transmission er-
ror for which the error vector y — z is a non-zero codeword remains undetected.
The probability Py,.(C, ) that an undetected error occurs depends on &, the ba-
sic parameters n, k, d, and g of C, and its weight distribution {A4;, 0 <7 < n},
where A; is the number of code words in C with weight i. The formula is given
by [7]

Poe(C.2) =2Ai(q%1)i(1 Lo pge< q;l_ i)

Proper error detecting codes. In error detection over a particular chan-
nel, codes with the smallest probability of undetected error would be the best.
However, in order to find such a code. one has to use exhaustive search since
presently we don't have any efficient general method for such a search. But
even if we would have such a method. this would not solve the problem, since
most often £ is not known exactly, and a best code for some ¢ may be very
inappropriate for the channel, even if its symbol error probability is close to &
For this reason the concept of a proper code has been introduced (8, 6, 7).

A linear code is proper, if its undetected error probability is an increasing
function of £. Thus the error detecting performance of a proper code is better
on better channels, i.e., channels with smaller symbol error probability, which
malkes the code appropriate for channels where ¢ is not known exactly.

Another view to properness is gained by comparing the function Py(C, €)
of a proper [n,k.d], code C' to the function P,.(¢) obtained by averaging the
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undetected error probability in some set of [n, k], codes. In the set of systematic
[n, k]4 codes, the averaging procedure gives [10, 11]

Pu(e) = 7" P[1 - (1 - e)¥],

which is an increasing function of €. Also in the set of binary [n, k] codes the
average undetected error probability is an increasing function [8]:

2E=1
S

Hence a hypothetical “average” code in the class would be proper. In this
sense a proper code is similar to an “average” code, which makes the code a
reasonable choice in situations where we cannot do better.

Codes, which are optimal or close to optimal in some sense, are prevailing
in the list of proper codes [4]. The question we want to address is if properness
and optimality are closely related. As a first step, we have studied some length-
optimal binary codes from [1].

Pue(e) [1 fe= (1 Ty E)ﬂ]'

Discrete sufficient conditions for properness. Let C be an [n,k,d|,
linear code with weight distribution {4y, Ai,...,A,}. The estended binomial
moments A} of C are defined as [2]
¢ ,
fl—1)...(—i+1)
= - Ay d=l<n,
. gn(nml}...(n—i-{-l) g (2.2)

$=0, 0<f<d-1.

Let B} be the extended binomial moments of the dual code. It holds (2]
By 11 =g L 20, =0 (2.3)

Denote by d* the minimum Hamming distance of the dual code. The following
results have been derived in [3, 5, 2].

Theorem 1 If

A} >qAby, L=d+1,...n—d" +1, (2.4)
then C' is proper.
Theorem 2 Suppose C' is a binary code. If

i [2

"%] +1<dt < \_?—;J and n(n+1—2d4) < d(n—d*),

or

then C' 1s proper.
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Theorem 3 The extended binomial moments satisfy
max{[), qf—n—I—k L 1} < A; < qmin(l’-l-l—n', S e ) 1. ¢=d,...,.n— dJ.

Al=qt"* 1, f=n—d - +1,...n

Linear binary codes of dimension at most 7. Following [1], we say
that an [n,k,d] code is distance-optimal if no [n,k,d — 1] code exists; it is
length-optimal (which is a stronger condition) if no [n — 1, k, d] code exists, and
optimal, if no [n+ 1,k + 1,d] or [n+ 1,k,d + 1] code exists. An optimal code
cannot be obtained by shortening or puncturing other binary linear codes.

Summary of optimal binary codes with k <7, n < 2¥ [1].

[n. k,d] # codes [n, k, d] # codes [n, k,d # codes

(form.equiv.) (form.equiv.) (form.equiv.)
(8,4,4] 1 [12,4,6] 1 [16,5,8] 1
[21.5.10]* 2 [24,5,12] 1 (28,5, 14] 1
(32,6, 16] 1 (38,6,18] 1 [45, 6, 22] 1
[48.6, 24] 1 (53, 6, 26] 2 [56, 6, 28] 1
[60, 6, 30] 1 (24,7, 10)* 6(5) [27,7,12] 1
[40.7. 18] 172(46)  [43.7.20] 7(3) [56,7.26]* > 19000
(59,7, 28] 143(38)  [64,7.32] 1 (71,7, 34] 1
[75.7, 36]* 3603 79,7, 38] 216(22)  [82.7.40] 11(7)
[87.7,42] 55(36) [90, 7, 44] 6(6) (93,7, 46] 1
(96,7, 48] 1 102, 7, 50]* 3 (105, 7, 52] 1
(109, 7, 54] 1 (112, 7, 56] 1 [117,7, 58] 2
120, 7, 60] 1 [124,7,62] 1

Recall that two codes are formally equivalent if they have the same basic
parameters and weight distribution. Clearly, the undetected error probability
function (2.1) of such codes is the same. In the above table, the even columns
show the number of non-isomorphic codes with the given basic parameters and,
in parentheses, the number of classes of formal equivalence.
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3 The result

Theorem 4 All codes in the above table and their duals are proper, except
those marked by an asterisk.

The proof is based on theorems 1 and 2 above. We have used Matlab for
computing the extended binomial moments of the codes and their duals, given
in (2.2) and (2.3), and for checking the conditions of the theorems. Information
about weight enumerators and dual code distances has been taken from [1] and
also from the Internet based data bases http://www.codetables.de/ and

www‘math.unLedu/~djaﬂ'e2/codes/webcodes/binary/codes.cgi?n=28&k=5.

The codes [8.4,4],[12,4.6], (16, 5,81], [24,5, 12, [28, 5, 14], [60, 6, 30], and [56, 6,
28] have minimum distance n/2 and are proper by the first part of Theorem
9 The dual codes have minimum distance at least 3, and are proper by the
second part of the theorem. In fact the codes achieve the Grisemer bound. It
has been noticed earlier [5] that Theorem 2 is quite efficient for the study of
such codes.

We end by noting the following. The extended binomial moments have
shown to be a useful tool in the study of the undetected error probability func-
tion. We plotted the extended binomial moments of the above codes together
with their bounds from Theorem 3. It turns out that the extended binomial
moiments of these optimal proper codes almost lie on the lower bound.
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Abstract. Recently Gopalan, Klivans, and Zuckerman proved that any binary
Reed-Muller (RM) code RM(s,m) can be list-decoded up to its minimum distance
d with a polynomial complexity of order n* in blocklength n. The GKZ algorithm
employs a new upper bound that is substantially tighter for RM codes of fixed order
s than the universal Johnson bound, and yields a constant number of codewords
in a sphere of radius less than d. In this note, we modify the GKZ algorithm and
show that full list decoding up to the code distance d can be performed with a lower
complexity order of at most nln®" ' n. We also show that our former algorithim yields
the same complexity order nln®~!n if combined with the new GKZ bound on the
list size.

1 Introduction

Binary Reed-Muller (RM) codes RM(s.m) of order s have length n = n(m),
dimension k = k(s.m), and distance d = d(s.m) as follows

-]

e DT Z (r;-?): d = 9m—s

1=0

The renowned majority decoding algorithm of [1] provides bounded-distance
decoding (BDD) for any code RM(s,m) and corrects all errors of weight
less than d/2 with complexity order of kn. Even a lower complexity order
of nmin(s,m — s5) is required for various recursive techniques of [2], [3], and [4].
Both recwrsive and majority algorithms correct many error patterns beyond
the BDD radius d/2; however, they fall short of complete error-free decoding
within any given decoding radius T > d/2. Therefore, below we address list
decoding [5] algorithms that output the list

Lp(y) = {c € RM(s,m): d(y.c) < T}

of all vectors ¢ of a code RM(s.m) located within the distance T' from any
received vector y.
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Our study will be based on the recent algorithm obtained in [6] by Gopalan,
Klivans, and Zuckerman (GKZ). The GKZ algorithm list-decodes any binary
Reed-Muller (RM) code RM(s m) up to its minimum distance d with a poly-
nomial complexity of order n* in blockicngth n. Another important advance
is a new upper bound on the list size that is substantially tighter than the
universal Johnson bound for codes RM(s, m), and yields a constant number of
RM-codewords in any sphere of radius less than d. More precisely, let

d(s, m)
n(m)
be the relative distance of RM(s, m) and the decoding radius of interest. Here

we take any € € (0,05). Also, let x(s.m.¢€) be the maximum number of binary
operations required by GKZ algorithm to design the list Lr(y) and let

TSR =27%, T(s,m,¢) =n(ds —¢)

I(s.m.€) = m)?xiLT(yH (1)

be the largest possible number of codewords in a sphere of radius T'(s. m. €).
We will use the new upper bound

I(s,m.€) < 2(2° )% (2)

discovered in [6]. This bound also leads to a new list decoding algorithm [6]
that outputs the list Ly(y) with complexity

x(s,m.€) = O(n*1*(s,m,€)) = O(E'S’En“)
In the following, we simplify the GKZ algorithm and prove

Theorem 1 For any received vector y, RM codes RM(s,m) can be list-decoded
within the decoding radius (27% — €)n with complexity

xW(s,m,€) = O(e Bnn®~' n) + O(e % ninn) (3)

Also, consider our former recursive algorithm [7] that has the same complexity
order n1n®~' n in blocklength n but was used in [7] to decode within the Johnson
bound. In fact. this algorithm is restricted only by the correspomding list size.
Namely, it is shown in [7] that complexity X[ZJ(.s m, €) of the algorithm W m e
satisfies recursion

Y& (s.m.e) < m(x®(s—1,m— L.e) + ene” YH(s.m.e/2)l(s —1,m—1,¢)) (4)

Thus. we can now extend the decoding radius to code distance d using the GKZ
bound (2). As initial step of our recursion (4), we can also use the list dewdanq
algorithm [8] of RM(1,m) codes, which has linear complezity O(n In?(e71))
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within radius T(1.m.€). This combination of estimates (2) and (4) shows that
the former algorithm U, . . decodes within the radius (27° —€)n with complezity

xP(s,m, €) = O(xWe1)

In the neat section, we briefly outline a modification of the GKZ algorithm that
gwes Theorem 1.

2  Error-free list decoding of RM codes

We shall use the well known Plotkin construction of RM-codes [9] which repre-
sents any codeword f € RM(s, m) as the vector u,u + v, where u € RM(s, m —
1) and v € RM(s — 1,7 — 1). Let a received vector y be decomposed into two
halves y" and y”, which can be considered as the corrupted versions of some
vectors u and u + v correspondingly.

Algorithm. Given ¢ and any received vector y, we consider below an algo-
rithm ®(s.m, €) that decodes y into the list Lz (y) within the radius T'(s, m, el
n(ds —€).

Step 1. Decode the vector y¥ = y’ + y” within the radius T(s,m,€) =
T(s—1,m—1,2¢), using the algorithm ®(s —1,m — 1, 2¢). The resulting list of
codewords LY belongs to RM(s —1,m — 1).

Step 2. Decode both vectors y’ and y” within the radius T'(s, m, €) (2=
T'(s,m—1,€) using the algorithm ®(s, m—1, ¢). The resulting lists of codewords
L'and L" belong to RM(s.m — 1).

3. Counsider the two lists of vectors
A={(u' v +v): v el vel’
B={(u"+v,u"): v" €L vel
Calculate the distance from y to each vector of the two lists. Leave the
vectors located within distance T'(s, m, €).
The above algorithm gives complete list L (s;m,¢)(y) and thus performs the
required decoding. This is due to the following:
1. Vector y" has no more errors than y;
2. Either y’ or y” has at most T'(s,m, €)/2 errors.
Complexity. Algorithm ®(s,m, €) includes one decoding ®(s—1,m—1, 2¢),
two decodings ®(s,m—1, €) plus requires the order of 2nl(s,m—1, €)l(s—1,m—

1, 2¢) operations to verify the distance from vector of lists A and B to the vector
Y. Thus, algorithm ®(s.m.¢) has complexity

X(s.m.€) < x(s—1,m—1,2€) + 2x(s,m — 1,¢) (5)
+2ni(s,m —1,€)l(s — 1,m — 1, 2¢).
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Now we proceed, for s = 2,3, .. using complexity x(1,m,¢€) = 2™ In?¢ ! in
step s = 1, the Johnson bound I(1,m.€) < (2¢)~2 for RM — 1 codes and the
upper bound (2) for s > 1. Then

x(2,m,€) = O(m2™ [In® ™" + e ] im@mate )
and for any s > 2 we obtain the estimate
x(s.m.€) = O(m*~12me™ %) + Z 0 (ms”"H?mes_m"‘]

i=3
= O(¢ Bnln*"'n) + O(& *nlnn)

which proves Theorem 1.
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DINA codes based on stem Hamming
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Abstract. For g-ary n-sequences, we continue the development [1, 2] of similarity
functions that can be used (for g = 4) to model a thermodynamic similarity of DNA
sequences. Codes based on similarity functions are called DNA codes [1]. In this
paper, we discuss a biologically motivated [2] additive similarity function called a stem
Hamaning simalarity and defined as the total number of common 2-blocks containing
adjacent symbols in the longest common Hamming subsequence between two g-ary
n-scquences, Conventional lower and upper bounds called the Gilbert-Varshamov,
Plotkin and Elias bounds [3] on the rate of corresponding DNA codes are obtained.

1 Notations and definitions

Symbol £ denotes definitional equalities and symbol [n] £ {1,2,...,n} denotes
the set of integers from 1 to n. Let ¢ = 2,4,... be an arbitrary even integer,
A £ {0,1,...,q — 1} is the standard alphabet of size |A| = g and |u] ([u])
denotes the largest (smallest) integer < u (> u).

For any letter z € A, we define# £ (g—1)—z € A, which is called a comple-
ment of the letter x. For any g-ary n-sequence © = (1, %2,...,2n_1,Tpn) € A",

we define its reverse complement T 2 (Tp, Tn-1,....32,5) € A". If y 2 T.
then @ = g for any @ € A",
Consider two arbitrary g-ary n-sequences
=320, an e Ar Nand W= [y tn e AT
The number ]
A
Hy(z,y) £ Z silei ) where
i=1
‘-i'(m 1) é 1 if:r_‘}- :-y_i._. Tit1 = Yit1s i =1.9 e (1)
S 0 otherwise, ettt ’

is called a stem Hamming similarity between @ and y. Evidently. Hy (2, y) can
be defined as the total number of common 2-blocks containing adjacent symbols
in the longest common Hamming subsequence between sequences z,y € A".
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In addition, 0 < Hy(z,y) <n—1 and Hy(z,y) =n—1 if and only if = = y.
Therefore. the difference Dy(z,y) £ (n—1) — Hy(z.y) > 0, =,y € A", can
be called a stem Hamming distance between & and y.

Leta (1, £(2), ..., z(N), where 2(7) £ (z:1(5),.... zn(j)) € A", j € [N], be
codewords of a g-ary code X = {x(1), 2(2)...., z(N)} of length n and size N,
where N = 2,4,... is an even number. Let D. 0 < D < n — 1, be an arbitrary
number.

A code X is called a DNA (n,D)-code [1] based on the stem Hamming
similarity if the following two conditions are fulfilled: (¢). For any j € [N],
there exists j' € [N], j' # j, such that =(j') = z(j) # «(j). In other words,
X is a collection of N/2 pairs of mutually reverse complementary sequences.
(#1). For any j # j', distance Dy (2(j), (")) = D, i.c., similarity

Hy (z(5),z(j)) < (n—1)-D, j+#j, 0<D<n-—1. (2)
Let Ny (n, D) be the maximal size of DNA (n, D)-codes. If d, 0 < d < 1, is
a lixed number, then
— log. Ng(n,dn
TN e il i (3)
n—oG T

is called « rate of DNA codes based on the stem Hamming similarity.

2 Lower bound on R(d)

Let @ awdl y be independent identically distributed random sequeuces having
the wndform distribution on A", Introduce binary random variables

oo JO AL = i ik = Yigas (4)
] 1 otherwise, i=1,2....n—1
and their sum

n—1

Su 2 5" = (n=1) - Hu(z,y) = Dulz.y). (5)

t=1

Denote by &, the average value of random variable £ From definition (4) it
follows

n—1

fl‘-’._l JE Z_l
E = Iq__. 3 .i_";l.! === Z th = (m — ]Jg (!12 :

Letd, 0 <d< 'L:?:—l be a fixed parameter. Introduce function

 — —log, Pr{Hy(z.y) > (1 —d)n
i e St B @ b2 e dides
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— —log, Pr{S, < dn}
= lim :
n—oc n

The random coding method for DNA codes [1] leads to

Proposition 1 If 0 < d < 9%5—1, then the rate Ry (d) of DNA codes based on
stem Hamming similarity satisfies inequality Rg(d) > R, (d), where R (d) is
defined by (6).

Function R, (d) is called a random coding bound (or the Gilbert-Varshamov
bound) on the rate (3) of DNA codes identified by inequality (2).

(6)

2.1 Calculation of random coding bound

For the sum (5), introduce the generating function

n—1
Gn(u) £ Y Pr{Sn=a}g"=¢*"5, -—co<u<on, (7)

a=0

and the semi-invariant generating function

pn(u) £ log, Gn(u), —00 < U < 0. (8)
Define independent identically distributed random variables
1 "
K L it =19 o) & dsg ifa=1,
Gis {0 otherwise, Fr{Gi=a} = 9;—1 ifa=0. )
One can casily see that the vector sequence &, 2 (&, 6ir1), i=1,....n—1,1is

a stationary Markov chain with transition probabilities:

{Pl'{fv:ﬂ =a2} if a; = ayq, =

Pr{¢ = (a,@) &, = (asa0)} = {, o1y

= if o =ag, a2 =0,

= % if a; = a4, ag =1, (10)

0 if .a; # ag.
In addition, n;, i = 1,...,n — 1, defined by (4) can be written in the form:
Y = f (éi) £ 1 — &&i41, ic., the given sequence is a deterministic func-

tion of Markov chain (10)'. Hence, using the standard Markov arguments [4],

'Note that 1, i = 1,...,1m — 1, is not a Markov chain because for any ¢, 3 <i < n—1, the
conditional probability
1

P ‘=n =1 = 1, TMi—n = -— : T = iy = = —
o{m =0lgi-1 = 1,7 0} =0 and Pr{n =0{m-1 =1} Tl
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pp. 230-232, we can calculate the generating functions (7)-(8) and obtain the
following asymptotic (n — oc) formula:

pn(uw) = log, Gy(u) =np(u) + 0(1), () £ log, Au)

Au) £ % [1 +(g—1)¢" + \/[1 +(g—-1)g4" —4lg - g1 —g¥)|. (1)

Finally, applying the Large Deviations Principle (5] to Sn, we get
Theorem 1 Random coding bound Ry, (d) defined by (6) has the form

=
R,(d) = Lu(d) £ max{ud —p(u)}, 0<d< < 1, 12
2 " w<0 q°

2
where Ly(d) ,0<d < 9;;—1, is a decreasing | J-convez function and

2Zaily 2_1
L,0) =1, Lp(‘*’_qz—)ﬂ., L(d) >0, o<d.<‘i’q2 o 13)

3 Upper bounds on Ny(n, D) and R (d)

3.1 The Plotkin upper bound on Ry/(d)
A standard upper bound on the rate Ry (d) is given by

Proposition 2 . If £31 < d <1, then Ry(d) =0 and

qz g¢ -1

qg_ld if 0<d<=0 (14)

Riyd) < 1—

3.2 On sphere size for stem Hamming similarity

For ¢ > 2, introduce three recurrent Fibonacci-type sequences [6] of numbers
FX(t), FA(t), Fg(t), t=1,2,..., where

Fitt) & (g= DEQ — 1)+ (g Nt -2), 1= AL R o 2 VIR W B3

and F}(1) £ ¢, F{(2) £ 2 - 1; F2(1) 2¢-1, F}(2) £ (a- 1% F(1) S ¢~ 1,
F3(2) £ (g — 1). One can prove, that Jo(t) (F2(t)/Fy(t)) is the number of
g-ary sequences ¢ € A" which do not contain 2-stems of the form (0,0) (and
do not start and end/do not start or do not end with 0, correspondingly).
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= 1,2,..., denote an ordered collection of &
<s<n -—1 and k, 1 <k < mm{s |'“,,“-|}._

 Fids AR e R R e
integers. For fixed integers s, 1
define set

T(s. k) & {60 4 20, 8500 20, 621, i=2,3,...k

k41
Z ti=n—(s+k) } : (16)

=1

Proposition 3 For any s, 0 < s < n— 1. the sphere size Sy(n,s) £ [{y :
Hy(x.y) = s}| does not depend on its center x€ A", If s =0, then

Set(n,0) = {y : Hu(z,y) = 0} = F/(n). (17)
If1<s<n-—1, then

She ”““{sz ; W

k=1 T(s.k)

k
{F,?(m]'[ F(t:) F,f(tm)} . (18)

For the case ¢ > 2, Proposition 3 means that the random coding bound
Rld) = Ld), 0<d < 9%—]—1 (defined by (6) and calculated in Theorem 1)
can be also written as

_ log, S(n, (1 —d)n |
B @) =01d) =1— Tm = Sk ), 0<d<d 7 (19

n—oa 1

3.3 The Elias upper bound on Ry (d)
The standard Elias arguments [3] and asymptotic formula (19) yield

Theorem 2 For any d, 0 < d < %}5, the rate Rg(d) < U,(d), and upper
bound U, (d) is presented by parametric equations

U, (d) = upd (u) — p(u), d = /() [2 — () q'.?q: 1} <) (20)

where function p(w), u <0, is defined in Theorem 1.

Upper bound Uy, (d) can be called the Elias bound [3]. The given bound
improves the Plotkin bound (14) for small values of d, 0 < d < dg. We calculated
d‘z = 0.60 and dq = (.13.

Acknowledgement. The authors are grateful to L. A. Bassalygo, V. M.
Blinovsky, B. M. Gurevich and S. A. Pirogov for discussions and valuable info
about Large Deviations Principle [5].
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R(d)

Figure 1: Upper and lower bounds for the rate of DNA-codes forig—2:
H(d) — Humming bound. P(d) — Plotkin bound.
E(d) — Elias bound. VG(d) — Varshamov-Gilbert bound.
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Abstract. A nonempty set of words in a binary Hamming space F" is called an
r-identifying code if for every word the set of codewords within distance » from
it is unique and nonempty. The smallest possible cardinality of an r-identifying
code is denoted by M, (n). In this paper, we consider questions closely related to
the open problem whether Myir(n+ m) < M(m)M,(n) is true. For example, we
show results like My ..(n +m) < 4M;(m)M,(n), which improve previously known
bounds. We also obtain a result My(n +1) < (2 + &,)Mi(n) where £, — 0 when
n — oo. This bound is related to the conjecture Mi(n + 1) < 2M;(n). Moreover,
we give constructions for the best known l-identifying codes of certain lengths.

1 Introduction

Karpovsky, Chakrabarty and Levitin introduced identifying codes in [6] for lo-
cating malfunctioning processors in multiprocessor architectures. The research
of identifying codes is also inspired by applications to sensor networks and alarm
systems. Nowadays identifying codes are an actively studied topic of its own;
the updated bibliography of identifying codes can be found from [7]. Identifying
codes have been considered in many different graphs; in this paper we consider
the binary Hamming spaces (i.e. binary hypercubes).

We denote by F" the binary Hamnming space of dimension n. The (Ham-
ming) distance between two vectors (called words) x and y in F™ is denoted by
d(x,y). The (Hamming) weight of a word x, is denoted by w(x). The (Ham-
ming) ball of radius r centered at x € F" is B,(x) = {y € F" [ d(x,y) <r}.

A code of length n is a nonempty subset of F™. Let C' C F" be a code. The
I-set of a word x € F™ (with respect to the code C') is defined to be

L) = T Crx) =B ) M

'Research supported by the Academy of Finland under grant 210280.
?Research supported by the Academy of Finland under grant 111940.
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Definition 1 A code C' € F" is called an r-identifying if for all x € F"
I.(C;x) # 0 and for all y € F", x # y, we have

I(C;x) # L.(C;y).

The definition of r-separating codes is similar to the identifying codes, but
here we allow I,(x) = { for one x € F".

The optimal, that is, the smallest possible cardinality of an r-identifying
code of length n is denoted by M, (n).

Notice that a code C' C F" is r-identifying if and only if for all x,y € F",
x # y, we have I,(C;x) A L.(C;y) # 0 where the notation A A B denotes the
symmetric difference of sets A and B, that is, A A B=(A\ B)U(B\ A4).

A code C' C F" is called r-covering if for all x € F" there is ¢ € C' such that
d(x,c) < r (ie., |I.(C;x)| = 1). Moreover, if a code C C F" has the property
that for all x € F" |I,.(C;x)| > p, then the code is called p-fold r-covering.
The optimal cardinality of an r-covering is denoted by K (n,r). The vast topic
of covering codes have been considered, for instance, in [3].

' Let C; C F™ and Cs € F™ be two codes, then their direct sum

C1 ® Cy = {(a,b) | a€ C;,be G} C F*™,
In [1], the question whether
My i(n+m) < My (n)Mi(m) (1)

holds is mentioned as an open problem. In [5] the result is proved for r =¢ = 1.

In Section 2 of this paper, we consider the problems closely related to the

conjecture (1) in a general case. In particular, we show that M,y (n +m) <

4M,.(n) M (m) and also present some numerical improvements on known bounds

on M,(n). In [1]. it is also asked whether Mj(n + 1) < 2M;(n) is true. In the

last section, we show that Mj(n+1) < (2+&,)Mi(n) where e, — 0 as n — co.
The proofs omitted in this paper are in [4].

2 New code constructions for r-identifying codes

In this section, we will present some direct sum constructions for (r + t)-
identifying codes. The motivation for this comes from the conjecture (1).

Lemma 1 Let C' C F" be an r-identifying code. Then for all x € F" there
exists ¢ € C such that d(c,x) =1 orr+ 1.
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In the subsequent considerations we refer to the following condition for a
given code C:

Vx,y € F" : L(C;x) \ [1-1(C;y) # 0. (2)
We will use the following notations:

e The optimal cardinality of a f-identifying code satisfying the condition
(2) is denoted by My(n).

e The optimal cardinality of a f-identifying code which is also (t — 1)-
separating and satisfy the condition (2) is denoted by M, 1(n).

e The optimal cardinality of a t-identifying code such that for every x € F”
there exists a codeword exactly at distance t from x is denoted by M| (n).

o We denote by M{'(n) the optimal cardinality of a 1-identifying and 2-fold
I-covering code, It is clear that M{ (n) < 2M;(n).

Theorem 1 We have

Myt(n+m) < { ii”m%fﬁf)(m) (3)
and
My 1 (n+m) < M/ (n)M{(m). (4)

Moreover, M!(n) < 2M,(n). Especially,

M, i(n+m) < 2M,(n)My(n) (5)
M,y (n+m) < AM,.(n)M;(m). (6)

Proof. Let us first prove the inequalities (3). Let C; € F™ be an r-identifying
code and Cy C F' be a t-identifying and (t — 1)-separating code satisfying the
condition (2). We will first show that C = Cy & C> C F™ is an (r + ¢)-
identifying code. It is easy to sec that C' is an (r + t)-covering code, this
implies that [.(X) = ) if and only if X = (). Therefore, in order to prove
that C is (r + t)-identifying. it is enough to show that L. () A L.i(y) # 0
for all x,y € F™*™ (x # y). Let x = (x1,%2), ¥ = (y1,¥2) € F"™™, where
x1,¥1 € F" and xp,y» € F™, moreover x # y.

1) Suppose first x; # y3. Then there exists ¢; € L.(Cyix1) A L(C1iy1)-
Without loss of generality we may assume that ¢; € L.(Ci;x1) \ L(Criy1).
Since the code C'y satisfies the condition (2), there exists a codeword c; € Cf
such that co € Li(Ca;x2)\ I;—1(Cy: y2). Hence, (c1,¢2) € Lt (Cix)\Lr+(C; y).
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2) Suppose then x; = y;. By Lemma 1, there exists ¢; € C) such that
d(ci,x1) = r or r + 1. Assume first that d(ci,x;) = r. Since Cy is a t-
identifying code and x; # ys. there exists a codeword ce € C5 such that
c2 € Ii(x2) A Li(y2). Therefore, (c1,¢2) € Lye(x) A Lyt (y). Assume then that
d(cy,x1) = r+ 1. Since C; is also a (¢ — 1)-separating code and x» # yo,
there exists a codeword cz € Cy such that co € I;_q1(x2) A L;_1(y2). Hence,
(c1.¢2) € Lrgt(x) A L.4¢(y). Thus, we have proved that C; & Cs is an (r + ¢)-
identifying code.

Let C3 € F" be an r-identifying code such that for every x € F" there
exists a codeword exactly at distance r from it and Cy € F™ a t-identifying
code satisfying the condition (2). Showing that Cs @ Cy € F"™™ is an (r + t)-
identifying code is similar to the proof deseribed above. However, in the second
part of the proof we can assume that there always exists a codeword c; € F”
such that d(xj,c1) =r.

Let us now move on to the inequality (4). It is easy to see that 1-identifying
and 2-fold 1-covering code satisfies the condition (2) for ¢ = 1. Therefore, the
result immediately follows from (3).

For the estimate M, (n) < 2M,(n), see [4]. O

In [2. Theorem 3] it is proved that when 1 <t < m < r we have
Meyi(n+m) < 2" M.(n). (7)

Assume first ¢ = 1. Since C = F™ \ {1™} is clearly a l-identifying and 0-
separating code satisfying the condition (2), we have, by (3), that M,+1(n +
m) < (2™ —1)M,(n). Using (6) we obtain further improvements to (7). Namely,
we know that AM;(m) < % . _,3:_‘1 < 2m~2 _ 1 when m > 18 and, by the tables of
2], this also holds for m > 8.

In the next theorem we improve (7) using (5) when t > 2 and m > 2t. We
give an upper bound for M;(m) using a method inspired by Delsarte and Piret

(3, p. 320].
Theorem 2 Let m > 2t.

2711
min{ (':’) : 2(’";])}

In what follows, we develop further the direct sum approach with the aid
of k-locating-dominating codes. It is a class of codes introduced by Slater (see
[8]) closely related to identifying codes; a code C € F" is k-locating-dominating
if 1,(C;x) is nonempty and I;(C;x) # I.(C;y) for all non-codewords x,y €
| CANT ]

ﬂl{;-.{.t(ﬂ -+ 'Jn) S 2

2mIn2| M, (n).
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Theorem 3 Let C; C F" be a l-identifying code which is also a 2-fold 1-
covering and has the property that it is k-locating-dominating foralll <k <
r+1<n—2. Let Co C F™ be an r-identifying code. Then C, & CE s
an (r + 1)-identifying code.

The condition that the identifying code C is a 2-fold 1-covering increases
the cardinality only slightly (see [5]). The extra requirement that C; is also
k-locating-dominating for 1 < k < n — 2 is not demanding cardinalitywise
cither. Indeed, the best 1-identifying 2-fold 1-covering codes which were found
(Theorem 4), are immediately k-locating-dominating for all 1 <k <n—2 as
well.

Theorem 4 M!(7) < 38, M}/(8) < 70, and M{'(10) < 249.

It can also be checked that the best known l-identifying and 2-fold 1-
covering code of length 9 and of cardinality 128 [5] is k-locating-dominating
foralll <k <T.

Corollary 1 Mjy(n) < 38Ms(n—T), Ms(n) < TOMy(n—8), Mg(n) < 128Ms5(n—
9) and M~(n) < 249 Mg (n — 10).

The codes of Theorem 4 are also useful for bounding M, (n) from above.
Namely, it has been proved in [5] that if a code C C F™ is 1-identifying and 2-
fold 1-covering then the code D = {(m(u),u,u+v) [u € F*,v € gl S B is
1-identifying and 2-fold 1-covering (w(-) is the parity check bit). Hence, we have
the following theorem where the previous records are given in the parenthesis

[2].
Theorem 5 M, (17) < 17920 (18558) and M;(21) < 254976 (262144).

A natural generalization of r-identifying codes are codes which identify sets
of words, see [6]. A code C C F" is called an (r, < 0)-identifying if for all
X,Y CF", |X|,|Y]| < X #Y, we have

U €% # U L(Cy)-
xEX

yeY

The smallest cardinality of such codes in F™ is denoted by M.,Ei‘a(n).

Theorem 6 Let r be a positive integer and suppose £ > 1 +3. Let 1 CF™ be
a (1, < 0)-identifying code and Cy € F"™* be an (r, < €)-identifying code. Then
Cy @& Oy C F™MH™ 4s an (r + 1, < £)-identifying code.

Corollary 2 When r > 1 and £ > 7+ 3 we have
Ml(fi) (n+m) < ﬂd’fsﬂ)(n.)ﬂﬂgﬂ (m).
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3 A direct sum of 1-identifying code and F

In [1] it has been stated as an open problem whether Mj(n + 1) < 2Mi(n)
holds, from there it also follows that M;(n + 1) < 3M;(n). The next theorem
shows that Mj(n +1) < (2 + £n) My (n) where en — 0 as n — 0.

Theorem 7 Assume n > 2. Then we have
1

Mi(n+1) < (24+ ——)Mi(n).

1(n+1) < ( +n+l) 1(n)

Proof. Let C C F" be an optimal 1-identifying code attaining Mj(n). Define

C,={x|xeC, |L(x)] =1} and
Ny ={x|xeF", x¢C, |L(x)|= 1}.

Clearly, |C; U Ny| € My(n). Assume first |C1| < My(n)/(n+1). Let By =
C@F C F1, Denote O; = F" @ {1} where l € F. Assume x = (x',a) € F*H
with ¥’ € F™ and a € F. Since C is 1-identifying, the set I,(D;;x) can coincide
only with the I-sets of words in Ops1. I |I1(C;X')| = 2, then the word x is
uniquely identified by its I-set I;(Di;x) since each word in Qg4 1-covers a
unique word in O,. It can now be assumed that |I; (C;x)| = 1.

Assume %' € Ny, ie. L(C;x) = {x +e}, where e € F" is a word of
weight 1. The only word in Og41 which l-covers the codeword (x' + e,a)
is the word (x' + e,a + 1). However, |L(C;x + )| > 2 and therefore, as
above, it can be said that x is uniquely identified. If x' € O, then clearly,
I(Dy; (%', a)) = I1(Dy; (¥, e+ 1)). But such a problematic case can be solved
by adding one codeword to the code D;. Thus, we have the claim in this case.

Assume then |C1| > Mi(n)/(n + 1). Let z € F" be a word of weight 1.
Consider then a code Dy C F*! defined as

Dy=(Ce{0hu((C+z)e{l}).

Assume x = (¥',a) € F*! with X' € F" and a € F. If | (C:x')| = 2, then, as
above, the word x is uniquely identified by its I-set I1(Dy;x).

Nasume now that X6 Oy e H(Coxl) = {%x ). /The cply word in
Qa1 which 1-covers the codeword (x/,a) is the word (x',a + 1). However,
|1 (Dg; (x'ya + 1)) N Oa41| = 2 since |I1(Da; (x' + 2,0+ 1)) N Og41| = 1 and
the underlying code C is 1-identifying. Therefore, as before, it can be deduced
that x is uniquely identified by its I-set I 1(Da;x).

Assutne then x € Ny, iie. L{C;x) = {x + e}, where w(e) = 1. Again it
suffices to consider the word (x'+e,a+1). If I1(Dy; (x',a)) = I(Dy; (¥ +e,a+



98

1)),
{(x

ACCT2008

then I; (Da; (x'+e,a4+1))N0441 = {(x/,a+1)}. Since [1(Dz; (x',a))N0, =
' +e,a)}, we have d((x/,a), (x +e+2z,a+ 1)) = 1. Thus, [1(Dy; (x',a)) =

I1(Ds; (X' +e,a + 1)) if and only if e = z. The code D, can clearly be made
1-identifying by adding a codeword to the set for each one of these problematic
cases. Moreover, there exists a word €' € F" of weight 1 such that

e B x ¢ C, L(x) = {x+ e} < 22l

T
If we now choose z = €, then we have, by the previous considerations, that

Mi(n+1) < 2M;i(n) + 1] < (2+ ;)Ml (n).
n 1
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Abstract. We present a practical expected usually quartic time algorithm to re-
cover the structure of an algebraic geometry code defined over a hyperelliptic code
of genus g < 2. Its main application is an attack of the MecEliece cryptosystem based
on algebraic geometry codes defined over curves of small genus, Our algorithm is a
adaptation of the well-known Sidelnikov-Shestakov algorithm [6].

1 Introduction

In 1978, R. J. McEliece presented the first version of the cryptosystem which
was to become the reference in public key cryptography based on coding theory
[2]. The main version of McElicce’s scheme uses Goppa codes. However, many
other codes families have been studied to fit in McEliece's system.

The choice of a different code was often motivated by the goal to provide
better security for a given key size. The most basic measure for security of
that type of cryptosystem is the cost to decode the code with (a refined version
of) information set decoding to the decoding bound with a given fixed key size
(which is the amount of memory needed to store a generator matrix).

It is, however, important to be aware of the fact that this direct-decoding
measure does not take into account the possibility that an attacker may at-
tempt to recover the structure of the code instead of trying to break the system
by attempting to decode an unstructured linear code. The possibility of doing
so depends on the code that has been used in the construction. Efficient struc-
tural attacks have been developed for example against Reed Solomon codes by
Sidelnikov and Shestakov [6], then against concatenated codes by Sendrier [5],
and against Reed-Muller codes by Minder and Shokrollahi [4].

Since structural attacks tend to be very effective if applicable, a difficult
task faced by the designer of McEliece-type cryptosystems is to chose a family
of codes which has a good tradeoff between rate and correction capability (and
is thus resistant against direct decoding attacks) while also being structurally
gecure.
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When it comes to correction capability at a fixed rate, algebraic geometry
codes are often the best known choice for a given set of parameters.}

The superiority of geometric codes makes them thus a seemingly excellent
building block for McEliece type cryptosystems, and it is therefore important
to the researchers in the field to know whether and to what extent these codes
lead to secure cryptosystems.

In this paper, we show that curves of very low genus g (more precisely,
g < 2) are a bad choice. and that they can be broken with very high proba-
bility in heuristic expected polynomial (usually quartic) time. Specifically, this
breaks some of the Janwa-Moreno parameters [1]. A predecessor of this attack
which worked for g = 1 was presented in [3] and was partly based on earlier,
unpublished ideas by Bleichenbacher, Melnik and Shokrollahi. Since the case
g = 0 (Reed Solomon codes) was taken care of by Sidelnikov and Shestakov
[6], we restrict our attention in this paper to the case ¢ = 2 and we present
an algorithm which attacks the cryptosystem in time O(n*) binary operations,
where n is the length of the ciphertext block.

For our attack to work. a few additional assumption on the code have to
be made, such as the requirement that the blocklength n be reasonably close
to maximal for the given curve. Since this covers the most interesting cases, it
does not appear to be a severe restriction.

It is in principle possible to run our attack on hyperelliptic curves of genus
larger than two, but in its current form only at a large cost in both running time
and success probability. We have not investigated the question closely. and it
may well be that already for hyperelliptic curves of genus 3, our attack is not
all that interesting in its current form. Qur preliminary opinion on the matter
is that without substantial improvements, this kind of attack is not applicable
to codes defined over sufficiently complicated curves.

In section 2, we recall mathematical concepts and definitions. In section 3,
we present the McEliece cryptosystem in the setting of hyperelliptic codes, and
in section 4, our attack will be exposed. We will then present our conclusions
in section 5.

2 Definitions and notations

2.1 Notions of algebraic geometry

Let & be a hyperelliptic curve of genus g = 2 over Ay(F,), defined by the
equation:

y* + G(z)y = F(z), with deg(F) = 2g+ 1, and deg(G) < g.

"We ignore graph based codes here, because they are structurally weak.
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A divisor A over X is a formal finite sum of points of X with positive and
negative multiplicities:

A =" np(P),np€Z.
PeX

The degree of a divisor is the sum of the multiplicities of the points in the
divisor:
deg(A) = Z np.
PeX

Any rational function f over X has an associated divisor div(f) which is ob-
tained by adding every zero of f and subtracting every pole (counted with
multiplicity in either case), i.e.,

div(f) = Y ordp(f)(P).

PeX

For every rational function, we have deg(div(f)) = 0, but the converse is not
true in general. The Jacobian group of & is defined as the group:

Jac(X) = Divisors of degree 0/divisors of rational functions.

The Generalized Hasse-Weil theorem states that

Z Z
B s With d][---]ngs dllﬁ'_ 1!

ac(X) =0 = —— ¥
) =0T dag’

and that ) ;
(va-1)% < [ligll < (va+1)%.

2.2 Geometric codes

Let A be a divisor of degree k + g — 1 over X. We define the associated linear
space L(A):

L(A) = {f € F(X)|div(f) + A = 0} U {0}
The Riemann-Roch theorem states that £(A) is a vector space of dimension k
if k> g— 1. (We shall always assume k > g — 1 in the sequel, the other case
being of no interest for the problem at hand.)

Given a set (P,..., P,) of distinct rational points on &, we can now define
the associated geometric code AGC(X, A, (Py,..., Py)) as:

AGC(X, A, (P, .. ., ) = {(F(P),- -, f(P)ISf € £(A)}

This is a linear code of length n, of dimension k, and minimal distance d >
n—k— g+ 1. Furthermore, this code can be decoded in polynomial time up to
its correction capability ¢ = “=5=¢_ See, e.g., [7].
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3 The McEliece cryptosystem on geometric codes

A McEliece type cryptosystem on geometric codes can be defined as follows:
Fix blocklength n and dimension k. Select a random curve & of genus 2 having
at least n + 1 rational points, and randomly select distinct rational points
P P onX

Let A be a divisor of degree k + g — 1, and whose support is disjoint from
the points P;. This defines a code

€= AGC(X, AJ(Biyers 1 Po)).

Now let G be a random generator matrix of C, computed by multiplying a
canonical generator matrix for this code on the left with an invertible & x k-
matrix with coeflicients in Fg.

This generator matrix G then serves as public key. The code parameters
X,A,(Py,...,P,) are the private key. A message x € ]Fg is encrypted by
computing y := xG-+e, where e is a random weight t = (n—k—g)/2 error vector.
The legitimate receiver who knows the secret parameters X, N P AT
recover x by applying a decoding algorithm to C, and thus computing xG. Given
x(@, the value of x can be recovered by solving a system of linear equations.

4 An attack against geometric codes of genus 2

Our goal is to recover a private key given the public key. In our setting this
means the following: The attacker is given a generator matrix G of a hyper-
elliptic code €’ of unknown parameters X', A’, (Py,...,P,). Inspecting G, he
then finds a (typically different) set of parameters X, A, (Px, ..., Pp), such that
the code

C:= AGC(X A? (Pls o :-Pﬂ))

is just a directional scaling of C', i.e., there are nonzero constants cy, . . ., ¢, such
that any codeword (y1,. ... yn) € C corresponds to a codeword (c1y1, . - - Cnln) €
e

He then finds the scaling coefficients (ci,...,¢n), and this enables him to
use the decoder for C to decode codewords for C’, thus breaking the system.

4.1 Outline of the attack
Our algorithm works in four steps:

1. Recovering the group structure. In this stage we sample minimum weight
codewords in order to collect linear equations on elements of the Jacobian.
Given enough such relations, we can retrieve the finite group structure of
the Jacobian G.
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2. Recovering the curve equation. We then use the Jacobian structure, along
with a few additional carefully chosen minimum weight codewords, in
order to get conditions on the coordinates of a few points of the curve.

We then guess the coordinates of three points, and compute from this
guess the coordinates of a larger set of points using the precomputed
conditions. If the guess is correct, we can draw a hyperelliptic curve
passing through our points. Otherwise we know that the guess is wrong,
and we retry with another guess.

3. Recovering the coordinates of all the cvaluation points. It is now possi-
ble, from the Jacobian structure, and the curve equation, to retrieve the
coordinates of all points in the evaluation set.

4. Computing the scaling coefficients.

For all the steps to work, we will need additional assumptions. First, we assume
that we have many evaluation points, i.e., that n is close to the nmumber of
rational points on X'.

Second, we will assume that ged(k+g—1,|G|) = 1. Notice that we can force
this latter condition to hold by working on a shortened version of the code, if
necessary.

Third, we assume that the true minimum distance of the code is indeed
n —k— g+ 1, and that many such codewords exist. Empirical evidence shows
that this is virtually always true in our setting.

4.2 Preliminaries: code invariance

The parameters of a given geometric code are not unique : It is actually possible
to generate the same code using a different evaluation set and a different divisor,
This is very uscful to the cryptanalyst, because it means that we can arbitrarily
select some of the parameters we seck, and focus our search on the other ones.

In particular, we have AGC(X/, A/, (P]...., P})) = AGC(X, A, (P, ... ., Fi)l
if there exists a curve isomorphism from X’ to X which maps P/ to P; and A
to A.

Let u,v,a,b,c € Fy. If g = 2, then the mapping

(z,y) — (P2 + v, u? Ty + aa? + bz + )
is a curve isomorphism. If we arbitrarily select 2 points, and the Y-coordinate
of a third, for example 1,2, 1. y2,y3 of Pi, P, P, then with probability 1/2
there exists such an isomorphism which maps P; to P;.

So we can arbitrarily fix Py, P, y3. and still have

ACOX A (P 5 Pa)) = AGC(AL APy -0 Bn)):
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for some x3, Py, ..., Py, X, A with probability 1/2.
Furthermore, because ged(k 4+ g — 1,|G|) =1, we can assume A = (k+ g —
1)Ag, where Ay is a divisor of degree 1.

4.3 First step: recovering the Jacobian structure

We know that Jac(X) ~ G = ﬁ i &. In this step, we will recover the
values of dy, ..., da,, along with the images in G of some particular elements of
the Jacobian by an unknown isomorphism ¢.

We generate minimum weight codewords, i.e., we compute x € C such that
|x| = n — k — g + 1. For general codes, finding minimum weight words is hard,
but in our specific case we need only O(n?) operations in F, on the average to
find a single word with the desired property.

Let x be such a codeword, and write f € L(A) the associated rational
function (i.e., the function such that x; = f(P;) for 1 <i < n).

fz;) = =Tjh,,,=0, then
f(Pyy) == f(Piy+4g-1) =0,
and so
div(f): (P*1>+“'+(H-k+gu1) _(k+g“1)&ﬂ' (1)

Notice that the minimality of x implies equality in (1) rather than just the
greater-than relation that holds for any word and its associated function.
If we set Z; = @((P;) — Ag) in G, we have

With many (slightly more than n) equations of this form, we are able to recover
the structure of the group G, i.e.. the values of di,...,dy,. This is true because
a random system of overdetermined linear equations does not have any solution
in Z/mZ for arbitrary m; but our system has solutions in Z/d;Z.

" One technique to recover the d; is thus to select several systems with only
n equations, and compute the determinant of the associated matrix; it will
always be a multiple of d; ... da,, and so we can find the d; by taking the ged of
several such determinants. Only few determinants are needed in practice, but
the computation of a determinant is usually O(n*) binary operations.

We can also solve the system to get the values of all the Z;. However, the
map ¢ is still unknown at this point.

We now want to determine in G the value of dp = @(Ap — (O)). We use a
statistical test to do this. Since most rational points are in the set {Py,..., Pp},
the probability that for a random index 4, there is an index j, such that P; and
P; are opposites of one another is 1 — ¢, where ¢ is upper bounded by twice the
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number of points not in {P,..., P,} over the total number of rational points
of X. If P, and P; arc indeed opposites, then (P;) + (P;) = 2(0). It follows
that 3 + z; = —20p in this case. For random indices i, j, the probability that
%i+%; = —26g is thus at least (1—¢)/n. At most n/(1—¢) values can have that
large a probability to be the equal to of Z, + Z;, so in the worst case we have
n/(1 — €) candidates for —2dy. but we can expect that the set of sums behaves
more randomly, and that we are able to extract the unique correct value of
— 926, from the set of sums of all pairs. So we now know the value of dg, and we
can compute all the values z = @((P;) — (O)) = Zi + do.

This test to recover the z usually runs in O(n?) multiplications over the
base field.

4.4 Second step: Recovering the curve equation

We now generate two codewords v and w of weight (n—k—g+1), such that
v and w have exactly k + g — 3 zero positions in common.

In order to do this, we first build a set I C [1,n] of size k + g — 3 such

that Y z = (k+ g — 1)do. We now select two couples of opposite points, i.e.,
iel
('i}.'iz,jl,jg) € [l, 'J’LI so that 2z, + 2, = 2j; +24, = 0.

Then we kuow that there exists a codeword v € C with zero positions on
TU{iy, ia}. We can casily compute v from the generator matrix G. By the same
method, we compute the codeword w € C' with zero positions on [ U {j1, 42}

Now that we have two such codewords v and w, if we call fi and fa, their
respective (unknown) associated rational functions in L((k+ g — 1)Ag), then
there exists a, b, ¢,d € F; so that % = %ﬁ

The functions f; and f; are unknown but, by definition of fi and fa, for
every i such that w; # 0, we have %(R) == :—‘i‘i—z

All the v; and w; are known. So. if we know the coordinates (x4, y:) of three
points (say, P, s Pra, Pks), then we can first recover the constants a, b, ¢, d from
the preceding equation on indexes ki1, k2, k3. We can then use those constants
to recover the X-coordinates of many other F;.

The Y-coordinate of P: can be recovered by collinearity conditions: If, for
example, we have 2y, + 2k, +2i +2zi +2» = 0 with a curve of genus g = 2, we can
deduce that a straight line passes through Pk, Pk, Bi, Py and Piw. Then, if
we know the coordinates of Py, , Pr,, Py, We can recover I; from the preceding
equation, and thereafter, y; is deduced from the alignment of Py, , P,, B

So the indices k., ks, k3 must be chosen carefully. We will need zx;, 2k Zks
to define three different 5-points collinearity equations, involving indexes which
are non-zero positions of the word w. We will also have to check that the set
of 12 points involved in those collinearity equations generates the group G.

Once these indices are chosen, we can guess and try the coordinates (z,y)
of points Py, , Pk,, Pk,: We arbitrarily choose the values of their 6 coordinates.
Then, with this set of values, we determine the constants a,b.c,d from our
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evaluation equation. Then, by the use of the evaluation equation and collinear-
ity equations, we are able to determine the coordinates of 9 points P; on the
curve. We now try to build a hyperelliptic curve of genus 2 passing through
our 12 points (the 3 we guessed, and the 9 we computed). If such a curve
exists, then with great probability, our coordinates guess is correct and we
proceed to the step 3 of our cryptanalysis. If such a curve does not exist, it
means that our coordinates guess is wrong, and we try a new set of values

(Thy s Ykys Thz s Yhzs Thogs Yy )-

Actually, we don't have many guesses to make in order to recover a valid
curve. As we have seen precedently. if we arbitrarily choose (2, , Yk, s T&y» Yk Yks )
and try all the values for xy, € F,, we have a probability 1/2 to obtain three
points (Pp, P2, P3) such that there exists a curve isomorphism from X to &’
which maps (P, Py, Ps) to (P[, Pj, P}). So, with ¢ guesses, we have proba-
bility 1/2 to find a curve and a set of points so that C = AGC(X, (k + g —
I)AU! (Ple e q-'Pn)s (Cis‘ vea Cﬂ))’

+ Since g = n, and processing one guess takes constant time, the total cost of
the guessing step without preprocessing is O(n) multiplications over the base
field. The preprocessing, which consists of finding the words v, w is O(n®)
multiplications if a naive algorithm to find T is used.

4.5 Third and fourth step: recovering the remaining evaluation
points and the distortion coeflicients

We now know the equation of the hyperelliptic curve X', along with the coordi-
nates of a dozen points P, on X. We also know the values of all the z; = @((P;))
where ¢ is an unknown isomorphism.

The third step is then quite easy. For each P; whose coordinates are still
unknown, we write z; as a sum of 2; corresponding to points whose coordinates
are known. Computing the same sum with couples of points, we will find the
coordinates of P;. The value of the divisor Ap will be computed the same way
from the value of dy = @(Ag — (O)). The cost for computing the coordinates
of one point is a constant, so the cost of this step is O(n) multiplications over
the base field.

When everything else is known. computing the distortion coefficients ¢; is
a simple linear algebra problem, which can be solved by a matrix inversion.
The cost of this step is O(n?) multiplications, if we use a basic matrix inversion
algortihm.

5 Conclusion
We have presented a polynomial time attack against a version of McEliece

cryptosystem based on hyperelliptic codes of genus 2. As the first step of
our algorithm has complexity O(n?) in the usual case, the complexity of the
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presented attack is O(n*) binary operations. Our attack is based on many
probabilistic but reasonable assumptions, for example that the collected linear
relations in step 1 behave like random relations modulo arbitrary integers.

Our attack is also restricted to the case where n is close to the number of
rational points on the curve. We do not believe this to be a serious restriction.
Ultimately, chosing small n is just one of many ways for a designer of a cryp-
tosystem to trade efficiency for structural security, and quite possibly not the
best one.

As it stands, the attack does not scale well with the genus. Indeed, for genus
3 the probability that the same attack works on a given instance is already quite
low, even though certainly non-negligible. The fact, many of the steps of the
attack work just fine also on these curves suggests that it is likely possible to
devise almost-always working versions for these curves as well. It would be
intercsting to have a more thorough understanding of the fundamental limits
of this kind of attack.
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New systematic easy decoding symmetric
rank codes
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Moscow Institute of Physics and Technology (State University), RUSSIA

Abstract. A family of rank-metric codes over binary fields with lengths N, =
24 s =0,1...., is constructed. Codes of length N, are designed recursively from
codes of length N,_1. This provides very high degree of symmetry of code matrices.
In turn, it allows to decode corrupted received matrices recursively starting with
small lengths. The construction allows to use many simple algorithms for decoding
in rank metric such as majority rules and similar.

1 Introduction

Rank-metric codes are of interest to communications, cryptography, space-time
coding, network coding, etc., [1, 2, 4, 5, 6]. Symmetric rank-metric codes were
introduced in [7] and investigated in [8]-[14]. Symmetry allows to simplify
decoding and to correct some rank errors beyond the error capability bound.
In this paper, we propose a recursive construction of rank codes over binary
fields starting with length 2. The length is doubled at each step and is equal to
N, = 2° after step s. In matrix representation, code words are N; x N, matrices.
They are constructed by means of Ny—1 X Ns—1 code matrices obtained at the
previous step. This leads to very high degree of symmetry of code matrices.
First, each code matrix of size 2° x 2¢ is element wise symmetric. Second, if
this matrix is represented as a 2°~! x 2°=! block matrix consisting of blocks
of size 2 X 2, then the matrix will be block wise symmetric for these blocks
and all blocks are element wise symmetric. Further, if the original code matrix
is represented as a 2°~2 x 2°=2 block matrix with blocks of size 2% x 22, then
the matrix will be block wise symmetric for these blocks and all 22 x 22 blocks
are both element wise symmetric and 2 X 2 subblocks wise symmetric. Finally,
represent the 2° x 2% code matrix as 2 X 2 block matrix with four blocks of size
95=1 » 95=1  Then the matrix will be block wise symmetric for these blocks.
Moreover, each block element of the code matrix is in turn a symmetric matrix
with the sane properties.
For example, the binary code matrix for length Ny = 2 has the form

Iq(m,x:}_):(“ 2 ) (1.1)

€n Ty -+ s

where z; and x4 are information bits. Each nonzero 2 x 2 code matrix has rank
2 and is symmetric.

“This work was partially supported under Grant 05-01-39017 GFEN-a
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Code matrices of length Ny = 4 constructed by our approach have the form

L1 £ X3 €Ly
Ty Tr+T2 T4 T3+ 34
Vao(xy,z9, 13,3 —
21,73, 73, 74) T3 €Ly L1+ T4 Lo+ L3+ 24
Ta T3+ T4 e+ T3+wa T1+ T2+ T3 (1.2)
_ ( Vi(zy, 22) Vi(zs, z4)
Vi(zs,zq) Valz1,22) +T1Va(zs,24) /'

where @1, ®, 3, 14 are information bits. The matrix I'; = ([l’ }) provides a

property that each nonzero 4 x 4 code matrix has rank 4 and is symmetric. It
can be represented as a 2 x 2 block matrix with symmetric blocks Vi (-, -) of size
252

In general, if code matrices Vi_1(21,...,2Z9s-1) of length Ny_; = 2571
are constructed, then code matrices Vi(x1,. .., Tos—1,Tos-1,1,...,Z2s) of length
N, = 2° will have the form

v _f Va—ilzneazN, ) Vialen, _j+1v-0002N,)

wlEreciimn, ) = Va—ilen, _q+10--08n,) Vicalzrooan, ) TacaVecalan, g410--020,)
(1.3)

where 21,...,EN,_y; TN._;+1,- .., TN, arc information bits. The matrix I's_;

of size N;_1 x N,_; is calculated using the previous matrix I's_5. It provides a
property that each nonzero Ny x N code matrix has rank N, and is symmetric.

We will exploit super symmetry to construct new decoding algorithms to
correct rank and array errors.

2 Auxiliary results
2.1 Notations and definitions

Let F be a base field and let Fon be an extension of degree n of F,. Let I3
be a normalized vector space of dimension n over Fon.

The rank norm of a vector g = (g1.¢2,....9n). & € Fju, is defined as the
mazimal number of coordinates g; which are linearly independent over F3. We
denote the rank norm of g by r(g).

A vector code V C Fg, is any set of vectors. A linear vector code V is a
subspace of F7,..

Let F3'™" be a normalized space of square matrices of order n over Fj,. The
rank norm of a matrix M € F;*" is defined as ordinary rank of this matrix,
i.e., the mawzimal number of rows (or, columns) which are linearly independent
over Fy. We denote the rank norm of M as rank(M).

A matriz code M C FJ'*" is any set of binary matrices. A code M is said
to be linear if M is subspace of F}*". Given a code M one can construct a
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code MT 2'{ MT : M € M} where MT means the transpose of M. A code M
is said to be symmetric if M = MT.

2.2 Relations between vector rank-metric codes and matrix
rank-metric codes

Let g =(91,92:---19n), 9gj € Fan, be a basis of Fyn over Fy. Then any vector

m = (my,ma,...,my) € [ can be uniquely represented as

m = (my,my,....,my) =gM = (g1,92,--.,9n) M,

where M is the n x n-matrix in Fj. One refers to the matrix M as the matrix
g-represcutation of the vector m. Note that r(m) = rank(M).

Given a vector code V and a basis g, one can get a corresponding matrix
code M in g-representation as V = gM, and vice versa.

2.3 Self-orthogonal bases

Let
g = (01,09,---,0n)s 05 € Fon; (2.4)

be a basis of Fbn over Fy. Associate with the vector g the n X n-matrix

[ o 9 R T
gl gl gl
Gie (2.5)
BB g
! ggﬂﬁl] g!"n.-l] o gLﬂ—-l] )

We use the notation [i] := 2¢, if i > 0 and [i] := 2", if i < 0. It is known
[15] that the matrix G, is non singular.

Definition 1 A basis g = (g1, g2, - -+ gn) 1 called a self-dual basis if Tr(gig;) =
8:;. where Tr(:) is the trace function of Fon into Fy defined as Tr(g) = g+gltl4
gﬁz] e +gln_1] = FQ, g € F'zﬂ.

Definition 2 (Equivalent) A basis g = (91.92,...,9n) is called a self-dual

basis if
GTG = I'n_‘-

where GT is the transpose of G and I,, is the identity matriz of order n.
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Definition 3 A basis g = (1,92 - - -,9n) is called a self:orthogonal basis if
GGT =1,
It is clear that a self-dual basis is also a self-orthogonal basis, and vice versa.

Definition 4 A basis g = (g1,92..-..9n) s called a weak self-orthogonal
basis if
ceT =B,

where B is a diagonal matriz in Fy» , but not multiple of the identity matriz ] o

Note that a weak self-orthogonal basis is not a self-dual basis. For example:5
let G = (]1[::2), where 7 is a primitive element of Fy2. Then GGT = ( ,::]2)
Hence the basis (1 ) is the weak self-orthogonal one. On the other hand we

have GTG = (9}). Hence the basis (1 ) is not self-dual.

2.4 One-dimensional rank codes

Let g = (g1.92,---,9n) be a basis of Ion over Fy. We shall use this vector in
two manner. First, it will be used to represent elements of the field Fon. An
element v € Fin is represented as y = 191 +2292+ - +Zngn, where coefficients
%j € Fy are called information bits of .

On the other hand, the vector g = (g1. 92, - - - gn) Will be used as the gen-
crator vector of a linear [n,1,d = n] rank-metric vector code V;. The code Vi
consists of the all zero vector 0 = (0,0,.... 0) and code vectors
{gs = a*(g1, 92,4+ 19n)s 8=0;1,...,2% = 2}, where a is a primitive element
of Fyn. In terms of the primitive element a the vector g can be rewritten as
g=(a",a?,..., a'n), where iy, is, . . . , i, are some integers.

Find the matrix representation M; of the vector code V;. Consider the
matrix representation of the vector ag:

ag = g4, (2.6)

where A is the (n x n)-matrix in Fy. It follows, that a is an eigenvalue and g
is an eigenvector of A. Hence, A has as the characteristic polynomial a monic
primitive polynomial of degree n over Fp. Moreover, all non-zero code vectors
are given by

o’g=gA®, §=0,1;...,2" -2 (2.7)

Therefore the rank-metric matrix code M; consists of the all zero matrix
O and code matrices {A°* s =0,1,...,2" — 2}.
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If an clement v = 191 + 292 + * - + Tngn, then the corresponding code
matrix is j
NI("}’) = .'ITIA“] = LﬂgAm + e+ -'L'ﬂ.AT'"‘
Let g = (g1,92,---,9n) be a (weak) self-orthogonal basis of Fan over Fy.
Then the matrix A defined above is the symmetric matrix (see, [12]).

2.5 A recursive construction of a weak self-orthogonal basis —
the vector representation

As mentioned before, a weak self-orthogonal basis provides the symmetry of the

matrix A. Let N, = 2°, g5 = 2™+, s=1,2,.... We construct sequentially bases

for the fields Fy, C Fy, C -+~ C Fy,. Assume that the weak self-orthogonal basis

is already constructed for the field Fy,:

g(N:) = (g1.92:-- > 9N.) (2.8)

Choose in the superfield Fy,,, an element fn.+1 of order gs + 1. Construct the
vector
g(Nst1) = (91924 - -3 N+ GNA1: INg 423+ - yGNusr )s (2.9)

where (gNﬁ+l‘ N +25--- rgN,.;.l) = (fivs-l-lgls fN,-i—lg'Z! Tty fN,+19N,,]-

Lemma 1 The vector g(Nss1) @5 a weak self-orthogonal basis for the field
'F‘Q.'i-}—l'

Proof. Let G(N;) be the associated matrix of the vector g(Ns):

0 g2 s ON,

g gl
F = g gl o dongld

PR =y

We have G(Ns)G(Ns)T = A, where A is a diagonal matrix.
It is easy to show that the associated matrix G(Ng41) of the vector g(Nyt1)
is of the form

G(N;) FG(Ns)
G(N5+1) 5 3 (210)
G(N,) F=G(N,)
where F = diag[fn,+1, f}\ll I J[\?:’_flll] is the diagonal matrix. Note that

il —
Foar = IN_;-
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Calculate the product

T G(NOGINT +FG(N.)G(N.)TF G(N)GIN. T +FG(N.IG(N,)TF
G(Net1)G(Nas1)T = .
GINIG(NOT +F1 GINIG(N)TF G(N,)G(NOT+Fi= G(N)GIN)TF?

A(In, +F?) AlIn, +Fis)
A(IN_.\ +Fq"+1) Ally, + Fisti)
3 { A(ly, +F%) O, }

~ | O A Xy, - Efekt)
(2.11)

This matrix is diagonal. Therefore the basis g(V ++1) is the weak self-orthogonal
basis. O

We have to choose an element fx,+1 € Fy,,, of order gs+1. Consider the last

component gy, € Fy, C Fy,,, of the basis g(N,). Assume that Trg, (gn.) = 1.
Consider the polynomial fs(z) = z* + g}y +1, where m = olfa—ti 1,
Lemma 2 The polynomial fs(x) is irreducible over the field Fy,. Hence its
roots belong to the field Fy, . Moreover, the order of roots is gs + 1.
Proof. Consider the polynomial 7(x) = folzgR,) = gi(a® + = + g;}fm =
g?\,’:‘(a:z +2+ gy, ). This polynomial is irreducible over Fy, because Trg,, (gn,) =
1. So is the polynomial fs(z). Further, by fn,+1 denote a root of fy(z).
Another root is ff\?s,* 1~ We have by Viete theorem fy,+1 - ff{i‘s 41 = _fq":rl =1
or, ord(fn,+1) = gs + 1.

By construction, the last component of the basis g(Ns+1) IS g, = fN.+19N,-

Lemma 3 'l\rpqm

{QN,+1) = 1.
Proof. By definition, we have
fRoa1+ [nerign, +1=0, (2.12)

where m = 2¥s—1 — 1. Multiply this equation by 94?\’,' We obtain

Nz=1
g?\r.'l-l—l +9Nﬁ+lg-?vg +92N.! =U. (2-13)
zN_,—I

By Viéti t}:eorem, ONew1 + 900 = 9 Hence Trr,, (9N.1 + 9N,.,) =
gNa-

Trp, (9%, ) =Trr, (gn.) = 1. On the other hand,

s

Ne—1 Mipp
s . 32 2!
T['Fq‘.. (gNo + gi{{gﬂ) = Z (N 'Jf_g?\’ﬂ.l) = Z INey1 = TI‘FMH (gN.;+1)'
i=0 1=0

O
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Example 1 For s =1, Ny =2, a weak self-orthogonal basis is

g(N1) = (g1, 92) = (1, 92), (2.14)

where g3 is a root of the polynomial f(z) = z° + = + 1.
For s = 2, Ny =4, a weak self-orthogonal basis is

g(N2) = (91,92 93, 94) = (1, 92, f3: f392), (2.15)

where g3 = f3 is a root of the polynomial fi(x) = 72 +xg2+ 1 and Trp,, (94) =

Trr,, (fag2) = 1.
For s = 3, Ny =8, a weak self-orthogonal basts is

g(N3) = (91, 92. 93, 94 95. 96, 97, 98) = (1,92, 93. 94 f5 f592. f593. f594), (2.16)

where g5 = f5 is a root of the polynomial fa(z) = x% + 9] + 1 and Trg,, (g8) =
Trr,, (f594) = 1.

2.6 A recursive construction of a weak self-orthogonal basis —
the matrix representation

The matrix representation can be obtained from the vector representation if we

replace elements g; in the basis by suitable matrices. Note that if an element

B € Fg, is represented as a Ng X N, matrix B over the base field F5, then

being considered as an element of the superfield Fg,,, its representation will be

a block-diagonal Ny X Ney1 matrix [3 2]

Example 2 Fors =1, Ni = 2, the vector basis (2.14) is replaced by the matrix

basis
P SHE) ) ;

The corresponding code matriz is given by Eq. (1.1).
For s = 2. Na = 4. the vector basis (2.15) 4s replaced by the matrz basts

In, ON ' o S GaN) Oy .

INE o [O-"ll "Nl! ]'(12('!\'2} = [ Oy (.':':{;\i'l)_!-' 2

Ga(No) = C’,\rl T iy Ci(No) = ] ON] GalNy) ( -18)
J( J) S [ le C-'z(}\.rl)]- r.-!].(a 2) s l(l.,!(hrll G:{:Vl)gl'

The corresponding code matriz is given by (1.2).



Gabidulin 115

For = 3, N3 = 8, the vector basis (2.16) is replaced by the matric basis
[ INg ON‘_) v | Ga(Nz) On.
IN; ]62(N3) == [ ON! Gg(!\fg}]’

s = LON, In,
[Gq{_-’\"g) O_\f.z 1

G3(Ns) = [GSJ(EZJ G?f?\i)]vcd(N-’i) =1 on, Ga(N2) D (2.19)
Gs(N3) = [?;:; G.[if{:?'g }7]-‘ Gy(N3) = [C?(:\*zl G4{JS'?){7A;2)( Ns)]’ |
Gr(Ns) = [c?g\?a} Gdiﬁnn){;?;{Ne}]’GB(N 3) = [6?5333 c?: tﬁwh?})‘*]
The corresponding code matriz is given by
. i
g = G o e e e [ 2
where
Qe
Re i
IS0 A58

3 Decoding super-symmetric rank-metric codes

Here we consider decoding one-dimensional rank-metric matrix codes. Let
Vi(z1,...,2N,) be a code matrix of rank N, and E is an error matrix of
size N; x N, over Fb. If a received matrix is Y = Vi(z1,...,2N,) + E and
rank(E) = t < Ny—1 — 1, then standard methods (see, [1] and others) allow to
correct all such errors.

On the other hand, use of Eq. (1.3) and represeut £ as (gi; g;; ) Then
§ o Vian (6% s 2N, -+ 1B Vacr(@w, g1 -0 0Zn) + Baa )
Hf ;_1{;5,\;6_14.1 ,..J:_\.'N)+ Ea ‘/;;_1(3:1,...'L’Nﬂ_L)+I‘,_1VS_1(JEN”_|+] ...ll‘.“'\")-l"Egz !
(3.21)

One can see that decoding the Ny X N, code matrices can be reduced to
decoding several code matrices of order N1 = N, /2. Namely, we have to de-
code the code submatrix V_1(z1 ...2n, ,) depending only on half information
variables 21, ..., @n,_,. It satisfies conditions from Eq. (3.21):

[SASC R 5 A I 2 T = ¥,
Viei(zr .. zn,_y) + B +Ts1Bi2 = Yo+ 1010, (3.22)
Vo i(zr...on, ) + Ep +Te1Bn = Yo+ Tl
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Similarly, the code submatrix Vi (zn, ,+1...nN,) satisfies conditions

Ve-1(zN,_1+1.--2N,) + B2 = Y,
Ve-1(zN, i +1.+-TN,) + B2 = Yo, (3.23)
Vee1(zn, y+1---2N,) + Bn + T B = Y +T;1 Y.

If min{rank(F;2), rank(Ea1 ), rank(Faz + Ts-1E21)} < Ny—2 — 1 and
min{rank(E;), rank(Ea2 + I's_1 Eq2), rank(Ey + I“s__l1 Ez)} € Ny — 1, then
decoding will be successful.

Note that rank(E) of the original error matrix may be greater than N, —1.
Hence the symmetry of a code matrix Vi(z; ...z, ) allows to correct many rank
errors beyoud the one half distance bound. For example. the code
Va(z1, x2. T3, T4, Ts, Te, 7. 8) has rank distance 8 and can correct all rank er-
rors up to rank 3. The error matrix

(141010 {046 0. 0 0O)
g0 oL 00 0
000000O0O
500000000
010,004 QL300
01000010
00100001
\0o 0010000

has rank 6 and can not be corrected by general fast algorithms. But Eq.’s (3.22)
and (3.23) allow to correct this error. On the other hand, the error matrix

/1 000100 0\
b ST B D
00000O0O0O
s_|00000000
10001000
01000100
00060010
0000000 0

has rank 3 and can be corrected by general fast algorithms. But Eq.’s (3.22)
and (3.23) do not allow to correct this error. Therefore general algorithms and
symmetry algorithms should be used in common: first a general algorithm but
if it failes use a symmetry algorithm.

The proposed approach can be iterated until we get the best conditions from
the point of view of complexity.
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4

Conclusion

We proposed one-dimensional rank-metric matrix codes generated by wealk self-
orthogonal bases. These codes allow to correct not only all errors of rank not
greater than |(d —1)/2] but also many gpecific (namely, symmetric) errors
beyond this bound.
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On permutation automorphism groups of
g-ary Hamming codes

EVGENY V. GORKUNOV evgumin@gmail.com
Novosibirsk State University, RUSSIA

Abstract. It is cstablished that for any ¢ > 2 the permutation automorphisin
group of a g-ary Hamming code of length n = (g™ —1)/(g—1) is isomorphic to the
unitriangular group UT,.(q).

1 Introduction

Let F be a vector space of dimension n over GF(q) where g is a prime power.
In (.,Ul‘ltld..‘:t to the traditional code automorphism group definitions considered
in [1,2], all transformations of the space F; are taken into consideration in the
papers [3-8]. In this paper, following the approach started in [3-8] we prove
that the permutation automorphism group of a g-ary Hamming code of length
n = (¢™ —1)/(g — 1) is isomorphic to the unitriangular group UT,(q).

The study of codes automorphism groups is an important topic in the the-
ory of error-correcting codes. Almost all obtained results on the topic concern
binary codes. Phelps in [9] established that every finite group is isomorphic to
the full permutation automorphism group of some perfect binary code. Unfor-
tunately, the result does not elucidate the structure of the full automorphism
group of the code. It is proved in [4.5] that there exist perfect binary codes
with trivial automorphism groups. The permutation automorphism group of
well-known Vasil'ev code was investigated in the paper [8].

It is well known (see [1]) that the permutation automorphism group of the
binary Hanuning code Hj of length n = 2" —1 is isomorphic to the general linear
group GL,,(2). Solov’eva and Topalova (see [6]) showed that the order of the
automorphism group of an arbitrary perfect binary code is not greater than the
order of the automorphism group of the Hamming code with the same length. In
addition, these authors in [7] established that the only perfect binary code that
has an automorphism group of maximal order within all perfect binary codes
of the same length is the Hamming code. A similar result was independently
obtained by Malyugin in [10]. Semilinear automorphisms of a ¢g-ary Hamming
code that preserve the Hamming weight are investigated in [2, Sec. 7].

The Hamming distance d(z.y) between vectors x,y € Fy is the number of
coordinates where z and y differ. Any subsct C of the space ]F" is a g-ary code
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of length n. If for some e > 0 every x € Fy is within the distance e from exactly
one codeword of C, then the code C is called e-perfect (in the sequel simply
perfect). It is well known (sce [1]) that nontrivial perfect codes over Fy must
have length n = (¢™ — 1)/(g — 1) for some integer m > 2 and cardinality ¢"~™.

A code is linear if it is a subspace of Fj}. The Hamming codes are the only
linear perfect codes. However Lindstrém (see [11]) presented group perfect
codes nonequivalent to any linear code.

92  Definitions of codes automorphism groups

A mapping ¢: Fy — Fy is called an isometry of the space Fy if for any two
vectors z,y € I} the following equality holds: d(z,y) = d(p(x), ¢(y))-

Suppose T € Sy, where S, is the symmetric group on n elements of the
ground set {1.2,...,n}. The action of the permutation 7 on any vector T =
(@1, ., Tn) from F7 is defined by

() = (J:?,,—m),“.?:c,,_ltﬂ))‘
Following [3] by a configuration we call an isometry o: Fj — Fg such that
o(x) = (a1(21): - . -, On(Tn));

where ¢; are permutations from the symmetric group S, acting on the field Fy.

It is widely known (see, e.g., [12-14]) that the automorphism group of the
space F?! is a semidirect product of the group S, on the group S7 of all config-
urations, i.c.

Aut(Fg) = Sn AS] = {(m;0): ™ € Sy, 0= (01, .. SO € S;:.},

The group of all isometries of Fj mapping a code C into itself is called the
automorphism group of the code C:

Aut(C) = {(m;0) € Aut(F}): (m;0)(C) = C}.

q

It is should be noted that the g-ary code automorphism group definition
given in [2] takes into account the only semilinear mappings preserving the
Hamming weight of codewords.

Multiplying all elements of the field F, by some nonzero element 3 € Fy we
get the permutation 75 from Sg:

TR - L e L <
™= \0 a8 o'f ... aq'_zﬁ)'
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By S; we denote the set of all ¢ — 1 such permutations. Define the monomial
automorphism group of a code C as

MAut(C) = {(m; o) € Aut(C): o € (S7)" }-

Let £ be the identity configuration, i.e. all its components are the identity
permutations. It is natural to identify the isometry (m;€) with the permutation
m. Define the permutation automorphism group of a code C' as

PAut(C) = {r € Aut(C)}.

3  The group PAut(Hy)

In this section we are going to prove that for any ¢ > 2 the permutation
automorphism group of a ¢-ary Hamming code of length n is isomorphic to the
unitriangular group UT,,(g) where n = (¢™ — 1)/(q — 1). Let us start with
the definitions of some groups of matrices over F,. The general linear group
consists of all nonsingular m x m matrices and is denoted by GL,,.(g). The set
of m x m matrices with units on the main diagonal and zeros above (under) the
diagonal is called the lower (upper) unitriangular group. Both these groups are
isomorphic to each other. The map taking each lower unitriangular matrix L to
the upper unitriangular matrix R = L~T is an isomorphism between these two
groups. Taking that into account we will further denote the groups by UT,.(q).
The parity check matrix H,, of the g-ary Hamming code H of length n =
(g™ —1)/(g — 1) consists of n pairwise linear independent column vectors from
F7'. In the sequel we will use the parity check matrix Hy, given in the following
way. Consider all nongero vectors of length mn that have 1 as their first nonzero
coordinate. Let a be a primitive element of Fy. In the case m = 2 we have

=i Bt i St 1
Hy = e e
Let for any m we have Hpy, = [b1 hy ... hy|. Then Hyiq can be defined
by
O H Ji e e HL | ety T B we ibh
Hm+1 = : ’
10 a%'a ... a2 ... 0 o o ... aov?

here 0 is the all-zero vector of length m. Let T}, denote the column sef- of the
matrix H,,. If K € GLy(g), then the multiplication y = Kz gives a linear
mapping on F7'. It is not difficult to prove the following



122 ACCT2008

Lemma 1. Any matriz L € UT,,(¢) gives a bijection on the set T,.

Note that the lincar map mentioned above is a bijection on T3, if the matrix
L is lower unitriangular (in opposite to an upper unitriangular matrix U in the
rule y = zU). In the following lemma we will show that in the group GL,,(q)
there are no bijections acting on the set T}, besides those described in Lemma
1.

Lemma 2. If a matriz U belongs to GLy,(g) \ UT(q), where m > 1,4 > 2,
then in the set T, there is a vector h such that Uh & T,,.

Proof. We prove the statement by induction on . Consider the Hamming code
parity check matrix H,, multiplied on the left by a matrix . For m = 1, there
is nothing to prove since UH; = [u1][1] = [u11], where uj; # 0 and u; # 1.

Suppose the statement is true for matrices of order m. Now we prove it for
a matrix U of order m + 1. A matrix U can be represented as follows

U b
v=[7 3

where U is a m x m submatrix, a column vector b and a row vector ¢ have
length m and § € F,. We have
b Uhy Uhi+a® ... Uhi+a* 2 ... Uhn ... Uhn+0%2b
Uty =
L‘ chy ehyalF i chitiaf T8 il ichyt s chat aq_Qﬁl

There are the following four possible cases to check.

1. If det U # 0 and U ¢ UTm(g), then, by induction hypothesis, there is a
vector h; € T}, such that Uh; ¢ T;,,. Hence,

U ﬁ;] = [g;:?] & Trmy1  and therefore h = I?:}le :

2. Let either detU = 0 or U € UT;,(q), and at the same time b # 0. In
this case, the vector b is collinear with some vector of the set 7,,,. Hence we
have b = vhy. for some v € F, and hy € T;,,.

If det I/ = 0, then there is a vector hj in T, such that ath =0

On the other hand, if U € UT,»(q), then we can apply Lemma 1. Namely,
in the set T}, there is a vector h; that is assigned the vector 1. under the action
of the matrix U. So we have Uh j = hg.

Combining these two subcases we can conclude that the matrix U H,,,+1 has
a submatrix of the form

Shi. (64+a®y)hy (+a'yhe ... (64 a?2y)h

ch; chj+ o’ chi+ HER chj + al23
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where § equals either 0 or 1 in accordance with the subcases considered above.
Since the set {8. § +a’y. d+aly. ..., §+ a9y} coincides with the set of all
field clements, then for ¢ > 2 one can find an integer [ from [0, ¢ — 2] such that
S+alvy#0 and 6+ a'y # 1. Hence,

; 7 ! ;
U [h._;} - [(0 +a -l’)hkjl ey [il,:] _

« chj + o3

3. IfU € UT,,(q) and b = 0, then we have 3 # 0 for det U # 0. In addition,
we obtain 3 # 1 for U ¢ UT,,+1(¢). This implies that

U ) = ¢ ¢ Tiny1 and therefore h = 9 Y
1 ;'3 1

4. Tt should be noted that the conditions detU7 =0 and b= 0 are not
compatible since det U # 0. O

Theorem 1. For anyn = (¢™ —1)/(¢—1), where m > 2,q > 2, il is true that
PAut(H;) = UTn(q).

Proof. It is known (sce, e.g., [2]) that the Hamming code monomial automor-
phism group is isomorphic to the general linear group, namely MAut(H7) =
GL,,(g). The isomorphism 6: MAut(Hj) — GLy,(g) can be defined by

6: M+ K., where K'Hp=HnaM'.

Here H,, is the parity check matrix of the Hamming code Hg, the matrix M is
a monomial n x n matrix and K € GL,(g).

By Lemmas 1 and 2 we have #(PAut(H})) = UT,(q). Therefore a restric-
tion of the isomorphism ¢ on the permutation automorphism group ¢ = G;PAHNHF”
is an isomorphism between PAut(H}) and UTy,(g). This proves the theo-
rem. ]

The author is very grateful to professor Faina I. Solov'eva for constant atten-
tion to this work, useful discussions and significant improvements in appearance
of the paper.
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Abstract. The existences of an extremal doubly even self-dual [96, 48, 20| code
and a self-dual [94,47, 18] code are equivalent. The largest minimum weight among
self-dual codes of length 94 was previously known as 14,16 or 18. In this note, a
seli-dual [94, 47, 16] code is constructed for the first time.

1 Introduction

A (binary) [n.k] code C is a k-dimensional vector subspace of Fj, where F
is the field of two elements. An [n,k,d] code is an [n, k] code with minimumn
weight d. A code C is self-dual if C = C*+ where C* is the dual code of C. A
self-dual code C is doubly even if all codewords of C' have weight divisible by
four, and singly even if there is at least one codeword of weight = 2 (mod 4).
Note that a doubly even self-dual code of length n exists if and only if n is
divisible by eight. It was shown in [9] that the minimum weight d of a doubly
even self-dual code of length n is bounded by d < 4[n/24] + 4. In [10] it is
proved that the same bound is valid also for the minimum weight d of a singly
even self-dual code of length n unless n = 22 (mod 24) when d < 4[n/24] + 6
orn =0 (mod 24) when d < 4[n/24] + 2.

An extremal doubly even self-dual [24k, 12k.4k + 4] code is known for only
k = 1,2, namely, the extended Golay [24, 12, 8] code and the extended quadratic
residue [48,24,12] code. It is not known if there exist other extremal doubly
even self-dual codes of length 24k. It was shown in [10] that the existences
of an extremal doubly even self-dual [24k, 12k, 4k + 4] code and a self-dual
[24k — 2,12k — 1,4k + 2] code are cquivalent. From this viewpoint, it would be
interesting to determine the largest minimumn weight among self-dual codes of
length 24k — 2, The largest minimum weight among self-dual codes of length 70
is known as 12 or 14, and the largest minimum weight among self-dual codes of
length 94 was previously known as 14, 16 or 18 (see [4, Table VI, [6, Table 2]).

In this note, a self-dual [94,47,16] code is constructed for the first time.
Hence the largest minimum weight among self-dual codes of length 94 is 16 or
18.
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2 A self-dual [94, 47, 16] code

2.1 Construction

An automorphism of C' is a permutation of the coordinates of C' which preserves
C and the set consisting of all automorphisms of C' forms a group called the
automorphism group of C. Extremal doubly even self-dual codes with auto-
morphisms of a fixed odd prime order have been widely investigated (see e.g.,
8), [11)).

Suppose that o is an automorphism of order 23 of a self-dual (94, 47, 16] code.
By [11, Theorem 1], one can show that o consists of four 23-cycles together with
two fixed points. Using the technique developed by Huffman [8] and Yorgov
[11], we have found a sclf-dual [94,47, 16] code Cgy4 with an automorphism of
order 23. The code Cyy has the following generator matrix:

a a
a 1
a 1
€1 €2 Ea
€1 €3 64
fo T3 iy
fo fa f

where a is the all-one’s vector of length 23, ¢; (i = 1,2, 3,4) and f; (ji=1,2,8/4)
are the 11 x 23 circulant matrices M with first rows 7

M r M r

e; | (10000101001100110101111) | ez (1101[]00100111]110100100)
es | (10001110110000111010101) | eq (1000100001000101001 1100)
f (l1111010110011001{]10000) f2 (10010010111111001000101)
f3 | (11010101110000110111000) | fa (100111001[)10001()000100(])

and the blanks are filled up with zero’s.
Hence we have the following:

Proposition 1 There is a self-dual [94,47,16] code. The largest minimum
weight among self-dual codes of length 94 is 16 or 18.

Remark 2 The largest minimum weight among knouwn linear [94, 47| codes 1is
currently 16 (see [7]).

2.2 Weight enumerators

Let C be a singly even self-dual code and let Cy denote the subcode of codewords
having weight = 0 (mod 4). Then Cy is a subcode of codimension 1. The
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shadow S of C is defined to be Ctj!' \ C [2]. There are cosets Cy,Cz,C3 of Cy
such that - = CyUC1UC3UCs where C = CyUC; and S = €, UCs. Shadows
are often used to provide restrictions on the weight enumerators of singly even
self-dual codes.
By Theorem 5, 4) in [2], a self-dual [94,47,16] code C and its shadow S
have the following possible weight enumerators:
We =1+ 2ay'® + (134044 — 20 + 12803)y'8

+ (2010660 — 30a — 8963 + 81927)y>°

+ (22385348 + 30 + 12803 — 1064967 — 5242885)y**

+ (207307788 + 210a -+ 53763 + 5816327 + 99614720)y>*

+ (1545393276 — 2100 — 180483 — 1597440~ — 880803848)y20 + - - -

Wy =6y + (v — 220)y" + (—3 — 20y + 2318)y™!

+ (a + 188 + 190y — 15408)y'®

+ (1072352 — 16a — 1533 — 11407 + 73158)y"?

+ (140151744 + 120 + 8163 + 4845y — 263340)y™ + - - ,
respectively, where a. (3,7, ¢ are integers. By Theorem 5, 3) in [2], we have the
restrictions (d,7) = (0,0),(0,1),(1,22). In the case (4.7) = (1,22), we have
3 = —209 since the sum of two vectors in the shadow is a codeword. To save
space, we do not list the possible weight enumerators for each of the three cases.

We have verified that the number of codewords of weight 16 in Clyy is 6072
and that the minimum weight of the shadow is 15. Hence the weight enumerator

of the code Cly4 corresponds to (e, /3.7.0) = (3036, 0.0,0). We have verified by
MaGMA that Cyy has automorphism group of order 23.

2.3 A related self-dual code of length 96

Let € be a singly even self-dual code of length nn = 6 (mod 8). Let C* be the
code of length n + 2 obtained by extending Cy- as follows:
(0! 03 CU) U (1- 1: Cz) U (1' 0.' Cl) U [0' 17 C-'i)

where (z.y, C;) denotes the set {(z,y,2) € F} "*|z € C;}. Then C* is a doubly
even self-dual code [1]. In our case, C§, is a doubly even self-dual [96, 48, 16]
code since Cgy has shadow of minimum weight 15. The code Cg, has the
following weight enumerator:

1+ 9108y + 3071328y + 370937840y + 18637739040y
+ 422086556775y + 4552826872672y + 24292762502544y°
+ 65726907444000y* + 91447786444040y% + . - . 4 3.
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There are 30 known inequivalent doubly even self-dual [96.48, 16] codes [3],

[4] and [5]. Since Cg, and the 30 known codes have different weight enumerators,
C3, is inequivalent to any of the known codes. We have verified by MAGMA
that C§, has automorphism group of order 23.
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Abstract. Let [n.k, d]s-code be a linear code of length n, dimension & and min-
imum Hamming distance d over GF(g). One of the most important problems in
coding theory is to construct codes with best pessible minimum distances. Re-
cently, the class of quasi-cyclic (QC) codes has been proven to contain many such
codes. In this paper, thirty two codes over G F(8) are constructed (among them one
optimal code), which improve the best known lower bounds on minimum distance.

1 Introduction

Let GF(q) denote the Galois field of ¢ elements. A linear code C' over GF (¢) of
length n, dimension k and minimum Hamming distance d is called an [n, k, dlg
code.

A code C is said to be quasi-cyclic (QC or p-QC) if a cyclic shift of a
codeword by p positions results in another codeword. A cyclic shift of an m-
tuple (2, Z1,.--,Tm—1) is the m-tuple (Tn-1,%0,. .. , Tm—2). The blocklength,
n, of a p-QC code is a multiple of p, so that n = pm.

A matrix B of the form

bU bl b? G bm—E bm——l
bty bo by o+ bm-a b2
T boteo ibpei bg - bn—a4 bm—3 : (1)

by by b3 - bu-1 o

is called a circulant matriz. A class of QC codes can be constructed from m xm
circulant matrices. In this case, the generator matrix, G, can be represented as

G = [B1, By, ..., By, (2)

where B; is a circulant matrix.

The algebra of m x m circulant matrices over GF(g) is isomorphic to the
algebra of polynomials in the ring GF(g)[z]/(z™ — 1) if B is mapped onto the
polynomial, b(z) = by+bix tbya?+- - -+ by—gz™ L, formed from the entries in
the first row of B. The b;(x) associated with a QC code arc called the defining
polynomials.

U This work was partially supported by the Bulgarian National Science Fund under Contract
in TU-Gabrovo.
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If the defining polynomials bi(x) contain a common factor which is also a
factor of ™ — 1, then the QC code is called degenerate.
The dimension % of the QC code is equal to the degree of /i(x), where [4]

™ — 1
ng{wm =1 bﬂ(.’b’}, b[(i&'), s bp—l{-;t'.)} v

If the polynomial h(z) has degree m, the dimension of the code is m, and (2)
Is a generator matrix. If deg(h(x)) =k <m, a generator matrix for the code
can be constructed by deleting m — k rows of (2).

Let the defining polynomials of the code C be in the next form

h(z) =

(3)

di(w) = g(e), dy(a) = foz)glz), -+, dy(z) = fp(r)g(z), (4)

wheto g(a)l(a™—1), g(2), fi(x) € GR(g)[e] /(@™ ~1), (fi(z), (2™ —1)/g(z)) = 1
aud deg fi(x) < m — degg(z) for all 1 < i < p. Then C is a degenerate QC
code, which is one-gencrator QC code (see [4],[2]) and for this code n = mp,
and k = m — deg g(x).

Similarly to the case of cyclic codes, an p-QC code over GF(q) of length n =
pm can be viewed as an GF(g)[z]/(a™ — 1) submodule of (GF(q)[z]/(z™ — 1))?
[4],[2]. Then an r-generator QC code is spanned by r elements of (GF (q)[z]/(z™—
1)),

In this paper we consider one-generator QC codes. A well-known results
regarding the one-generator QC codes are as follows,

Theorem 1 [4],[2]: Let C be an one-generator QC code over GF(q) of
length n = pm. Then, a generator g(x) € (GF(g)[z]/(a™ — 1))P of C has the
following form

8(x) = (fi(zx)g(x), fo(@)ga(z), -, fol(x)gp(z))
where gi(z)|(e™ — 1) and (fi(z). (x™ = 1)/gi(x)) =1 for all 1 <

Theorem 2 [2]: Let C be an one-generator QC code over GF (g
n = pin with a generator of the form

g(x) = (fi(@)g(x), fol@)g(x), - -. fo(2)g(x))

where g(x)|(z™ ~ 1),9(x), fi(z) € GF(g)[z]/(z™ — 1) and (fi(z),(a™ -
1)/g9(z)) =1 forall 1< i< p. Then

Sl
@]
.-".
&0
=4

e}
=
g

p-((# of consecutive roots of 9(x))+1)<d mim(C)

and the dimension of C is cqual to m — deg g(z).

Theorem 3 (construction X) Let Cy = [n,k —1,d + s],; code be a subcode
of the code Cy = [n, k, dlq and let Cy = [a, 1, slg be a third code. Then there
exists an C' = [n + a, k,d + s], code.
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Table 1: Minimum distances of the [17p. 8, d]s quasi-cyclic codes

p | 17p Tol gl ¥l 2| 17 | d|dm
2| 3411025246 | 21 | 21 || 5| 85| 1003347 | 62 | 61
3Bl 1536 | 34 | 35| 6 | 102 | 1237534 | 76 | 7H
4| 68| 147711 | 48 | 49 || 7| 119 | 1014524 | 90 | &9

Quasi-cyclic codes form an important class of linear codes. A large number
of record breaking ( and optimal codes) are QC codes [1]. In this paper, new
one-generator QC codes (p > 2) are constructed using a algebraic-combinatorial
computer search, similar to that in [3]. For convenience, the elements of GF(8)
are given as integers: 2 = 3,4 = 32,3 = 3.6 = 8,7 = 3°,5 = /3%, where 3 is
a root of the binary primitive polynomial y* 4+ y + 1. The codes presented here
(Table 2) improve the respective lower bounds on the minimum distance in [1].

2 The new QC codes

We have restricted our scarch to one-generator QC codes with a generator of
the form as in Theorem 2 and fi(z) = 1. The maiu aim in our scarch is to
find good g(z), i.c. g(x) which gives better minimum distance for p = 2 due
to Theorcm 2. When choosing g(x) we calculate the minimum distance of the
respective quasi-cyclic code D. After that we have compared the dy;, (D)

with the minimum distance of the best knowu codes [1] and with the given m

and g(z) we scarch for f,(z),p=3.4..... Depending of the degree of g(z).
we obtain improvements on minimum distances for some dimensions.

We illustrate the search method in the following example. Let m = 17 and
¢ = 8. Then the ged(m,q) = 1 and the splitting field of ™ — 1 is GF(¢')
where [ is the smallest integer such that m|(g' —1). In our case [ = 8 and so
our splitting field is GF(8%). One of the generating polynomial for GF(8°%) is a
primitive polynomial p(z) = z® 4 227 + 628 4 2% + ! 4+ 2* + 42 4+ 32 4 6 and
let a be a root of p(«x). Then

16

2 —1= H(:r - rt-"i)

3=0

Let now k = 8. There are two possibilities to obtain g(z) of degree nine. By this
reason, we can use exhaustive search. Taken g(x) = z° + 28+ 2%+ 2> + 2+ 1, we
obtain f(z) = 2%+22* +52% 4222 +42+6 and quasi-cyclic code D = [34, 8, 21]s,
the best known. After that we make search for f,(#),p = 3,4...,7. This is a
sequence of six quasi-cyclic codes. The results are given in Table 1.
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It seems, that there are three new results: [85,8,62]s, [102,8,76]g and
[119,8.90]s codes. We present the new quasi-cyclic codes.

Theorem 1: There exist one-generator quasi-cyclic codes with parameters:

[28,5,20]3 [35,5.26]5 [42,5.32]s [49,5.38]s [78,5,63]5 [81,5,65}5
[90,5,73]3 [105.5,86]3 [1 20,5,100]g [38,6‘28]3 {42,5,30]3 [84,6.66]g
[95,6,75]s [42,7,29]% [84,7,63)s [90.7,68]s [95,7,72]3 [105,7181]5
[36,8?23]5 [42,8,28}3 [85.8,52]3 191,8,67]3 [102,8,76]3 [105,8,78}3
[119.8,90]% [39,9.24]4 [91.9.65]4 [102.9,74]g [105,9,7@]g [93711,52}3

l Proof. The coefficients of the defining polynomials of the codes are as fol-
ows:

A (28,5, 20]3-code: 2310000,7712210.4343110,1642100; Adding the columns (63421)", (25641)",
(47261)" and (52371)" to the generator matrix, the above code can be extended to a [32.5, 24]s
code.

A [35.5, 26]s-code: 2310000,4575210,1612510,5131710,1201310; Adding the columns (63421)°,
(25641)" and (52371)", the above code can be extended to a [38.5.29]s code.

A [49.5, 38]s-code: 2310000,6722100,4556310,2644510,5473410,3265310,3415210; Adding the
columns (74531) and (52371)", the above code can be extended to a [51,5,40]s code.

A [38, 6, 28]s-code: 1301247742103100000,6333647125776166100; Adding the columns (130100)"
and (164361)*, the above code can be extended to a [40, 6, 29)s code.

A [42,6,30]s-code: 643234361733125100000,537721522133455542710; Adding the columns
(630210)', (520710)*, (602301)", (703401)', (063021)" and (052071)", the above code can be
extended to a [48.6, 36]y code.

A [42.7,29)x-code: 255356150702751000000.506312404625072547100 i Adding the column
(3657521)", the above code can be extended to a [43.7.30]s code.

A (84,7, 63]s-code: 255356150702751000000,506312404625072547100,
442406377267775621000,354174272601230173510; Adding the columns (0630210)", (5703401)°
and (5063021)", the above code can be extended to an [87, 7, 66}« code.

A (95,7, 72]z-code: 1223152513221000000,6454574176233563710,3251455612372474710,
3737472772015457210, 1207412747214702100 ; Adding the columns (3273010)" and (5536010)",
the above code can be extended to a [97.7, 74]s code.

A [105,8, 78]s-code: 55356150702751000000.506312404625072547100; Adding the column
(11326073)", the above code can be extended to an [106,8. 79y code,

Remark: The defining polynomials of the some codes, which are missing in
Theorem 1,are given in [1]. All defining polynomials, generator matrices and
weight enumerators are available on request from the author.

Theorem 2: There exist [45, 8, 30]s code.

Proof. There exist quasi-cyclic [42, 8, 28]gcode with defining polynomials:
126716642762710000000, 316544405114436465310. This code as a subcode a
[42, 6, 30]3 code with defining polynomials: 143125610365713200000,
106500266260354044710. Using auxiliary [3,2, 2]g code and applying construc-
tion X, we obtain a {45, 8, 30]3 code. The following generator matrix vields a
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Table 2: Minimum distances of the new linear codes over GF(8)

code | d|dy code d | dgr code | d | dgr code | d|dgr
[32,5] | 24| 23 | [120,5] | 100 | 98 [91,7] | 69 | 68 | [102,8] | 76| 75
[38,5] |29 | 28| [20,6]| 13| 12| [97.7] | 74| 73 [106,8] | 79| 78
[43,5] |33 | 32| [40,6]| 29| 28 [105,7] | 81| 80| [119,8] [90 | 89
[51,5] |40 | 39| [48,6]| 36| 35 [36,8] |23 | 22| [39,9] 24| 23
[78,5] | 63| 62| [84.6]| 66| 65 [42.8) |28 | 27| [91,9] | 65| 64
82,5] |66 | 65| [95,6]| 75| 74| [458]|30| 29| [1029] | 74| 73
[91,5] | 74| 73| [43,7]| 30| 29 [85,8] | 62 | 61| [106,9] |77 | 76
[107,5] | 88| 87| [87,7]| 66| 65 [91,8] | 67| 66 | [93,11] | 62| 61

[45,8, 30]s code:

065633052407003200000210044663374762421400201 | °
600516152040504700000647072502075311376325510

where G denotes the generator matrix of the (42,6, 30]s code.

Theorem 3. There exist optimal [20, 6, 13]s code.
Proof. There exist quasi-cyclic [18, 6, 11]s code with defining polynomials:
232701, 213171, 510661. Adding the columns (414141)° and (717171)%, this

code can be extended to an optimal 120, 6,1 31’3 code with weight enumerator
01 132898145363 1513860 16390601759010 18? ?571950? 22018403_
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Abstract. The recurrent algorithmm for construction of ordered basis of symmetric
group with degree n = 2* is given. It is shown that the number of transpositions
constituting such basis is equal to O(n logi n). This value exceeds the order of lower
bound estimation only in coellicient log, .

1 Introduction

Let Sy be a symmetric group with degree | X| on a set of numbers X. By S,
denote group Sx if X = {1,...,n}.

Let T, T5, .... 7, be an ordered set of transpositions of Sy, where
Pl Cﬁ\.;. We shall denote such ordered system of transpositions by ¥ and
represent as:

U =0T .o T
where the transpositions’ number r will be denoted by |¥|.

Definition 1. The system U is called ordered basis of symmetric group Sx if
any permutation Px € Sx can be represented as

Pa = T R

where v; € {0,1},j = 1,2,...,r. Note that there can ezist several vectors
(71, .-.,7) representing the same permutation Px.

In [1], we announced a result that can be easily used to show the existence of
algorithms for constructions of ordered bases with the transpositions’ number of
order & CZ. Also there it was supposed that r should be close to value nlog, n.
This assumption corresponds well to the rough upper bound of factorial

n! < n't = on logs n

The obtained result is based on that the degree n of symmetric group 5, is
chosen to be equal ton = 2%, k > 3. Such choice allows successively partitioning
set of permutated objects in two equal-sized subsets. At each stage of partition,
"mixing” among objects is introduced, for example, by permutation (7). The
main results are formed by relations (3) — (6).
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2 Main results

2.1 Part 1

Consider a symmetric group Sx at | X| = 4m, where m > 2. Partition the set
X = {&1,...,24m} into two subsets, O and E:

OUE=X, ONE=g, |0|=|E|=2m. (1)

Let Px £ Pgug be any permutation of group Sy £ Sgug. It is evident
that

p () @.r Ef ®H Eu ) ¥ ®: ®H }E.r ]Eu ; @u ["‘E“:H
QUE — ]Er ]Err @rr —= @J ®Ji’ E: ]Eu _IE;.- @n .
where 0 =Q' UOD" =0Q' U @”, E=E UE' =E UE" and notation
A g AL alAl :!A={rllra2!<'-1ﬂiﬁ|}aB={b11b2)'”sb1ﬂﬂ}r

‘BT B b ... b
|A| = |B|. Therefore,

o1

Proposition 1. Any permutation Pgyg of group Sgug can be factored as
Pouke =Po-Pg - To.E (2)

where Py and Pg, are some permutations belonging to symmetric groups Sg and
Sg correspondingly, and a permutation To g of group Soug has the form as

(@* E*

A * s * V
B O ) = (O, E*), where O* C O, E* CE. (3)

Definition 2. An ordered sysiem of transpositions of group Spur is called
system generating permutations of the form GoG&gTp k. if 7o, & can be any
permutation of the form (3). and Gg, Gg are some permutations of groups Sg,
Sk correspondingly.

Proposition 2. Let Wy and g be ordered bases of groups Sg and Sg corre-
spondingly. Let g g be an ordered system of transpositions of group Sgug, and
this system generates permutations of the form GoGpTg g. Then the system

Youg = Yo Vg YoE (4)
is the ordered basis of group Sog.
Proof Follows directly from the factorization (2) and that

Po-Pe-Toe= PoSo ™' PeGr !  GoGrTox -
v v
Wy E O.E
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2.2, Part 2

Partition the set @ into subsets @1, @2 and the set E into subsets Eq, Ey by
the same way as in (1). Thus,

QU0 =0 O01N0; =92, EiUE; =E, EiNE; =@

where | 01| = |02 = |Eq| = | Eo| = 3| X]| = m.
1 S 2 S0 s o) 1
Let @12 {01202....,07,,.}, Oy = {07,05,...,05}, E1 = {e1,e3,....e5.},
E; = {el B2yl Cm}' - £ e
Consider an ordered system of transpositions Wg' 72 consisting of
\ D 01 E2;0,E; &
m trampo-&itimm of the form (oz-l,efr]ﬁ.)) and m transpositions of the form

(o _r G )) where 1l <i<m, 1 € j < n, and m, T are some permutations
defined on the set {1,2,...,m}. In expanded form such system is represented
as:

w1z Al [ IS 1 2 L ja ! 2 Il
quDLJEg;Ug._E| r (Ul'em(l}) M (Om’em{m}) (ol’eﬂ-_g{l)) (Dm eﬂ‘g(rn))

Definition 3. Consider O C O, E C E.

~ T~ - ~ = ~ s i
Let O o< E denote that at any 0 € O and ¢ € E trunsposition (0, €)
does not belong to the system lI'O, g:, OE,

: = —~ W1

If@ = 181,00 i s Bp b E = {é1,€2,...,€y}. |O| = |[E| = v then let O e 2

E denote that all tmnsposmons (0:,€:), 1 < i < v, belong to the system
QD} ]Ea 02 ,Ey *

Proposition 3. Let Yo, g, and Yo, E, be some ordered systems of transposi-

tions generating permutations of the forms Gg, 6k, To, g, and 6¢,6g,T0, E,
correspondingly. Then the system

—_— 1y M2
‘I)U.E == ILIJO:,LF.; q’@u,Eg ‘IJDI Ea; @2,51 (5)

generates permutations of the form SoGrTg & at any m and ma.

Proof. Consider any permutation 7g g = (Q*,E*), where 0* C O, E* CE.
Suppose O* = @ U Q5 and E* = E} U Ej, where Of C 0. 05 € O, E] C E,,
E; C Es.

L{‘r @ = o ot} E* = {e1, e2,....e:}, and let 0% = {0§, 05, ..., 0§},

= {e.¢el.. ,ef} be the sets obtained by renumbering elements of the cor-
1esp0ndmg sets ©*, E* by means of permutations «, [ defined on the set
{1,2,...5t} off = 044, e’:j = epu), 1 < i < t. It is obvious that at any a,
{3 there exist such permutzttions So, Gg of groups Sg, Sg correspondingly that
(®*’ IE;*) = G"DG]E ( (A )
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The sets Of, 03, Ei, E3 can be partitioned into the following subsets:

(LS Bl s WL ra

O, SoXE);; O me<Ey; 0, U0, = 0. EyUE; =E}. 0,0} =, B,NE, =&;
fas S '3 o WL " ] ' ’ o [ " ) £
O, P% E; 0) SWXE); 0,U0; =03 E\UE| =E].0;N0, =8, B NE =4;
0 =0,u0,; E =E,UE;; O ~o<E,[0]=|E].
There exists such remumnbering of elements for each of the sets O*, E* that
¥ * "“;’ ‘_“‘-( . ' " " " "
To,e = (0",E*) = 665 - (0, E')(01. E2)(O2, Er ) -

Whercas |0'] = |0] + |03| = |By| + | B3| = |E'|, three cases are possible:

1) [04] = |Bqls [On] = |Eal; 2) 103] > |ELl, [0l < [Eali 3) [04] < [E4l,

|0, > | Byl - . } ] )
Without loss of generality consider only case 2) : [0y > |ELl, 105 < | By -
Let QU0 =0, 0.nN0, =2, EUE =By, &aNE =9, & =

E;, 0, = 0,, where |01] = [&1], |O2] = |&], 15y] = |&]. Also O, £'0< &,

dincs 0 B4 B e
There exists such renumbering of elements for each of the sets O, E that

(0, E') = 6565 - (01,61)(02,6)(01,5) .

It is clear. there exist such sets @2 € Os, 51 € [E; that

~ T2

Oy ZL L 1Bs = 11 = 101 = 1B 020Dz =@, E1NE = 2.
It is also evident that (01, &) = {51,@2)(51,52)-(51,51)(62152)'(@2151) :
This implies that
(0, E') = 858 (01,61)(02 &) (01, 02)(81,8) - (61,6)(02, &) (02, £1) -
Since 01N O, =3, 0, N0, =2, E1NE =2, & Nn&, = @, it follows that
To.x = é’.;)é.;;(ap_@z}'é-’gé;(fl.Eg_)-(ol‘31”@].51)'(02‘52}(@‘2,Eg)-{OT.E;)(@z,El){O;,E:).
Each of the systems Vo, ,, Y0,5, generates permutations of the forms

So, 6k, 70,81, 60,568,704, E, correspondingly. Suppose
To,.g, = (01,6)(01,61). To,.8, = (02.82)(02,&2). Then

2t e Ry bl " "
Gﬂ{sETO.E = ?91651 T@l‘%"G{DQGEgTDQ.E%'\(OI s E2 )(021 51)(0‘2 ) Eil 1
VYo, 5y Yoy £y :JI; :"32 02.E;

where G5! = 6,65(01,0:) 65'65,, 65 = &g (£1,8)- 65 65, Each
of three permutations marked out in previous expression is generated by corre- .
sponding ordered system of transpositions.

Based on that the permutation 7o, g is any, it follows that the system Ugr
generates permutations of the form ©06xTo, g at any m; and my as they have
been choosing at random. Proposition is proved.
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2.3 PBart 3

Using relations (4) and (5), we recurrently construct an ordered basis of sym-
metric group Sy, at n =2~ k> 3.

At each step some sets are partitioned into two equal-sized subsets, that is,
if |A| = 2t then |A;| = |A2| = t. By analogy we shall partition the original set
X ={1,2,3,...,2%} and apply (4) to being divided subsets till their minimal
size is equal to 4. Let us use that if A = {a1,a2,a3,a4} then

Uy = (a1, as)(a1,aq4)(az. az)(a1.az)(asz. as) (6)

is the ordered basis of group Sy.
Suppose that in relation (5) for all subsets

1 2 ... m=1 m i
“1:7’2=(m e g 1)’1‘{7’”&2*2' ™

We shall apply (5) until the minimal size of subsets is equal to 2.

Example. Consider n = 2% = 8, X = {1,2,3,4,5,6,7,8}. Let X’
{1,3,5,7,9,11,13,15}, X! = {2,4,6,8,10,12, 14, 16}, X® = {1,5,9, 13}, X!
{3,7,11,15}, X = {2.,6,10,14}, X** = {4,8,12,16}. Then

Ux =UyoUyx1 Uxox1 = VxooWyo Wyoo xor Wx10¥xn Uxro x11 Wxo x1.

Let X% = {1,5}, X%, = {9,13}, X%, = {3,7}, X% = {11,15}, X'% =
(2,6}, X9 = {10,14}, X" = {4,8}, X™; = {12,16}. Then

Y
mXDn.Xm = ‘onomxmnqjxml-xﬂl1.lp)i'l”%‘XmI‘,Xu";,Xmu
i, Wa
‘I’X‘“,X” = II'X’%.X”u‘l’XmL'.X“:‘Dx}wu,xn,;xwl‘xuo
Let X% = {1,3,5,7}, X% = {9,11,13,15}, X'y = {2,4,6,8}, X', =

{10,12,14,16}, X% = {1,3}, X%, = {5, 7}, X%¢ = {9, 11}, X°11 = {13,15}.
Xl = {2,4}, X o1 = {6,8}, X110 = {10,12}, X'y; = {14,16}. Then

= w2
1IJIX':’-_XI = ‘D.’{Du-.’f‘u\l’-‘(“n,.’fh‘I"X%‘Xll;xﬂl..!clo 2
i SRS I myima
‘I'X"m)ﬂu = qr-\(]UU-AlUU'IIXUUI'A]‘mw.\'oau.le;Xom‘Xlno +
o _ Ty 7
'L[XULXII = QX”w‘Xlm‘pxulz:XlII‘DXUw,X‘“:X“n.X‘m

Whereas |X%| = [X| = |X9] = |X"| = 4, then applying (6), we obtain
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Wx = (1.9)(1.13)(5,9)(1.5)(9, 13) (3, 11)(3, 15)(7, 11)(3, 7)(11, 15)

o0 ¥y
(1,3)(5,7) (1,7)(5,3) (9,11)(13,15) (9,15)(13,11) (1,15)(5,11) (9,7)(13,3)
¥ xon, xoty ¥ x00, x0 q’:.:lo:ﬂ‘:f.xm]:.\‘Uﬂl.x"lu

(2,10)(2, 14)(6, 10)(2,6) (10, 14) (4,12)(4,16)(8, 12)(4,8)(12, 16)

~—

W 10 11

(2,4)(6,8) (2,8)(6,4) (10,12)(14,16) (10, 16)(14, 12) (2,16)(6,12) (10,8)(14,4)

Wy

‘\‘10"02"\'[11;_\-101__\'110
(1,2)(3,4) (1,4)(3,2) SS,G)(T.S) (_5.8)(?,51 (1,8)(3,6) (5,4)(7, 2)'

o

¥pto, a1 Waans vty LG

—
?y: T
e ¥ 305, .x1 S
00X oo 01-X 11 X000, X101 X001, X1 0o

59‘ 10)(11,12) (9,12)(11,10) (13, 14)(15, 16) (13, 16)(15, 14) .(9‘ 16)(11,14) (13,12)(15,10)
= ~-

[
X0 X035 X 0 X g

qr
X0y, %140 X0yp.x1

(1,16)(3, 14)(5, 12)(7. 10) (9. 8)(11,6)(13,4)(15,2)

gL T2 :
30y byt

It is easy to see that such construction of ordered basis results in the fol-
lowing recurrent relations for the number of transpositions in ordered systems
involved in construction.

Consider relation (5). Let [Pog| =7(n), Yo,k | = V0.5 = r(%)

Since [ g2 0,5, | = 5 then r(n) = 2-7(%)+%. and r(2) = 1. Therefore,

[Zo.e] = r(n) = 5 logam
Cousider relation (4). Let [Toug| = U(n), |¥o| = [¥&| =1(5). Then
n
In)i=2 E(i) +r(n).
Since also [(4) = 5 (it follows from (6)) then
[¥,] = l(n) = E - (login +logon — 1) = O(n logs n) .

This implies that at n = 2% the ordered basis constructed by such recurrent
way consists of O(nlogjn) transpositions. Note that this number differs from
the lower bound estimation for the number of transpositions in ordered bases,
namely, differs from log, n! only in factor O(log, n).
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Abstract. The nonexistence of (23,13,2,2) superimposed codes is proved.

1 Introduction

Definition 1 A binary N x T matriz C = (cij) is called an (N, T, w,7) su-
perimposed code (SIC) if for any pair of subsets W, R C {1,2,...,T} such that
[W| =w, |R| =r and WNR = @, there erists a coordinate ¢ € {1,2,...,N}
such that ¢;; =1 for all j € W and ¢j; =0 for all j € R.

Let N(T,w,r) be the minimum length N for which an (N, T, w, r) SIC exists
for fixed values of T, w and r. The problem of determining the exact values of
N(T,w,r) is completely solved only for w =r =1 [6].

The exact values of N(T,2,2) are known only for T < 12 [1], [3], [2]:

o S i S s LS P (S ] [ e R
N(T,2,2)|6[10| 14 14|14 |18 [ 20| 22 | 22

A (16,26,2,2) superimposed code is constructed in [3], hence 22 < N(T,2,2) <
26 for T = 13. 14, 15, 16,

The main result of this article is that there is no (23,13,2,2) superimposed
code. Consequently 24 < N(13,2,2) < 26 for T = 13, 14, 15, 16.

2 Preliminaries

For a binary matrix or vector C' denote by wt(C') the nmunber of 1’s in €', and
by wi(C') the number of 0's in C'.

'Partially supported by the Technical University of Gabrovo under Grant C-801/2008.
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For a binary matrix C' denote by d(z,y) the Hamming distance between
two columns z and y of C. Let do = min{d(z,y) | =,y € C, = # y} and
d(C) = ZJ‘.,yEC‘, wEY d(?, y)

9 75 [
Lemma 2 (Plotkin bound) [5] (2)0!;» <N {EJ {—;——IJ ;
Definition 3 Let z be a column in the superimposed code C'. The residual code
Res(C,x = a) is the code obtained in the following way:
1) take the i-th row (i = 1,2,...,N) iff c;e = a;
2) delete the column x in the selected rows.

We will use the shorter notation Res(C, ¢ = a, y = b) instead of
Res(Res(C,z = a),y="b).

Lemma 4 Suppose C is an (N, T,w,r) superimposed code with w > 1, v > 1.
Then

(a) N(T — 1,w—1,r) < wt(z) < N — N(T - 1,w,r — 1) for any column z;
(b)d2 >2N(T -2, w—1,r—1).

Proof. (a) The residual code Res(C,z = 1) is a (wt(x), T—1,w—1,7) SIC, while
Res(C,z = 0) is a (wt(Z), T —1,w,r—1) SIC. Hence wi(z) > N(T'—1,w—1,r)
and wt(T) > N(T — 1,w,r —1).

(b) Let = and y be an arbitrary pair of different columns of C'. The residual
codes Res(C,z =1,y = 0) and Res(C,z =0,y = 1) are (N, T-2,w—1,r—1)
and (N”,T — 2,w — 1,r — 1) SIC, respectively. Hence d(z,y) = N' + N" >
2N(T - 2,w—1.r—1). O

Lemma 5 Let z be a column of C' and A = Res(C,z =1). Then

= T T||T+1
d(A) + wt(A4) > do — (N — wt(x)) [——J IL}
2 2012
Proof. Denote by C) the submatrix of C, containing all rows with value 1 in
the column z, and by Cy the remaining part of C'. Then

(g) dz < d(C) = d(C1) + d(Co).

But d(Cy) = d(A) + wt(A) and d(Cp) < (N — wit(z)) [%J \_T—:PJ
The result follows. O

Definition 6 Two (N.T,w,r) superimposed codes are equivalent if one of them
can be obtained from the other by a permutation of the rows and a permutation
of the columns. In the case w = r an inversion of the all code enlries is also
allowed.
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3 Main result

Lemma 7 If C is a (23,13,2,2) superimposed code then
(a) 9 < wt(z) < 14 for any column x of C;
(b) dy = 12.

Proof. (a) Follows from Lemma 4 and the known value N(12,1,2) =9 [3];
(b) Follows from Lemma 2, Lemma 4 and the known value N(11,1,1) = 6 [6].
O
Theorem 8 There is no (23,13,2,2) superimposed code.

Proof. Suppose C is a (23,13,2,2) SIC. Up to equivalence we may assume that
the code has the following form:

1
: A
1
0
: B
0

where the matrix A is a (N, 12,1,2) SIC where N € {9,10, 11}, and the matrix
B has to be chosen in such a way that the whole matrix to be a (23,13,2,2)
SIC. We may assume that the rows of B are sorted lexicographically.

Applying the method described in [4] we constructed all inequivalent
(9,12,1,2), (10,12,1,2) and (11,12, 1, 2) superimposed codes. Then we checked
the condition of Lemma 5, which turned out to reduce the amount of compu-
tations approximately 6 times.

SIC parameters (9,12,1,2) | (10,12,1,2) (11,12,1,2)
number of inequivalent SIC 1 99 243709
number of inequivalent SIC, - &
which satisfy Lemma 5 L bd =

Using an exhaustive computer search we tried to construct the matrix B
column by column taking into account the restrictions of Lemma 7 and the
sorted rows property. It turned out, however, that superimposed codes with
parameters (23.,13,2,2) do not exist. O
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Abstract. In this paper we investigate codes over finite commutative rings [7, whose generator
matrices are built from a-circulant matrices. For a non-trivial ideal I < R we give a method to
lift such codes over R/ T to codes over R, such that some isomorphic copies are avoided. For
the case where [ is the minimal ideal of a finite chain ring we refine this lifting method: We
impose the additional restriction that lifting preserves self-duality. It will be shown that this
can be achieved by solving a linear system of equations over a finite field. Finally we apply
this technique to Zy-linear double nega-circulant and bordered circulant self-dual codes. We
determine the best minimum Lee distance of these codes up to length 64.

1 a-circulant matrices

In this section, we give some basic facts on a-circulant matrices, compare with [4],

~ where some theory of circulant matrices is given in chapter 16, and with [1], where
a-circulant matrices are called {k}-circulant on page 84.

Definition 1.1 Let R be a commutative ring, k a natural number and o € R. An

(k x k)-matrix A is called a~circulant, if A has the form

ag (e5] a3 = 5E (j.—2 (lje—1
Qp—1 g a@p .. Q3  Okp—3
aap-2 Oadg—) ag ... Op—q4 Q-3

(a1 5] ag oy .. QL] ag

with a; € Rfori € {0,...,k —1}. For o = 1, A is called circulant, for a = -1, A
is called nega-circulant or skew-circulant, and for o = 0, A is called semi-circulant.

An a-circulant matrix A is completely determined by its first row v = (@, a1, - -,
ap—1) € RE. We denote A by circ(v) and say that A is the a-circulant matrix
generated by v.

In the following, o usually will be a unit or even o® = 1.
We define T, = cireq(0.1,0,...,0), that is
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Using Ty, there is another characterization of an c-circulant matrix: A matrix
A € RF*F ig a-circulant iff AT, = T, A. This is seen directly by comparing the
components of the two matrix products.

In the following it will be useful to identify the generating vectors (0B =y
ap—1) € R" with the polynomials Zi:nl a;x' € R[z] of degree at most k — 1, which
again can be seen as a set of representatives of the R-algebra R[z]/(z* — a). Thus,
we get an injective mapping circ, : Rlz]/(z* — @) — Ry

Obviously circa(1) = Iy, which denotes the (k x k)-unit matrix, circa(Af) =
Acireg(f) and circa(f + g) = circa(f) + circe(g) for all scalars A € R and all f
and g in R[z]/(z* — ). Furthermore, it holds circ,(e;) = circq(z*) = T}, for all
i€ {0,...,k—1} and circu(;r"'_} = circqala) = alg = T,’;I', where e; denotes the
ith! unit vector. So we have circ,(z'z’) = circy(z') cireg(@?) for all {i,j} C N.
By linear extension it follows that circ, is a monomorphism of R-algebras. Hence the
image of circ,, which is the set of the a-circulant (k x k)-matrices over R, forms a
commutative subalgebra of the R-algebra R*<F and it is isomorphic to the R-algebra
R[z]/(z* — a). Especially, we get circa(ap, - - - ,ax-1) = ey

2  Double a-circulant and bordered a-circulant codes

Definition 2.1 Let R be a commutative ring and « € R. Let A be an a-circulant
matrix. A code generated by a generator matrix (I, | A) is called double a-circulant
code. A code generated by a generator matrix

By

with {3.7.0} C R} is called bordered a-circulant code. The number of rows of such
a generator matrix is denoted by k, and the number of columns is denoted byn = 2k.

As usual, two codes € and Cy are called equivalent or isomorphic, if there is a
monomial transformation that maps C to Ca.

Definition 2.2 Let R be a commutative ring and k € N. The symmetric group over
the set {0, ...,k — 1} is denoted by Si. For a permutation o € Sy the permutation
matrix S(o) is defined as Sij = 0; 5(;), where 0 is the Kronecker delta. An invertible
matrix M € GL(k. R) is called monomial, if M = S(o)D for a permutation o € S
and an invertible diagonal matrix D. The decomposition of a monomial matrix into
the permutational and the diagonal matrix part is unigue.

'Thmuglwur this article, counting starts at 0. Accordingly, N={0.1:2 -}
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Let M = M (k. R. o) be the set of all pairs (V. AI) of monomial (k x k)-matrices
M and N over R, such that for each a-circulant matrix A € R¥**, the matrix
N—YAM is again a-circulant. An element (N, M) of 901 can be interpreted as a map-
ping Rk — RFXK A — N=LAM. The composition of mappings implies a group
structure on 90, and 90T operates on the set of all a-circulant matrices.

Now let (N, M) € 9. The codes generated by (I | A) and by (I | N='AM) are
equivalent, since

N CE ) (‘Ur f[) =(I|N"'AM)

ﬂ. IEI) is monomial. Thus, 9t also operates on the set of all double

a-circulant generator matrices.

In general M-equivalence is weaker than the code equivalence: For example the
vectors v = (1111101011011010) € Z}° and w = (1110010011100000) € Zi6
generate two equivalent binary double circulant self-dual [32, 16}-codes. But since the
number of zeros in v and w is different, the two circulant matrices generated by v and
w cannot be in the same M-orbit.

and the matrix (

3 Monomial transformations of «o-circulant matrices

Let R be a commutative ring, £ € N and o € R a unit. In this section we give some
elements (IV, M) of the group M = IN(R. k. o) defined in the last section. In part
they can be deduced from [4], chapter 16, §6, problem 7.

Quite obvious elements of Nt are (L. T,y ), (T, 1), (I, D) and (D, I1,), where D
denotes an invertible scalar matrix.

For certain o further elements of 9t are given by the following lemma, which is
checked by a calculation:
Lemma 3.1 Let a € Rwith a? = Land s € {0,...,k — 1} with ged(s, k) = 1.
Let 0 = (i — si mod k) € Si. We define D as the diagonal matrix which has
al s VLR g i-th diagonal entry, and we define the monomial matrix M = S(c)D.
Then

(M, M) € 90t
More specifically: Let f € Rlz]/(z" — Q). It holds:
M circa(f)M = circo(f((az)?))

Finally, there is an invertible transformation 4 — M~!AM that converts an a-
circulant matrix into a G-circulant matrix for certain pairs (a, 3):
Lemma 3.2 Let R be a commutative ring, « € R a unit and {i,j} C N. Let A be
an o*-circulant (k x k)-matrix over R and M the diagonal matrix with the diagonal
vector (1.od.a?, .. .. kU0 Then M ~YAM is an o~ -circulant matrix. For
a® = 1 the matrix M is orthogonal,
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4 The lift of an c-circulant matrix

If we want to construct all equivalence classes of double a-circulant codes over a
commutative ring R, it is enough to consider orbit representatives of the group action
of 91 on the set of all double a-circulant generator matrices, or equivalently, on the set
of all a-circulant matrices.

Furthermore, we can benefit from non-trivial ideals of R: Let I be an ideal of

Rwith {0} # ] # R,and™: R — R/I the canonical projection of R onto R/I.
We set M = M(k. R, a) and M = {(N, M) : (N,M) € M} It holds M C
M(k, R/I,&). Lete : R/I — R be a mapping that maps each element r + I of R/I
to an representative element 1 € R.
Definition 4.1 Let A = circs(v) be an a-circulant matrix with generating vector
v € R/I. An a-circulant matrix B over R is called lift of A if B = A. In this
case we also say that the code generated by (Iy. | B) is a lift of the code generated by
(Ix | A). The lifts of A are exactly the matrices of the form circa(e(v)) + circq(w)
with w € I*2 The vector w is called lift vector.

To find all double a-circulant codes over R, we can run over all lifts of all double
a@-circulant codes over R/I. The crucial point now is that for finding at least one
representative all equivalence classes of double a-circulant codes over R, it is enough
to run over the lifts of a set of representatives of the group action of M on the set of
all @-circulant codes over R/I:

Lemma 4.1 Let A and B be two a-circulant matrices over R/ I which are in the same
9M-orbit. Then for each lift of A there is a lift of B which is in the same MM-orbit.

Proof. Because A and B are in the same It-orbit, there is a pair of monomial
matrices (N, M) € 901 such that N-LAN = B. Leta € (R/I)* be the generating
vector of A and b € (R/I)* the generating vector of B. Since circq(e(a)) = A and
circa(e(b)) = B it holds N ™" circa(e(a)) M = circq{e(b)) + K, where K € TE~,
circa(e(b)) is of course c-circulant, and N~1cirea(e(a))M is a-circulant because
of (N, M) € 9. Thus, also K is a-circulant and therefore there is a z € I* with
cites (2) = K

Now, let w € I* be some lift vector. N~!circa(w)M € I**k is a-circulant
and generated by a lift vector w' € I*. Then N~Y(circq(e(a)) + circg(w))M =
cireq(e(b)) +circa(z+w'), and z+w' € I*. Therefore, the lift of A by the lift vector
w and the lift of B by the lift vector 2 4 w' are in the same M-orbit. O

It is not hard to adapt this approach to bordered a-circulant codes. One difference
is an additional restriction on the appearing monomial matrices: Its diagonal part must
be a scalar matrix. The reason for this is that otherwise the monomial transformations
would destroy the border vectors (7...7v) and (J... o).

Circulant matrices are often used to construct self-dual codes. Thus we are inter-
ested in a fast way to generate the lifts that lead to self-dual codes. The next section
gives such an algorithm for the case that R is finite chain ring and [ is its minimal
ideal.

*To avoid confusion, we point out that I* denotes the k-fold Cartesian product [ % ... x [ here.
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5 Self-dual double a-circulant codes over finite commutative
chain rings

We want to investigate self-dual double a-circulant codes. Here we need o = 1. This
is seen by denoting the rows of a generator matrix G of such a code by wy .. . wi_1,
and by comparing the scalar products (wg,w;) and (w;, ws), which must be both
zero. Furthermore, given a® = 1, we see that (wo, wi) = {wj, wiyy), where i + j
must be read modulo k. Thus G generates a self-dual code if (wg, wy) = 1 and for all
J € {1,...,k/2]} the scalar products (wg, w;) are equal to 0.

Definition 5.1 A ring R is called chain ring, if its left ideals are linearly ordered by
inclusion.

For the theory of finite chain rings and linear codes over finite chain rings see [2].

In this section R will be a finite commutative chain ring, which is not a finite
field, and a an element of R with a® = 1. There is a ring element § € R which
generates the maximal ideal Rf of R. The number q is defined by R/R6# = FF,, and
m is defined by |R| = ¢™. Because R is not a field, we have m > 2. The minimal
ideal of R is RE™-L. 91 is defined as in section 2, with with the difference that all
monomial matrices A/ should be orthogonal, that is M A" = Ij.. Thus each 9M-image
of a generator matrix of a self-dual code again generates a self-dual code.

Now let I = R#"! be the minimal ideal of R. As in sectiond lete : R/l — R
be a mapping that assigns each element of K/ to an representative in R, now with the
additional condition e(@) = «.

We mention that if ([, | £3) generates an double a-circulant self-dual code over R,
then (I | B) generates a double @-circulant self-dual code over R/I. So B is among
the lifts of all @-circulant matrices A over R/I such that (I | A) generates a self-dual
double a-circulant code.

Let A = circg(a) be an @-circulant matrix over /1 such that (I | A) generates
a self-dual code. So AA* = —1I., and therefore

k—1
cpi=1+ rea;‘2EI and
gt > efa)

1=
j=1 k=1
oy = Z ae{a;)e(tp—jii) + Z e(ai)e(ai—y) € I forallj € {1,...,|k/2]}
1=0 =]
We want to find all lifts B = circ, (e(a)) + circ, (w) of A with w € I* such that
BB' = —I,.. As we have seen, this is equivalent to

k—1
0=1+ Z{r_-‘(r:.,-] - w; )2 and
3=l
=1 k1
= Z(e{a,-) + wi)(ae(@r—jti) + Wi—jyi) + Z(C(ﬂ‘-f) + w;)(e(ai—j) + wi—j)

i=0 i=j
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where the second equation holds forall j € {1,...,|k/2]}. Using I - I = 0, we get
k-1
O=ey+2 Z e(a;)w; and
i=0
g1 k—1
0=cj+ Z({’(n.,-_)'.'.nk_j..-..., + ae(ak—_j4+i)wi) + Z(c(a.;)-w,-_j + e(a;—j)w;)
i=0 i=j

This is a R-linear system of equations for the components w; € I of the lift vector.
Using the fact that the R-modules R/(R@) and I are isomorphic, and R/(R8) = F,,
this can be reformulated as a linear system of equations over the finite field g, which
can be solved efficiently.

Since R/I is again a commutative chain ring, the lifting step can be applied re-
peatedly. Thus, starting with the codes over Fg, the codes over R can be constructed
by m — 1 nested lifting steps. u

Again, this method can be adapted to bordered a-circulant matrices over commu-
tative finite chain rings.

6 Application: Self-dual codes over Z;

For a fixed length n we want to find the highest minimum Lee distance dc. of double
nega-circulant and bordered circulant self-dual codes over Zy. In [5] codes of the
bordered circulant type of length up to 32 were investigated.

First we notice that the length n must be a multiple of 8: Let C be a bordered
circulant or a double nega-circulant code of length n and ¢ a codeword of C'. We have
0= (c,e) = Y-, ¢ € Zy. The last expression equals the number of units in ¢
modulo 4, so the number of units of each codeword is a multiple of 4. It follows that
the image C' of C' over Zj is a doubly-even self-dual code of length r, which can only
exist for lengths n divisible by 8.

Furthermore, it holds

d]'__ep(c) = Edi-lam(c_") (L)

As a result, we only need to consider the lifts of codes C which have a sufficiently
high minimum Hamming distance.

We explain the algorithm for the case of the nega-circulant codes: In a first step,
tor a given length n we generate all doubly-even double circulant self-dual codes over
Z». This is done by enumerating Lyndon words of length n which serve as generating
vectors for the circulant matrix. Next, we filter out all duplicates with respect to the
group action of 97, where 01 is the group generated by the elements given in section 3
which consist of pairs of orthogonal monomial matrices.

A variable d will keep the best minimum Lee distance we already found. We
initialize d with 0. Now we loop over all binary codes Cyz, in our list, from the higher
to the lower minimum Hamming distance of Cy,: If 2dyam(Cz,) < d we are finished
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because of (1). Otherwise, as explained in section 5, we solve a system of linear
equations over Zz and get all self-dual lifts of C'z,. For these lifts we compute the
minimum Lee distance and update d accordingly.

Most of the computation time gets used on the computation of the minimum Lee
distance. Thus it was a crucial point to write a specialized algorithm for this purpose.
It is described in [3].

The results of our search are displayed in the following table. For given length n,
it lists the highest minimum Lee distance of a self-dual code of the respective type:

n|8 16 24 32 40 48 56 64
double nega-circulant (|6 8 12 14 14 18 16 20
bordered circulant |6 8 12 14 14 18 18 20

We see that the results are identical for the two classes of codes, except for length 56.
Using (1) there is a simple reason that for this length no double circulant self-dual
code over Zy with minimum Lee distance greater than 16 exists: The best doubly-even
double circulant self-dual binary code has only minimum Hamming distance 8.
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Abstract. Secmniovals in PG(2,q) for ¢ < 13 are investigated. New examples arc
constructed, some characterization theorems and non-existence results of semiovals
with extra properties are proved.

1 Introduction

Let IT be a projective plane of order g. A semioval in IT is a non-empty pointset
S with the property that for every point in S there exists a unique line ¢p such
that SNtp = {P}. This line is called the tangent to S at P. The classical
examples of semiovals arise from polarities (ovals and unitals), and from the
theory of blocking sets (the vertexless triangle). The semiovals are interesting
objects in their own right, but the study of semiovals is also motivated by
their applications to cryptography. Batten [1] constructed an effective message
sending scenario which use determining sets. She proved that determining sets
in projective planes correspond to blocking semiovals. A blocking semioval is
a semioval S such that every line of I contains at least one point of S and at
least one poiut which is not in §. A blocking semioval that can be constructed
in every projective plane of order ¢ > 2 is the vertexless triangle.

It is known that ¢ + 1 < |S] < ¢\/g + 1 and both bounds are sharp [10],
6], the extremes occur when § is an oval or a unital. In Section 2 we give the
complete spectrum of the sizes of semiovals for ¢ < 9. Besides, we determine the
number of distinct semiovals up to collineations for ¢ < 7. We also present the
classification of small size semiovals for ¢ = 8,9 and new examples for ¢ = 11
and 13. These semiovals were found by computer search.

Blocking semiovals in PG(2,7) were classified by Ranson and Dover [9].
The plane of order 7 contains several interesting semiovals. In Section 3 some
characterization theorems for these semiovals are given.
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2 On the spectrum of size for ¢ < 13

For planes of order ¢ < 5 the complete spectrum of the sizes and the number
of projectively non-isomorphic semiovals has been known.

Casc ¢ = 2. Because of the bounds of the size, cach scmioval cousists of three
points, and these points are not collinear, hence semiovals are ovals.

Case ¢ = 3. If a semioval 8 is not an oval, then there is a line £ which contains
three points of S, say A, B and C. There are four lines through each of these
points, one of them is the tangent, but the others must meet S. Hence S contains
at least two points not on . Let D, E € S\ £. If F is the fourth point of the
line £, then tp Nl =tpnl = F, thus DEN{ # F. Without loss of generality we
may assume, that DE 1 ¢ = A. This implies that S must contain a sixth point
G. otherwise there would be two tangents through A. But 6 is an upper bound
of the cardinality of S because [3v3 + 1] = 6. If G = BD N CE, then it is
casy to check that the set {A,B,C. D, E, G} is a semioval. These points form
the vertices of a complete quadrilateral. Hence there is only one projectively
non-isomorphic class of semiovals of order six in PG(2, 3).

Case q = 4. The possible sizes of S are 5,6,7.8 and 9. If |§| = 5, then S is an
oval. If |S| > 5, then S contains three collinear points. Semiovals with large
secants were investigated by Dover [4]. He proved that if S is a semioval in a
projective plane of order ¢ > 3, then S does not contain ¢ collinear points, and
if |S| = 2¢g—1, then & has no (¢—1)-sccant. In our case § has 3 = ¢ —1 collinear
points, hence |S| # 7 = 2¢ — 1. The cases |S| = 2¢ —2 = 6 and |8] =9=3qg—3
are also characterized by Dover [4], these are a triangle with its vertices and
all points on one side removed. and the vertexless triangle, respeetively. Let us
remark that in PG(2,4) each unital is a vertexless triangle and vice versa. If
|S| = 8, then an exhaustive computer search shows that the only semiovals of
this size are vertexless triangles with one point deleted.

For ¢ > 4 the situation becomes more and more complicated. Semiovals of
size 2(q—1)+k foral 0 < k < ¢—1and k # 1 can be constructed easily. If we
delete any set of ¢ — 1 — k points from one side of a vertexless triangle, then the
remaining points form a scmioval § and [S] = 2(g—1) + k. Hence the spectrum
of sizes always contains 2¢ — 2 and all integers in the interval [2¢,3¢ — 3]. For
q < 9, by exhaustive computer search, we found the following sizes,

Theorem 2.1 The spectrum of the sizes of semiovals in PG(2,q) is the follow-
ing:

o [fqg=2 then |S| = 3.

o If g=23 then |S| € {4,6}.

o Ifq=4 then |S| € {5,6,8.9}.
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If ¢ =5 then |S| € {6,8,9.10,11,12}.
Ifq =7 then |S| € {8,9,12,13,14.15, 16,17,18,19}.

If g =8 then |S| € {9,12,13,14,15,16,17,18,19, 20, 21,22, 23}

If g =9 then
|S] € {10,12,13,14,15,16,17, 18, 19,20, 21, 22,23, 24, 25, 26, 27, 28}.

For ¢ < 7 we have determined the number of non-equivalent semiovals up to
collineations. For ¢ < 4 there is only one class for each size, as follows from the
previous description. For ¢ = 5,7 the results are summarized in Table 1.

For q = 8,9 we have classified the examples of minimum order which are not
ovals. In both cases the minimum order is twelve and there are, respectively,
four and one classes. Besides, for ¢ = 8, we have proven that there are ouly two
classes of semiovals of size 13.

PG(2.5) || size of S 6 & 9 10 11 12
# of distinct classes | 1 1 2 3 2 1
PG(2,7) || size of § & 0 12 I3 14 15 16 17 18 19
4 of distinct classes | 1 1 10 21 69 I S I 1
Table 1

We have also found examples of the following sizes:

Theorem 2.2
e In PG(2.11) there are semiovals of size 12,15, 20, 22 —34.
e In PG(2.13) there are semiovals of size 14, 18, 24,26 — 40.

3 The exceptional semiovals in PG(2,7)

There are some interesting semiovals in PG(2,7). The first one has only ¢+ 2
points. If ¢ = 7, then ¢+2 = 3(¢—1)/2, and the semioval belongs to an infinite
class of semiovals which was described by Kiss and Ruff [8]. The following
classification theorem is a consequence of a result of Blokhuis [3].

Theorem 3.1 If |S| = ¢ +2, q odd, then ¢ =7. 5 1s projectively equivalent
to the set of points {(0,1.5),(5,0,1),(1,5,0) : sisasquarein GF(7)}, hence it is
contained in a vertecless triangle. O

PG(2,7) contains a semioval of size 13 = 9.7 —1. There is no known infinite
class of semiovals of size 2¢ — 1. There arc only three known scmiovals of this
size, they exist on the planes of order 5. 7 and 9. The following theorem of
Faina, Kiss, Marcugini and Pambianco [5] characterizes the case g = 7.
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Theorem 3.2 If |S| = 2¢ — 1 and § has a (q — 2)-secant, then ¢ = 7 and §
has exactly two (g — 2)-secants. O

Batten and Dover [2] found a cyclic semioval in PG(2.7). It follows from
our computer search, that this semioval is projectively unique. Hence we have
the following theorem.

Theorem 3.3 If S is a semioval in PG(2,7) then |S| < 19, If |S| = 19, then
S is eyclie. O

Cyeclic semiovals arc rare objects. There are only two kuown examples. The
other one can be found in PG(2,81). it has 511 points, see [5]. The following
nonexistence result was proved by Faina, Kiss, Marcugini and Pambianco [5].

Theorem 3.4 There is no cyclic semioval in PG(2,q) if ¢ = 2 (mod 3). O

They also prowed by exhaustive computer search, that PG(2,3") does not con-
tain a cyclic semioval if 7 < 11 and r # 4.
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Abstract. Codes capable to correct two errors of value £1 in a codeword are con-
structed and studied. Large number of experiments simulating the implementation
of several double 4-1-error correctable codes in QAM-modulation schemes have been
carried out. The obtained results present in graphical form the performance of the
coded modulation schemes based on the considered codes versus signal-to-noise ra-
tio (SNR). The results confirm the good performance of integer coded modulation
in comparison to the other schemes for coded modulation.

1 Introduction

Coded modulation is the collective term for all techniques which combine and
jointly optimize channel coding and modulation for digital transmission. As a
result of more than thirty years intensive investigation numerous and multifar-
ious methods for coded modulation have been proposed. Despite their variety,
the coded modulation schemes can be classified in the following three large
groups: '

e Trellis coded modulation (TCM): It consists in an expanding the
input bits by a binary convolutional code and partitioning the used signal
constellation into smaller subsets with a larger intra-set distance. A part
of coded bits are used to select one of these subsets and the remaining
determine which of the signal point in the chosen subset to be transmitted.
The Ungerboeck’s concept requires a larger signal set than the one used
in the case of uncoded modulation.

'This work was partially supported by the Japan Society for the Promotion Science (JSPS).
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o Integer coded modulation (ICM): A type of block coded modulation
- each point of the signal constellation corresponds to a symbol of Z 4 and
coded by a code over Z4.

e Others: Coded modulation based on Gaussian and algebraic integers
([3], [6], and others).

Integer codes have proved themselves to be very effective for coded modu-
lation, where errors usually have a given type (see [4, 5]), that is, in the case
of modulation schemes where the error-vectors are not equally probable. In
partial M-QAM modulation fall in this case.

In this talk we address codes over integer rings which are capable to correct
up two errors with values +1. We demonstrate their practical potential by
numerous simulations and comparisons with one error correctable integers codes
and other types of coded modulations.

2 General remarks

Let C be an [n.k] code over the integer ring Z,. Recall that a t-multiple
(fe1,+es, ..., teg)-error correctable code is a code that can correct any up
to t errors with values from the set {£e;,|i = 1,...,s} occurred in a codeword
([1, 4]). Single error correctable codes are discussed in [4, 5]. Herein we restrict
our consideration only to the double +1-error correctable codes. These codes
are interesting since they can be effectively applied to improving the perfor-
mance of Quadrature Amplitude Modulation (QAM) schemes.

Proposition 1 Let C be an [n.k| code over the ring Za. If C is a double
+1-error correctable code, then the cardinality. A, of the ring satisfies the in-
equalities:
when k =n—1
A>2m?+1;

when k =n—2

A>V2n?+1

Proof. More generally, the number of the different error vectors when up to ¢
error with values +1 occur per a codeword is
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This number, Ny, has to be less or equal to the munber of possible syndromes.
In the case k = n — 1 the syndromes are elements of Z,, that is, their number
is A. When k = n — 2, the syndromes s € Zj x Za, and their number is A%,
Hence we must have A > N, respectively A2 > Ny, which give the statement.

Let C be a double +1-error correctable code with a parity-check matrix
H = (. hs,....ha),

where the length of the columns is n—k, i.e. one (k =n— 1) or two (k = n—2).
Therefore h; # +h;, i # j, and h; £ h; # £(h; £ hy;). Also, the permutations
and multiplications of columns by —1 transform C' into an equivalent code.
Hence, we may assume that the first row of H contains only elements < Af2,
arranged in a nondecreasing order.

Also, the multiplication of a row of H by an invertible element of Z 4 does
not change the code. Hence if there exists an invertible entry of H we may
assume that there is 1 in the first row. Otherwise there is an element that
divide A, and all others have g.c.d. with A greater than 1.

Therefore we can assume that the parity check matrix of [n,n — 2] double
+1-error correctable code has the form

ook o i ™ 1. “hag Bag een Diw
o (U ik h.g;.} h,;m 3 s 0 L h23 haQn_ :

where a | A.
In partial an interesting case is the group of matrices of the form

b B i dig vt an o
Ui (0 1 }?,23 !134 h.zﬂ)

over a ring Z4 with A > 2n — 2.

Unfortunately, if a code with a given parity-check matrix is double -1-error
correctable for a given alphabet Z4 it may not preserve this property as a
code over a larger cardinality of the alphabet. For example, the code with a

parity-check matrix
A8 T2 3 AT G
H"(l 0 536 2 4)

is a double +1-error correctable code over Z;5, but does not preserve this prop-
erty over Zi. On the other hand the code with a parity-check matrix given in
Example 1 is such a code over both Zg and Zg.

In the case k = n — 1 the parity-check matrix is 1 x n and has the form
H = (1 hy ... h,). But according Proposition 1 such codes require large
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cardinality, A, of the alphabet. Nevertheless a [2, 1] code over Zg with H = (31)
demonstrates very good performance for 64-QAM.

From practical point of view the codes over Zgm or Zgm 1 are more inter-
esting since they enable the standard 22™-QAM constellations to be used.

We have found many codes for small length and reasonable alphabet cardi-
nality, but the full classification has not been completed yet.

3 Applications and simulation results

In this section we demonstrate how a double £1-error correctable code over
Zom1 can be used in real applications for improving the performance of 227-
QAM.

Example 1. Consider [4,2] code C over Zg with a parity-check matrix H
and the corresponding generator matrix G:

5 iaakag b L @iy
H—('Z 3.0 1) G_(U 1 66)'
The code is double +1-error correctable and we apply it to 64-QAM modulation
scheme in order to correct errors of type “big square” (see [5] ). Recall that in

such a coding scheme each point of the constellation is indexed by a pair (z,y)
of nonzero elements of an integer ring (in this example Zy) as shown in Fig.1.

L ] L ] [ ] L ] L ] L ] L ] @
(1.1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
L ] ® L ] L ] { ] L ] [ ] [ ]

2,1) (2.2) (2,3) (2,4) (2.5) (2.6) (2.7) (2.8)

® ® ° ° ® @ ° °
(3,1) (3,2) (3,3) (3,4) (8,5) (3,6) (3,7) (3,8)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)

L ] [ ] [ ] L L ] @ L ] L]
(5.1) (5.2) (5.3) (5.4) (5,5) (5,6) (5,7) (5,8)

@ [ ] L ] L L ] L ] [ ] L]
(6,1) (6,2) (6,3) (6,4) (6,5) (6.6) (6,7) (6,8)

L] L ] L L ] L] L] ® [ ]
(7,1) (7,2) (7,3) (7.4) (7,5) (7.6) (7,7) (7,8)

L ] L ] L ] ® ® ® L ] L ]
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)

Figure 1: Indexing a 64-QAM constellation
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FEncoding and decoding procedures

The encoding and decoding procedure on each of the axes are separated.
More detailed: Any incoming block of 6 bits is split into two 3-bit groups which
are transformed into decimal integers. By adding 1 to each of them we obtain
a pair (a,b) of nonzero elements of Zg. Each of the sequences ay,as, ..., resp.
by, bo, ..., of the first, resp. the second, coordinates is encoded by the code C.
Therefore

(a1, (1.2) == ((Ll, aa, 4ay + 6az, Ta; + 6(.'.2),

where the operations are in Zg. Note that 4a; + 6ay = 0 & 7Ta; + 6ag = 0 <
a; = 3ay. Since the values of the check bits have to be also nonzero, we replace
them with 1 when a; = 3ag, that is, (3a,a) — (3a,a,1,1).

At the receiver, for each of the axes, the detection procedure (hard or soft) °
gives as an output a vector v = (v1,v2,v3,v4), where v; € Zg, . The decoder
proceeds both vectors in parallel following the standard syndrome decoding
scheme giving at the output a pair (u1,us). The only peculiarity is that after
calculating the syndrome vector s = vH the decoder uses the syndrome-error
table two times: for s and for s — (1,1). In the latter case if the output pair
(wy,uz) does not satisfy uy = 3ug, the result is discarded. Also, if s does not
match to any vector in the table, the decoder gives u; = vy and ug = v3.

The correspondence between error frames and syndromes (error-syndrome ta-
ble) is s given in Table 1.

[ Error vector | Syndrome [ Error vector | Syndrome
1000 5 -1000 E
1100 8.5 =T 30 1,4
1-100 (2,8 -1100 (7,1
1 E) 6,2 -10-10 350
14 Q0ls0 4.2 =1 010 9,7
1001 5.3 =100 =1 4.6
100-1 ' oyl -1001 4.8
0100 3.3 0-100 6,6
0110 4.3 0= =100 5,6
01-10 2.3 =il ale] 7.6
0101 3.4 0-10-1 6,5

| 010-1 3.2) Q=100 6,8
0010 (1,0% 00-10 (8,0)
AL (1,1 00-1-1 8,8)
001-1 (l,8g 00-11 8. 1)
0001 (0,1 000-1 (0,8)

Table 1: Error-syndrome table.
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Probability of bit error (BER)

——  Greys4 X,
107} X |
e [4,2] code N
10°} 4
7 \.
1 O_ 1 1 1 1

g 1'2 3’4 5 8 7 8 9 1041 1213 14 1516 17218 19.20
SNRbit (dB)

Figure 2: 64-QAM-Grey and [4, 2] code over Zg. (Example 1).
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Abstract. In this paper we investigate decoding performance of binary low-density
codes based on extended Hamming codes, using a hard decision decoding algorithm
similar to Gallager’s bit-flipping algorithm. The possibilities to implement the de-
coder in hardware are also discussed.

1 Introduction

Low-density parity-check codes were first introduced by Gallager [1]. In [2]
asymptotical properties of low-density codes based on Hamming codes were
investigated. The simulation results of the soft decision decoding of these codes
were given in [3]. It has been also proven there that the minimum distance of
such codes grows linearly with the code length. In this paper we study similar
codes based on extended Hamming codes.

2 Code structure

The codes in question are defined by their parity-check matrix.

Let ng be a component code length. Let a matrix Hy be a parity-check
matrix for the component code (extended Hamming code in our case). Let rg
be a number of rows in this matrix. We can now construct a ngm x rom -sized
matrix Hp in the following way: every row j =irg+k (k<rp, i <m—1)is
filled using k’s row of Hy starting with ¢+ n0 column. Other positions are filled
with zeros. L e.,

Now, a code’s parity-check matrix can be defined as follows:



162 ACCT2008

HmPI
H.,. P

Here P; are permutation matrixes.

We will investigate a particular code class with the following parameters:
no = 128, m = 256, rog = 8, I = 3. We'll also consider P; to be a trivial
transform, since it doesn’t influence code BER performance.

3 Decoding algorithm

A simple hard decision decoding algorithm exists for these codes.
At first, one can decode every component code. There are three possibilities:

1. The syndrome equals 0.

2. The syndrome doesn’t equal 0 and corresponds to the particular error (a
component code has ‘detected the error at some position).

3. The syndrome doesn’t equal 0 and doesn’t correspond to any error. I. e,
the decoder fails to decode this codeword.

Each bit in the codeword is contained in three component codes. For every
component code word it is contained in, each bit is assigned one of four states:

1. This bit wasn’'t marked as erroneous and the syndrome of the component
code word was 0.

9. This bit was marked as erroneous by the component code decoder.

3. This bit wasn’t marked as erroneous and the component code decoder
failed to decode the corresponding code word.

4. This bit wasn’t marked as erroneous, but the component code decoder
marked other bit in the corresponding code word.

After that, for each bit the following decision process is invoked:

1. If the bit was corrected in one component codeword, and no component
codeword containing this bit had zero syndrome, this bit is inverted.

9. if the bit was corrected in two component codewords, it is also inverted,
regardless of the other codeword decoding result.
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3. Otherwise, the bit is leaved as it is (i. e., not inverted).

The decoding process is now repeated until no component code can correct
a error (i. e., every component codeword either has zero syndrome or the
component code decoder fails to decode it). This condition will be called further
a stop condition. :

4 Simulation

The decoding algorithm described above was simulated for this code class. The
permutations P and Pz were randomly generated. Binary symmetric channel
(BSC) was used for simulation.

It was found that the most frequent error set leading to the stop condition
consists of two errors, which are located in one codeword for every codeword
group. This possibility can be eliminated if we arbitrarily choose P2 instead of
choosing it randomly. This goal can be achieved, for example, in such a way:

i
= - 28 —_—
i 128(i - mod128) + {128_ ,

for i < 2, and

128

;i _old
i* = 214 4 128((5 — 2'*) - mod128) + L J !
for i > 2, where i is a column position and ¢* is a new column position
(counting from 0).

The simulation shows that the code with arbitrarily chosen P2 tends to
have slightly better BER performance in the BSC, at least when the input
error probability is considerably high.

The table below shows some simulation results. All probabilities here are
bit error probabilities.

{ pin | Pour (random Pg2) | pout (arbitrarily chosen Pg2)

0.011 69 107° 4.6-10~°
0.010 82-10~" 9.2.10°"
0.009 43107 9.8 10T

5 Hardware implementation

The decoding of this code requires a huge amount of data transfers, so parallel
computing can hardly be benefited from. Instead, a simple sequential architec-
ture can be proposed.
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Decision
making unit

decodor 3 = Slate memory 3 ¥e
I

Figure 1: Decoder architecture

This architecture has quite a large memory requirements, but everything
else will occupy quite a few logic cells.

The input memories are conventional 2-port static RAM blocks, configured
for 1-bit data port width. This component should be available in any library.
They are filled with identical data. Three blocks are needed to provide a pos-
sibility for simultaneous reading by the component code (extended Hamming)
decoders. These three blocks can be, of course, replaced with one guad-port
memory, if there’s an appropriate component in the library.

Each of the component code decoders processes 1 bit per cycle. Each de-
coder contains a counter, which is used as a parity check matrix generator, and
modulo 2 adder nnit for syndrome calculation. The input data should be stored
in internal memory until the syndrome is calculated. Then for each bit compo-
nent code writes a bit value (unchanged) and a 2-bit state to the corresponding
state memory.

Decision making unit then applies a decision process to every bit. The
output data can be then iterated through the same hardware, at the cost
of degraded processing performance. Alternatively, a long pipeline contain-
ing enough stages to make a decision in virtually any case can be used. Of
course, this will lead to hardware duplication.

The memory requirements for the design can be estimated as follows:

e input memories - 32kbit - 3 = 96kbit.

e input address generators - (32 - 16) - 3kbit = 1536kbit (assuming 16-bit
address width) in the general case. If the first permutation is trivial,
and the second is arbitrarily chosen, the first two generators won't use
memory, this will amount to 512kbit.

e component code decoders - negligible, about 128 bits each.

e stage memory address generators - like input address generators.
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e stage memory blocks - (32 - 4) - 3kbit = 384kbit.

So, the whole design will use no less than 1504kbit of RAM, and 3552kbit
in the general case.

The major drawback of the sequential architecture is that it can’t process
more than 1 bit per cycle. On modern programmable logic devices, such as
Xilinx Virtex-5 chips, this amounts to about 500Mbit /s processing performance.
Using a chip, designed specially for this problem (ASIC), one can reach about
1Gbit/s.

Getting processing performance considerably above 1Gbit/s is difficult due
to the clock frequency limitations on semiconductor devices. To solve the prob-
lem, one can use several such decoders in parallel, possibly on different chips
and with separate demultiplexer. This will lead to the increased latency, of
course.

It should be also noted that in practical implementations the maximum
number of iterations per codeword has to be limited. This will also lead to
somewhat degraded BER performance.

6 Conclusion

The sequential architecture presented above has limited processing performance.
In order to increase the performance further, one need to employ internal par-
allelism. It would be desirable to have a separate component code decoder for
every component codeword. Unfortunately, this is connected with significant
difficulties, since the problem requires a number of connections between the
processing units, which seems to be beyond any practical limits.
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1 Preliminary results

The aim of this paper is to generalize the notion of a Rédei type blocking set to
projective Hjelmslev planes.

In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey
index 2, i.e. chain rings with rad R # (0) and (rad R)? = (0). Thus we have
always |R| = ¢*. where R/rad R = F,;. Chain rings with this property have
been classified in [1, 6]. If ¢ = p" there are exactly 7 + 1 isomorphism classes of
such rings. These are:

e for every o € Aut I, the ring R, = [E'q[X;J]/(X?) of the so-called o-dual
numbers over F, with underlying set Fy x Fq, component-wise addition and
multiplication given by (wo, 21) (Yo, ¥1) = (zoyo, oy1 + 198);

e the Galois ring GR(q?%, p?) = Zy» [X]/(f(X)), where f(X) € Zy [X] is a monic
polynomial of degree 7, which is irreducible modulo p.

The rings R, with o # id are noncommutative, while Riq is commutative.
We have also that char R, = p for every o. The Galois ring GR(¢? p?) is
commutative and has characteristic p?. From now on we denote by R a finite
chain ring of nilpotency index 2.

In order to save space, we refer to (2, 3, 4] for the basic definitions and re-
sults about projective Hjelmsley planes over finite chain rings. We denote by
PHG(R?%) the (right) projective Hjelmslev plane over the chain ring R. Simi-
larly, AHG(R%?) denotes the (right) affine Hjelmslev plane over R.

Let IT = (P, L, I) be a projective Hjelmslev plane. Any mapping from the
pointset P to the nonnegative integers A : P — Ny is called a multiset in I1. The
integer &(P), P € P, is called the multiplicity of P. The mapping & induces a
mapping on the subsets of P by

R(Q)= ) A(P), QCP.

PeQ
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The induced mapping is denoted again by & The integer |f] = &(P) is called
the cardinality or the size of & The support supp & of a multiset £ is the set
of points of positive multiplicity: supp & = {P € P | &(P) > 0}.

Two multisets & and &” in the projective Hjelmslev plane II are said to be
equivalent if there exists a collineation ¢ in II such that & (P) = 8”(a(P)) for
every point P € P.

Definition 1.1. A multiset & in (P, L, I) is called a (k,n)-blocking multiset if
(1) R(P) = k;

(i1) 8(€) > n for every line £ € L;

(iii) there exists at least one line €y with K(ly) = n.

A (k,n)-blocking multiset £ is called reducible if there exists (k', n)-blocking
multiset & with &' < k and & (P) < K(P) for every point P € P. A blocking
multiset that is not reducible is called irreducible.

A major problem is to determine the possible sizes of the irreducible blocking
sets in the planes PHG(R%), where R is a chain ring of nilpotency index 2. Itis
known that the minimal size of a blocking set in PHG(R%,), |R| = ¢, is ¢* +¢.

2 Blocking sets of Rédei type in projective Hjelmslev
planes

Until the end of the paper R will be a chain ring of nilpotency index 2, i.e.
|R| = ¢°, R/rad R = F,, where ¢ is a prime power. We denote by I' = {7 =
0,71 = 1,72,...,%-1} a set of g elements of R no two of which are congruent
modulo rad R. By # we denote an arbitrary element of rad R\ (0). The points
of the affine plane AHG(_R";{) are identified with the pairs (z,y), where z,y € R.
The lines of AHG(RQH) have equations ¥ =aX +bor X = ¢, a,b,c € R. We
say that the lines of the first type have slope a. A line with equation X = c is
said to have slope oco;, if ¢ = + 50, § =0,1,..., g =

The infinite points on a ﬁxod line ¢ from the neighbor class of infinite lines
can be identified with the slopes. So, (a) (resp (oo;)) will denote the infinite
point from ¢ of the lines with slope (a) (resp (o0;)).

Definition 2.1. Let T be a set of ¢> points in AHG(R%). We say that the
infinite point (a) is determined by T if there exist different points P,Q € T such
that P,Q and (a) are collinear in PHG(RY,).

Theorem 2.2. Assume T is a set of g* points in _AHG(R%). Denote by D the
set of infinite points determined by T'. If |D| < g2+ q then B=TUD 1is an
irreducible blocking set in PHG(RY).
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The proof of this theorem is obvious.

“The construction given by this theorem yields blocking sets of size at most
2¢° +q—1. It is straightforward that every irreducible blocking set of size
at most 2¢% + q — 1 with a line £ with 1B\ ¢ = ¢> can be obtained by this
construction.

Definition 2.3. A blocking set of size ¢ +m in PHG(R%,) is said to be of Rédei
type if it has an m-secant. Such a line is called a Rédei line.

We are interested in sets T' that are the graph of a function f: R — R. Such
sets can be written in the form

T = {(z, f(z)) | = € R}.
Let z and y be two different elements from R We now have the following pos-
sibilities:

1) if z —y & rad R then (z, f(x)) and (y, f(y)) determine the point (a), where
(@) = (f(@) — f@)(@—y) "

2) if z —y € rad R\ {0}, and f(z) — f(y) & rad R the points (x, f(z)) and
(y, f(y)) determine the point (o0;) if

(z—y)(f@) - f@) ' =0T

3) if z—y € rad R\ {0}, and f(z)—f(y) €rad R,say 2—y = ba, f(x)—fly) =
b, a,bel.

a) if b # 0, (z, f(z)) and (y, f(y)) determine all points (¢) with ¢ € a/b+
rad R;

b) ifb =0, (z, f(z)) and (y, f(y)) determine the infinite points (000), - - - » (09g)-

Furthermore, for every set T of point of AHG(R?%) of size g determining at
most ¢ + g — 1 directions, we can always choose the coordinate system so that
T is the graph of a function from R to R.

3 Examples

Let R be a chain ring with |R| = ¢, R/rad R = F, that contains a proper
subring isomorphic to its residue field F, Then R = F,|0; o] for some o € Aut Fy.

It has been noted in [5] that PHG(R%) contains a subgeometry isomorphic
to PG(2,q) which is an irreducible blocking set with two intersection numbers.
As noted at the end of the previous section, this blocking set is of Rédei type.
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Below we give an explicit construction of this blocking set as a graph of a
function from R to R.
R — R
7 . )

Define
at+60b — b+6a
We shall check that the set of points T' = {(z, f(¢)) | z € R} determines ¢ + 1
infinite points. Consider the points P = (a+6b, b+6a) and Q = (c+0d,d+0c),
a,b,c,d el =Fy.
1) Let a = c. Then b # d since otherwise P and @ would coincide. We have
v—y=00-d), f@)-fu)=b—d

Hence P and () determine the infinite point (001).

2) Let a # c. We have

(f@) - f)a—y)'=
= ((b—d)+0(a—)((a—c)+0(b—d)"
= (b-d)+8a-)(a-" —0((a—e?) " (b-d)(a—o)!
= (b-d)a—o) " —00-d ((a— ) b—d)a—c) "

Assume that P’ = (a’ + 0V',b' + 0d) and Q' = (¢ + 0d',d’ + 0c') are two
point that determine an infinite point which is a ne1ghbom to the infinite point
determined by P and Q. Then (b —d)(a —¢)™' = (V' — d')(a/ — )" which
implies that

b—d)a—c) ' =0(b—d)((a—c)?)” lb—d)(a—c) ' =
O —dYa =)t =80 —d)((d =))W = d) ' - )V (2)

Hence if P,@Q on one side and P',@' on the other determine infinite points
that are neighbours, then they determine the same infinite point. Therefore,
the points of T determine at most ene point in each neighbour class of infinite
points. On the other hand, (b — a)(c — d)~" runs all elements of F, (take,
for instance a = 1,¢ = d = 0, b free). Therefore exactly one infinite pomt is
determined in each neighbour class. Hence the points of T' determine exactly
g + 1 directions.

It is known that the projective Hjelmslev plane PHG(R%), where R =
GR(q? p?), does not contain a subplane isomorphic to PG(2,q). It is inter-
esting to know what are the parameters of the Rédei-type blocking sets glven
by (1). Let us note that (1) depends on the choice of I'. Let R = Zp2/(f(X)),
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where F is a monic polynomial of degree n > 1, that is irreducible over Zj.
Then |R| = p*" and rad R = (p). If

I'={y€rad R,71 € 1+rad Ty o e T

where 7; —v; ¢rad R, for 0 <1 < j < ¢ — 1, it can be shown that the set
T determines exactly ¢> — g + 2 directions and the size of the corresponding
Rédei-type blocking set is 2¢° — ¢ + 2.

Let P = (a+bp,b+ap) and Q = (c+dp,d+cp), wherea,b,c,d € T. Ifa =c
and b # d, the points P and @ determine the infinite point (oc1). If @ # c, they
determine the infinite point (o) with

bedd (b— d)>
aza-—c+(1_(a—6)2)p' .

The number of different directions determined by the points of T' is equal to

the different values taken by =4, a # c. In the special case b = d. we have

a—C
(a) = (p)-

Now we are going to prove that if for every a € R\ rad R there exist
a,b,c,d € T such that a(a — b) = ¢ — d. Consider the elements ax + y where
z,y € . If {ax + y|lz,y € T} = R, there is nothing to prove. Otherwise, there
exist 21, T2, y1,¥2 € L, (x1,¥1) # (22,y2) such that

oz + Y1 = axs + Y2
Hence a(zy — 2) = y2 — y1. Since z; — 23 € rad R implies z; = Z9 and,
similarly, y1 — y2 € rad R implies y1 = ya2. If one of the differences z; — 23,
y2 —y1 is 0 then the other is also 0, which is a contradiction. Hence it is enough
to set @ = 21,0 = &g, 6= Y d = Yo
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Abstract. Hamada [Bull. Osaka Women’s Univ. 24:1-47, 1985; Discrete Math.
116:229-268. 1993| characterized the non-weighted minihypers having parameters
{E?':l 11;‘..,.1,2::’:1 va it g) witht > X > Ao > o > A 2 0. This result has been
generalized in [Des. Codes Cryptogr. 45:123-138,2007] where it was proved that a
weighted (30, UN 1) Sor, U, i, ¢)-minihyper § with k—1 > A1 > A2 > +-- >
A = 0, is a sum of the characteristic functions of spaces of dimension Ai,...,An.
In this note, we prove that we can relax further the restrictions on the integers A
by allowing 7(q) — 1 equalities in the chain of strict inequalities MBS e A

1 Introduction

Let PG(t, ¢) be the t-dimensional projective space over Fy. Denote by P the set
of points of the projective geometry PG(t,q) and let vg41 = (¢t —1)/(g—1)
denote the cardinality of P. A multiset in PG(¢, ¢) is any mapping &: P — Np,
where Ny is the set of all nonnegative integers. This mapping is extended in
a natural way to the subsets of P (the extension is also denoted by R) by
R(Q) = D peg A(P) where @ C P. The integer £A(Q) is called the multiplicity
of Q. The cardinality of a multiset is defined by |&| = &(P). The support
supp R of a multiset & is defined as supp R = {P € P | &(P) > 0}. A multiset
with &(P) € {0,1} for every P € P is called a non-weighted or projective
multiset. Projective multisets can be viewed as sets by identifying them with
their support.

Let Q be a set of points in PG(t,q). We define the characteristic multiset
Xo by

[1 #rPeo
XQ(P)‘{O if Pg Q.

Definition 1. A multiset § in PG(t,q), t > 2, is called an ( f, m;t, q)-minihyper
or (f,m)-minihyper if
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(a) §(P)=f;
(b) F(H) >m for any hyperplane H;
(c) there exists a hyperplane Ho with S(Hp) = m.

This definition of a minihyper is equivalent to the original one given by
Hamada and Tamari in [3]. In order to save space, we refer to [4] for all notions
that are not defined here.

In [1] and [2], Hamada characterized the non-weighted minihypers with pa-
rameters (Ei‘:l '”A,-+1:Z?=1 vty q) with £ > Ay > Ag > -+ > A 20, as
the union of a \;-dimensional space, Ap-dimensional space, ..., Ap-dimensional
space, which all are pairwise disjoint. In 4], this result was extended to weighted
minihypers.

Theorem 1. Let § be a (Z?:l ‘U,\i+1_,2:-_1=1 '.'J,\a.;f,q)—minéhyper, witht> 2, ¢ >
3, and
i>)\1>)\2>...>)\h20.

Then
h
{g = Z X}Tgs
i=1
where m; is a \j-dimensional subspace of PG(t,q), t =1,...,h

In this note, we show that we can relax the restrictions on the numbers A;
by allowing some of them to be equal. We prove the following theorem.

Theorem 2. Let t > 2 be an integer and let ¢ > 3 be a prime power. Let
A, ..., \n be a sequence of non-negative integers such that

(f)f>A1>/\gZ)\32...Z}\hZU. and

(2) equalities in (1) occur in at most r(q) — 1 places, where ¢ +1 + r(q) is the
size of the smallest nontrivial blocking set in PG(2,q).

Then every minihyper § in PG(t, q) with parameters (Z?:l 1;,\,..,.1,2?:1 Uy,) can
be represented as

h
t'?f' = Z Xwis
i=1

where 7; is a \i-dimensional subspace of PG g}, =1,
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2 The proof of Theorem 2

For the proof of our characterization result, we use induction on ¢ and h. The
theorem is obviously true for h = 1 for every ¢ and for t = 2 forall h < t+r(q)—1.
Note that for ¢ = 2, our statement follows by the definition of r(g), namely, every
blocking set with less than ¢ + 7(¢) + 1 points contains a line in its support.

Lemma 3. Let the integers t,q, M1, - .., An satisfy the conditions of Theorem 2.
Let further § be a (Z:‘:l ”As+112?=1 v, t, q)-minihyper. Then supp§ contains
a \1-dimensional subspace of PG(t,q).

The proof of this fact follows mutatis mutandis the proof of Lemma 17 from
[4].

Now we assume that Theorem 2 is proved for all dimensions up to tg — 1 for
all possible h, and for dimension ¢y for all (Ef’zlftuiJrl,Zf:ilU;\_i)—minihypers
witht > M > A > Az > ... 2 X, >0, where ' < ho. We want to prove
that theorem for minihypers for which the sums in the parameters contain ho
summands.

An easy counting argument shows that for a subspace S of codimension 8

S(S) == VX —s+1 e siaiat '”,\;,G—s-i—l-

Here, v, = 0 for @ < 0. Hence the minimal multiplicity of a subspace S of
dimension o — 2 (codimension 2) is vx;—1 + ... + Uy, -1 and all hyperplanes
through S are also of minimal multiplicity vy, + ...+ vy, .

(1) Assume that A; < to — 1. Then each hyperplane contains a 0-point.
Consider a projection ¢ from an arbitrary 0-point P onto a hyperplane A.
The induced minihyper §° in A = PG(fp — 1,¢) has the parameters of §:
(Zi’il Uiy fi] vy,). By the induction hypothesis

T =Xy X oo Xings (1)

where &; is a subspace of A with dimé&; = A, i=1,...,ho.
The support of § contains a Aj-dimensional subspace 7 (cf. Lemma 3). Set
§ = F — xux,. Let H be a hyperplane that contains . Consider a projection
from a O-point P in H. Clearly, ¥ has the form (1). The image of 7 under ¢
is exactly d;. Thus
5 =Xo+ -0+ Xong:

This implies that

F(H)=F%(H') =vy, + ...+ v,
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Let H be a hyperplane that does not contain . Now H meets m; in a
(A1 — 1)-dimensional subspace and again

SE(H)ZS(H)—lﬂ'lﬂHi'—”ﬁ(H)—vgl 2 Upgt oot Uy

Hence §' is a (Z:‘iz Dherss Y10, vy, )-minihyper in PG(to,q). By the induction
hypothesis, §F = Xm + - + Xy where dim ; are )\;-dimensional subspaces
of PG(t0,q), i =2,..., ho.

(2) Let Ay = o — 1. Again by Lemma 3, we have that supp§ contains a
\i-space, i.e. a hyperplane 1. Define the multiset ¥ = § — Xx;. For each
hyperplane H # m we have F(H) > vy + .- + vp,. Now it is enough to
demonstrate that

‘E‘J{wl) = Uy + ... U

This will imply that §' is a (Ziz}:‘z Ux,41) ZLQ vy, )-minihyper and the result will
follow by induction.

Fix a (to — 2)-dimensional subspace 6 of PG(ty,¢) of minimal multiplicity.
Denote by I1;, i = 0,.. .., ¢, the hyperplanes through 8. All these hyperplanes are
also of minimal multiplicity: §(IT;) = Z?:]. vy,. By the induction hypothesis,
the restriction of § to every II; is a sum of subspaces:

Blr; = Xt + X H oo X0

where dim ?T}j) = Ao =il 4= L coshin J = Oy & Note that the indices

i € {1,...,ho} can be chosen in such way that the subspaces 'rrf-'” meet 4 in
the same (\; — 2)-dimensional subspace. This follows by the fact that 6 is of
minimal multiplicity. In other words, we can arrange the subspaces ?ri(j )
way that

in such

O ns=rns=..=aPni=8 i=12....h
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Now we can write

q
§ = ZSIIIJ—QSH

7=0
q h h
= Z Z Xa) — q Z X,
je0se=t =1
h q h
= Z Z Xpld) — G’Z Xa;
i=1 j=0 i=1
h q
= > [ Dox0 —ax
i=1 \7=0
h
= Z &,
5=

where we have set &; = Z;‘T:D X, ) — 4X3;- It is known that ®; = X, which

implies that § = Zf‘:)_ ;.
Let us fix an integer i € {2,...,h}. First, we consider the case when ¢; is
not contained d;. In this case,

q .
&i(m) = Z|ﬁ1nﬂ§”|—|mn5i|

=0
= g+ Lyox—1—qvs-—2
g .
g1 "

Now suppose that &; is a subspace of 6;. Fix a (t — 3)-dimensional subspace
g of & that has minimal multiplicity. We have 6y # 6 since & is not of

minimal multiplicity. Denote by 71,....7; the (to — 2)-dimensional subspaces
of Iy through &y other than . Since at most r(q) — 1 of the subspaces 7; are
not minimal (this happens when Ap,—r(g)42 = -+ = Ane = 1), we can assume
with no loss of generality that 7; is minimal, i.e. §(n) = Z?.—-I vy, N TFEJ},
i = 2,....h, is not contained in 7 for some j, we can repeat the above argument

to show that &;(ry) > va,.
Y sl ;
Now assume that 71 N Tr_f ) is in ;. Clearly, 71 N :rr?.(_O} does not coincide with

7 3 o T : 0 ; :
d: since otherwise § would coincide with 7. Hence 'n% contains other points
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(apart from ¢;) that are from 7. This implies that WEO) is contained completely

in ;. Now we have that

q _ N
 Bi(m) = Z [ N ﬁ§3)| —glmNé|=|mnN w£0}| = ]wt.(m| =
j=0

Thus we have proved that in all cases ®;(m1) > vy,. Now we have

h h

Flm) =) ®i(m) =D vx,
i=2

i=2

which finishes the proof.
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1 Introduction

One of the most important applications of (w,r) superimposed codes (see, [1]
- [3] ) is the following cryptography problem. There are T users and N secret
keys. Each user has his own set of keys, and a group of users can communicate
if there exists a common secret key for the whole group. It is required that, for
any group of w users and any group of other r users, there should exist a key
sich that all users of the first group have this key and thus can communicate,
while neither of the r users of the second group possess this key. Thus, users
of the first group can exchange information "secretly” from users of the second
group.

Now assume that all users have the same set of keys, but any key has several
states. Let all keys have the same numbers of the states. A user can not change
key’s state and the user can communicate with users who have the key with
this state. There are several groups of users (the number of the groups is not
more then the number of the key’s states). We want that there is a key such
that for any group of users the key has the same state (and for different groups
- different states) and so the users from any group can communicate secretly
from users of other groups.

This situation can naturally be thought of as a g-ary N xT matrix C = |(cj;],
where ¢j; = k if the jth user possesses the ith secret key with the state k. Then
the property described above means that, for any subsets Ro, Ry, ...y Bg1 C
[T] of cardinalities |Rs| = 7, there exists a row i in C such that ey 1= 8
for all j from R,, where s = 0,1,...,9 — 1. We will refer to the matrix as
(rosT1, .-+ Tq—1) sSuperimposed code or colored superimposed code.

Of course, we would like to minimize the number of secret keys with a fixed
number of users, or, equivalently, maximize the number of users with a fixed
number of keys. Thus, the problem consists in finding a matrix C' that obeys
this property, with the number of columns as large as possible (rows are of
length N). We will often refer to columns of C' as codewords and refer to the

'Supported in part by the Russian Foundation for Basic Research, project no. 06-01-00226.
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matrix C itself as a q-ary code. Furthermore, in what follows, we use the term
“code of size N x T rather than the more commonly used “code of length N
and cardinality 7'.”

Denote by N(T,70,71,- - -,7¢—1) the minimum possible length of a
(ro,71,-..,Tq—1) superimposed code of a given cardinality T'. A colored code is
optimal if N = N(T,rg,71,...,7q—1). The rate of a g-ary code of length N and
cardinality T is, as usual, R = (logT)/N. We are interested in the asymptotic
behavior of the rate

R ) =1 log, T'
(10, 71,0+« s Tg—1) = limsup
' % T e 1 Tg1)

of such (optimal) codes.

2 Some results

Let us start with the formal definition of (ro, 71, . ..,7—1) superimposed codes.

Definition 1. A g-ary N x T matriz C = ||cij|| is called a (70,71, .. =)
superimposed code of size N x T' if, for any disjoint subsets Ry, Ry, . .. o o
[T] of cardinalities |Rs| = rs, there exists a coordinate i € [N] such that ¢;j = s
for all j € Ry, wheres =0,1,...,g— 1.

Theorem 1. For colored superimposed codes we have
SS

o
L=T¥ Tepi=il
/| SS i _}.En,ril"l v -'f'q?- Il

R(?'U, 5 RS ,T‘q_l) = 1/(5 — ].) lo

where S = (rg +71 + ...+ Tg—1)-

The next important parameter will be defined for an arbitrary g-ary code
C of size N x T. Consider positive integers (zg, Z1,-..,Zq-1) - Fix a collection
I consisting of X = zg + 21 + ...+ ¥¢g—1 codewords and denote by Cx(I) the
submatrix of C formed by these codewords. Thus, the matrix Cx (I) is of size
N % X. By the “X-distance” for the collection I, we call the number of rows
of Cx(I) such that each row has ws elements with value s for all s, where
s=0,1,...,g— 1. We denote this number by d(Cx(I)).

Definition 2. 7he minimum “X-distance” for a g-ary code C is the value
dx = minjj=x d(Cx(I)). Denote by R™MN)(dx) the rate of a g-ary code of length
N with minimum “X -distance” dx.

Theorem 2. For g-ary code C of length N with minimum “X-distance”
dx we have the following asymptotic bound:
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S XXazolzq! ... 20—1 dx
RM)(dx) < (1 — e ! qu_]?f = )(1 — log,(q — 1)).
S et Xl

The following lemma explains the relation between the parameter dx and
(ro;T1,...,7¢—1) superimposed codes.

Lemma. If a (ro,r1,...,7q—1) superimposed code C' of size N X T exzists,
then a (rg — Lo, 71 — T15- .., Tq—1 — Tq—1) Superimposed code of size

dxzolzi!. ..z /X! x (T — X).
. q

eTists.

Corollary. If there exists a (rg.T1,...,7q—1) superimposed code C' of cardi-
nality T with minimum “X -distance” dx. then. for positive integers s (x5 <
rs). we have

dx:l.‘olﬂj]I P ¢ ..1!
: : ) ; oo Xg
N(T'— X,rg — 20,71 — &1y -y Tg—1 — Lg=1) S >

X!
Theorem 3. For the rate of (ro,7r1,...,74—1) superimposed codes, we have
the asymptotic bound:
R{re Py =) =
B(rg— @y ta —T1y 5oy Tg—1— '»Bq-i)
R(ro— 20y- ., Tg—1 — Tg—1)/(1 — log,(q — 1)) + XX /(z° ....‘L‘fl;!_?__ll)

Proof. Consider an optimal (ry, 71, ...,74—1) superimposed code of cardinal-
ity T, length N(T',7o,71,..-,7¢—1), and rate Rip (1o, 11y ox» yPg—-1)» Theorem'2
implies that, as T" — o0

RT(T(), Tlyeees Tq—l) <L

X s "
| — X dx.‘],g!i‘l!....lq_ll

)(1 —log, (g — 1)) + o(1)

et P il des 1 :
Lo Ly - Tyly VN r0, 505 Tg=1)

Using the corollary of the lemma, we get
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Ryp(ro,m1s...,7q-1) <
L X‘YI\T(T = X.?‘g — T, 1 — L1y 3 Tg=1 — ,’Eq_l])

i | St 1 LTu—Y AT . -
PR R N 6Tty < Jeh Ta=1)

(1 (1 - logy(q—1)) + o(1).

Let us apply Definition 2 of Ry—x (ro—@0,T1— %15+ Tg=1 x,—1) and pass
{0 the limit as T' — oo on both sides of the above inequality. As a result, we get
a recurrence inequality for the rate R(ro, 71, .-, rq—1), which can be written as

XX(1—log,(g—1))
Iji]’ R(ro — Z0.T1 — @14+, Tg=1 — Iq—l)

)

R(?.Uarlr ey 'rq—-l)(l = ;Eﬁ"ﬂ?‘-‘:‘] o

<1-—log,(g—1).
From this inequality, the statement of the theorem follows.
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Abstract. Paley construction can be generalized into two ways. First we apply it
to construct Jacket matrices, staring from new type of matrices and second gener-
alization is fo increase the dimensions to obtain (bigger) Jacket matrices. In this

paper we describe a modified Paley construction to produce Jacket matrices that
can be denoted as a new type of matrices called " Jacket Conference matrices”.

1 Introduction

Jacket matrices [1], [2] are defined to be n x n matrices J = ||jik|| over a field
F with the property J.J' = n.I, where J' = |13 k|| is the transpose matrix of
the element inverse of .J, i.e., -'f;,h.- = jk,i)_l. These matrices are used in Digital
Signal Processing and Coding theory. In [3] Paley constructed two classes of
Hadamard matrices (known as Paley type 1 and Paley type 2). In this paper
we describe a modified Paley construction to produce Jacket matrices that can
be denoted as a new type of matrices called ” Jacket Conference matrices”.

In Section 2, we present the Paley method [3] in more general form, in order
to apply it for constructing Hadamard matrices from symmetric Conference
matrices.

2 Paley transformation

Recall that the Kronecker product, A ® B, of two matrices [Aln = ||lai ;|| and
[Blm = ||bi,j|| is defined as

11 ahg haite a1 n m‘;B a]‘gB nia al.ﬂ_B
9, a9 e aam flg‘lB ag‘-_‘gB S t’lgMB

m1l Am2 ..+ Gmn f3‘-1'1'1.,117-:7" ﬂm,QB am,uB
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In the above formula a;; B stands for a sub-matrix (not for an element).
Let C be an m x m symmetric Conference matrix. Paley statement says,

that for
-1 1 1 1
iA]2=[ ] ; [B]2={ ] :
TR fe=ttels

: [S]Em I [A]Q ® [Clm + [3]2 & [Im

the matrix

is Hadamard [3].
Proposition 1. Let C' be an m x m symmetric Conference matriz, and A
and B be n x n Hadamard matrices. The matriz

[Slnm = [A]n ® [C]m T+ [B]n ® [I]‘m (1)
is an Hadamard matriz if and only if
[4]a(B], + [Bla[4l; =0, (2)

where | X! is the transpose matriz of [X].
Proof. To check if [S]un is an Hadamard matrix we must show, that
[S]inn[S)inn = mn[I]mn. Since

[SThn = [Alh @ [Clrn + (Bl @ [T]ms

we have
(SlmnlS]en = ([Aln ® [Clm + [Bln @ m) (Al @ [Clm + [Bln & [f]m) =
= ([Aln @ [Clm)([A], @ [CTi) + ([A]n @ [Cl) (Bl ® [T]n )+
+([Bln ® m)([A]5 ® [Cltn) + ([Bln[Bn) @ (lm =
— ([Aln ® [Clm) (AT ® [C)%) + ([Bla[B%) © Ulm + ([A]n[Bl2) @ [Cla + ([Bln[Aln) @ [C)m

(€]t = [Clm, and [A], and [C], are orthogonal matrices, thus [A], & [C]m is
also orthogonal matrix, and [B], is Hadamard matrix. Hence

[S]mn[S]fm = (mn— '”')[I] mn + L ]mn + ([A]n. [B];:: + [B]n [Aﬁ;) ® [C]m'

To get [S)mn to be Hadamard matrix (i.e. [SlmnlS)nn = mn[I]mn) would be
equivalent to
[‘A]N[B]ia =t IB]”[AH} = []

Note that in the case n = 2 Proposition 1 gives the Paley construction.
Also, the above proposition motivate us to give the following definition.

Definition 1. The pair ([Aln, [Bln) of Hadamard matrices of order n is called
matched, iff the equation (2) holds.
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3 Jacket conference matrices

In this section instead of using transpose matrix of [X],, we can use trans-
pose matrix of element inverse, and we shall denote it with [X];, (where 27; =
(xj)~"). We preserve matrices [A], and [B], to be Hadamard, but [C],, must
be selected properly, and [C],, must be defined in little bit different way.

Definition 2. We shall call the n x n square matriz A is a Jacket Conference
matriz, if the following conditions hods:

1. aij=0, fori=1,2,...,n.

2. ai; #0, foralli,je{1,2,...,n}. i #J.

9. D sclio. . miIVad) ais-(as;)~ =0, foralli,j€{1,2,... b i# g
We shall call such a matriz is reciprocal, if also

4. @i = (aj:)~" , for alli,j € {1,2,.. Ml dse.

If matrix [C]y is Jacket Conference matrix, then we define matrix [C];, as
follow

C'i_l. 4 j;
[C]E,!_{(J) 3 :Iéj

G = 2 +
Tt 0, =3

It is easy to check, that the calculations in previous section continue to be
true if we use prime instead of transpose symbol t. It is enough to check

([A]"- @ 16]?71)([A]:? @ [C]:}‘l) = (ﬂln = ﬂ') [I]mn-

If we try to construct a reciprocal Jacket Conference matrix [JC] of order 4:

0 a busee A
S I VO IR . 25D
[JCla = 1 S B we obtain b:ic;jf
1/c 1/e 1/f 0, e

Here, i is the imaginary unit. Selecting a = d = f = 1, and calculating the other
coefficient by the formulae above, we can obtain a reciprocal Jacket Conference
matrix

G
1 01 —i

B R ®)
-1 4 1 0

Thus, applying the Paley construction we can construct larger Jacket matrices.
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4 Generalized Paley construction

We proved in {Section 2}/{Section 3} that if ([A]n,[B]n) are matched, and
[C)n is {symmetric}/{reciprocal Jacket} Conference matrix of order m, then
the matrix [S]yn, defined in (1) is {Hadamard}/{Jacket}.

In this section we shall find several matched pairs of matrices.

Proposition 2. If ([Aln,[B]n) is matched pair, and (D], is Hadamard matriz,
then ([Aln, [Bln) @ [D] := ([A]n ® [D)y, [Bln & [D];) is a matched pair, too.

Proof. Since [A]y, [Bln and [D], are Hadamard, the matrices [A], ® [D], and
[B],®[D], are also Hadamard matrices. We can obtain the following calculation
to prove ([A]y, ® [D]y, [Bln ® [D];) is matched pair

[A® D]nt|B ® Dl + [B @ Dlnr[A @ Dl =
= ([A]n[B], + [BlalAly) @ ([D):[D];) = 0.
| |

Proposition 3. If [X] and [Y] are 2n x n matrices and the composite matriz

B is Hadamard, then
Y 2n

(01 V1) = (| § L B L,?

1s matched pair of matrices.

Proof. The first matrix is Hadamard by definition, and obviously the second is
also Hadamard. We shall check the condition (2), and write it as

(@, bu) + (au, by) = 0, Yu,v € {1,2, .. .y} (4)

The matrices [U]a, and [V]on (up to the sign) have rows of one and the same
Hadamard matrix, it is easy to show, that the inner products in (4) will be 0,
excluding the case in which row corresponds to its identical row. By definition

Ui = —Wjin, lori= 12, 00,1

and
Uy = Vi_p, fori=n+1Ln+2,...,2n

Thus if the first inner product in (4) is nonzero, it must be +2n, while the other
one would be F2n. Thus the sum is 0. 1]
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5 Example

Applying the modified Paley transformation using matrix (3) we obtain the
following Jacket matrix

[ it et hedly 13- puiiees]
A gty e etdt-sid gt K gl ailass
gl b pdhliees] s it i
¥ vl lioe=diman 4 o Lound
s = Gt il pesiliabals Nipe Sl et
PR I g Sl T S
i P TG I Sy Y e S

[ S SN S o QU g L
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Abstract. We extend the study of steganography schemes with pooling to the case
when two changes per cell are allowed. We show that such schemes are equivalent to
a new, symmetric version of sum covers known in combinatorial design theory. We
give a construction that is better in the information versus distortion metric than
the schemes with one change per cell. A number of interesting questions concerning
the underlying sum cover sets remain open.

1 Steganography background

Steganography is the science of information hiding. The sender starts with a
cover object, such as for example a digital multimedia file, and (s)he embeds
a hidden message into the cover object by slightly distorting it in a way that
enables the intended recipient to retrieve the hidden message from the distorted
cover object; at the same time the very existence of the hidden message should
be impossible to detect by any third party.

Typically the cover object is a sequence of elements of D, where D =
{0,...,m—1}, m = 2¢. In current applications we usually have e € {8,12,16}.
For example, e = 8 for grayscale digital images and e = 16 for CD quality
audio.

Let S denote the set of message symbols. A message to be communicated by
the sender to the recipient is a string of elements of S. In most steganographic
schemes, the sender and the recipient agree on a symbol-assignment function

s:D—S. (1)

To embed a given message symbol z € S in a given element & € D, the sender
modifies = to 2’ so that s(2’) = z and |x — 2|, the amplitude of the embedding
change, is as small as possible.

One of the goals of Steganography is to design schemes with high embedding
efficiency, which can be broadly defined as the ratio between the amount of the
communicated information (information rate) and the amount of introduced
distortion (distortion rate) [3, 4].

The embedding efficiency can be increased by applying covering codes, and
we recommend [1] or [5] for an introduction to this topic. In order to achieve a
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desired information rate (or a desired distortion rate), one can use direct sums
of covering codes.

It has been established in the steganography literature that the impact of
embedding becomes statistically detectable rather quickly with the increasing
amplitude of embedding changes. Thus, from now on we limit ourselves to
so-called +1 embedding changes in which the sender modifies each element of
D by at most one, which is the smallest possible modification. Hence we will
be measuring the total amount of distortion simply by counting the number of
embedding changes.

We note that a problem will arise in the rare case when the sender is required
to apply the +1 change to the value m — 1 € D or the —1 change to the value
0 € D. Then the sender can choose a different cover object (or the sender can
perform a change of a magnitude greater than 1 to achieve the same effect). If
we neglect these rare events, then we can assume that D = 7, which makes our
algebraic treatment easier.

Let Z, = Z/(n) denote the integers modulo n. A concrete example of a
symbol-assignment function (1) that requires only £1 embedding changes is
given by S = Z3 and s(z) = z mod 3. This function has a better embedding
efficiency than the notorious “least significant bit embedding” defined by i(z) =
z mod 2.

1.1 Schemes with pooling

In [3] we proved that the embedding efficiency can be increased by pooling
the elements of D. We partition the cover object into disjoint segments, each
of which consists of d elements of D. That is, we partition the cover object
into elements of DY, which we will call cells. The details of partitioning into
cells are immaterial for our study. For example, the cells can be formed by
adjacent elements along some pseudo-random path through the cover object.
This pseudo-random path can be generated by the sender and by the recipient
from a shared secret seed.

In contrast to (1), the symbol-assignment function will now be a mapping

guiD%=55 (2)

The information rate achieved by s in (2) is d~! log, |S| bits per element of the
cover object. Therefore, given the cell dimension d and the maximum number
¢ of changes allowed per cell, we wish to maximize |S|. The upper bound on

S| is ~
U s= Z (‘D 2!

=0
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since s must be surjective.
One example of a function of the type (2) is given by taking S = Zo4,1 and

d

Bl )= (Z le) mod (2d + 1). (3)

i=1

In order to embed any symbol u' € Zg4.; into any cell 2 € D? using (3), at
most one +1-change is required. This can be seen as follows: Let (e;) denote
the standard basis of Z%, and assume s(z) = u. Let § = v/ —u. If § = 0,
then no change is performed. Otherwise let § = exk with ¢y € {—1,1} and
ke {l,2,...,d}. We modify z to 2’ = = + ex; indeed s(z’) = /. Note that
the embedding defined by (3) is optimal if at most one +1-change per cell is
allowed, since |Zogq| =2d+ 1 =Uy;.

We finish this introductory section by an informal sketch of the main result
of [3]. Suppose that 2d + 1 is a prime power. Let the embedding scheme
%1 be defined by the symbol-assignment function (3) and using (2d + 1)-ary
Hamming codes as covering codes (see the note about covering codes above).
Let the embedding scheme X5 be defined by the symbol-assignment function
xz +— z mod 3 and using ternary Hamming codes as covering codes to achieve
the same distortion rate as 2;. Then the information rate of ¥; is never worse
than the information rate of 3. The precise statement with proofs can be
found in [3].

2 Schemes with two changes per cell

The present paper is concerned with the embedding schemes that allow at most

two +1-changes per cell. We will continue to use the definitions and notation

introduced in Section 1. We start by presenting the mathematical background.
Let R be a ring, C' C R, u € R. We define

C+C={z+y:2z,y€C, z#y} (4)

and further let —C' ={-2:2€ C} and C—u= {z —u: 2 € C}. We say that
A, B C R are shift equivalent if there exists a v € R such that A = B —v.

Definition 1. A subset S C Z,, is called a strict sum cover of Z,, abbreviated
SSC(n), if S+ S = Zy,.

The adjective strict emphasizes the condition = # y in (4). Many papers
(e.g. [6, T]) consider sumsets both with and without this distinctness condition,
hence we feel the need to emphasize the choice made in our definition.
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Definition 2. A subset S C Z, is called symmetric if 0 € S and -5 =.5.
A subset S C Zy is called a symmetric strict sum cover of Zn,, abbreviated
SSSC(n), if S is symmetric and S 18 an SSC(n).

Lemma 3. If A= {0,%ay,...,xaq} is an SSSC(n), then

d
8(x15-: -1 %) = (Z a,‘mi) mod n
i=1

is a symbol-assignment function that allows the sender to embed any symbol in
Z., into any cell in Z% by at most two +1-changes.

The proof is a straightforward extension of the argument for the case of one
+1-change that was given near the end of Section 1. Note the importance of the
condition = # y in (4); without imposing this condition it could happen that
we require one change of amplitude 2. However, per the discussion in Section 1,
two changes of amplitude 1 are preferable to one change of amplitude 2.

Lemma 3 makes our objective fairly obvious: Given d, we wish to maximize
n such that an SSSC(n) with 2d + 1 elements exists.

Definition 4. For a positive integer k we denote by n(k) the largest n such
that an SSC(n) of cardinality k exists. For an odd positive integer k we denote
by 1 (k) the largest n such that an SSSC(n) of cardinality k exists.

The notation 7, (k) was introduced in the influential paper by Graham and
Sloane [6]. To the best of our knowledge the SSSC(n) have not been studied in
the literature; hence the notation 7 (k) is new.

Clearly for all odd k we have i, (k) < n (k).

Proposition 5. For 3 < k < 13, k odd, we have 7, (k) = ny(k).

Proof. The values n (k) for k < 14 are determined in [7]; they are tabulated in
the last row of Table 1 therein. The corresponding SSC(n(k)) are tabulated in
Table 4 of that paper. We will now show that for odd k € [3,13], each optimal
strict sum cover given in [7] is shift equivalent to a symmetric set:
k=3,C=1{0,1,2} Cc Z3, C={0,£1} CZ3

k=5,C ={0,1,2,3,6} C Zg, C —6={0,43,+4} C Zg
c=17,C=1{0,1,2,3,4,8,13} € Z17, C —2 = {0, +1, 42,46} € Z17

9,C = {0,1,2,6,9,12,16,17, 18} C Z3g , C—9 = {0, %3, £7, 8, +9} C Zso
11, C = {0,1,11,12,18, 22, 24, 27, 30, 32,36} C Zas,

— 97 = {0,£3, +5,+9, +15, 16} C Zas

13, C = {0,1,2,3,4,7,13,21, 29, 36,44, 52, 58} C Zg1,

G —2=10,£1,:£2 £5311;£19, 327} C Zey O

Eollle i
i1
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A lower bound on n~(k) is given in [2] by a simple construction that uses
the sets

Tlrik) = 10:Lyemest = 1FUL2r — 2,3r—2,. .. kir — 2}

We make the following observation:

Proposition 6. If r is odd or k is even, then T(r,k) is shift equivalent to a
symmmetric set.

Proof. If r is odd, then the set

r—1

2

T(r.k)—

is symmetric. If k is even, then the set

T(r, k) — (k;rgr— 2)

is symmetric. The verification is straightforward; we omit its details. O

Proposition 7. Let k =2d + 1. Then n(k) > A2t 3d—1.

Proof. Proposition 2.3 of [2] and some extra calculations show that, for each d,
T(d+1,d+1) is an SSC(d? + 3d — 1) of cardinality 2d + 1. By Proposition 6,
T(d+ 1,d+ 1) is shift equivalent to a symmetric set for each d. O

Proposition 7 shows that the scheme which uses two changes per cell is
superior to the scheme using one change per cell, assuming of course a fair
comparison when both schemes have the same overall distortion rate 2/d.
Indeed, if d is even, then using Z¢ ~ Z%? x Z%? and defining the symbol-
assignment function by applying (3) to each of the factors produces a symbol
set of cardinality (2d/2 + 1)(2d/2 + 1) = d® + 2d + 1. Similarly, if d is odd
then using Z¢ ~ Z@4-1/2 x Z{4+1/2 and defining the symbol-assignment func-
tion by applying (3) to each of the factors produces a symbol set of cardinality
(2(d—1)/2+1)(2(d + 1)/2 + 1) = d* + 2d. In either case this is less than the
d? + 3d — 1 symbols guaranteed by Proposition 7 combined with Lemma 3.

By non-exhaustive computer search we have verified that the bound of
Proposition 7 is not tight for odd & in the range 9 < k < 61. For example,
{0, £3, +12, +13, +:21, 4-26, 48, £52, 54, +-65, +84, +91} is an SSSC(195) of
cardinality 23 while Proposition 7 only guarantees f4(23) > 153. An interest-
ing open problem is to give a systematic construction of examples that improve
the bound of Proposition 7.
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3 Conclusion

We have extended our previous work on steganography schemes with pooling
to the case when two changes per cell are allowed. We have shown that such
schemes can be obtained from a specialized, symmetric version of sum covers
known in combinatorial design theory. We gave a construction that is better in
the information versus distortion metric than the schemes with one change per
cell.

A number of interesting questions about the symmetric strict sum covers
remain open. We conjecture that the equality 7, (k) = ny(k) holds for a larger
set of values k than those established in Proposition 5. A construction of
examples that improve the bound of Proposition 7 would have practical value.
It appears that the optimal covers achieving the value 71, (k) often possess a lot
of symmetry; it would be interesting to study this phenomenon theoretically.
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Abstract. We study properties of rank metric and codes in rank metric over finite
fields. We show that perfect codes do not exist. We derive an equivalent of the
Varshamov-Gilbert bound in Hamming metric. We study the asymptotic behavior
of the minimum rank distance of codes that are on GV. We show that the packing
density of maximum rank distance codes is lower bounded by a function depending
on the error-correcting capability. We show that there are asymptotically perfect
codes correcting errors of rank 1 over fields of characteristic 2.

1 Introduction

Apart from cryptographic applications and applications in tape recording, rank
metric found recently many more applications in the field of random network
coding and construction of optimal rate-diversity tradeoff space-time codes.

In this paper, we first recall properties of rank metric and existing bounds.
We show that perfect codes cannot exist in rank metric. Then we exhibit an
asymptotic relation between parameters of a code which is said to be on GV,
that is, which satisfies the Varshamov-Gilbert bound in rank metric.

We also study codes which reach the Singleton bound. These codes are called
MRD-codes for Mazimum Rank Distance codes. After recalling the formula
given by Gabidulin on the rank distribution of linear MRD-codes, we present
some simulations showing that rank distribution of random codes and of MRD-
codes is very similar. In addition, we prove that the density of correctable errors
for MRD-codes corresponding to codes formed with square matrices is lower
bounded by a function depending only on the error-correcting capability of the
code. In the special case of fields of characteristic 2, we show that we can
construct a family of codes over fields of characteristic 2 that is asymptotically
perfect.

2 Properties of rank metric
Let g be a power of a prime and let b = (Bi,...,0n) be a basis of GF(q™)

over GF(q). The integer n denotes the length of the code. The rank norm over
GF(q) of an element of GF(¢™)" is defined by
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Definition 1 ([1]) Letx = (z1,...,2y) € GF(¢™)". The rank of x on GF(q),
is the rank of matriz
12 o TR
Tmi  Tmn
where ©; = Y1, wi;Bi. It is denoted by Rk(x)
Rank metric is the metric over GF(¢™)" induced by the rank norm. Spheres
and balls in rank metric have the following expression:

e Sphere of radius t > 0: S el {y € GF(¢™)" | Rk(y) = t}

o Ball of radius t > 0: B, = UL,

We have the following bounds:

q(m+n—2}t—t2 < 8 < q(m+1z+ljt—t"! o
q(m+n—2)t—t? <B < q(m+n+1)f_r,?+1 (2.1)

Let C ¢ GF(¢™)" for m and n non-zero integers. If M denotes the cardi-

nality of C and d e Mmine, £e,ec(Rk(c) — ¢z)) we say that C is a (n, M, d), code
over GF(g™). The integer d is called the minimum rank distance of C.

3 Upper bounds and perfect codes

In this section we recall a Singleton-like bound for rank metric codes and state
an equivalent to the sphere-packing bound. We show that there are no perfect
codes in rank metric.

Proposition 1 Let C be a (n, M,d), code over GF(q™). We have
e Singleton-like bound: M < gin (m(n—d+1);n(m—d+1)),
e Sphere packing-like bound: Ift = |(d —1)/2], then
M x B, < q™", (3.2)
For the proof of Singleton-like bound see [1, 6]. The proof of the sphere-
packing bound comes from the fact that, for rank metric, two balls of radius
t = |(d —1)/2] centered on codewords do not intersect. Thus, the full packing

has size less than the whole space. The proof is similar to that of Hamming
metric.
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If we define perfect codes as usual, that is: an (n, M, d),-code over GF(q™)
is perfect if and only if M x B; = ¢™", we can investigate the existence of perfect
codes. The following proposition answers the question

Proposition 2 There are no perfect codes in rank metric.

Proof. The proof can be derived from the bounds (2.1)

4 A Varshamov—Gilbert like bound

In rank metric the equivalent of Varshamov-Gilbert (GV) bound is given by the
following result:

Proposition 3 Let m,n, M, d be positive integers. If
MK By < g™ (4.3)
then there exists a (n, M + 1, d),-code over GF(g™).
From this result we define the property for some code to be on GV:
Definition 2 An (n, M, d),-code is said to be on GV if
(M= 1 By < g" <M By 4 (4.4)

Now we proove the following result given the relations between the param-
eters of a (n, M, d),, which is on GV and whose cardinality is not too small.

Proposition 4 Consider an (n, M, d),-code C over GF(¢™) where m = m(n) >
n. Then, if C is on GV we have

d n—--f—oo 1 LY logq ¥ 5 ?’L)2
m+n m+n 4longr’

provided log, M = A\(n)m, where A(n) = o(n) tends to +oo with n.

Proof. By taking the base ¢ logarithm of the inequalities (2.1), we obtain from
property (4.4) that

{ mn<(m+n+1)(d-1) - (d~1)2+l+long,
log,(M — 1)+ (m+n—2)(d—1) — (d—1)2 < mn.
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Since M > 2 we have further that log,(M —1) > log, (M) —log,(2) = logy(M)—
1. Hence the minimum distance of the code must satisfy

Oﬁ—d2+(m+n+3)d+logGM—mn—(m+n+1),
0> —d? + (m +n)d + log, M — mn — (m +n).

The inequalities are given by second order equations whose discriminant are
respectively

Ay = (m —n)? + 4log, (M) + 2(m + n)+ 5,

Ay = (m —n)? + 4log, (M) — 4m + n).

Therefore the minimum distance of a code on GV satisfies the inequalities

1 —VAL+3 - d <l VA
2 2m+n) " m+n" 2 2(m+n)

Under the conditions of the theorem (log, M = A(n)(m+n), where A(n) = o(n)
and tends to infinity with n), it is not very difficult to complete the proof of the
proposition. B

Example 1 A special case is when m = n and for a family of constant rate
codes 0 < R < 1 that is
log, M = n’R.

In that case we have

§y1—¢ﬁ

n
This result implies that the ratio of the minimum rank distance on the length of
the code is asymptotically constant.

5 Maximum rank distance codes

Singleton inequality gives an upper bound on the cardinality of codes with given
parameters. We call optimal codes or MRD (Mawzimum Rank Distance) codes,
codes attaining the Singleton bound ¥

Definition 3 (MRD-codes — [1]) A (n, M, d),-code over GF(¢™) is called
MRD if

o M= qm(ﬂ——d—i—l)’ if n < m.
o M =gnn=d+tl) 4fn>m

We study properties of MRD codes such as the distribution of the rank of
codewords as well as bounds on their packing density.
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5.1 Rank weight distribution of MRD-codes

In Hamming metric, the weight distribution of MDS-codes is well-known [5].
Gabidulin showed the rank distribution of codes in rank metric can be expressed
by

Proposition 5 ([1]) Let Ay(n,d) be the number of rank s codewords of an
MRD-code over GF(¢g™). Then

£
Adre(n, d) = { d+¢ } OF =ty [ ?if } el ( i ) (9:5)

q =0
i F . . .
twhere | . is the Gaussian binomial.
v
q

Our contribution to this section comes from the simulations we made to
evaluate the randomness degree of MRD-codes. By using these simulations we
obtained that the rank distribution of random GF(g)-linear codes in rank metric
was almost identical to the weight distribution of linear MRD-codes. Results are
presented in table 5.1. The table gives the base 2 logarithm of the proportion

L. d)/2M" for n = 32, m > 32. The left-most curve corresponds to m = 32.
the right-most to m = 40. We made simulations for random GF(q)-linear codes
as well as for MRD-codes sufficiently large with the same parameters. For ranks
significantly greater than the minimum rank distance both curves coincide very
aceurately.

5.2 Packing density of MRD codes

In section 3 we proved that no perfect codes existed in rank metric. However a
natural question can be: what is the defect of perfectitude of MRD-codes, that
is, given an (n, M, d), MRD-code what is the volume of the space covered by
balls of radius [(d — 1)/2| compared to the volume of the whole space. The
packing density of the code is thus defined by

MB,
i q'nm !

is the rank crror-correcting capability of the code. By

where ¢t = [(d — l) 2] i
2.1), we prove

using the bounds (

Proposition 6 (Packing density of MRD-codes) Let C be a MRD-code,
(n, ™2 0p LY. over GF(@™). The packing density of C satisfics

L o s oyl i o

q’m 42t — = gim=n-1)t5¢
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Tuble 1: Base 2 logarithm of proportion of words of given rank in an MRD-codes
of length n = 32 over GF(2™), where m = 32, 33, 35, 40.

This proposition shows that, whenever the length of the code equals the exten-
sion degree, i.e. n = m, and if n tends to oo, then the packing density is lower
bounded by ¢~ =2 which depends only on the rank error-correcting capability
of the code.

Particular case of rank 1 correcting MRD codes For rank 1 MRD codes
where m = n, we can express the exact formulas and obtain

Proposition 7 An (n,q"2,3), MRD-code over GF(q") has a packing density
equal to
- 2(1 noy q—'.ZrM—[

= 5.0
D = : (5.6)

There is a special interest in the binary case. In section 3, we showed that
there are no perfect codes in rank metric. However from previous proposition
wd have
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Corollary 1 Let F = {C;}i>2 be a family of (i,2'=2, 3), MRD-codes over GF(2).
If D; is the packing density of code C; then

T B —"1

=00
This means that F is a sequence of codes with increasing length and alphabet
that are asymptotically perfect. Since Gabidulin codes are MRD codes we can
construct such families of codes.
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Abstract. In this paper we prove that the trivial (28,8, 2,3) superimposed code is
optimal.

1 Introduction

Definition 1 A binary N x T matriz C = (ci;) s called an (N, T,w,r) su-
perimposed code (SIC) if for any pair of subsets W, R C {1,2,... , T} such that
|W| = w, |R| =r and WNR = @ there ezists a rowi € {1,2,...,N} such that
cij=1forallj €W andcij =0 for all j € R. We say also that C' is a (w, )
superimposed code of length N and size T,

The trivial code is a simple example for an (N, T, w, r) superimposed code.
The length N of the trivial code is (z) and its rows are all possible binary
vectors of weight w.

Let N(T,w,r) is the minimum length of an (N, T,w,r) superimposed code
for given values of 7', w and r. The code is called optimal when N = N(T,w, ).
The exact values of N(T,2,3) are known for T' < 7.

T 516 |7
N(T,2,3) | 10 | 15 [ 21

The trivial (10,5,2,3), (15,6,2,3) and (21, 7,2, 3) superimposed codes are
optimal. Kim and Lebedev [2] have proved that 24 < N (8,2,3) < 28 and
26 < N(9,2,3) < 30. Therefore the trivial (36, 9,2, 3) superimposed code is not
optimal. In this paper we prove the nonexistence of (27,8,2,3) superimposed
code. Consequently the trivial (28,8,2,3) superimposed code is optimal.

2 Preliminaries
Definition 2 Two (N, T,w,r) superimposed codes are equivalent if one of them

can be transformed into the other by a permutation of the rows and a permuta-
tion of the columns.

1partiallv sunported by the Technical University of Gabrovo under Grant C-801/2008.
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Let C be a binary N x T matrix. Denote by d(x,y) the Hamming distance
between two columns z and y and by S, and S, — the characteristic sets of the
columns z and y respectively, The following lemma is obvious.

Let d(z,y,z) = d(z,y) + d(z,2) + d(y,z). From Lemma 3 we obtain
d(z,y,2z) = d(x,y) + d(@,2) + d(y,2) = 2(|Sz| + Syl + |Sz] = 1Sz N Sy| —
1S, N S.| — |Sy N S.|). Consequently d(z,y,2) is even number. Denote by
ds = min{d(z,y) | z.y € C, x # y} and by d3 = min{d(z,y,2) | ,y,2 € C, z #
y, & # 2,y # z}. 1t is clear that 3da < d3. Let d(C) = 3, yec, 2y U2, Y)-

Lemma 4 (Plotkin bound) [3] (g) dea <d(C)< N l;g“ {T_;EJ i

il T||T+1
Corollary 5 (3)d3 <(T-2)d(C) < (T-2)N {E‘{ L—-;—_—J 5
Definition 6 Let x1.Ta,...,x) be different columns of the superimposed code
C. The residual code Res(C,z1 = v1,T2 = vg,...,&x = V) of C is the code
obtained by taking all the rows in which C has value v; in the column z; for
i =1,2,....k and deleting the columns 21, %2, ..., Tk in the selected rows.

Lemma 7 Suppose C is an (N, T, w,r) superimposed code and x and y are two
different columns of C. Then

fa) Res(C,z = 1) is.a (|S:|,T — 1,w—1,r) SIC;

(b) Res(C,z = 0) is an (N — |Sz|,T —1,w,r — 1) SIC.

Lemma 8 [2/ N(6,1,2) =6 and N(7,2,2) = 14.

Lemma 9 [1] Any (6,6,1,2) superimposed code is equivalent to the trivial
(6,6,1,2) superimposed code

L SO OSOR O RN0)
QIETE=0A 0! 0
(G e ST S
O P B
080 it 0 I R (6]
MR ORS00 SRR E =S ) e

Using computer programs for generation of (1,2) and (2, 3) superimposed
codes and for code equivalence we proved the following two lemmas:

Lemma 10 Any (7,6, 1,2) superimposed code is equivalent to one of the codes
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1.0 0. 0 0 0 00l O]
01 0000 Dy (0 B (0]
(ESIE S QS e AR (S
Cis.1= (S 0t Rt U] Cs = G NS GRS S (]
o @ o0 g 0 T B R 1 R
[ TS0 () IS SRS
¥ % ¥ T F § £ (s R T |

The last row of C 2.7 is 0000000, 0000001, 0000011, 0000111, 0001111, 0011111,
0111111 or 1111111 respectively.

Lemma 11 Any (21,7,2,3) SIC is equivalent to the trivial (21,7,2,3) SIC.

3 The nonexistence of (27,8,2,3) SIC
Lemma 12 Let C be a (27,8,2,3) superimposed code. Then dy > 12.

Proof. Let z and y be two different columns in C. Since N(6,1,2) = 6 (Lemma
8), |9y N Sy| > 6 and S, N Sy| > 6. Therefore d(z,y) > 12 and dp > 12. O

Lemma 13 Let C be o (27,8,2,3) superimposed code and and y are two
different columns of C. Then Res(C,z =0,y = 1) contains at most 5 rows of
weight 0 or 1.

Proof. Suppose the matrix C' contains at least 6 rows of weight 0 or 1. Let C"
be the matrix obtained of C' by deleting of the column y. o jea (20,7,2:3)
superimposed code and contains 6 rows of weight 0 or 1. Consequently the
remaining 21 rows of ¢’ form a (21,7,2,3) superimposed code. According to
Lemma 11 this code is equivalent to the trivial (21,7,2,3) superimposed code,
hence all its rows are of weight 2. Therefore d(C') < 21 x 10+ 6 x 6 = 246.

According to Lemma 12 the distance between any two columns of C’ is at
least 12. It follows from Lemma 4 that d(C') > G).12 — 252, which is a
contradiction. Therefore Res(C,z = 0,y = 1) contains at most 5 rows of
weight 0 or 1. O

Lemma 14 Let C be a (27,8,2,3) superimposed code. Then do = 14,

Proof. Let x and y be two columns of C for which d(z,y) = d2. It follows
from Lemma 13 that the length of each of the codes Res(C,z = 0,y = 1) and
Res(C,z = 1,y = 0) is at least 7, hence dy > 14. According to Lemma 4
ds < 15. Consequently one of this residual codes is of length 7 and is equivalent
to the code Cg of Lemma 10. Therefore d(C) < 429. It follows from Corollary
5 that dg < 45%—;. But d3 is an even number, hence d3 < 44. Consequently
dg =iy

(]
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Theorem 15 There is no (27,8,2,3) superimposed code.

Proof. Let C be a (27,8,2,3) superimposed code. It follows from Lemma 14
that there exist two columns z and y such that d(z,y) = 14. Hence the residual
codes Res(C,z = 0,y = 1) and Res(C,z = 1,y = 0) are equivalent to the code
Cs of Lemma 10. We can write C as follows:

Ty
01

2 r.8,1,2) SIC
01
10

: NG B2 ST
10
00

2 M rows
00
1F

13 — M rows

i

Using a computer program we obtained that there are exactly 30 inequiva-
lent possibilities for the first 14 rows of C. Res(C,z = 0) is an (M+17,7,2,2)
SIC. According to Lemma 8 M > 7. C is a (27,8,2,3) SIC, hence M < 12.

Using a computer program we constructed the missing part column by col-
umnn, checking at each step the condition of Lemma 14, the superimposed code
property and the sorted last 13 rows property.

It turned out that the extension to a (27,8,2,3) superimposed code is im-
possible. Therefore there is no (27,8, 2, 3) superimposed code. J

Theorem 16 The irivial (28,8,2,3) superimposed code is optimal.
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Extendability of linear codes over [,

TATSUYA MARUTA maruta@mi.s.osakafu-u.ac.jp
Department of Mathematics and Information Sciences,
Osaka Prefecture University, Sakai, Osaka 599-8531, JAPAN

Abstract. For an [n,k,d], code C, we define a mapping we from PG(k — 1,q) to
the set of weights of C via a generator matrix of C. We give a geometric aspect
derived from we to investigate the extendability of linear codes. We survey known
extension theorems and some recent results.

1 Introduction

Let Fy denote the vector space of n-tuples over Fy, the field of ¢ elements. A
linear code C of length n, dimension k£ and minimum (Hamming) distance d over
F, is referred to as an [n, k,d], code. The weight of a vector @ € Fy, denoted
by wt(x), is the number of nonzero coordinate positions in . The weight
distribution of C is the list of numbers A; which is the number of codewords
of C with weight i. The weight distribution with (Ag, Ag,...) = (1, @,...) is
also expressed as 0'd*---. We only consider non-degenerate codes having no
coordinate which is identically zero.

For an [n, k, d], code C with a generator matrix G, C is called (1, s)-extendable
(to C') if there exist [ vectors hy,...,H € [Ff; such that the extended matrix
[G,hT,- -, hT] generates an [n+ 1, k,d + 5], code C' ([7]). Then C’ is called an
(1, 5)-extension of C. A (1,1)-extendable code is simply called extendable. The
following is well-known.

Theorem 1.1. [1] Every [n, k,d]2 code with d odd is extendable.

As for the (I, s)-extendability, the next theorem is known as ‘Construction
X',

Theorem 1.2. (1] Let C and Co be an [n,k,d]q code and an [n, ko, dolq code,
respectively, such that C D Cy and d < do. If there exists an [l,k — ko,d']q code
C!, then C is (1, s)-extendable, where s = min{d', do — d}.

Proof. We give an elementary proof using generator matrices. Take a generator
matrix G of C with two submatrices Gy and G so that Gy consisting of the first
ko rows of G is a generator matrix of Cy and that the remaining k — ko rows of
G form G;. Let G’ be a generator matrix of C’. Then, the matrix [ go (C;f)’ ]
1
generates an ([, s)-extension of C, where O is the zero matrix. O
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For example, every [n, k, d]p code with odd d contains an [n, k — 1, dp]s code
with dy > d as a subcode. It might be possible to find a suitable subcode Cgy
of C when C is a BCH code, but It is not easy to find such a subcode for an
arbitrary linear code C in general. We sometimes need to know the minimum [
so that C is (I, 1)-extendable.

Problem 1. Find easily checkable conditions to see whether a given [n, k, d],
code is (I, 1)-extendable or not.

The aim of this paper is to give a geometric aspect to investigate the (I, 1)-
extendability of linear codes and survey known extension theorems with some
applications mainly for [ = 1.

2 A geometric approach

We assume that k > 3, see [9] for k = 1,2. Let C be an [n, k,d], code with a
generator matrix G = [g;;] = [g1,- -+ ,gx]*. Put & =PG(k—1,q), the projective
space of dimension k — 1 over [F,. We consider the mapping we from X to
{i | Ai > 0}, the set of weights of C. For P = P(py,...,px) € X we define the
weight of P with respect to C, denoted by we(P), as

k k
we(P) = {5 | Y gipi # 0} = wt(>_ pigs)-
=1 =1

Let Fy = {P € £ | we(P) = d}. Recall that a hyperplane H of ¥ is defined
by a non-zero vector h = (hg,...,hg—1) € IF;‘; as H = {P = P(pg,...;Pr=1) €
Y | hopo + -+ + hp—1pr—1 = 0}. h is called the defining vector of H.

Lemma 2.1. C is extendable if and only if there exists a hyperplane H of ¥
such that F4NH = 0. Moreover, the extended matriz of G by adding the defining
vector of H as a column generates an extension of C.

Proof. For an [n, k,d], code C with a generator matrix G, there exists a vector
T 1 O IO = Ff} such that [G, hT] generates an [n + 1,k,d + 1]q code if

and only if Ef;& hipi # 0 holds for all P = P(py,...,pr-1) € Fy. Equivalently,
there exists a hyperplane H with defining vector h such that Fy;nH =(. O

The above lemma can be easily generalized to the (I, 1)-extendability.

Theorem 2.2. C is (l,1)-extendable if and only if there exist | hyperplanes
Hy,...,H; of ¥ such that Fyn HyN---N H; = 0. Equivalently, there exists a
(k—1—1)-flat II with F;NTI = 0.
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Lemma 2.3. [3] For two linearly independent vectors ay, az € Fy, it holds that

Z wt(ai + May) +wt(az) =0 (mod g).
relF,

As a consequence of Lemma 2.3, we get the following.

Lemma 2.4. For a line L = {Po, Py, , P;} in X, it holds that

Z we(P) =0 (mod q).

Now, let

Fo = {PeX|we(P)=0 (modaq)},
Fy = {PeXZ|we(P)=d (modq)}, F= ¥\ Fy.

The mapping we is trivial if F = (. For example, w¢ is trivial if C attains
the Griesmer bound and if ¢|d when g is prime [17]. To avoid such cases we
assume that ged(d, ¢) = 1. Then we have Fy C F. If Fy contains a line L of &,
then we have d = 0 (mod ¢) by Lemma 2.4, a contradiction. Hence we get the
following.

Lemma 2.5. F forms a blocking set with respect to lines in X if ged(d, gl=1.

Most of the known extension theorems presented in the next section can be
proved by showing that F contains a hyperplane of X.

3 Extension theorems and their applications

A g-ary linear code C is w-weight (mod q) if there exists a w-set W = {i1,..., 4w}
C Zy = {0,1,...,q—1} such that A; > 0 implies i = 7; (mod q) for somei; € W.
The condition ‘d is odd’ in Theorem 1.1 would be replaced by ‘ged(d,q) = 1’
for general g. But this is not enough for ¢ > 2. In this section, we assume that
C is an [n, k,d], code with k > 3 and ged(d, q) = 1. As a solution of Problem
1, Hill & Lizak showed the following for 2-weight (mod g) codes.

Theorem 3.1. [3],[4] Every [n, k,d], code with ged(d, q) = 1 whose weights (i's
such that A; > 0) are congruent to 0 or d (mod q) is extendable.

Most of the cases one can apply Theorem 3.1 for ¢ > 3 are when d = —1
(mod gq).

Corollary 3.2. Every [n, k,d], code with d = —1 (mod ¢) whose weights are
congruent to 0 or —1 (mod gq) is extendable.
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The following is the first extension theorem for 3-weight (mod q) codes.

Theorem 3.3. [11] Bvery [n, k, d], code with odd g > 5, d = —2 (mod q) whose
weights are congruent to 0, —1 or —2 (mod q) is extendable.

Throughout this section, we define the diversity of C as the pair (®g, 1)
with

1
By = |Fo| = — Z A, @1 =|F\FR|=— > A
QI'I'. i>0 i#0.d (mod gq)

Theorem 3.4. (8] Every [n, k,d], code with ged(d,q) = 1 is extendable if

®; < ¢"(s(g) —q—1)/(a~
where s(q) is the smallest size of a nontrivial blocking set in PG(2,q).

Theorem 3.5. [12] Let C be an [n, k, d]3 code with diversity (®p, 1), ged(3,d) =
1, k> 3. Then C is extendable if one of the following conditions holds:

(1) ®o=0r_3. (2) D1 =0, (3) Bo+ P < p_o+372,

(4) ®o+ D1 > G0 +2-3"2,  (5) 20¢ + D) < 205,

where 0; = (3111 — 1) /2.

Theorem 3.6. [12] Let C be an [n,k,d]3 code with diversity (®o,®1), d = 1
(mod 3), k > 3. Then C is (2,2)-extendable if

(@0, B1) € {(Bk-2,0), (B5-3,2 - 3°7%), (B2 + 3", 3572},
The condition (3) of Theorem 3.5 is generalized for other g as follows.

Theorem 3.7. [10] Let C be an [n,k,d), code with ged(d,q) = 1. ¢ = p", p
prime. Then C is extendable if

> A<d(2q-1)
iZd(mod p)

and if one of the following conditions holds:
(1) h =1 (i.e. q is prime),
(2) q =4
(3) h= =2 withn =0 (mod p), d = —1 (mod p),
(4) h =2 withn=d =1 (mod p) and A; = 0 for all i = d (mod p) with
i Zn (mod gq).

Theorem 3.7 for ¢ = 4 was first found by Simonis [16]. When h > 3, the
following result is known.
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Theorem 3.8. [10] Let C be an [n.k,d], code with gcd(d,q) = 1, ¢ = p*, p
prime, h > 3. Then C is extendable if

0 A gFnl(og i),
iZd(mod ph—1)

Theorem 3.5 (except for the condition (4)) can be generalized as follows.

Theorem 3.9. [14] Let C be an [n, k,d],; code with diversity (®o, ®1), k > 3,
= —1 (mod q), q odd, whose weights are congruent to 0 or £1 (mod q). Then
C is extendable if one of the following conditions holds:
{1) Dy = Bk‘—-3r (2) ?y = 0:
(3) ®o+ ®1 > b2+ ag" 2, (4) a®o+ P < afy_s,

where 0; = (¢! —1)/(¢ — 1), a = 6,/2.

When (®q, ®1) is none of the types in Theorem 3.9(1), we need more infor-
mation about C.

Theorem 3.10. [14] Let C be an [n, k,d],; code with diversity (®o, ®1), k > 3,
d = —1 (mod q), g odd, whose weights are congruent to 0 or =1 (mod g). Then
C is not extendable if (Pg, 1) satisfies none of the criteria of Theorem 3.9 and

if

B 2 k=3
W e (3.1)
d<i=d (mod q)

As for even g, the following theorem can be proved.

Theorem 3.11. [14] Let C be an [n, k.d], code with q even, d = —1 (mod ¢),
whose weights are congruent to 0 or 1 (mod q), k > 3. Then C is extendable.

Extension theorems can be applied to find new codes from old ones or
to prove the nonexistence of codes with certain parameters. For example, we
demonstrate the nonexistence of [245, 5, 183]4 codes. For a putative [245, 5, 183]4
code Cy, considering the residual codes (see Theorem 2.7.1 in [6]) yields that
A; = 0forall i ¢ {0,183,184,196, 228,244, 245}. Applying Theorem 3.11, C;
is extendable, which contradicts that a [246, 5, 184]4 code does not exist. See
also [15] for the extendability of quaternary linear codes.

Next, we give a typical example one can apply Theorems 3.10 and 3.11. Let
Cz be a [g+1,3,¢— 1], code, which is MDS (see [6]) and has the unique weight
distribution _ .

0} (g — 1)@+Val@-1/200*~1(4 4 1ya(e-1)%/2

So, the weights of C» are congruent to 0 or +1 (mod ¢) and its diversity (61, ¢(q—
1)/2) satisfies none of the conditions of Theorem 3.9. When ¢ is odd, Cs is not
extendable by Theorem 3.10 since the left hand side of (3.1) is 0. This fact is
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known as the completeness of (¢ + 1)-arcs in PG(2,q) for ¢ odd, see [5]. On the
other hand, it is also known that Cs is extendable when ¢ is even, as guaranteed
by Theorem 3.11. The inequality (3.1) could be slightly improved according to
diversities just as for the case when ¢ = 3 ([12],[13]).

As for other types of 3-weight (mod ¢) codes, Cheon and Maruta recently
proved the following.

Theorem 3.12. [2] Let C be an [n, k,d], code with even ¢ > 4, k = 3, whose
weights are congruent to 0, —1 or —2 (mod q) and d = —1 (mod gq). ThenC is
extendable.

Theorem 3.13. [2] Let C be an [n,k,d], code with odd q > 5, k > 3, whose
weights are congruent to 0, —1 or —2 (mod q) and d = —1 (mod q). ThenC 1s
extendable if (®o, ®1) # ((1)g"*™> + O3, (Digt2).

Problem 2. Find a new extension theorem for 4-weight (mod g) codes.
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Doubles of Hadamard 2-(15,7,3) designs
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Abstract. Nonisomorphic 2-(15.7,6) designs which are doubles of Hadamard 2-
(15,7,3) designs are constructed. The automorphism groups of the Hadamard de-
signs are considered to reduce the number of isomorphic ones among the constructed
doubles. Canonical form of the incidence matrices is used to reject isomorphic de-
signs and to establish the order of their automorphism groups. There are 5 non
isomorphic 2-(15,7.3) designs 1, Ha, Hs, Hy and Hs. All doubles of Hy and H; are
classified for i = 1,2,3,4 and 5.

1 Introduction

Basic definitions. For the basic concepts and notations concerning com-
binatorial designs refer, for instance, to [1], [2], [14].

Let P = {P;};_, be a finite set of points, and B = {B; };fﬂ a finite collection
of k-element subsets of P, called blocks. D = (P, B) is a design with parameters
t-(v,k,A) if any t-subset of P is contained in exactly A blocks of B. Any point
P; € P occurs in the same number r of blocks of B. If v = b the design is
symmetric and 7 = k too. A symmetric 2-(4m — 1,2m — 1,m — 1) design is
called a Hadamard 2-design.

Two designs Dy and Dy are isomorphic (D1 ~ D) if there exists a one-to-
one correspondence between the point and block sets of the first design and the
point and block sets of the second design, and if this one-to-one correspondence
does not change the incidence. Isomorphic designs are indistinguishable by
algebraical means. In some cases, however, it is very important to distinguish
isomorphic, but different designs. We then speak about labelled designs (see for
instance [3]) and mean that the points are ordered in some way.

An automorphism is an isomorphism of the design to itself. The set of all
automorphisms of a design forms a group called its full group of automorphisms.
Each subgroup of this group is a group of automorphisms of the design.

Each 2-(v, k, A) design determines the existence of 2-(v, k, 2)) designs. These
2-(v, k, 2X) deﬂlgns are called quasidoubles of 2-(v, k, \) designs. A quasidouble
2-(v, k,2X) design is reducible into two 2-(v, k, \) designs if there is a partition
of its blocks into two subcollections each of which forms a 2-(v, k, \) design. A
reducible quasidouble is called a double.

We denote the set {1,2,...,v} by N, the symmetric group of all permuta-
tions of Ny by Sy, the full automorphism group of a design D by Aut(D), and
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a double design which is reducible to the designs Dy and D3 by [D; || Dal.

Incidence matriz of a labeled 2-(v,k,\) design is a (0, 1) matrix with v
rows and b columns, where the element of the i-th row (i € N,) and j-th
column (j € Np) is 1 if the i-th point of P occurs in the j-th block of B and 0
otherwise. The design is completely determined by its incidence matrix. The
incidence matrices of two isomorphic designs are equivalent.

Let us denote the incidence matrix of a design D by D. Define standard
lexicographic order relations on the rows and columns of D. We denote by D"
a column-sorted matrix obtained from D by sorting the columns in decreasing
order. Define a standard lexicographic order on the matrices considering each
matrix as an ordered v-tuple of the v rows. Let D™** = max{pD® : p € Sy}
(corresponds to the notation romim [13] about the incidence matrix of a graph).
Dmaz is a canonical form of the incidence matrix D.

Other notations. Let D = (P,B) be a 2 — (v,k,A) design, G € Sy and
the permutation o = (01,02, ...,0y) € G.

a P;‘ e Pg“

oD = (¢P,0B) : B={P,};_, e B& 0B = {F, 1k, eaB.

aglh = Dy & Dy ~ Ds.

PC = {oP : 0 € G} (orbit of P with respect to G).

Gp = {o:0 € G,oP = P} (stabiliser of the point P with respect to G).

Glirizim} =10 €EG VI € Nm,oP;; = P;;} = 1Gp, form € N, is the
stabiliser of the point set {P;,, Piy, ..., Pi,, } with respect to G.

Hadamard 2-(15,7,3) designs. There are five nonisomorphic 2-(15,7,3)
designs. We denote them by Hy, H, ..., Hy such that Vi € Ny : H* > HOT.

The full automorphism groups of Hy, Hz, H3, Hy and Hs are of orders 20160,
576, 96, 168 and 168 respectively. We use automorphisms and point orbits of
these groups to decrease the number of constructed isomorphic designs. The
number of isomorphic but distinguished 2-(15,7,3) designs is
151550 ) 7mrtpy = 31524292800

The present work. Subject of the present work are 2-(15,7,6) designs,
which are reducible into two Hadamard 2-(15,7,3) designs H;j and Hi. 1 '=
1,2,...,5. Their block collection is obtained as a union of the block collections
of H; and pH;, Yo € S,. The action of Aut(H;) and Aut(H;) is considered
and doubles are not constructed for part of the permutations of Sy, because it
is shown that they lead to isomorphic doubles.

Transformation of matrices in some canonical form is used by many authors
for the rejection of equivalent solutions (see for instance (4], [6] and [7]). In the
present work classification of the obtained designs is made by the help of D™,

There exist at least 57810 nonisomorphic 2-(15,7,6) designs [12]. This lower
bound is improved in [10] and [11], where all 2-(15,7,6) designs with automor-
phisms of prime odd orders were constructed, their number was determined to
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be 92 323 and 12 786 of them were found to be reducible. Here a classification
of all 2-(15,7,6) designs reducible into Hy and H;, i = 1,2,3,4,5 is presented.
The results coincide with those in [10] and [11] and improve the lower bound
to 1566454. A further classification of all reducible 2-(15,7,6) designs is also of
interest for setting higher lower bounds on the number of Hadamard designs of
greater parameters [8], [9].

2 Doubles of 2-(15,7,3) designs

Preliminaries. Consider a 2-(15,7,6) design D = [D' || D"]. Without loss of
generality we can assume that the first 15 columns of the incidence matrix D
form a sub-matrix equal to D’ and the next 15 columns form D”. In this case
we will write D = D’ || D" instead of [D’|| D"].

The number of doubles H; || pH;, i =1,...,5, is greater than 4,7.10'2, Our
purpose is to construct exactly one representative of each isomorphism class.
That is why it is very important to show which permutations applied to H;
lead to isomorphic designs and skip them.

The construction algorithm is based on the next simple proposition.

Proposition 1 Let D' and D" be two 2— (v, k, \) designs and let o and o be
automorphisms of D' and D" respectively. Then for all permutations ¢ € S, the
double designs [D' || ¢D"], [D' || ¢a”D"] and , [D' || &' D"] are isomorphic.

Proof. Yo! € Aut(D') = [D' | dpD"] ~a'~'[D' || /D" = [D' || ¢D"] and
Yo/ € Aut(D") = [D' || pa"D"] = [D' || oD"].

Corolary 1 If the double design (D' || pD"] is already constructed, then all
permutations in the set Aut(D")o ) @Aut(D")\ {¢} can be omitted.

We implement that with a back-track search algorithm.

Let the last considered permutation be ¢ = (1, P, ..., (py). The next lexi-
cographically greater than it permutation @ = (31,2, ...,10,) is formed in the
following way:

We look for the greatest m € Ny [ J{0}, such that

e if i € Ny, then @i = 1¥; and Om+1 < Umi1, Pmi1 € Nv\{‘Plu‘FE, cery ‘Pm}-

e The number ¥, 1 is taken from the set N/, that contains a unique repre-
sentative of each of the orbits of the permutation group Aut(D"){p, vy o3

o If j € Ny, and ¢ > ¢y, 41 then points PJ’ and P’,,41 should not be in one
orbit with respect to the stabilizer Aut(D")(;, ;13-
The isomorphism test is applied when a new double design D is constructed

by the help of the canonical D™ form of its incidence matrix. The algorithm
finding D™ gives as additional effect the full automorphism group of D.
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3 Classification results

The number of nonisomorphic reducible 2-(15,7,6) designs from the five cases
Hy || Hi, i € N5 is 1566454. Their classification with respect to the order of
the automorphism groups is presented in Table 1.

A double design can have automorphisms of order 2 and automorphisms
which preserve the two constituent designs (see for instance [5]). That is why
among the constructed designs are all reducible 2-(15,7,6) designs with auto-
morphisms of order 5. Their number is 6 and is the same as in [10].

Table 1: Order of the automorphism group of Hy || H;, i =1,2,3,4,5.

| Aut. gr. | 1 2 3 4 6 7 8 9

Designs | 1559007 | 5012 | 990 | 173 | 119 | 15 860 1

| Aut. gr. | 10 12| td [ 6 [ 16 2] 24 | 92

Designs 4 32 4 61 1 5 48 6
[ Aut. gr. | 36 42 | 48 | 56 | 64 | 96 | 120 | 168

Designs 1 2 14 |3 6 3 1 2

| Aut. gr. | 192 288 | 336 | 384 | 576 | 2048 | 2688 | 20160

Designs 4 1 1 4 1 1 1 1
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Abstract. In this paper, we consider self-dual codes over the finite ring Zp- of
integer modulo p° for any prime p and for an integer s = 4. We start with any
self-dual code in lower modulo and give an necessary and sufficient condition for
the self-duality of induced codes. Then we can give an inductive algorithm for
construction of all self-dual codes and the mass formula in case of odd prime p.

1 Introduction

Since the discovery [4] of a relationship between non-linear binary codes and
linear quaternary codes, there has been enormous interest in codes over the ring
Zm of integers modulo m and finite rings in general. We continue the ongoing
investigations on the family of self-dual codes, from which many of the best
known codes come from. By applying the Chinese Remainder Theorem [2] to
self-dual codes over Zy,, it suffices to classify codes over integers modulo prime
POWerS.

We begin by giving the necessary definitions and notions. A code of length
n over a finite ring R is a R-submodule of R". Elements of codes are called

codewords, Two codewords T = (21, ...,%x) and ¥ = (¥1,. .., Yn) are orthogonal
if their Euclidean inner product -7 = Y, 2y is zero. Associated to a code

C is a generator matrix, whose rows span C and the number of generators is
minimal.

The dual C* of a code C over a ring R consists of all elements of R" which
are orthogonal to every codeword in C. A code C is said to be self-dual (resp.
self-orthogonal) if C = C*+ (resp. C C CH).
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2 Condition for self-duality of codes over Z,

Every code C of length n over Zys has a generator matrix which, after a suitable
permutation of coordinates, can be written as

T Ly An Ap ... A A
pTh 0 pl, 'P_A‘zz s ipde, g Wipia,
g="1 P T S0 O pR R S iR A
Psths 0 0 0 CRCAD ps_lfks ps_lAss

where Iy, is the k; X k; identity matrix, and the other matrices 4;;’s (1 <i <
j < s) are considered modulo p’~**!. When we denote the mverse matrix of
[Ti)iz1... o401 With an additional Tyry = (00 ... 0 Jx,,,) by [T7]i_ , We

¥, t
have CL = [ i 1Ts+2—-i]£=1,..,,s'
condition for the self-duality of C is k1 = key1, --. ki = ks 419, ... and C is

self-orthogonal. And we have following proposition and lemma.

341
Thus we see that a necessary and sufﬁment

Proposition 1 LetC = [ = IT}J o . be a code over Zps withT; = (0 ... 0 I,

Aji... Ais). Then C is a self-dual code of ond only it by ="katiis for i =
1,...,8+ 1 and the following holds:

TiT; =0 mod p* =t I+2, (1)

for any integers i and j such that 1 <i<j<sandi+j<s+1.

Lemma 1 When the condition (1) in Proposition 2.1 holds, the rank of k; X
(.I\:] e D ﬁmg) matriz (A»,.j‘¢+1__iAi5+Q_.f 3 AT.;J (1 = 4 %) 18 equal to kf.
Especially when i = 1, we have that Ay is invertible.

Proof. We rew rlte the condition (1) uainrf A’s, and we have two modulo p condi-

tions Iy, = Z A”A” and A;;_1 = Z A“Aﬂ fori < i By recursive sub-
=i =

stitution, we have A;;_; = Z AT-_;A}I; (EIA;-J), and Iy, = (Aiss1—i +-- Ais)CP
l=s+1—i
(3C;). This completes the proof. O
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3 Codes over Z, from a code over Z-:

Now we consider the code C’ of length n = ky + kg + « -+ + ksy1 over Zys—2
reduced from a self-dual code C as

T]: Ikl Al1 Aiz 75 A"19—2 is-—l :1.5

15 0 Iy, Az ... Az Azs—1 2s

ol pT:; =5 0 0 p-{k:; Sy PA3.5-2 PABS—-I pASs
pS_ST.;—l 0 0 0 s ps-'sfkﬁq psnsAsﬁls—l ps_aA;—ls

To see the self-duality condition, we substitute s — 2 for s, i — 2 and j — 2 for
;; } for Ty in (1). Then we have T1T}{ = 0
mod p*~%, T1T; =0 mod p*~, and TiT} =0 mod p=ItR D == g <
s —1). The third conditions are the completely same as that for C, and the
first and the second conditions hold as the corresponding equations for C are
TiT} =0 (mod p*~It1) for any j < s. Since we also have k1 + k2 = Kst1 +
ks, k3 = ks_1,..., we see that C' is again self-dual.

Conversely we start with a self-dual code C’ of length n =k} + ks + ... +
ks—1+kj q over Zps—2. At first, we divide the part of generation vectors modulo
p of dimension kj} into two parts of dimension k; and ks, and we also divide last

! (= ks + kg1 = k1 + k2) columns into two parts, like as described above.
We should notice that different matrix at (1,2)-entry might induce a different
code over Zps.

Before starting the construction of C over Zps, we need an important per-
mutation operation. From Lemma 1, we see that (ks + ksi1)-size square matrix

(3 <)i and j respectively, and {

i !
( Al’"] }e ) (mod p) is invertible. So by some column permutation, we
25—1 25

can suppose that A}, (mod p) is invertible. Moreover we need to make some
kind of modification by adding k1 x k; matrix times T} to T} since Ay;s’ are to
be considered in mod p' not in mod p'~! in C.

Now we denote the resulted matrices by Ay; (i = 2,...,5 —2), and for such
a given self-dual code C" over Z,s—2 in the above form, we will construct the
code C by multiplying p to p'=27; (i = 2,...,5— 1) and adding a new p*~'T; in
the bottom. All A;;’s except for A5 (i=1,...,8— 1) and Aj4_; are considered
in the same modulo as in C’. For any 4, A;s is defined modulo p*~*1 and Ay
is modulo p*~!. Since A’ is defined modulo p*~* for i > 2, A7, is modulo pE
and A, ; is modulo p*~* in €', we need following extension

Ty =T} +p*2U; +p*= W and Ti=T +p5W; 2<i<s—1) (2)

srheen I = (0o, AL o ot e Sl e e (0000480
(:=2,...,8—1) for some modulo p matrices AW’s and AP,
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We have remaining two types of conditions in (1) for the self-duality of
C'. One is T{T; = 0 mod p***! under the codition T{T/* = 0 mod p**
for 2 < 4, which becomes T{T!* + p* U0 T + p*'TiU! = 0 mod p*~i*! by
substituting the right-hand sides of (2) and taking the assumption that 4 < s
and 2s —i—2=s5—i+14+(s—3)inmind. f 3<i, thens—i+1< s—2 and
the equation is T{I}"—f—p ‘fAISAT(-:)t =0 mod p*~*H, and we have AE;N (3<1)
is uniquely determined as A(.m = —A“l(%vT{T"') mod p. If i = s, then
ACs=de Ly mod p. If i =2, then TIT# + p*~2(A) AL, + A AL +
AlaAm ) =0 mod p* . Thus we have that A(QS is also uniquely determined

as AL = —ap (TZT1 T3+ AG) A5, + AT 48,) mod pfor any A) | and

A(;;). The other condition can be rewritten as 0 = T{T}! +p‘;‘2T’ Ut +p3_1ﬁﬁ
mod p*, with X = X + X'. This includes the condition for A1 +1 and Aﬁ,}, and
using them we have following essential condition

BT 92 (A 1,455’_*1 $ A AU Lt AP =0 modpt. 3)
From now on, we cor consider the equation above only in odd p case. A;,A4] (l}t =

11

(-—;_—;T"T’f + A IA{ )t ) mod p is given by reducing (3) modulo p*~1. We

put (ze) = A15A13 and put (d;;) the right-hand side of the equation for any
k1 x ko matrix A; :.} - Then the necessary and sufficient condition for z;; are

zj = dijj — 2 mod p (i < j), and a5 = 2(1,, For any ;02’“1”” 1) number
of (wj;) satisfying above, A(u) is uniquely detemined by A7 .'L‘ij) (mod p).

Once A( " s derermmed the coud1t10n (3) is just equivalent to A;sf-’i(z)r -

=g (r‘gT1 T+ Ays— 1A§H}_fl+ rilsA( )t ) mod p. We also put (yi;) = 1*’-1115141{1?r
and put (fj;) the right-hand side of the equation. Then the necessary and
sufficient condition for y;; are y;i = fij — %i; mod p (i < j), and yi; = ‘]:5 fii-
For auy p2F1k1=1) pumber of (yij) satisfying this, A" is uniquely detemined
by Au- (yij) (mod p). Thus we have self-dual codes over Z,s and the following
lemma.

Lemma 2 The number of self-dual codes over Zys of type (ki,ka;. .., ksi1)
induced from a self-dual code over Ziys—2 of type (k1 + ko, ks, ... ks + key1) is

plk1 + e, k) x pI I K plikathia=D) — p(y 4y, oy pfr(n—hamho=),

where p(n, k) = Hj=1(i’3ﬂ — Y/ Hk_

' (0F — pP7Y), the number of subspace of
dimension k of a vector space over Eep = Zy of dimension n.
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!

Proof. The number of possible partitions [ } in C' is given by considering

1
T;
the map C’ ey p*~1¢" — 0. The kernel is < pTy, pTy, pT3, WP > and
noticing that the submodule is to be considered in < T7, pT5, P T
we should count the multiple of the number of partitions in the vector space
p*~1C’ and a kind of modifications of T{ by Tj,..., T¢_;. The number of par-
titions in the vector space is just p(ki + ko, k1) from the lemma3.2 in [5]. As
the modifications are done by adding any k; x k; matrix times T} to T}, the

number of such modification is just equal to pF17Fs x pk1>xks ... x phtxRaa —
pht Yoaa by — pra(n—2(k1tka)) O
When we calculate the product of p(n;, ki), we have following lemma.
Lemma 3
- [Tz (' — 1)

plnsy k) st = ith g Rk o b (= L)
fl;ll i=1 Hj'"f_q(fﬂ =1

Now we have the following formulae.

Theorem 1 Let Nys(n;ki, ..., ksy1) be the number of self-dual codes over Zys
of type (ki, ..., ksy1) for an odd prime p and for an integer s (1 < s). And put
ni=ki+-+k fori=1,.., [%], and put my = Y g miln — nga — 1)

1. If s(= 2u) even, then

Nu—len—2-d 4
‘?\rps(n;kla "':ks-{-l) e Dn Ty 1_[1'-=1 (p ) ‘ m.u_%ﬂ“(nu—l}

5

where Doy = (p%_”'“ + (:pl)i) (p% - (‘Tf)j) and d = 0 if n is
even, and Dy, =0 =1 if n is odd.

2. If s(=2u+ 1) odd, then n must be even and

n 2] 4
=I5\ 2 . Hf_lzu—l(pn_t e 1) :
Nps(n; ki, ooy K1) = (1+ (—") ) e = o
ot AP E[l I, IT5 (P — 1)

Proof. ;From the lemma 2 and the lemma 3,

Nps (n; k1, ooy ks 1) = Npo—2 (n;ng, k3, ..y ks—1,m2)p(n2, kg)pnt(“—nz—l)
Mu (, g =
N 2(”’; ?I'«u,ku—f—lanu) H*ZIFP - 1) 3 s
2 U k; ;
i=1 1_[;':1,(119J = 1)
et =1 . g1
| H;"!:I (p? —1)

(if s is even)

I\Tp-’(n; Thyyy ku—i—hkl&l:nu) (if s is Odd)
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If s is even, then from Theorem 3.5 in [1]

?I"-_u—l n—2i—4§ 0
sz (n§ Ty ku-{—l: nu) == Dn,nu Ht—l nE}]J p,‘- = 1) )p§nu(nu—1)’
y b

and we have the resulted formula. If s is odd, then from Theorem 4.1 in [5]

pri (?H Ty k11+1 ) k'u+1 s nu)

n 21 y
LISy —_ H’:‘:*l(pn—z ] 1)
3 l + (_) pi_i + 1) I_Ou 1 £ pnﬂ{n‘_““ﬂ'l_l)‘
( p ) =1 ( [T - 1)
and we have the resulted formula. J

4 Conclusions

We suceeded to give a formula for the number of self-dual codes of a given type
for an odd prime p and for any integers s > 4. In order to obtain the mass
formula for the self-dual codes of length n, we have only to add up the formulae
in theorem 1. Since we already have the mass formula for each Zy, Zy2, and
Zys [1, 3, 5], the mass formula problem for any odd prime is completely solved.

In case of p = 2, Gaborit [3] had the two types of mass formula for the
doubly even binary code and for type II quarternary code. Qur construction
algorithm is similarly applied to this case, but somehow complicated because
we need douby even property. We are now under investigating the mass formula
for codes over Zys.
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Abstract. In this paper it is presented the lossless PPM (Prediction by Partial
string Matching) algorithm and it is studied the way the alphabet can be extended
for the PPM encoding so it will allow the use of symbols which are not present in the
alphabet at the beginning of the encoding phase. The extended alphabet can contain
symbols with the size larger than a byte. The paper presents the manner to extend
the alphabet and the changes that need to be made to the PPM algorithm in order
to use the extended alphabet. Three ways to extend the alphabet are proposed:
manual, through a run over the text (executed before the encoding phase), and
specialized (adapted during the evolution of the algorithm).

1 Introduction

Let us presume that a file contains a string of bytes (characters), which appears
many times in the file. PPM must encode independently every byte from the
string with a probability (which is preferable to have large value). Every time
the character was not found in the past (the string preceding the current con-
text), an escape symbol is send to decrease the level, leading to increment the
information from the compressed data flow. The alphabet used by the PPM
algorithm has 256 characters (all the characters that can be formed using 8
bits). If the regular alphabet is extended adding a new symbol (the string men-
tioned above) the algorithm could perform a good compression. An extended
alphabet is an enriched known alphabet with a series of symbols that will not
be presented in the alphabet offered to the decoder. The symbols that extend
the alphabet need to be obtained in the decoding phase through different meth-
ods, so while decoding the alphabet will be enriched with new symbols. In the
coding phase, the symbols that will extend the alphabet are known, but at
the decoding these will be deduced gradually. Three solutions to extend the
alphabet are considered:
1. manual adding of the words by the user;

9. search of the words that get repeated using a certain criterion (length,
number of appearances, etc.) in a first step by running through the entire
text and then adding these words to the alphabet;

3. adaptive search of the text words during the algorithm evolution.
In this paper, we consider that internal words are present at the decoding

phase because they are internally generated, and they can be reproduced at the
decoding.
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2 The manual adding of text words

From the three options, this one is the simplest because it is based on the user
experience and has no need for additional processing. For adding of a text
word from the manual point of view, it is necessary to define all the parameters
involved: length, number of appearances, presence at the decoding, and gain.
The length of the word to be added is known. The number of appearances and
the presence at the decoding must be set up manually. The set up number of
appearances and the length will determine the gain of the text word. In this
way, we can set manually the significance of the word. Implicitly, the manual
added words would be marked as external.

3 The search of words by running through the text

The suggested solution in this paper is based on the suffix vector. This contains
all the suffixes from a string, lexicographically ordered. For example, if we
consider the abracadabra string, then the suffixes of this string will be (see
Figure 1):

Suffix Position Suffix Position
abracadabra 0 a 10
bracadabra 1 abra it
racadabra 2 abracadabra 0
acadabra 3 acadabra 3

o } o br
b {sorting = (202 2

dabra 6 bracadabra It

abra 7 cadabra 4

bra 8 dabra 6

ra 9 ra 9
a 10 racadabra 2

Fig. 1. The suffix vector.

To obtain a suffix vector we need to extract the suffixes and sort them. It
can be noticed that in the suffix vector the side elements can have identical
characters, We aim only the strings that start with the first character from
the left of the suffix and are continued through the right. Based on this we
can determine strings that are repeated in the text. These characters can make
up words, which can be used to extend the alphabet used at the encoding In
the suffix vector, we can find many words that are repeated but only few of
them will be of some interest. To find out which words are significant we will
need to induce some restrictions. To do this we will attach to every word a
gain with which we will determine its significance. The restrictions will be
related to the minimum length, the maximum length, and the minimum gain.
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If a match does not have at least the minimum length then it is treated like it
did not exist. In order to calculate the gain we need to know the length and
the number of appearances. We know the length of the word but finding the
number of appearances is a problem. To solve this problem we need to have
a view only of words that do not overlap. The words that overlap cannot be
compared because an exact delimitation does not appear so we cannot say that
both of them exist at the same time in the compression string, because only one
word can be coded. Knowing the text from where the suffixes are extracted, it
is enough to keep a position vector from where the suffixes begin and a length
vector, which will indicate the accepted lengths for every suffix, which begins
at that position. When we want to sort the suffixes, we compare the suffixes
that start at the specified positions in the position vector. The sorting of the
suffixes will result in an arrangement of the positions in the position vector and
the of length in the length vector (see Figure 2). The length vector, as it will
be shown next, will help to solve the overlapping of words extracted from the
text. The length of a suffix can be at most the maximum set up length. To
keep track of the found words we will create a list, where every record will be
made up of the positions where the word is found and the length of the word.
The number of positions on which the word is situated will give the number of
appearances.

Position | Length Position | Length
0 lo 10 Lio
1 11 0 I?
2 la 0 lo
3 l3 3 l3
4 .'54 f 5 ‘{5
5 s sorting — 8 Is
6 lg 1 I
7 l; 4 I4
8 lg 6 lg
9 ly 9 ly
10 lio 2 lo

Fig. 2. The sorting of suffixes.
A record from the list will look like this (see Figure 3):
[ Position 1 [ Position 2 | [ Position n | Length | -

Fig. 3. A recording from the word list.

Example. We will run through the suffix vector and we will compare, in
this order, pairs of suffixes: a with abra. abra with abracadaebra, ---, dabra
with ra, and ra with racadabra. For every pair of suffixes, we will find identical
characters or not. Every time we find a word, this will be added in the list by
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creating a new record (in the case the word does not exist in the list) or by
adding the position where it was found. We can see that a and abra have only
the a character in common, and abra and abracadabra have the abra string
in common. We can say that a is found in the a & abra suffixes, and in
abracadabra. So the a recording will have three positions. abra is found in abra
and in abracadabra so the abra recording will have two positions. We can see
that the positions from abra can be found in a, because a is part of abra. This
means the shorter strings from the word list that are part of other longer strings
must have at least the positions of the longer strings.

Remark. If two suffixes do not have a character in common, then from that
point there will be no suffixes having characters in common with the suffixes
before that point. This means that portions of the suffix vector can be treated
separately. For example, the suffixes from below do not have any character in
common with the rest of the suffixes (see Figure 4).

Suffix Position
a 10
abra 7
abracadabra 0
acadabra 3
adabra 5

Fig. 4. Suffixes that have at least one character in common.

Because we mentioned above that shorter strings that are part of longer
strings must have at least the positions of the longer strings, we need to find
a practical way to accomplish this. We can see that if between two suffixes on
the pl and p2 positions there is a n length match, then we need to update all
the recordings smaller or equal to n and that are involved in that match. In
order to reduce the number of steps, every time a match is found, and is smaller
than the last record from the list, all the element from the list smaller or equal
to 1 will be moved, and we will store the pmoved position in the list in which
the element has been moved. This means that pmoved will be the end of the
list before the move. From the pmoved position to the end of the list, the p2
position will be added in every record. If the n length match does not exist in
the list, it will be added.

Example. In Figure 4, a and abra have in common a so a will be added
in the list together with positions 10 and 7 because it is a new word and the
list is empty. abra and abracadabra have abra in common so it will be added
the 0 position to the previous recordings, after that abra is added in the list
with 7 and 0 positions because it is a new word. This means that until now
the list contains a and abra. abracadabra and acadabra have in common only
a. Because a has length 1, it is smaller than the last recording (abra) so any
word with length smaller or equal to 1 will be moved to the end of the list. As
a result, the list that contained the recordings (in this order) a, abra now will
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have the recordings abra, a. This means that the last record will be added to
the position where the new a was found, and this is 3 (see Figure 5).

ﬂ RS 10, 7, 0 S abra 7,0
. abra 7,0 a 10:7,.0,.3

Fig. 5. Suffixes that have at least one character in common.

Because we need all the words from the list that have at least one character
in common with analyzed suffixes, we cannot solve the overlapping between
the words until there will be no suffixes that would have a common character
with the ones in the list. This way, we will solve the overlapping each time
there are no characters in common between the two currently analyzed words.
The solving of the overlapping will be handled only inside of a recording from
the list, because it is very demanding the check the positions of every recording
through the comparison with the other recordings. In addition, keeping of some
positions must be settled according to the gain. If there is an overlapping of
the recordings, we cannot calculate the gain. This means that the adopted way
will be to search the word that has a maximum gain and its positions do not
overlap one another but can overlap with other words. After finding this word,
we will mark the positions from the input text where the word is found as being
occupied. After this, we repeat the search algorithm for a new word. In this
manner, the founded words will not overlap. This procedure will repeat until
no word can be found under these conditions.’

4 Adaptive search of the words

The first two methods can be used along with any compression algorithms.
Only the PPM algorithm uses the method described below. To form the words,
we will use the tree, with the help of which the contexts are maintained. The
tree is changed every time we wish to insert a word. The tree has all the past
contexts, if it has not been emptied to save memory, or only a part of them
(from a near past). In the case the inserted word has been preceded by the
same context in the past, the number of appearances is incremented and added
to the actualization list. In the case the PPM context has been spotted as
being followed by the algorithm word 5 times, we can say that in the past
PPM algorithm has been seen 5 times. This means a word discovery can be
made similar to the run through method previously described. Therefore if a
minimum length, a maximum length and a minimum gain are set, some words
created with the tree can be considered.

When a word, which is added in the three, has been seen preceded by a
certain context, the tree is run through, starting from that word preceded by the
context to the root. This means we begin at the node that has the certain word
and we move to his parent, then his grandparent, and so on until we reach the
root. Every time a move is made, the word from the current node is inserted in a
stack and a total_length variable is incremented that holds the length of the word
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added in the stack. If the value of total_length is at least the minimum set length
then the word preceded by that context is considered for further checking. In the
case the gain calculated based on the minimum of total_length and the maximum
set length and based on the number of appearances of the word preceded by
the context is at least the minimum set gain, then the word preceded by the
context is considered for further checking. Next, the words are extracted one
by one from the stack and are concatenated until the stack is empty or until
the maximum length is reached. This way, a word is constructed that may of
may not be added to the alphabet. If the word is not in the alphabet, then it
is inserted. The added word will have a number of appearances equal to zero
and will be marked as being intern so it will be present at decoding.

Normally we are tempted to be less restrictive with the limits imposed on
making of a new word, for it to exist in the alphabet. A word that already exists
in the alphabet has the chance to be used as soon as possible. If the limits are
too restrictive, the process of using a word will be much delayed. The setting of
less restrictive rules will produce the negative effect of congesting the alphabet
because numerous words are in the set limits. Because of this, we must have
a compromise. Because the less restrictive rules allow the words to be used
soon, the problem of the large number of generated words must be solved. The
solution is the periodical cleaning of the alphabet (after a number of bytes).
This way, we will search words that have not been used and are marked as being
intern. The words are unused if the real appearances number (set from inside)
is zero. If a word has been used at least one time in the encoding stage then it
remains in the alphabet, and can no longer be eliminated. This may lead to the
growth of the alphabet. This is why a maximum admitted memory would be set
for the storing of words. If this memory is exceeded, then the extern words are
kept and the intern ones are sorted decreasingly by the gain. Another memory
limit will be set for the reducing of the alphabet. The structure is presented in
Figure 6.

Example. In Figure 6, we considered that the last added word, a, had the
length 1. Therefore, the actualization list will be formed from the nodes with
thick lines. We consider the restrictions: minimum_length = 8, mazimum_length
= 0, and minimum-gain = 6, the gain being computed using the formula length
X length x appearances. We can form 3 words at most because there are 3
thickened nodes besides the root, which cannot participate at the forming of
the word becaunse they do not contain a word. The 3 words will be:

1) The first node that is checked is the thickened one from the level 3. We
insert in a stack all the words from the path that starts at the current analyzed
node and ends at root. In order to do this, we use pointers that indicate the
parent of every node. In the stack, the words will be placed in the following
order: a, a, merge. The total length is 6. We can see that the totallength,
which is 7, is larger than the mininmm length, which is 3. mergeaa was seen 7
times.
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Fig. 6. The adding of the pointer that indicates the parent.

As a result, the gain will be length x length x appearances= 6x 6x7=252 ,
heeanse the minimum between the total length and the maximum length is 6.
We can observe that this gain is bigger than the minimum gain, which is 6. This
means this word has all the characteristics to be used to extend the alphabet.
Next, we extract the elements from the stack and we concatenate them until
we reach the maximum length or the stack is left with no elements. The result
string will be: mergea (was going in Romanian) and not mergeaa, because the
maximum length is 6 (see Figure 7). The word is checked if it already exists in
the alphabet, If it is not present, then it is added.

merge
a =;>‘merge]a.‘a}
a

Fig. 7. The creation of a text word based on the information from the tree.

2) The second node that will be checked is the thickened one from level 2.
We insert the words in the stack in the following order: a, a. The total length
is 2 and it is smaller than the minimum set length, which is 3. This means we
cannot form a word because it does not match the set limits.

3) The third node that will be checked is the thickened one from level 1.
This time the only word inserted in the stack is a. Because the total length is
1, we will not be able to create a word with the use of this node, because the
minimum length is 3. It is not possible to create a new word with only a node
from the first level, even if this matches the set limits, because the word from
a single node is certainly in the alphabet.
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Abstract. In this paper it is presented the lossless PPM (Prediction by Partial
string Matching) algorithm and it is studied the way the extended alphabet can
be used for the PPM encoding so it will allow the use of symbols which are not
present in the alphabet at the beginning of the encoding phase. The extended
alphabet can contain symbols with the size larger than a byte and at the decoding
external words absent at decoding are combined with the adaptive-generated words.
The arithmetical algorithm is used to encoding of words with the statistic model
generated by the PPM algorithm. Some experimental results on various types of
files and important interpretations deducted from these results are presented.

1 Introduction

Let us presume that a file contains a string of bytes (characters), which appears
many times in the file. PPM must encode independently every byte from the
string with a probability (which is preferable to have large value). Every time the
character was not found in the past (the string preceding the current context), an
escape symbol is send to decrease the level, leading to increment the information
from the compressed data stream. The alphabet used by the PPM algorithm
has 256 characters (all the characters that can be formed on 8 bits). If the
rezular alphabet is extended adding a new symbol (the string mentioned above)
the algorithm could perform a good compression.

An extended alphabet is an enriched known alphabet with a series of symbols
that will not be presented in the alphabet offered to the decoder. The symbols that
extend the alphabet need to be obtained in the decoding phase through different
methods, so while decoding the alphabet will be enriched with new symbols. In
the coding phase, the symbols that will extend the alphabet are known, but at
the decoding these will be deduced gradually.

In this paper, we consider that internal words are present at the decoding
phase because they are internally generated, and they can be reproduced at the
decoding. The external words that could be present at the decoding are inserted
externally at both coding and decoding stages. It is considered an optimization
of the data tree, so it can be used on the purpose of word-based coding (strings
of octets).

In order to minimize the searching time, an optimized algorithm must be used.
The red-black tree is used for searching. The red-black tree is a binary tree, which
keeps inside of every node an extra-information - the color of the node - that can
be red or black. Through the constrain of the way the nodes can be colored with
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every line that starts at the base and ends in a leaf, the red-black tree ensures
there is no other way which is longer than the other keeping the tree approximately
balanced. The procedures that can be performed are that of a classic binary tree.
The method used here is dedicated only to the PPM algorithm and it performs
the adaptive search of the words.

2 PPM encoding with the extended alphabet

The extended alphabet encoding is similar to the basic alphabet one (made up
of every 8 bits symbols). In order to determine which word is next coded, we
need to chieck all the words, which can be made up based on the text bytes,
starting from the current position from the considered coding stage. The length
of words that can be formed with the text bytes must be smaller or equal to the
maximum admitted length and smaller or equal to the maximum length presenut
i the source alphabet. Every formed word is searched in the alphabet and if it
is found. a gain is associated to it. In order to compute the gain, we must have
nformation regarding the current state of every word from the alphabet (number
ol appearances, length, etc.).

The gain can be calculated in many ways, but here it will be calculated as a
funetion of number of appearances and length. Usually, a formula for computing
the gain should be used, and this would depend on the context where the word is
situated.

[ order to know the value of the word from the context point of view. a searc]
in the tree must be performed. This search must be made for every word that
has a chosen potential, this being a very big extra task. For this reason, in order
to compute the gain, we will use the real number of appearances (imposed on
inside basis), in the case of internal words, or the maximum between the real and
false number of appearances (imposed on outside basis), for external words. The
number obtained from the zero level node gives the real number of appearances.
Therefore, every word will have to keep a reference to the correspondent zero-level
node to find out the real number of appearances.

The external words, which are present at decoding, and the internal ones are
coded using a regular PPM model. In this case, all the tasks that were executed
on bytes must be executed on words. Thus in the tree a word and not a byte
will be inserted, and the context will be one with words and not with bytes. The
saving queue of the 2,048 symbols from the past for the actualization of tlLe tree
after the cleaning (if we want to use it) will contain also words and not Lyvtes.

In order to reduce the time of adding and searching within the tree, all the
words that are in other structures will be references to words from the used al-
phabet. In this way, all the comparisons between words could be made based on
reference, but a comparison between elements will not be made. The only task
that involves comparison between words at byte level is when a word must be
searched inside the alphabet.
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3 Combining the external words with the adaptive
generated words

The encoder and decoder must always keep the same alphabet. When the -1 order
is reached, we must encode a word with the probability (the alphabet length)-
1. If the length of the alphabet is not identical at encoding and at decoding
at that step, then the decoder will not be able to follow the coder’s steps and
the decoding will fail. In the alphabet, there can be external words present at
decoding, external words that are not present at decoding, and internal words
(automatically present at decoding). At the encoding step we know all the words
of any type but at decoding we will not have at any moment all the words that
were considered at encoding external and absent at decoding. For this reason.
when we encode a symbol with a probability dependent on the alphabet length,
we will consider only the words marked as being present at decoding. This is why
it is important that every word which was external and absent at decoding to be
marked as being extern and present at decoding only after this word has been
encoded character by character and was followed by a special word and a counter
tyvpe word. The disadvantage of combining external words, which are not present
at decoding, with internal words is that the internal ones have priority, replacing
the external ones absent at the decoding step. The external words are the result
‘of other algorithms or of user’s experience and many times this can be a useful
information, which may improve the encoding. At the occurrence of an internal
word, which replaces an external one, this useful information is ignored. The
problem is that in the case of external words the lifetime is unlimited while the
lifetime of internal words is limited if they have not been seen a few times in the
past. (the internal words with zero appearance number are erased periodically).
The advantage of this combination is that an absent word at decoding can be
replaced with an adaptive generated one, which is seen many times until the end
of the survival period. Because the adaptive generated word is encoded regularly,
and the word absent at decoding is encoded character by character, the result is
a gain.

4 Experimental results

The next two tables contain the best results obtained in two different experiments,
using both plain and complex test files. The last line from every table represents
the number of bits per character obtained on a compression with the standard
RAR application.

We can remark that the adaptive mode is efficient when the text contains words
that appear repeatedly in the text. For example, it is obvious that aaa looks all
the same and limit_comp.xmed is an XML format that contains elements of the
same type in the tags. If the text has not a predefined structure, then the adaptive
mode will generate words thar initially can be good but later could be too long or
too short. At first, a long word can be generated. but later we can find a piece of
text that needs a shorter version of this word (it has a partial match with a text
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fragment). This is why it is possible to generate a shorter word if the restrictions
are matched. We can first generate a short word and then a longer word, which
includes the short one. The words that includes other words are efficient if they
are used. Unfortunately, for the files that do not have a well-defined structure it
is likely to be generated words that later will not be used as it should. If the word
was not seen many times in the past, it will have a small probability.

Parameter / File aaa limit.comp.xmed | concertBach | ByteEditor.exe
Normal 0.01201 5.77123 4.2048 9.32427
Time [sec] 6.783 12.844 10.542 13.846
Adaptive 0.00451 5.57401 4.19925 9.17483
Time [sec] 0.078 17.260 10.330 13.867
gainTypeadaptive Equal Length Equal Length
clearPeridd [octets] 1500 1500 1500 1500
Adaptive / max.word 0.00471 5.51759 4.44394 9.17169
Time [sec] 0.060 18.622 10.392 14.049
gainTypeadaptive Equal Length Equal Appearances
clearPeriod [octets] 1500 1500 1500 1500
Search 0.00431 5.43396 - 9.20337
Time [sec] 0.073 19.289 - 13.478
gainTypesearch Equal Length - Appearances
gainTypecoding Length Length - Length
Search / max.word 0.00431 5.4443 - 9.20337
Time [sec] 0.070 16.257 - 14.092
gainTypesearch Equal Equal - Appearances
Adaptive / Search 0.00411 5.42187 = 9.18202
Time [sec] 0.401 20.542 5 13.809
gainTypeadaptive Length Appearances = Length
gain'Typesearch Appearances Length - Appearances
clearPeriod [octets] 1500 1500 - 1500
Adaptive / Search 0.00521 5.4284 - 0,17326
/ max.word
Time [sec| 0.065 20.566 - 14.050
gainTypeadaptive Appearances Length - Appearances
gain'T'ypesearch Appearances Equal B Appearances
clearPeriod [octets] 1500 1500 - 1500
RAR ("best” mode) 0.01141 3.7816 2.53007 7.30202

Table 1. Comparison of the best results (first experiment)

From the performed experiments this negative effect was not noticed. For
every file, the adaptive search produced better results. The adaptive search of
words cannot see in the future and cannot view which is the best word to choose.
This is why the adaptive search is recommended only for files with a specific
structure. We can remark that it is best to use the word with the biggest length
when the text has a defined structure, because it is very likely that this will show
in the future.

The most efficient from the compression point of view is the search of words
that appear repeatedly, before the encoding. For the files that contain redundant
words which can be seen in a period of existence of a word (clearPeriod) so
they can be added in the alphabet, the adaptive searched is combined with that
performed in a separate stage from the encoding.
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The aaa file is compressed the best by using the adaptive search together
with that performed before the encoding, because the search of words in a separate
stage is limited to 255 (bytes), while the adaptive search is unlimited. The encoder
uses words found by search, in a separate phase, and it adaptively extends them
based on the data tree. For the experiments, the adaptive search was limited to
the length of 1,000.

Parameter / File paperl proge objl trans
Normal 3.78187 3.84196 5.38653 2.52419
Time [sec] 7.059 5.468 4.801 10.452
Adaptive 3.78157 3.82035 5,11496 2.51019
Time [sec] 6.880 5.359 4.636 11.340
gainTypeadaptive Appearances | Appearances Length Appearances
clearPeriod [octets] 1500 1500 1500 1500
Adaptive / max.word 3.89955 3.8975 5.07924 2.60624
Time [sec] 7.047 5.411 4.704 12.266
gainTypeadaptive Equal Equal Length Equal
clearPeriod [octets] 1500 1500 1500 1500
Search 3.77736 3.80298 5.18936 2.45068
Time [sec] 9.549 4.952 4.056 21.223
gainTypesearch Length Appearances | Appearances Equal
gainTypecoding Equal Length Length Length
Search / max.word 3.78006 3.80298 5.20945 2.45068
Time [sec| 9.560 4.940 4.115 21.196
gainTypesearch Length Appearances | Appearances Equal
Adaptive [/ Search 3.7915 3.82076 5.12128 2.46476
Time [sec]| 9.874 5.977 4.656 22.842
gainTypeadaptive Appearances | Appearances Equal Appearances
gainT'ypesearch Length Equal Appearances Equal
clearPeriod [octets] 1500 1500 1500 1500
Adaptive / Search 3.8699 3.89488 5.07961 2.57713
/max.word
Time [sec] 9.399 7.315 5.402 20.992
gainTypeadaptive Appearances Equal Length Appearances
gainTypesearch Length Length Appearances Equal
clearPeriod [octets] 1500 1500 1500 1500
RAR (”best” mode) 2.20748 2.23312 3.65365 1.26385

Table 2. Comparison of the best results (second experiment)

The ByteEditor.exe file is an executable file, which is extended and not
compressed. The problem comes from the PPM classic encoder and not from the
extended alphabet. A smaller size is obtained with the help of adaptive search.

The concertBach file did not contain words that will match the rules imposed
by the search in other stage than that of coding, so for this reason any experiment
that had this type of search was not performed.

We can observe that the best performances of the aaa, limit_comp.xmed
and progc.cs compression is obtained by combining the adaptive search with that
performed in a separate stage. This phenomenon is present because the coding
of a missing word at the encoding means the coding of every of its character,
while the coding of a present word does not have these disadvantages. If it is
found a word with the adaptive search and this is present in the alphabet and is
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absent at decoding, then it is replaced with the one adaptively generated. After
the insertion of the word in the text, we find (until the end of the word’s existing
period) a match with this word and therefore we have a gain because the word
has not been coded character by character. In the case when the external word
(absent at decoding) was replaced by an adaptive generated word that will not
be found in the text, then we have a loss.

The encoding time usually increases compared to the PPM with regular al-
phabet because the words represented by strings of bytes, not only by bytes, must
be checked. The file aaa is a special case where the coding time drops because
there are few words, of very big length, which are coded.

The concertBach and ByteEditor.exe files are better coded by using the
adaptive search because the restrictions imposed to the search performed in a
separate stage of that of coding are too strong. These texts contain short words
that appear repeatedly, and the adaptive search manages to find some of them
because its minimum length is 5, while for the search before coding the minimum
length is 20. For all the test files, the same encoding parameters were used. For
this reason, we cannot say these are the best results that can be obtained. Still,
an improvement is obtained.

Table 3 presents the experimental results obtained by using the adaptive search
encoding for a larger set of original file types. One can analyze the compression
efficiency obtained when all the words are accepted in the alphabet and the value
of the existing period of a word (clearPeriod) is big. (e.g., 20,000 bytes).

File Bits/character | Time [sec]

aaa 0.00510 0.030
limit_comp.xmed 5.08220 T8.550
concert Bach 3.80084 34.441
ByteEditor.exe 9.18898 18.288
paperl 3.57781 23.326
Pprogce 3.58870 16.224

objl 4.92113 9.789
trans 2.40017 40.403

Table 3. Parameters for adaptive search without restrictions

One can see that for the proposed files the use of the adaptive search combined
with the adding of words with no restrictions has better compression results but
less quality time results from the gain and minimum length point of view. The
time increases because there are many words in the alphabet and their search
lasts a long time. The compression ratio is better because the words are early
discovered and used. Although the alphabet has many words and the probability
of a word at the -1 prediction level (the reverse value of the alphabet length) is
small, the encoding is not strongly influenced by this because the -1 level situations
are rare.

5 Conclusions

The most efficient is the search before the encoding together with the use of
maximum length word at the encoding. The adaptive search can be performed
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in the case of files with many repeating words and has the advantage that it is
performed at the coding phase. The combining of the two procedures of search
can be used only for a certain types of files that contain words that get repeated
nearby (so that the adaptive search can find them) and words situated much apart
in the text so they won’t be included in the alphabet by the adaptive search. From
the tests, it results that the gain function depends on the type of used files for
most of the files. The difference between the extended alphabet PPM encoding
and the WinRar compression is about 1.5 bits/character. The file aaa (plain text)
is compressed better with the extended alphabet PPM. From the previous results,
one can observe that the encoding with adaptive search without restrictions is the
most efficient and most files are compressed better with extended alphabet PPM.
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Abstract. In algebraic coding theory it is common practice to require that (n,q) =
1, where n is the word length and F = GF(g) is the alphabet. In this paper, which is
about constacyclic codes, we shall stick to this practice too. Since linear codes have
the structure of linear subspaces of F", an alternative description of constacyclic
codes in terms of linear algebra appears to be another quite natural approach. Due
to this deseription we derive lower bounds for the minimum distance of constacyclic
codes that are generalizations of the well known BCH bound, the Hartmann-Tzeng
bound and the Roos bound.

Definition 1. Let a be a nonzero element of F = GF(q). A code C of length n
over F' is called constacyclic with respect to a, if whenever x = (c1,¢2,...,¢,)
1840 O, 3083y = [aCs Giis il sehli)s

Let a be a nonzero element of F' and let

Ry
Ya {(:1:1,.1:2, S ) PP (G2, B, s Bt
Then 1, € Hom F™ and it has the following matrix
000 0
0050

Bilay=By={1010.:0

00...0
with respect to the standard basis € = (e, e3,...,e,). The characteristic
polynomial of B, is fp,(z) = (—1)"(z™ — a). We shall denote it by f(z).
We assume that (n,q) = 1. The polynomial f(z) has no multiple roots and
splits into distinct irreducible monic factors f(z) = (=1)"fi(z)... fi(z). Let

Ui = Ker fi(¥q), @ = 1,...,n. For the proof of the following theorem we refer
to [1].
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Theorem 1. Let C be a linear constacyclic code of length n over F. Then the
following facts hold.

1) C is a constacyclic code iff C is a g—invariant subspace of F™;

2) C =U;, ®- - ®U, for some minimal Yq—invariant subspaces Uy, of F"
and k = dim pC = ki, + - -+ + ki,, where ki, is the dimension of Uy, ;

3) fi,{ila|c($) T (_l)kfil (@) - fis (z) = g(z);

4)c e C iff g(Bn)e = 0;

5) the polynomial g(z) has the smallest degree with respect to property 4);

6) r(g(Bn)) = n — k, where r(g(By)) = n — k is the rank of the matriz
g(Bn)-

Let K = GF(¢™) be the splitting field of the polynomial f(z) = (—1)"(z" —
a) over F, where 0 # a € F. Let the eigenvalues of 9 be a1,...,0n, with
o; = ¥aal, i =1,...,n, where a is a primitive n—th root of unity and {/a is
a fixed, but otherwise arbitrary, zero of the polynomial 2" — a. Let v; be the
respective eigenvectors, i = 1,...,n. More in particular we have

Bovi =aivh, vi= (e Yo 2 e d)pd =1,....0

Let us consider the basis v = (v1,...,Vvn) of eigenvectors of ¥,. We carry out
the basis transformation e — v, and obtain that

1 QRO
0 T 0 -
B e ST T et S R
0 0 (7%
with
Ct|1l'!—l 0:2-“.—1 O;nn_l
aln—;z agn-—l a,ﬂn—Q
= :
] (82508 S i
1 ]y S

. 5 X 2
Let at = (0gi @2, v oo 0067 0i)s 8 = 100, Then

(i) =30 (29 = (o.-*—i)"'z{”= fori=j

i 0, otherwise
~ ay = < ise

From this it follows immediately that
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2 =
u oy o1 o o™ ik a"
5 2 —1 .
=l 1 [ vz " 1 | @z as® ... as™ + as™
n : n Lo : :
1u 2 n—1 n
T a'-n_ (In P Q”_ an

Let h(z) = {;—((%% Let deg h(z) = n—k = r, and let its r zeros be o, , @iy, - -+ , G,
and its k nonzeros o, , ey, . .., aj,. It is obvious that the zeros of g(z) are the
nonzeros of h(z) and vice versa. Assume that ¢ = (¢1,¢2,...,¢,) € F™ and let
¢/ = T~ le. We know ¢ € C iff g(By)c = 0. The latter condition is equivalent to
g(D)c' = T~1g(Bn)TT 'c = T~ 'g(By)c = 0, which, in its turn, is equivalent
to ¢ =¢;, == c; =0.Hence, we get the following necessary and sufficient
condition for ¢ to be a codeword in C

i ]

Ui{CZO, £=1,...‘r.

Theorem 2. Let C be a linear constacyclic code of length n over F, g(z) =
Jwale(®) and h(z) = % Let for some integers b > 1,6 > 1 the following
equalities ‘

h(aw) = h(apt1) =+ = h{aprs-2) =0
hold, i.e., the polynomial h(x) has a string of 6 — 1 consecutive zeros. Then the
minimum distance of the code C is at least 0.
Proof. If e = (cy,09,...,¢y) is in C, then

we=0,i=bb+1,...,b+6-2

so that
2 n—1 :
a o .ot o N gy g
2 n— n
Opil @G sre Ry GG 2| [0
I 2 n—1
Q-2 Qs g - Opig o Qs o) 0

Now let us suppose that ¢ has weight w < §—1,i.e., ¢; # 0iffi € {a1,a2,...,auw}.
Then the last equality implies

ay Qg
Cfb anis fkb Cﬁl 0
aj Ly

@pigl s G Cay 0

ay o Ca
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Hence, the determinant of the matrix on the left is zero. But this determinant
is equal to

QEI a e f]!'gw ai aalb "S- .f_.";awﬂ'awb
ety e QR 1191 g (+1) 1w o (01)
aj [ ay ~a1(b+w—1)" Qe 0 (bHw—1
O] o ab:—w—l lu‘la i ).,.,u,"a 3 )
1 1l
ai L
= ga1+“““+awa(a‘+"'+a“’}b & L Ay £0,
aa(w=1) gew(w=1)
where it = {/a. The contradiction proves the statement. O

The next result follows easily from Theorem 2.
Corollary 1. Let C be a linear constacyclic code of length n over F' and let
Qpy Appsy«» -y Xpt(6-2)s

are zeros of h(z), where (s,n) = 1. Then the minimum distance of C' is at least
8.

The following theorem generalizes the Hartmann-Tzeng bound for linear
constacyclic codes. Its proof is close to Roos’ proof for cyclic codes in [2].

Theorem 3. Let C be a constacyclic code of length n over F, g(z) = fy). (%),
hiz) = % and let & be a primitive n-th root of unity in K = GF(¢™). Assume
that there exist integers s,b,c; and ¢y where s > 0,b > 0, (n,c1) = 1 and
(n,e3) < 0, such that

h(“b“}'i;ﬂ-ﬂ-ig{;g) = 0» O S -’} S 5 == 2, U S 3.2 S 8
Then the minimum distance d of C satisfies d > 6 + s.

Proof. We use induction on s. For s = 0 the assertion follows from Corollary 1,
since (n,c;) = 1. Take some s > 0 and assume that the theorem holds, i.e.,

M Cptieitises) =0, 0<i; <6—2, 0<i<s

defines a constacyclic code C of minimum distance d > ¢ + 5. We have that
ceCif upc=0, k=b+i1c1 +i2c3, 0 <73 <0—2,0< i3 <s. So, we obtain
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that Uc = 0, where U is the following matrix

[ oy a«}f ok <.r.g'_1 ay \
9 n—1 n
ab+cl ab—{-m S ab-‘rcl ab-i—cl
o 0:2 an—l a
b+(6—2)e1 b+(6—2)er " b+ (6=2)c1 b+(d—2)c1
2 n—1 n
Chtes Xty IR Dpyey Cpten
o o a7} ol
b+e1+ca btei+ca tird bte1+ca b+c1+ca
N, 3 . 5
o 052 a'n.—l ol
bH(6—2)citer Xpp(E—2)ertes 0 CbH(6-2)eiter TbH{6—2)eitez
2 n=1 n
Qp+-sen Dt se5 e ab-{-scz Ayt sen
2 n— n
Qb+te1+sc2 by cy+sca A X tcr+sca Qi1 +scn
! 2 n—1 1
\ab'f'(‘)—?)cl‘i“-‘fcz ab+{6—2)c1 4-scy **° ab-}—(é—?)c; +sca ab+(5—2)CI+SC2}

From the definition of a; it follows that @piic,@? = Mpy(i41)ey, 0 S 1 < 8
and Qpiiye; Hea @2 = Optiyoy+(1+1)epy 0 < i1 < 6 — 2. Hence, every set of 6 —1
consecutive zeros of h(z) is obtained from the previous one by multiplying by
B = a%. It follows that if we multiply the first column b of U by B, the
second column bs by 32,..., the n—th column by, by 8", the resulting matrix Up
contains all rows of U except the first § — 1 rows, whereas its last § — 1 rows are
new and correspond to the zeros @y (st1)eys - - - » Xb+(6—2)er +(s+1)e2- Note that U
need not be the full parity check matrix of C. However, we can interpret U as
parity check matrix for a code C* over K. If C* has minimum distance d*, then
clearly d > d*. We shall show that d* > 0 + s. Since d > d* this implies the

i Ll Sy n n T
theorem. Since (n,c) < d, [ has order e = Bal > o and hence in the
sequence f3, 32, ...,3" each element occurs 2 < d* times. We now define the
matrix

o) [U] 4 [bl B, ]
Us .Bbl 621)2 e [3ﬂ'bn )
We know that every d* — 1 columus of U are linearly independent. We shall
prove now that every d* columns of U’ are independent. In order to show

this, let us suppose that U’ contains d* columns which are linearly dependent.
Without loss of generality we may assume that these are the first d* columns.
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Then there will exist elements A1, Ag, ... Ag € K (not all zero) such that

d* d* di—=1
S by =3 i = 0, andso Y, Mi(B' — 87 )bi = 0.
i=1 i=1 i=1

Since any d* — 1 columns of U are linearly independent, it follows that (Bt —
B4y =0 for 1 < i < d* — 1. However, i # 0 for 1 < i < d¥, again because
no d* — 1 columns of U are linearly dependent. Hence, we obtain B = p*=
... = 3% which contradicts the fact that in the sequence B,B%,...,0" each
element occurs less than d* times. Tt immediately follows that the constacyclic
code C' with 7€T0S Qppijeytisess 0 <81 £0—2,0<5193 <5+ 1 of h'(z), where
Ri(e) = -ﬁ%, has minimum distance at least d* + 1. O

Next, we shall derive an even more general bound for the minimum distance
of constacyclic codes, which is similar to the so-called Roos bound for cyclic
codes in [3]. Our proof and notation are also very close to the proof in [3], and
therefore we shall partly omit it.

Let K be any finite field and A = [a, a3, ..., a,] any matrix over K with n
columns a;, 1 < i < n. Let C4 denote the linear code over K with A as parity
check matrix. The minimum distance of C4 will be denoted as da.

For any m X n matrix X = [x1,X2,... ,Xy] with nonzero columns x; € K™
for 1 < i < n, we define the matrix A(X) as

r11a; T12a% ... Tindn

T918] T22a2 ... Tgp@n
A(X) = : e ;

Tp1@] Tp2a2 ... Tmadn

The following lemma describes how the parity check matrix A for a linear code
can be extended with new rows in such a way that the minimum distance
increases. A proof of this result is given by Roos (cf. [3])-

Lemma. If d4 > 2 and every m x (m +da — 2) submatrix of X has full rank,
then dA{X) >da+m—1.

Definition 2. A set M = {aj,, @jyy--- i} o.f zeros of the polynomial z™ — a
in K = GF(¢™) will be called a consecutive set of length | if a primitive n—th
root of unity B and an exponent i exist such that M = {Bi, Bis1y. -1 Biti-1}
with Bs = {/aB®. More generally, one says that M is a consecutive set of n—th
roots of unity if there is some primitive n—th root of unity B in K such that M
consists of consecutive powers of [3.

Let N = {aj,, @y, ---,04,} be a set of zeros of the polynomial z" — a. The
¢ x n matrix over K the js—th row of which equals (ajs,a?s, ot .,a;-’;) will be
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denoted by Uy. (If N is a set of n—th roots of unity, the analogous matrix
over K will be denoted as Hy.) So, it is clear that Uy is a parity check matrix
for the constacyclic code C having N as a set of zeros for h(z). Let Cy be the
constacyclic code over K with Uy as parity check matrix, and let this code have
minimum distance dy. So, the minimum distance of C is at least dy, since C
is a subfield code of Cy (cf. [3]).

Theorem 4. If N is a nonempty consecutive set of zeros of the polynomial
z" —a and if M is a set of n—th roots of unity such that [M| < |M| + |N| for
some consecutive set M containing M, then dyy > |M| + |N|.

Proof. Let us define A := Uy and X := Hy. Then one may easily verify
that A(X) = Upnwy, where MN is the set of all products mn, m € M, n €
N. Since N is a nonempty consecutive set, dy = |N|+ 1 > 2. Hence, the
assertion of the theorem follows from the lemma above if in the matrix Hy,
every | M| x (|M|+|N|—1) submatrix has full rank. It is sufficient to show that
this is the case if [M| < |M| + |N| for some consecutive set M D M. Observe
that Hyy is a submatrix of Hyz, and that in Hyy every [M| x |M| submatrix is
nonsingular, since the determinant of such a matrix is of Vandermonde type.
So, it immediately follows that every |M| x |}W| submatrix of Hys has full rank.
Since [M| < [M|+ |N|, this implies that every |M] x (|M|+|N|—1) submatrix
of Hys has full rank, which proves the theorem. ]
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Abstract. An infinite class of binary linear completely regular and completely
transitive codes is given. The covering radius of these codes is growing with the
length of the code.

1 Introduction

Let E be a binary alphabet. A binary (n, IV, d)-code C is a subset of E™ where
n is the length, d is the minimwm distance and N = |C| is the cardinality of C.
- For the case when C' is a k-dimensional linear subspace of F”, the code C' is a
linear code denoted [n, k,d], where N = 2F,

Given any vector v € E", its distance to the code C is

d(v, €) = min{d(v,x)}

and the covering radius of the code C is

p = max{d(v,C)}.

We assume that a code C always contains the zero vector. Let D = C+x
be a translate of C. The weight wt(D) of D is the minimum weight of the
codewords of D. For an arbitrary translate D of weight i = wt(D) denote by
(D) = (po(D), p1 (D), ..., n(D)) its weight distribution, where u;(D) denotes -
the number of words of D of weight 7. Denote by C; (respectively, D;) the
subset of C' (respectively, of D), formed by all words of the weight j. In this
terminology w:(D) = |D;].

'This work was partially supported by Catalan DURSI Grant 2004PIV1-3, and also was
partly supported by Russian fund of fundamental researches (the number of project 06 - 01 -
00226)
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Definition 1 A binary code C with covering radius p is called completely reg-
ular if the weight distribution of any its translate D is uniquely defined by the
manimum weight of D, i.e. by the number i = wi(D).
2 Definitions and preliminary results
For a given code C with covering radius p = p(C) define

C) = {xe B*: d(x,C) =17}, i=1,2,....0

For any vector x € E™ denote by S(x) the sphere of radius one near x, i.e.
S(x) = {y € E" : d(x,y) = 1}.

Definition 2 Let C be a code of length n with covering radius p. We say that
C is uniformly packed in the wide sense, i.e. in the sense of [1], if there exist

rational numbers g, ..., o, such that for anyv € E"
p
Y o fulv) = 1, (1)
k=0

where fi(v) is the number of codewords at distance k from v.

For any vector x € E™ denote by W;(x) the sphere of radius i near x, i.e.
Wi(x) = {y € E" : d(x,y) = i}. Denote W1(x) = W(x).

We say that two vectors x and y are neighbors if d(x,y) = 1. We use also
the definition of completely regularity given in [10].

Definition 3 A code C' is a completely regular code if, for all | > 0, every
vector = € C(l) has the same number ¢ of neighbors in C(l — 1) and the same
number by of neighbors in C(I+1). Also, define a; = (¢—1)n— by — ¢; and note
that co = b, = 0. Define by {bo,...,bp-1;€1,...,¢,} the intersection array of
C.

The support of v € E® , v = (v1,..., vn) is supp(v) = { £ | v¢e # 0 }. Say
that a vector v covers a vector z if the condition z; # 0 implies z; = v;.

For a binary (n,N,d) code C with zero codeword let (no,...,7n) be its
distance distribution, i.e. 7; is the number of ordered pairs of codewords at a
distance ¢ apart, divided by N. Let (7, ..., n),) be the MacWilliams transform
of (1,...,Mn) and assume this vector has s = s(C) nonzero components 7; for
1 <i<n. We call s the external distance of C. If C' is a linear code, then s(C)
is the number of different nonzero weights of codewords in the dual code C-+.
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Lemma 1 [7] For any code C with covering radius p(C) and external distance
5(C)
p(C) < 5(C).

The case of equality above implies existence of uniformly packed code in the
wide sense.

Lemma 2 [9 Let C be a code with minimum distance d = 2e + 1, covering
radius p, and erternal distance s. Then the code C' is uniformly packed in the
wide sense, if and only if p = s.

For a binary code C let Perm(C) be its permutation stabilizer group. For
any § € Perm(C) and any translate D = C + x of C define the action of 6 on
D as: (D) = C + 0(x).

Definition 4 [13] Let C' be a binary linear code with covering radius p. The
code C is called completely transitive, if the set {C+x:x € F"} of all different
cosets of C is partitioned under action of Perm(C) into ezactly p+ 1 orbits.

Since two cosets in the same orbit should have the same weight distribution,
it is clear, that any completely transitive code is completely regular.

It has been conjectured for a long time that if C is a completely regular code
and |C| > 2, then e < 3. For the special case of linear completely transitive
codes, the problem of existence is solved in (3, 4] in the sense that for e > 4
such nontrivial codes do not exist.

3 Main results

For a given natural number m where m > 3 denote by EZ" the set of all binary
vectors of length m and weight 2.

Definition 5 Let H™) be the binary matriz of size m x m(m — 1)/2, whose
columns are exactly all the vectors from EY* (i.e. each vector from EJ' occurs
once as a column of H™) ). Now define the binary linear code C™) whose
parity check matriz is the matriz H S

For a fixed natural number m and any i € {1,2,...,m} define fi(m) as the
weight of the vector sum of any ¢ rows of H (M), Note that fi(m) is well defined
and it does not depend on the specific rows taken in the computation as be can
see in the next lemma.

Lemma 3 For any natural number m > 3 the value fi(m) does not depend on
the choice of i rows of H™ and fi(m) = i-(m—1i) forie {1,2,...,m}.
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Lemma 4 For any natural number m 2 3 the code C'™) has the external
distance s(m) = |m/2| and the covering radius p(m) = [m/2].

Thus, the code C(™ has the same external distance and covering radius:
s(m) = p(m). By Lemma 2 the code C™) is uniformly packed in the wide sense.
The following statements shows that C(m) ig, in fact, a completely transitive
code and, so, a completely regular code too.

Theorem 1 For any natural number 3 < m the code C™) is a completely
transitive [n, k, d]-code with the following parameters:

e

i (2), k=n—-m+1, d=3, p=|m/2].

Theorem 2 For any natural number 3 < m the code C™ is a completely
reqular [n, k, d]-code with intersection numbers, for £=0,...,p:

ag =+ 24-(m—2¢),

m — 2/
)
o 2L
4 = 2 L
The interesting fact is that generalization of this idea (i.e. using as a parity
check matrix all possible binary vectors of length m and weight ¢£) above works

only in three following cases. For given natural number m where m > 3 define
by E}* the set of all binary vectors of length m and weight £.

Definition 6 Denote by H™Y the binary matriz of size m X (’;‘), whose
columns are exactly all vectors from EJ' (i.e. each vector from E}* occurs
once as a column of H™Y ) Define the binary linear code C™4) | whose parity
check matric is the matriz H™9.

Theorem 3 Let G be the code defined above. Let € = 3. Let ¢\™f) be a
completely regular code. Then we are in one of the following three cases:

(1) m =5 and £ = 3. The code C®3) is the [10,5,4]-code with covering radius
p = 3 and with intersection array (10,9,4;1,6,10).

(2) m =6 and £ = 4. The code C64) is the [15, 10, 3]-code with covering radius
p = 3 and with intersection array (15,8,1;1, 8,15).

(3) m =7 and £ = 4. The code CT4) s the [35,29, 3]-code with covering radius
p =2 and with intersection array (35,16;1, 20).

Furthermore, all these three codes are completely transitive.
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On solving sparse algebraic equations over
finite fields I1. Extended abstract.

IGOR SEMAEV Igor.Semaev@ii.uib.no
Department of Informatics, University of Bergen, NORWAY

1 Introduction

Let F, be a finite field with ¢ elements and X is a set of variables from Fy of
size n. By Xi, 1 < i <m we denote subsets of X of size [; < l. Equations

f1(X1)=O,...,fm(Xm):0 (1)

are considered, where f; are polynomials over F, and they only depend on
variables X;(I-sparse). We look for all solutions in F, to (1). So we only consider
polynomials of degree at most ¢— 1 in each variable. They define mappings from
all l;-tuples over F, to F, and any such mapping is represented by a polynomial
of degree at most ¢— 1 in each variable. The equation f;(X;) = 0 is determined
by (X;, Vi), where V; is the set of F-vectors in variables Xj;, also called X;-
vectors, where f; is zero. We call (X, Vi) a symbol. For g = 2 the polynomial
f; is uniquely defined by V. Given f;, the set V; is computed with q" trials.
Deterministic Agreeing-Gluing Algorithm [6] and its average behavior are
studied. Assume equiprobable distribution on (1). Given natural numbers
m and li,...,lm < [, equations in (1) are independent. Each fi(X;) = 01s
determined by the subset X; of size l; taken uniformly at random, that is with
the probability (;')~', and the mapping f; taken, independently of X, with

the probability q"‘-’t"'. The running time of the Agreeing-Gluing Algorithm is a
random variable.
For fixed q,l and ¢ > 1 let 3 = B(e), where 0 < a <, be the only root to

l

g o M e ol
¢t = gel %1—2@‘35 L-AA=TT

t=0

or B(a) = 0 if there is not any root for some a. Here g(a) = f(za) —a+
alna— w and f(z) = In(e* + ¢! — 1) — aln(z), where by 2o we denote the
only positive root of the equation %-_’;(:) = (0." We prove

Theorem 1 Let Qﬂ%iﬁ tend to a constant ¢ > 1 as n tends to oo while -

q>2 and > 3 are fized. Let r(q,l,c) be the mazimal of Mmaxo<a<i -7
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Table 1: Algorithms’ running time.
l 3 4 5 6
the worst case | 1.324™ | 1.474™ | 1.569™ | 1.637"
Gluingl, expectation | 1.262" | 1.355" | 1.425" | 1.479"
Gluing?2, expectation | 1.238" | 1.326" | 1.393" | 1.446"
Agreeing-Gluingl, expectation | 1.113™ | 1.205" | 1.276" | 1.334"

and 1. Then the expected complezity of the Agreeing-Gluing Algorithm s
O((r(q,1,c) +€)™) bit operations for any positive real €.

For any triple ¢,l,c¢ > 1 the Theorem enables estimating the expected running
time of the Agreeing-Gluing Algorithm with some mathematical software like
Maple. To this end we realize that the equation %}E(z) = (0 is equivalent to
;—;Zi_q = a. So a = a(z) and 8 = 3(z) are functions in 2z and 2z, = 2.

For some of 2,1,1(e.g. n Boolean equations in n variables each equation
depends on [ variables) we show the data obtained in Table 1 with the expected
complexities of the Gluingl and Gluing2 Algorithms from our previous work (7]
Agreeing-Gluing1 Algorithm is a variant of the Agreeing-Gluing Algorithm with
the same asymptotical running time and polynomial in n memory requirement.
In case ¢ = 2 each instance of (1) may be encoded with a CNF formula in
the same set of variables and of clause length at most [ [7]. So [-SAT solving
algorithms provide with the worst case complexity estimates, see [2], in the
first line. We remark an exciting difference in the worst case complexity and
expected complexity of the Agreeing-Gluing Algorithm. It is quite obvious that
average instances of the [-SAT problem and that of (1) are different. That gives
insight into why the expected complexity is so low in comparison with the worst
case. The Agreeing-Gluing family algorithms seem better on sparse equation
systems (1) than Grobner Basis related algorithms, see conjectured estimates
in [9].

This article was motivated by applications in cryptanalysis. Mappings im-
plemented by modern ciphers are compositions of functions in small number
of variables. Intermediate variables are introduced to simplify equations, de-
scribing the cipher, and get a system of sparse equations. We are studying an
approach which exploits the sparsity of equations and doesn’t depend on their
algebraic degree. This approach was independently discovered in [10] and [5],
where the Agreeing procedure(called local reduction in [10]) was described for
the first time. The term Agreeing itself comes from [6]. No asymptotical esti-
mates for that type of algorithms were given in [10, 5, 6]. We recommend to
look also through our previous work [7], where some necessary basic facts were
proved.
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This is the extended abstract of [8]. The author is grateful to H.Raddum
for careful reading the work and numerous remarks.

2 Gluing procedure and Gluing Algorithm

For symbols (X;, V;) for i = 1,2, one defines Z = X;UX, and Y = X;N X5 and
the set of Z-vectors U = {(a1,b,a2) : (a1,b) € V4, (b,as) € Vo}. Here a; is an
(Xi\Y)-vector and b is a Y-vector. We denote (a1,b, as) = (a1, b)o(b, as) and say
that (a1,b,as) is the gluing of (a1,b) and (b, az). To glue (X1, V1) and (X, Vo)
one can sort V4 or V5 by Y-subvectors and only glues vectors with the same
Y-subvector. So the complexity of the gluing is O(|U| + (|Vi] + [Va]) log(|Vi]))
operations. We use a simpler bound O(|V;||Va| + [Vi| + |[V2]) in what follows.
Denote (Z, U) = {.X] ¥ V]) o] (Xg, Vz)

Gluing Algorithm

input: the system (1) represented by symbols (X;, V;), where 1 < i < m.

output: the set U of all solutions to (1) in variables X(m) = X U...UX,,.

put (Z,U) +— (X;,V4) and k « 2,

while £k < m do (Z,U) « (Z,U) o (X, Vi) and k «+— k + 1,

return (Z.U).
The set U is all solutions to (1) in variables X (m). The Gluing Algorithm takes
O35 |Uy| +m) operations with Fy-vectors of length at most n, where g and
| are fixed, and n or m may grow. The memory requirement is of the same
magnitude. Here (X (k),Uy) = (X1,V1)0...0 (X, Vi). The set Uy consists of
all solutions to the first k equations in variables X (k) = X; U...U X. The
sequence of |Uy| fully characterizes the running time of the algorithm. The
asymptotical analysis of |Uy| is done in [7] using Random Allocations Theory
results found in [4, 3, 1]. Two technical statements from [7] are formulated
here.

Lemma 1 (Lemma 4 in [T]) Let the subsets of variables Xy, ..., Xy be fired
while fv,..., fr are randomly chosen according to our model. Then the expected
number of solutions to the first k equations in (1) is B mlUsl = g X (R)[=k

Lemma 2 (Lemma 5 in [7]) Let Ly =1, + ...+l and oo = Ly/n, and k < n.
Let 0 < 6 < 1 be fized as n tends to co. Then BE|Uy|, the expected number of
solutions to the first k equations. is < q”a . if Ly < n®, and O((qe¥® + ¢))
otherwise for any positive real number e. Here g(a) = f(z,) —a+alna— “—I?-E
and f(z) =In(e* + ¢~' — 1) — aln(z), where by 24 we denote the only positive

root of the equation %{:(:) = ().
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3  Agreeing procedure and Agreeing-Gluing Algo-
rithm

For symbols (X;,V;) for i = 1,2, one defines Y = X; N X5. Let Via(Va,1) be
the set of Y-subvectors of Vi(Vs). We say the symbols (X1,V1) and (Xq,Va)
agree if Vi3 = Va1. Otherwise, we apply the procedure called agreeing. We
delete from V; all vectors whose Y-subvectors are not in V53 N V3 2. So new
symbols (X;, V) are determined, where V; C V; consist of the vectors in V;
survived after agreeing. To agree (X1,V;) and (X, V2) one sorts V} or Va by
Y-subvectors and do agreeing by table look ups. So the complexity of the
agreeing is at mostO((|V;|+ |Va|) log(|Vi|)) operations. The following Agreeing-
Gluing Algorithm combines the Agreeing and Gluing procedures to solve (1).
Agreeing-Gluing Algorithm

input: the system (1) represented by symbols (Xj;, V;), where 1 <i < m.

output: the set U of all solutions to (1) in variables X (m) = X;U.. U

put (Z U) = ()&H,V]) and k «— 2,

while k <m do s «— k,

while s < m agree (Z,U) and (X;,V;), put s —s+1,

put (Z,U) « (Z,U) o (X¢, V) and k — k + 1,

return (Z,U).
Assume (X (0),U) trivial. For any 0 < k < m let (X(k + 1),Up,,) denote
the symbol (X (k),U}) o (Xp41, Vis1) after agreeing with (m — k — 1) symbols
(X,;. Vi), where k + 1 < i < m. The Agreeing-Gluing Algorithm produces the
sequence of (X (k),U}) and takes

m—1

O(m(Y_ U] + 1)) (2)
k=1

operations with Fy-vectors of length at most n, where ¢ and [ are fixed, and n or
m may grow. (2) incorporates the cost of the gluing (X (k), Up,) © (Xgt1, Viet1),
which is O(|U}|) operations, and the agreeing the resulting set of X (k + 1)-
vectors, of size at most O(|U}|), with the rest m —k — 1 symbols. In our setting
|UL| is a random variable. We estimate the expectation of |Ug| in Section 4,
see Theorem 2. That will imply Theorem 1. From the definition of Gluing and
Agreeing procedures we get:

Lemma 3 (X(k),U;}) is the symbol (X (k),Uy) = (X1, Vi) 0...0 (X, Vi) after
agreeing with (m — k) symbols (X;, Vi), where k < i < m.

The space requirement of the Algorithm is as its running time. The Agreeing-
Gluingl Algorithm, similar to the Gluingl Algorithm of [7], requires polynomial
memory with the same running time. We do not go into detail here.



252 ACCT2008

4 Complexity analysis of the Agreeing-Gluing Algo-
rithm

We prove Theorem 1. Let Z, Xi,..., X} be fixed subsets of variables and U
be a fixed set of Z-vectors, so that (Z,U) is defined by an equation f(Z) = 0.
Let Vi be the set of Xj-vectors, solutions to independent equations TG =1
generated uniformly at random.

Lemma 4 Let (Z,U’) be produced from (Z,U) by agreeing with all (X, V;).
Then the expectation of |U'| is given by Ep, . |U'| = ]U|Hf=1(1 — (1 -
%)qlx’\zl), where | X; \ Z| stands for the number of variables X; not occurring
m 7.

Proof. Assume k = 1. Let Y1 = ZN X, and |U| = 3, [U,|, where U, is

the subset of U-vectors whose projection to variables Y; is . Similarly, Via

is the subset of Vi-vectors whose projection to variables Y is a. Then |U’| =

> a |Ua|la, where I, = 1 for Vi, # 0 and I, = 0 for Vi, = 0. Let W, be the

subset of all vectors in variables X; whose projection to variables Y; is a. We

see that |W,| = ¢**\¥1l. One computes Pr(Via=10) = Pr(fi # 0onW,) =
IX1\Y1 1X1\11 1X1\2]

(1= DM S0 Bp(f) = 1- (1 - L) 2= 1= (1 T

Eq U =3, [Ua|E (L) = |U|(1 — (1 — é)ql 1y This proves the statement

for k = 1. The Lemma is now shown true by induction.

Corollary 1 Let f be generated independently to f;. Then Eyy, . |U'| =
k Ix;\z|

Ef|U|Tim (1 - (1 "%)q )-

We will use the Corollary in order to estimate the expectation of |U &l

Lemma 5 Let 0 < 3 <1 be any number. Then

m
it 5 Y 1. %
Blgi| £ o7 F 1 )0 Prix(k) =2y d P Bl === 27 )
|Z]|>8n i=k-1 q

where Z runs over all subsets of X of size > fn.

Proof. For fixed X; and random f;, and by Lemma 3 and Corollary 1 we have
m
Ape 1 ax\xx
Bfr,fmlUl = X TT (1= (1 = S)a™ 00, (4)
i=k+41 q

as Ef, . |Ur| = ¢X®1=F by Lemma 2. Let We study the expectation of |U}|
when X; are random too. So

m
: 1..x;
BlU = 3 Pr(X(k) = 2)g"™* T] Bx,(1- (- =)™
ZCX i=k+41 1
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We partition the last sum for |Z| < fn and |Z| > (n, and get the statement.
In next three Lemmas(without proof here) we estimate the expectation

B2 (1 é)‘f""“‘""). (5)

Lemma 6 Let Z C X be a fized subset of variables. Then (5) only depends
on the size of Z and doesn’t depend on the set itself. The expectation is not
decreasing as |Z| is decreasing or | X;| is increasing.

Lemma 7 Let Z be a fized u-subset of X and X; be an l;-subset of X taken

(;,.-“_e)n“?‘)

uniformly at random. Then Pr(|X;\ Z| =t) = =5
4

Lemma 8 1. Let |Z| > Bn, where 0 < 8 < 1 is fized as n tends to oo, then
(5) is bounded by F(B) + O(%), where O(%) doesn't depend on i.

2. The function F(8) =1 — Yo ()B1(1 - B)H(1 - %)“" is not increasing
in0<f<landl<F@) <1-(1-1H)7 <L

The inequality (3) then implies
BIUG| < ¢ F+ By i (@ PR (B )" (6)

for any positive real £ as n tends to co. For 0 < a < [ we define the function
0 < B(a) < 1 by the rule: 8 = 3(«) is the solution of the equation

=% = ged I F(B)T (7

if such a solution exists and B(a) = 0 otherwise. We know that ¢, = él-'ﬂzﬁﬂ
tends to a constant ¢ > 1 as n tends to co while ¢ and [ are fixed.

Theorem 2 1. The equation (7) has at most one solution for any 0 < a < L.

2 Let Ly=101+ ...+l and o = Li/n, and k < n. Let 0 < d < 1 be fized
as n tends to co. Then

< q“Ls: if Lg<n®;
ElUkl =< O((@P @~ +e)™), if In>Lp>n’;
<1, if Lg2ln,

for any positive real €.
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Proof. We prove the second statement here. It is true for Ly < n® and Ly > In.
Let In > L > n°. Then by Lemma 2 we get from (6) that
m—k

E'LT“ < (qﬁ—%)?! + O((qe.‘l(a) P EJ“(F(;’?) 4 5) = 'n.),
as 7 < :‘7 and for any positive z. We realize that m—;i 2en— 7,80
E|U{| < (@ T)" + O((ge¥@ F(B)°=T + &)™) ®)

for any real positive € as n tends to co. If (7) has one solution, then the
inequality E|UL| = O((¢*®~T + &)") follows from (8) and (7). When (7) has
no solutions, the statement is easy. The Theorem is proved.

The main Theorem 1 now follows from Theorem 2 and formula (2).

References

[1] V. P. Chistyakov, Discrete limit distributions in the problem of shots with
arbitrary probabilities of occupancy of boxes, Mat. Zametki 1, 1967, 9-16.

2] K. Iwama, Worst-case upper bounds for kSAT, The Bull. EATCS 82. 2004.
61-71.

[3] V. Kolchin, The rate of convergence to limit distributions in the classical
problem of shots, Teoriya veroyatn. i yeye primenen., 11, 1966, 144-156.

[4] V. Kolchin, A. Sevast’yanov, V. Chistyakov, Random allocations, John Wi-
ley & Sons, 1978.

[5] H. Raddum, Solving non-linear sparse equation systems over GF (2) using
graphs, Univ. Bergen, preprint, 2004.

[6] H. Raddum. I. Semaev, New technique for solving sparse equation systems,
Cryptology ePrint Archive, 2006/475.

[7] I. Semaev, On solving sparse algebraic equations over finite fields, to ap-
pear in Des.. Codes Crypt., extended abstract in Proc. WCC'07, Versailles,
France, INRIA, 361-370.

[8] I. Semaev, On solving sparse algebraic equations over finite fields II, Cryp-
tology ePrint Archive: Report 2007/280.

[9] B-Y. Yang, J-M. Chen, N. Courtois, On asymptotic security estimates in
XL and Grébner bases-related algebraic cryptanalysis, ICICS 2004, Lect.
Notes Comp. Sci. 3269, Springer-Verlag, 2004, 401-413.

[10] A. Zakrevskij, I. Vasilkova, Reducing large systems of Boolean equations,
4th Intern. Workshop Bool. Probl., Freiberg Univ., 2000.



Eleventh International Workshop on Algebraic and Combinatorial Coding Theory
June 16-22, 2008, Pamporovo, Bulgaria pp. 255-259

Relation between two classes of binary quasi-
cyclic Goppa codes
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Abstract. Two classes of binary quasi-cyclic Goppa codes is considered. True
parameters and codeword structure of these codes is praposed.

1 Inroduction

Let us consider the relation between two classes of quasi-cyclic Goppa codes
I'(L,G(z)) and T'*(L*, G*(x)), where

Glz) =z +1, - (1)

G*(z) =z +1, (2)
t=92 L c GF(2%),L* c GF(2%).
In [1], [2] the true values of parameters for these codes have been obtained.
The code I'(L, G(z)) has the minimal distance

d=2t—1 (3)
and the number of information symbols is
it —2bee); @)
The code I'*(L*, G*(«)) has the minimal distance
d"=2t+3 (5)
and the number of information symbols is
k—*:tﬂ—t—zz(t—g)—:t. (6)
In this paper we will examine the codeword structure of these classes of the

codes and we will show how the codewords from one class I'(L, G(z)) can be
transformed into the codewords of another class I'™*(L*, G*(z)).



256 ACCT2008

2 Codeword structure of the binary I'(L, G(z))code

It is easy to show that I'(L, G(z)) code is the quasi-cyclic code with the length
of cycloid (+ — 1) and number of cycloids t. Moreover, the codewords of this
code have one fixed position - {0}. Therefore the total length of the code is

n=tt—1) 41 (7)

The numerators of the codewords of the I'(L, G(z)) code can be represented
in the following form:

L={f,flatt!, BiattV2 _ giati-2, | {0}, (8)

where # = a2~! = at~! , o is the primitive element of GF(2%), and {8', B'a'*!,
Biat+D2 - 3ig(t+D(E=2)1 are numerators of positions that form the correspon-
dent cycloids.

By using the representation of the set L as (8) it is possible to write the
parity check matrix H of the code in the following form:

i 1 1 1 '|
[Ht=1) 41 Bgilt=1) 11 Ait=1)11 1
g ,-9"&“'] i g (t+1) (-2}
gitt=1)11 prt=1)11 Bilt=1)41 0
H= . . : s bl if9)
ﬁif!—’i) _,z_;v'(f-ma(t+1}(z—2) [BHE=2) o (-+1)(t=2)(t-2) 0
gilt=1)41 [T pilt=1) 4 0
L 1 1 1 Ji=1,.00 i

It follows from representation (9) that in any code from the I'(L, G(z)) code
class only the codewords that have 1 on position {0} will be the codewords with
the minimal weight d = 2t — 1. The codewords with 0 on this position have an
even weight and it will be shown that the minimal weight of such codewords is
equal to 2 + 4.

3 Transformation of the codewords from the class
I'(L,G(z)) into codewords of the class I'*(L*, G*(z))

Let us consider now I'y(L;, G(z)) code obtained as truncated I'(L, G(z)) code
by information position {0}, i.e., we remove all codewords with 1 on position
{0} from I'(L,G(2)) code. Then Ly = L\{0} and I'1(L1,G(z)) code is still
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quasi-cyclic code with parity check matrix
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F 1 1 1
Bi(i—ll_;,_]_ 31(:.—1)+1 ﬁ@(t-1)+1 -|
ﬁ'z _B’Ct‘f+l Baaff+1}(!—-2]
ai{f—l},_l_l Bi{t—l) 1 w,(t-l}+1
H ' i 4
== . i o
Ba‘(aaz) Bi[f—?}a(l-l—l)(t—ﬂ 5:‘(t—mau+n(t-2)u—2)
ﬁi(t—ll+1 ﬁz‘(t-—l)+1 Bi(t—-l]+1
= 1 1 1 11— LA
a(t—1) i{t—1}) i(t—1)
Lem 1 Ther [ : 8 2 ] and
ma 0wWS ﬁ;(f—1)+1 ﬁs(t—1)+1 Bn(t—1)+1 E=iit

1

1

1
]: ﬁx('(.}i(t-l}+1) ﬁiat+1(ﬁi(z—1}+1}

J@x‘u(t+1}(s~'z}(5i(:-—1;+1) L—l y can be repre-

]

sented as a linear combination of the correponding rows of the parity check
matric Hy.

From Lemma 1 we obtain that the matrix H; can be rewritten in the fol-
lowing form:

r 1 1 1 -
ﬁi(gi{t]—-.l]-H} 6iat+1(31i(t—1}+1) ﬁaa(wl)(t—z;(ﬁe‘(t—l)_!_n
ﬁri!—l}_'_] ,gi.;ft—li_{_'l ﬁ?’(t—li+l
3 Fratt! B altt1)t=2)
Hl = @‘a’{{—i]_;’__] r{jiif—-li_i_l '(gife—13+1
Bi(f—?.) Igs(:—z)au-u}u—-z; ;3&(:—2)a(t+1)(t—2}{t—2)
Bilt—=1) 41 Fit=1) 41 pt=1) 11
1 1 1

L =1t

Obviously that this matrix is parity check matrix for the code ['a(La, Gs(z))
where Go(z) = 2! + & , Ly = L. This code is still quasi-cyclic with length of
cycloid ¢t — 1 and the number of cycloids is ¢, i.e., ng = t(t —1).

Theorem 1 The minimal distance of T's(La, G2(x)) code is dy = 2t + 4 and
number of information symbols is kg = ki — 1.

Lemma 2 Ly = {GFQ)N\{{a*Vii=0,..,t -2} U{0}} .

Let us consider now the following substitution: @ — z + v , where y €
GF(2%) and 4t +7+1 = 0. Then Ga(z) = 2t +z = 2+t +2+y =2t +2+1 =
Gs(z).

Now, to proceed from the class T'(L, G(z)) in to the class I'*(L*, G*(z)) let
us prove the following statement.

Lemma 3 There existt different elements v € GF(2%) such thaty'+v+1 =0
where t = 2.
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Proof. Let us choose some element w; € GF(2%) and let w} +wj+1=7#0,
then obviously, that 7 € GF(2'). Indeed 7% = w}gi +w§-£ +1=wj+w;+1=r1.

Therefore 72! = 7 and 7 € GF(2'). It is easy to show that for any nonzero
element 7 there exists ¢ different values w; such that w;i +w;+1=7. Then, as

the number of nonzero elements 7 from GF(2!) is 2! — 1, we will have N = (2! —
1)t elements w; € GF(Z‘H) such that w_; +wj+1#0. N = (2I - 1)2'{ =22 _9l

Therefore in the field GF(2%) @ = 2! elements w; such that w_‘;‘v +wj+1=0
can be found. O

If we will choose one of these w; as y then 4' +v+41 = 0. It is easy to show
that L3 can be represented as:

LS = {g? il Y ﬁia!-’-l =t Ys ﬁia(t-‘-l}z i Ty een ﬁia“-i-l)(t_g} o ’Y}i=1,...,t

Moreover, as v : Ga(v) = 1, i.e., element 7 is not a root of the Ga(7), then
accoding to the Lemma 2 there exist ¢, j such that :

Biat+)i — o,
This means that in the set Lz we have one cycloid with element {0}. In the set

L3 it is also exist element {1}, as G3(1) # 0.
Obviously, the code I'3(L3, Ga(z)) has parameters

ng =t(t—1),
ks = ko = k1 — 1 and
ds = 2t +4.

Let us consider now I'}(L3, Gs(z))—code obtained from I'3(L3, Gs())-code by
trancation on position {{]} i.e,, L = L3\{0}.
The code I';(L3, G3(x)) has pa.rametels

nt=nz—1, k3=ks=ko=ki—1, dij=ds—1=dpy—1=2t+3.

Now let us use the following substitution: z — I_f' Then

Gaz) =2 +z+l=y'+y +1— G =y +47 + 1L

The set Lj can be defined as a set of elements of GF|( 2%) that are inverse by
multiplication to the elements of set Lj.

L} = (B4~ (Flatt i) (Bl 2 49) 1 (Bl D)
Code T'j(L}, G4(x)) has parameters

ny = ng = ng — 1,
ki = k3 and
dy =dz —1.
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Lemma 4 Code T3(L3, Ga(@)) = Ti(LE Gs(x)), where Gs(y) = yGaly) =
gyt +yt +y and L = Lj.

Let us use the following substitution: y — u + 1, then
Gs(y) =y + ot +y — (1) 4wt D +u=u +1=Gs(y).
Lo = {(B' +7) " +1, (et +9) 7 41, (B'al 2 £9) 7 1,0, (Bl DD L) b 1y,

From Lemma 2 and the above obtained result about the existence of the element
{1} in the set L it is obvious that the element {0} will appear in set Lg.

Theorem 2 The class of binary Te(Le,Ge(z)) codes is the class of binary
quasi-cyclic T*(L*, G*(x)) codes with Goppa polynomial defined by formula (2)
and locator set L* = Lg .

Any codeword of this code is formed by (t — 2) cycloids of the length t +1
and one fixed position {0}.
I'*(L*, G*(x)) codes have the following parameters:

'n,*:?15:?’1521’1;:'ﬂ,g—l:‘t(t—l)—l,
K*=ks=ks=kj =k =k—1, (10)
d*=d5=d5:d§=d3—l=2t+3.

Let us write for the sequence of the accomplished transformations: © — z2+v —

ﬁ +y— ;% + ~. Therefore u = #}, +l=(z+79)1+1.

4 Conclusion

As it was shown above the codewords from the class of the binary quasi- cyclic
Iy (L1, Gi(x))-codes with cycloid length (t — 1) and cycloid number ¢ and the
fixed position {0} can transformed into the class of the binary quasi-cyclic
I*(L*, G*(z))-codes with the cycloid length (t + 1) and cycloid number (t —1)
and fixed position {0} by the sequence of simple transformations. The true
values for parameters of these codes are defined by formulas (3), (4), (7) and
(5), (6), (10) respectively.
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Abstract. In this paper decoding of a concatenated code is considered. We use
a Bounded Minimum Distance (BMD) decoder for the inner code correcting up to
(d' — 1)/2 errors and a Bounded Distance (BD) decoder for the outer code, which
corrects £ errors and T erasures if Ae +7 < d° — 1, where a real number 1 < A <2
is the tradeoff rate between errors and erasures for this outer decoder. Here d° and
d' are the minimum distances of the outer and the inner code, respectively. We
consider a single-trial outer decoder, which extends Kovalev’s approach [1] for the
whole given range of A. The error correcting radius of the suggested concatenated

decoder is £4° (1 (252) ) When using an outer Reed-Solomon code over em

5
of lengt-h n” < q"" with the BD decoder suggested in [2], A = £, and the error

(1 - (1_1 =7 ) of the concatenated decoder quickly approaches

d‘d"/? with increasing (.

1 Introduction

Concatenated codes were suggested and investigated by Forney in 1966 [3]. A
simple concatenated coding scheme uses an outer block code C°(n°, k°, d°) over
the finite field . and an inner block code Ci(nl,k',d') over 4, where the

upper indices o and i stand for the guter and the inner code, respectwely The
information sequence (ompoqed of k° ¢"-ary symbols is first encoded using

the outer code into a ¢*-ary codeword c® = (cl, ..+,%). The inner code is
then used to encode each symbol ¢7, j = 1,. .,n®, into a g-ary column vector
ei=1p N :)T. This results in an n! x n° matrix C of g-ary symbols, which

is a codeword 0{‘ the concatenated code C. The code matrix C is transmitted
over a g-ary channel and may suffer from channel errors. Denote by R the
received matrix and by e the number of errors in the channel.

IThe work of Vladimir Sidorenko is supported by DFG project BO 867/17. He is on leave
from Institute for Information Transmission Problems, RAS, Moscow, Russia.
*The work of Christian Senger is supported DFG project BO 867/15.
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The decoder of the concatenated code C consists of an inner decoder and an
outer decoder. The inner decoder decodes each column r}’ i RO O

the received matrix R using a BMD decoder for C' correcting up to (d' —1)/2
errors and producing either a codeword E}’T or indicating a decoding failure.

In case of successful decoding, the correspondent qki—a:ry symbol ¢ is given an
unreliability A; = dH(é},r}) and both ¢§ and A; are delivered to the outer

decoder. Here, dy(-,+) denotes the Hamming distance. In case of an inner
decoding failure, the symbol ¢7 is considered to be erased which implies the

greatest possible unreliability Aj = d/2.

The inner decoder provides the ¢ -ary vector €° = (&}, ..-,Cno) tO the outer
decoder, where potentially some of the symbols are erased, i.e. replaced by
a special erasure symbol. We denote @ 2= (r$,...,79) to indicate that
this is the received vector from point of view of the the outer decoder. In
addition to r° the outer decoder is provided by the vector A = (A1, ..., Ap0)
of unreliabilities. The outer decoder should decode the received vector r° using
the unreliabilities A, i.e. it should reconstruct the transmitted codeword c°
of the outer code and the corresponding information sequence. This decoding
problem is also known as Generalized Minimum Distance (GMD) decoding.
Our aim is to optimize the outer decoder if it is restricted to use the decoder of
the outer code only once.

Let us first assume an outer BMD decoder. It corrects & errors and T
erasures if 2¢ + 7 < d° — 1, where the factor 2 can be considered as the tradeoff
rate between errors and erasures for a BMD decoder. If the BMD decoder
simply decodes the vector r® without using A we can guarantee correction
up to e < d°d'/4 channel errors, where d°d' is the designed distance of the
concatenated code. This fact was shown by Forney [3]. Forney also suggested
multi-trial outer decoding, where in each trial a number of least reliable symbols
of © are erased and the obtained vector T° is decoded by the outer BMD
decoder. This multi-trial decoding allows to correct up to e < d°d' /2 channel
errors, if the number of trials is sufficiently large. However, in this paper we
consider single-trial outer decoders only.

In 1973 Zyablov [4] suggested the following single-trial decoding: First,
erase all symbols in 9 whose unreliabilities exceed the fixed threshold T' =
d'/3. Then, decode the obtained vector r° with a BMD decoder for the outer
code. This method allows to correct up to e < d°d'/3 channel errors. In 1986,
Kovalev [1] proposed a single-trial decoding method, where the threshold T is
not fixed, but is selected adaptively as a function of A. His algorithm is able
to correct up to e < 3d°d' /8 channel errors. Some refinements of Kovalev’s and
Zyablov’s approaches were done by Weber and Abdel-Ghaffar in [5). We should
also mention papers by Sorger [7], and Kotter [8] who suggested interesting
modifications of a BMD decoder in such a way that multi-trial decoding of the
outer code can be made "in one step”.
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In this paper we assume a BD decoder for the outer code, which corrects up
to (d° —1)/\ errors in the received vector x°. More precisely, we assume that
the BD decoder corrects € errors and T erasures if

de+r<d—1, )

where the real number 1 < X\ < 2 is the tradeoff rate between errors and erasures
for the BD decoder.

For example, we can use for outer encoding a Reed-Solomon (RS) code
C%(n°, k°,d°) over the field ,em of length n° < ¢™ with locators taken from
the field 4m, where m, ¢ € {1,2,...}, Im = k'. This code can also be regarded
as an (-interleaved RS code [6]. In [2] an efficient algorithm is presented, which
allows decoding of & errors and T erasures if ¢ < (d° —7—1)¢/(£+ 1), i.e. T° is
decoded correctly if (1) is satisfied, where A = (¢4 1)/¢. The decoder from [2]
may fail with probability Pj(e,7) < yg~ ™) (Emax(T)=5)+1] “where 4 ~ 1 and
emax(T) £ (&° — 7 — 1)¢/(£+1). If Ps(e,7) is not small enough we can make it
negligibly small by slightly decreasing the error correcting radius [6].

Kovalev proposed an adaptive algorithm for A = 2. In Section 2 we extend
his algorithm for arbitrary A, 1 < A < 2. In Section 3 we estimate the error
correction radius of this extendcd algorithm and show that the radius quickly
approaches d°d' /2 when A — 1.

2 Single-trial adaptive decoding

From the inner decoder we have a received word r° = (r9,...,7%) tocrether
with a vector A = (Ay,...,Aps) of unreliabilities for the components of r
where 0 < A; < d'/2. Here, we assume w.l.o.g. that the components ofir? a.re
ordered ace 01(11110 to their unrehabﬂltles and hence A1 > As > ++- > Ao,
The decoder of the outer code fails for r° with 7 erasures and errors in
unerased positions if
Ae+T>d°—1, (2)

otherwise outer decoding will be correct (see assumption (1)). Given the num-
ber of erasures 7, we denote by e(7) the minimum number of (unerased) erro-
neous symbols in the input vector that guarantee to cause a decoding failure.

From (2) we get
N

Let us erase the first and thus least reliable 7 components of r° and decode
the obtained input word ¥° by a decoder for the outer code. The decoder will fail
if there were at least (7) (unerased) erroneous symbols. What is the minimum
number e, (A) of errors in the channel given the vector A of unreliabilities to
create (1) (unerased) erroneous symbols in ¥°?
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To have an integer unreliability A; the channel should spend A; errors if
inner decoding of the component r¢ was correct, and at least d' — A; errors
otherwise. Consequently, the channel requires the minimum number of errors if

the erroneous components 77 have minimum possible d' — A;. This takes place
when the ¢(7) erroneous components rj are situated immediately after the 7

erased (first) positions. We obtain

T4£(7)

el = ZA+Z Aj) + Z A;

j=r+1 j=r+e(7)+1
T+e(T)

ZA + ) (d'—24y), (4)

j=7-+1

Il

Remark 1 This is true for even d', in this case A; is always integer since
Aj € {0,...,d"/2}. In case of odd d' we can have non-integer A; = d'/2 and _
e-(A) assumes a larger value then (4). Later on, we consider e,(A) given by
(4) only, despite the results can be slightly improved by methods similar to [5].

Given A, if the number e of errors in the channel satisfies e < e;(A) the
decoding of C° with 7 erasures will be successful. Hence, e-(A) is an error
correcting radius for given A and 7. We are free to select 7 € 7,

T =00 o id® =3} (5)
Let us select 7 = 7% which maximizes the radius e, (A):
7" = argmax er(A). (6)
T€T

As a result we obtain the following algorithm:

Algorithm A. Single-trial adaptive outer decoder

Input. Received vector r® with unreliability vector A from the inner decoder.
Code distances d', d° and parameter 1 < A < 2.

Step 1. Find 7* = arg max Z;i:{rl (d' —24,), where &(1) is defined in (3).
T7eT

Step 2. Decode r® with erased first " positions by the BD decoder for the
outer code.

Output. Either a codeword of the outer code or a decoding failure.

From Algorithm A we see that the complexity of the proposed adaptive
decoder comprises the complexity of the decoder for the outer code and addi-
tionally the complexity of Step 1, which is upper bounded by O(d° log d®).
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3 Error correcting radius

The goal of this section is to estimate the error correcting radius of Algorithm
A with parameter A, This means we should find the maximum (real) number
p()) such that any number e < p()) of errors in the channel are guaranteed to
be corrected by Algorithm A. For a given vector A of unreliabilities the error
correcting radius p()\) of Algorithm A is e;(A), where 7% is defined by (6) (see
also Remark 1). The radius p()) of Algorithm A for all possible A can be found
as the minimum of e, (A) over all possible A as follows:

) = minmaxe,(A).
p(A) = minmaxer(A) (7)
To simplify notations let us replace the unreliabilities A;, j = 1,...,n°% by

real-valued reliabilities h; as follows: hj = (d' — 24;)/ d', where
0<h Shg < -<hpe < 1. (8)

The greater the reliability value h; the more reliable is the symbol r$ at the
input of the outer decoder.

Definition 1 Denote by h = (hi,...,hno) the vector of reliabilities and by H
the set of all possible real-valued vectors h that satisfy restriction (8).

With these notations we rewrite (4) for e-(A) as

1 n° T+e(T)
e-(h) = d 52(1-@” R (9)
g=l J=rkl

and from (7) we have for the error correcting radius

p(A) = minmax er(h). (10)

Let us further simplify the task of finding p(A) and state it as a separate
problem. First, notice that in (9) and (10) the parameter 7 is selected indepen-
dently of hj, j =d°+1,...,n°. The contribution of these specific h; into (9) is

the sum 5o (1 — hj). Hence, to minimize in (10) over h we should select
these h; to have the maximum possible values h; = 1 and this sum will vanish.

As a result the summation E}il in (9) can be replaced by Z?D:I . Further,
Z?:] 1 is replaced by d°. Now we can formulate our problem as follows.

Problem 1 Foranyl <A <2 find the error correcting radius p(A)

p(\) = d' min max (), (11)

heH 7€
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where
1 d° T+&(7)
fT(h):§Z(1—h.j)+ D (12)
Jj=1 j=r+1

The set M is given by Definition 1, (1) is defined in (3), the integers d' and d°
are the minimum distances of the component codes, and T is specified by [5).

Problem 1 coincides with finding the decoding radius of a single-trial adap-
tive GMD decoder. For this decoder (with A = 2) Kovaley obtained in [1] the
following bounds for p(2):

£ (eor-[pt et (e [E2]). oo

from where we get an approximation p(2) ~ 3d'd° /8. Our goal is to estimate
p(A) for arbitrary 1 < A < 2. The following theorem gives a lower bound for

p(A).

Theorem 1 The error correcting radius p(\) of the single-trial adaptive algo-
rithm (solution of Problem 1) with parameter A satisfies the lower bound

p(N) > p(A) & f;‘iudo;lJ + {do_ [i*__lj _2J +2), (14)

where d',d° are the distances of the component codes.

For \ = (£ + 1)/¢ the arguments of the floor operations in (14) are integers
if d° satisfies
P =s(l+1)2+£+2, s=0,1,... (15)

In this case we can simplify (14) by omitting the floor operations and get the
following expressions for p(A):

d'd° A—=1\* 2= g1 i did =
A)= TR (Lt > = ke Y
3()2((A)+ N2 Nzl(x)
(16)
If d° does not satisfy (15), these expressions give a good approximation for p(A).

We see that for A = 2 our results coincide with Kovalev’s p(2) ~ 3d'd°/8. In
terms of ¢ we equivalently have

(E’+1)_did0(l_ e b 2 )>didﬂ(1_ L.
E\TE ). 2 C+1)2 " dE+12)~ 2 EE
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Theorem 2 The error correcting radius p()\) of the single-trial adaptive algo-
rithm (the solution of Problem 1) with parameter X satisfies the following upper
bound

p(N) < ﬁ(/\)%d;'i(d"—hﬂ?D, (17)

where £(7) is defined in (3) and d',d° are the distances of the component codes.

The obtained upper and lower bounds (17) and (14) are nearly tight and
the approximation (16) holds for both bounds. Now we additionally show that
the bounds are exact if d° satisfies (15).

Corollary 1 If A = (£ + 1)/¢ and d° satisfies (15), then the error correcting
radius p(X) is p(X) = p(A) = p(N).
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Abstract. Some methods to construct transitive partitions of the set F3' of all
binary vectors of length n into binary codes are presented. It is established that
for any n = 2F — 1,k > 3, there exist transitive partitions of I3' into perfect binary
transitive codes of length n and distance 3.

1 Introduction

In this paper we continue the investigation of transitive objects beginning in
[1-4]. Applying some switching constructions of partitions of the set F§' of all
binary vectors of length n into perfect binary codes given in [5] (using Vasil’ev
construction [6]) and also using Mollard construction (7] we construct transi-
tive partitions of FJ' into transitive binary codes. The methods permit us to
construct transitive partitions of Fj' into perfect binary codes. Mollard con-
struction allows to get transitive partitions of F3' into nonparallel Hamming
codes, i.e. the codes, which can not be obtained from each other using a trans-
lation by a vector of Fj' (the method is essentially different from the method to
construct partitions of F} into nonparallel Hamming codes, see [8]). Transitive
objects play an important role in the coding theory. Transitive codes are close
to linear codes by some of their properties. Transitive partitions can be useful
to construct new transitive codes.

In [2] several methods to construct transitive binary codes are given, in
particular, we got a class of perfect and extended perfect transitive codes for
any admissible length n > 31. The number of nonequivalent perfect transitive
codes of length n = 2% — 1 and distance 3 is not less than |k/2]%. An analogous
estimate is true for extended perfect transitive codes. Earlier it was known
|(k + 1)/2] such perfect codes of length n = 2k — 1, see [9]; analogous for
the extended case, see [10]. Transitive codes obtained in [2] have different
ranks, for example, for n = 16! — 1,1 > 0 the ranks vary from n — log(n + 1)

(the rank of the Hamming code of length n) to n — %ﬂ)— In [11] Potapov
found the exponential number of transitive extended perfect codes of small
rank. Transitive perfect binary codes of length 15 are investigated in [12]. It
is easy to see that an extension of anv transitive code bv the paritv checkine
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give us a transitive code. The converse is not true, in [13] Malyugin has shown
that there exists the transitive perfect binary code of length 16 such that any
its puncturing perfect code is not transitive. Therefore it is worthwhile to
investigate independently the extended case. Many known classes of good codes
are transitive. for example, all additive codes, all Zy-linear codes. In [13] perfect
transitive codes of length 15 which belong to the switching class of the Hamming
code are enumerated.

Two constructions of partitions of FJ into perfect codes were given in [5].
For any admissible n > 15 one of these construction allowed to get not less than
920" Jifferent partitions of FyJ into perfect binary codes of length n > 15,
see [14]. In [15] & switching construction of the partitions of Fj' into pairwise
nonequivalent perfect binary codes of length n is presented for any n = ok 1,
k> 5.

2  Necessary definitions and notions

Let F be the set of all binary vectors of length n. Any subset of F3' is called a
binary code of length n. A code C'is perfect binary code correcting single error
(briefly a perfect code) if for any vector z € F}' there exists exactly one vector
y € C such that d(z,y) < 1. It is well known that perfect binary codes with
code distance 3 exist if and only if n = 2%k — 1 k > 1. It is known that every
isometry of F' is defined as &

Aut(FR) = FI XS, = {(v,7) [v e F3,m € Sty

where > denotes a semidirect product, S, is a group of symmetry of order n.
The automorphism group Aut(C) of any code C of length n consists of all the
isometries of Fy that transform the code into itself:

Aut(C) = {(v,7) | v+ 7(C) = C}-.

A code C is said to be transitive if its automorphism group acts tran-
sitively on all codewords. The automorphism group of any family of codes
P = {Cy,C1;...,Cn}, P € F3, m < n, is a group of isometries of Fj}' that
transform the set P into itself such that for any i € M = (0,1,...,m} there
exists j € M, v € FJ', # € Sy, satisfying v + 7(C;) = C;. Every such isometry
induces a permutation 7 on the index set M that permutes the codes in the
partition P:

T({GO,Cl, e ey Cm}) e {G‘F(OJ‘- Cr{l]a sieie scr(m)}s

i. e. the automorphism group of the family P is isomorphic to some subgroup
of the group Spmy1. A family of codes P is transitive if its automorphism group
acts transitively on the elements (the codes) of the family. Two partitions we
call equivalent if there exists an isometry of the space FJ that transforms one
partition into another one.
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3 Constructions of transitive partitions

In this section we give two constructions of transitive partitions. As the starting
point for the case of perfect codes we will take transitive Phelps partitions given
in [16], where he classified all partitions of FJ into Hamming codes of length
7. Regardless of the fact that the Hamming code is unique (up to equivalence)
there are 11 such nonequivalent partitions. In the list of these partitions we will
use one special partition P7 = {HI,H{,...,Hj}, here 0" € Hf and 0" € H] +e;
for every i € {1,...,7}, where ¢; is the vector of length 7 with only one ith
unit coordinate. For the partition it is true |(HI +e:) N (HJT + ;)| = 4 for any
i 3, i, € {1,...,T}, i.e. the codes in the partition are pairwise nonparallel.

It is true the following known fact

Proposition 1. The partition P7 is a transitive partition of FJ into pairwise
nonparallel Hamming codes of length 7.

Construction A. In this section we show how the iterative construction of
the partitions from [5] based on Vasil’ev codes from [6] allows to get transitive
classes of codes. As a particular case we get transitive partitions of F3' into

perfect codes for any admissible length.

Theorem 1. Let P" = {C},CF},...,Ch} be a transitive family of binary codes
of length n; let B" be any binary linear code of length n with odd code distance
such that for any automorphism (y,m) € Aut(P™) it holds = € Sym(B"). Then

the family of the codes

2n+1 __ 2n+1 V2n41 2n+l .
P fTe {CO ‘Cl y st LI

2n+1 i (1 - 2 — 2+l
CH = {(a, |zl @ +y) sz € By € CT}, Comtha =CI" +enn,
where i=0,1,...,m, is transitive.

Codes from Theorem (1) we call Vasil'ev codes.

Taking into account that a translation of any transitive code by any vector
of the space is again a transitive code we get from the last theorem and Theorem
1 in [2] the folowing

Corollary 1. If every code in the family P is transitive than every code of the
family P>+ from Theorem (1) is iransitive.

It is also true

Corollary 2. Let P" = {C},C,...,Cp} be a transitive partition of Fy' into
perfect binary codes of length n. Then the family of the codes from Theorem (1)

is a transitive partition of the space Ff’““ into perfect binary codes of length
2n+ 1.

Taking into account the construction (1). Proposition 1 and corollaries 1
and 2 we can iteratively construct transitive partitions of the space F3' into
transitive perfect codes for any admissible length n = 2™ —1,m > 3, i.e. it is
frue
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Theorem 2. There ezist transitive partitions of F§' into transitive perfect codes
of length n for any n =2" —1, m > 3.

Corollary 3. There exist transitive partitions of full-even binary code into ex-
tended transitive perfect codes of length n for any n = 2™, m > 4.

Construction B. Here we give another method to construct transitive
partitions. The method is based on Mollard construction [7] for binary codes.
It is known that Mollard construction is a generalization of Vasil’ev construction
for the codes correcting single errors. The construction B given below is also a
generalization of the construction A. As contrasted with the construction B the
construction A gives transitive partitions into codes with big code distances. In
turn the construction B allows to get partitions of FJ' into nonparallel Hamming
codes.

Further we will use the following particular case of Mollard construction [7]
for binary codes. Let P* and C™ be any two binary codes of lengths ¢ and m
respectively with code distances not less than 3. Let

t
'L = (3:111 Ilﬁ, BT J:lﬁlﬂ ‘1:21'.‘ L0 !;I:an-!‘ BT, "xf]-? LR | ‘Tifm) E F‘zm.

The generalized parity-check functions p;(z) and pa(z) are defined by pi(z) =

(01,02, ..,01) € F¥, pa(a) = (01,0%,...,00,) € F3*, where 05 = >~7% i; and

o} = Yie1 Tij- The set

C" = {(z,y + pi(z),z + pa(z)) |2 € Fi™,y€ P',z€ C™}

is a binary Mollard code of length n = tm +t +m and code distance 3, see [7].
It is true the following

Theorem 3. Let Pt = {C,Ct,...,C}} and P™ = {Dg, DY, ..., Dt} be any
transitive families of the codes of length t and m respectively correcting single
errors. Then the family of the codes

P" = Gy Gt i

is transitive class of codes of length n = tm + t + m, correcting single errors,
where

Ch = {(z,y + pi(2),2 + p2(2)) |z € B"y€ Ciz€ D'} (1)
is Mollard code, 1 =0.1, ..., t; =01, m
From this theorem and Theorem 3 of the paper [2] we get

Corollary 4. Let P! and P™ be any transitive partitions of F} and F3* into
perfect transitive codes of length t = 2" — 1, r > 3, and m = At W
respectively. Then the construction (1) gives a transitive partition of F3' into
perfect binary transitive codes of length n = tm +t +m.
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Remark. It should be noted that Theorem 3 is true to get tramsitive
partitions into nontransitive codes. For ¢ = 1 Corollary 2 can be obtain from
Corollary 4 as a particular case.

Theorem 3 and Proposition 1 allow us to construct by induction transitive
partitions of F} into pairwise nonparallel Hamming codes.

Theorem 4. Let P! = {HY, HY,..., H}} and P™ = {Hg", HY",..., H} be any
transitive partitions into pairwise nonparallel Hamming codes, t = 2r—1,r 23,
and m =2 — 1, L > 3. Then the family of the codes

HE = {(z,y + p(2),z + po(a)) |z € F{",y € Hj,z€ H"},  (2)
i =0,1,...,t. j = 0,1,...,m, is a transitive partition of F3' into pairwise
nonparallel Hamming codes of length n = tm +t +m.

Denote by H™ the code containing all-zero vector obtained from the code
H" of length n by a switch on some vector from FJ.

_ Remark. It holds from Theorem 4 that if we know the size of the sets
H! N H} and H* N H" for any i,k € {0,1,...,t,} and 5,5 € {0,1,...,m} we
can easily calculate the size of the intersection codes HJ} and . e
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1 Introduction
At the 3rd Waterloo Conference on Combinatorics [16, pp. 341-342], Berlekamp

presented the following combinatorial problem. The problem will be illustrated
with the following example also due to Berlekamp in [16].

8 1
i 1 1
6 1 2
5 s 3
4 ) 7
3 SR/ P . (1)
2 S el
R S = o
0|1 2 5 19 66 293
OF 1T A 5

Berlekamp defines an array to be unitary if any square submatrix whose
upper left corner falls on the boundary of the array has a determinant equal to
1. For instance, in the array above

0 )
det| 1 2 5 | =1
18850
The problem then he states as follows: “... A periodic quasilinear boundary

represents the best staircase approximation to a straight line of rational slope.
 Exact formulas are known for the values of the numbers in the unitary arrays
generated by periodic quasilinear boundaries of slopes 1/n or n, but no such
formulas are known (to me) for the values in the arrays with boundaries of
slopes m/n where 1 < m < n. The simplest such case is slope 2 /37 — this is
shown above in (1).
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This problem arose already in Berlekamp’s paper [4], where the numbers
in the array above reduced modulo 2 were suggested as a convolution code
As Berlekamp pointed out [6], the density of ones in these codes is very low,
which was regarded as a disadvantage that time, ”...But in the past decades
we have seen great popularity of parity-check codes and of turbo codes, both
of which are of low density (and hard to design in any highly structured way,
compared with, say, RS block codes). The key is to find a criteria other than
constraint length. Anyway, I think the topic of structured generator sequences
for convolutional codes merits attention again, although my 63 paper seems to
be perhaps the only one that attempts to initiate work in that area...”.

The case slope 2/3 and 3/2, which yield codes of rates 2/5 and 3/5, re-
spectively, was studied in further detail later on by Berlekamp in [5], where he
derived some formulas for special parameters and then stated: “The patterns
are clear but I know no explanation. Why does the formula apply to an in-
dividual entry, then to sums of pairs of entries from different rows, and then
to the negative of an entry?”. This question had been answered in our papers
[13] (without being aware of the reference [5] at that time) and [15]. In Section
IV we shall give the generating function for the entries in the array (1). The
methods using lattice path enumeration are presented in Section II and III.
They apply to further lattice path models, which is the topic of actual research,
as briefly mentioned in Section V.

2 Lattice path enumeration

Carlitz, Roselle, and Scoville [8] later presented a fast algorithm for the com-
putation of the number of such lattice paths by getting rid of the determinant
calculation. They showed that the entries in this array enumerate the lattice
paths from the beginning of the row to the top of the column which determine
the respective entry, where these paths are not allowed to cross the boundary
given by the 1’s. For instance, in the array (1) above the positions of the 1’s
are below the boundary determined by ug = 2, u; = 3, ug = 5, ug = 6, ug = 8,
us = 9, etc.

A path here is a sequence of pairs (s;,1;), ¢ = 0, 1,... of nonnegative integers
where (s;, t;) is either (s;—1 +1,t;—1) or (s;—1,ti—1 +1). So, a particle following
such a path can move either one step to the right, i. e. s = s;—y + 1, or
one step upwards, i. e. t; = tj—1 + 1 in each time unit 7. We shall assume
that a path starts in the origin (0,0). There is a one-to-one correspondence
between a {0, 1}- sequence 2™ and a path with m steps: a 0 in the sequence =™
corresponds to a step upwards, a 1 to a step to the right in the corresponding
path. The (infinite) path determined by this boundary hence corresponds to
the periodic, binary sequence

001010010100101001...
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Observe that the positions of the 1’s in this sequence are at vj 1 = u; + i
for all i =0,1,2,.... This holds, because there is exactly one step to the right
after each u; steps upwards in the boundary lattice path.

The rows in the array (1) above behave periodically in the sense that every
third row has the same entries, which are only shifted according to the boundary.
Because of this fact only two further sequences have to be considered in order
to analyze Berlekamp’s problem for slope %, namely the sequences

01010010100101001... and 01001010010100101...,

since the paths corresponding to these sequences characterize all possible
boundaries arising in the array (1).

In terms of these sequences, Berlekamp’s problem was analyzed in [15] by
studying the size of the downsets N(y™) of the initial segments y™ of these
three sequences in the so called pushing order (cf. [3] and [11]), which played
a central role in Ahlswede’s and Khachatrian’s solution of the Erdos-Ko-Rado
Problem [1, 2].

3 Gessels’s probabilistic method

We shall consider paths in an integer lattice from the origin (0,0) to the point
(n,u,), which never touch any of the points (i,u;), ¢ = 0,1,...,n — 1. In
[9] Gessel introduced a general probabilistic method to determine the number
of such paths, denoted by f,, , which he studied for the case that the subse-
quence (u;);=1 2 is periodic. For period length 2 the elements of the sequence
(%i)m=0,1,2,... are on the 2 lines (for : = 0,1,2,...)

ugi = 8+ ci and ugiyy = 8+ p+ i, (2)

Gessel’s probabilistic method is as follows. A particle starts at the origin
(0,0) and successively moves with probability p one unit to the right and with
probability ¢ = 1 — p one unit up. The particle stops if it touches one of the
points (i,1;). The probability that the particle stops at (n,uy,) is pg¥ - f,.
Setting

o0 o0 o
F®) =3 fut" =3 fant™ + 3 fonrit™™ = g(t%) +1- h(t?)
n=>0 n=>0 n=0
the probability that the particle eventually stops is
¢"°9(p*¢") + pg" h(p*q")

If p is sufficiently small, the particle will touch the boundary (i, u;)i=o,1....
with probability 1. So for small p and with t = pg®/? we have
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q(t)*g(t?) + p(t)g(t)"*h(t?) =1

For p sufficiently small one may invert ¢ = p(1 — p)¥/? to express p as a
power series in ¢, namely p = p(t). Then changing t to — and denoting p(—t)
by 7(t) and similarly ¢(—t) by g(f) yields the system of equations

g gl tp Y =1,

79 +7-T h(t*) =1 (3)
which for g(t?) and h(t?) yield the solutions

i p—-lq—s—_u. s ?—3—16-3—;; qc;"Q—.u-—s = qcﬂ-vp,—s
g(t ) 3 p_'[q—'u, ) 'ﬁ—lﬁ—p\ = qclf‘z_.'._u A “q‘Cg‘?—;l (4)
and £ :
g =4
h(t?) = (5)

= ‘- (q“—cﬂ _I_@u—c/’?)

By Lagrange inversion (cf. e.g. [12]) for any « we have

(8]
= Z a ((c/2 + 1)n + a) g (6)
—(c/2+1)n+a n

The following identities were derived in [9] and [13]. Since we are going to
look at several random walks in parallel, we shall write the parameters deter-
mining the restrictions as superscripts. So, g(s'c’“) and h&:¢#) are the generating
functions (4) and (5) for even and odd n, respectively, for the random walk of
a particle starting at the origin and first touching the boundary (i, ui)i=0,1,...
determined by the parameters s, ¢, and u as defined under (2) in the lattice
point (1, ).

Theorem [9, 13] a) Let ¢ be an odd positive integer, s = 1 and p = St
Then
h.(l.r:.cgl](t‘Z) — qulﬁ_i—?_lﬁ :i 1 (C+2)ﬂ+}i+2 t_?ﬂ
' t (ct+2n+pt2 2n+1 L

b) For0 < p< §itis

2 2s (e+2)n+s
(800) (12) 4 oSCE ) (2) = =5 4+ G = & o+ 8) on
g &) el A ;(64-2)?1"’{'8 2n
and
g{s,c,c—,u) (tf&) - g(s,c,u)(tﬁ) =3 t2 1 hEs’c‘m ('1‘.2) . h(c-—?p.,c,,u) (t2).
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c) Let s + p = c with s > p, then

: 1 ' 2 (e+2)n—1 S
(8,c,0—8) 142 (e—s.c,8) ,2 T § : A t.,tn 1)
A L ®) t* (»+) i (e+2n—1 ( 2n )

In the special case ¢ odd, s = 5% and p = 5+ we have
& 2 phes ) < (g o)
where
o0 el
CLRCS (T NE P G (o 1 ((c+2)n+ 5 )'tgn.
gL t Uil Z(c+2)n —’5—1- 2n+-1
n=0
d)
(g(s,c”u) () + g(s.c,c—,u) (tz)) - hsem) (42) = h(2sem) (£2),
)

g(c-—?.p,r:.,u)(tZ) ; g(,u.c,c—p.) (t2) 73 g(c—,u,c,,u) (t2).
f) For 81 + 1 + pe = ¢ we have

gfslva\.ul)(tz) . h(sz‘:r,m)(f_'-?) = h{Sn.c‘s;wLuzJ(t?)_

Especially, for odd ¢

g(l‘c‘ngl (t?‘) : h(llcsc_;"l)(tQ) — h(lrcl_c:‘gl)(tg)_

4 Solution of Berlekamp’s problem

Now we are able to explain the entries from Berlekamp’s example array for slope
We have to inspect the parameter choices (s = 1,u = 1), (s = 1,p = 2),

and (s = 2,4 = 1). By application of the previous theorem, the generating

functions for these parameters (after mapping t> — ) look as follows.
Corollary [15]:

2 4]

1 5n+1 i
{1'31! el ;U’HJ —149 >: 3
;5 1( 2n )1 2 | )2 + 2z + 23x% 4 3772 +.

o0
: 1 on+1 s :
(1,3:2) (p) — N = Tp(18,0) 2 _ 14 3p4 9722 247® 1 ..
g (z) n§=05n+1( i ).‘L Ll [h (z)] +3x+ 37z° +624z° + ...,
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o0
] 1 5n + 2
Z3t(g) = " =1+ 5%+ 662> + 11562° + ...
9231 (z) §5ﬂ+2(2n_+1)x 4 50+ 662 + 11562° + ...,
oo
: - 1 5ﬂ+3 )
ey s " =1+ T+ 99z° +1768z° + ...,
j () §15n+3 g 1)” Rl A
= 1 (5n—1 1
(L82Y0 oy , — A=l 0t (oeair) 2 _1 : g
h () 3?,1—571.—1( as )z 519 ()] + 90 13622 4 ...,
R230) () = el el n—1+l[ (2:3.1) (2)]? = 24192+2932%+533223+
e = Yo =7l 2o PRl =R, i

Using the results in the above theorem, in [15] we also derived the generating
functions for the array in Berlekamp’s problem with slope %

5 Concluding remarks

1) There is a one-to-one correspondence between s-ary regular trees and ballot—
type {0, 1}-sequences z°" = (21, . .., ) of weight (= number of 1's) wt(z*") =
n fulfilling the condition wt(xy,...,;) = tforalli = 1,...,sn — 1. This
correspondence can be exploited to store regular trees, by assigning to them as
codewords the ballot — type sequence. The codes thus obtained form a prefix
code, cf. [10].

- 2) Probably most interesting, and indeed the topic of actual research, is the
fact that the formulae from the above theorem also arise in the enumeration of
a different type of lattice paths. Here, the boundary not allowed to be crossed
is obtained by repeatedly moving s steps upwards, and ? steps to the right.
This model was seemingly first studied in [7]. Again we analyzed the case
§ = 2,t =3 and s = 3, = 2. Here the formulae from the above theorem
enumerate the number of paths to any point on the boundary. Interestingly,
all the six formulae have a natural interpretation, whereas in the analysis of
Berlekamp's array only four of them really come into play. However, for further
periodic slopes, the analysis is more difficult.
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Abstract. The nonisomorphic sets of m mutually orthogonal resolutions (m-
MORs) of doubly resolvable 2 — (v, k,A) designs with small parameters are con-
structed and lower bounds on the number of m-MORs of multiple designs are ob-
tained.

1 Introduction

For the basic concepts and notations concerning combinatorial designs and
their resolutions refer, for instance, to (2], [3], [7]-

Let V = {B]}/_, be a finite set of points, and 8= {Bj}?zl — a finite
collection of k-element subsets of V/, called blocks. If any 2-subset of V is
eontained in exactly A blocks of B, then D = (V,B) is a 2-(uv,k,\) design, or
balanced incomplete block design (BIBD). We shall call two blocks B; and Ba
equal (B; = By) if they are incident with the same set of points.

Two designs are isomorphic if there exists a one-to-one correspondence be-
tween the point and block sets of the first design and respectively, the point
and block sets of the second design, and if this one-to-one correspondence does
not change the incidence. An autornorphism is an isomorphism of the design to
itself, i.e. a permutation of the points that transforms the blocks into blocks.

A 2-(v,k,mA) design is called an m-fold multiple of 2-(v,k,A) designs if there
is a partition of its blocks into m subcollections By, Bg, ... Bm, which form
92-(v,k,\) designs Dy, Da, ..., Dim. If Dy = Dy = ... = Dy, we call the design true
m-fold multiple of Dy.

A resolution of the design is a partition of the collection of blocks into
parallel classes, such that each point is in exactly one block of each parallel
class. We shall call two parallel classes of the resolution R, R; and Rs equal
(R = Ry) if each block of Ry 1s equal to a block of Ry. The design is resolvable
if it has at least one resolution. Two resolutions are isomorphic if there exists

'This work was partially supported by the Bulgarian National Science Fund under Con-
tract N MM 1405,
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an automorphism of the design transforming each parallel class of the first
resolution into a parallel class of the second’ one.

There is a one-to-one correspondence [5] between the resolutions of 2 —
(qk, k,\) designs and the (r,qgk,r — A)q equidistant codes, where r = A(gk —
1)/(k—1) and ¢ > 1.

Two resolutions R and 7 of one and the same design are orthogonal if the
number of blocks in R; NTj is either 0 or 1 for all 1 < i,j7 < r. Orthogonal
resolutions may or may not be isomorphic to each other. A doubly resolvable
design (DRD) is a design which has at least two orthogonal resolutions. We
denote by ROR a resolution which is orthogonal to at least one other resolution,
by m-MOR a set of m mutually orthogonal resolutions, and by m-MORs sets of
m mutually orthogonal resolutions. Two m-MORs are isomorphic if there is an
automorphism of the design transforming them into each other. The m-MOR
is maximal if no more resolutions can be added to it.

The newest results and an extended bibliography and summary of previ-
ous works on the existence of DRDs can be found in [1] and a method for
construction and classification of RORs and DRDs in [6].

The aim of the present work is the classification up to isomorphism of m-
MORSs of 2-(v,k.\) DRDs with small parameters and the establishment of some
lower bounds on their number for multiple designs.

2 m-MORs construction and classification

We start with a DRD and construct its resolutions block by block. For each
resolution R we check if it is isomorphic to a lexicographically smaller one, and
if not, we try to construct another resolution R, which is lexicographically
greater than R and orthogonal to it. We next repeat the same for Ry, Ra,
etc, constructing at each step a resolution R, orthogonal to all the resolutions
R,Ri,...; Rm_1, and checking if this m-MOR is isomorphic to a lexicographi-
cally smaller one. We output a new m-MOR if it is maximal.

The results are summarized in Table 1, where the last column shows the
number of the design in the tables [4] and a/b means that the number of noni-
somorphic MORSs is b, a of them maximal.

3 m-MORs of multiple designs

We first recall definitions and notations concerning sets of orthogonal Latin
squares (see for instance [3]).
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Table 1: Classification of inequivalent m-MORs

qlv | k| A| b |r | DRD§RORg 2-MORs|3-MORy 4-MORs | No
216 | 318140120 1 1 1/1 - - 236
21633 121 60 [30] 1 1 0/1 L1 - 596
216|3|16|80 (40| 1 1 0/>485 | 0/>485| >485/>485 1078
ol 8die 28 ia| 1 1 1/1 3 g 101
284|942 (21| 1 1 0/1 1/1 - 278
218 |4(12]| 56 |28 4 4 T/17 0/60 60/60 524
2/110| 5 (16| 72 |36]| & 5 5/5 - - 891
2|110| 5 [24|108|54| 6 6 2/7 5/5 - -

211216 {1044 [22] 1 1 1/1 - - 319
2112 81566 [33] 1 1 0/1 1/1 - 743
2112 6 [20] 88 |44 | 546 | 546 |691/>718 0/>27 | =>27/>27| -

2|116| 8 (14| 60 [30| 5 5 5/5 - - 618
2116 8 (21| 90 [45| 5 5 0/5 5/5 - g

2120110(18| 76 |38| 3 3 3/3 - - 1007
3933|386 (12 3 5 2/7 5/5 - 66
3193|448 |16] 38 83 | 388/495 | 333/334 1/1 145
4112 3| 2 |44 {11 20 70 | 319/321 1/2 171 55
4116|412 |40 (10| 1 1 0/1 1/1 - 44

A Latin square of side (order)n is an n X n array in which each cell contains
a single symbol from an n-set S, such that each symbol occurs exactly once in
each row and exactly once in each column. A Latin square exists for any integer
side n. An m x n Latin rectangle is an m % n array in which each cell contains
a single symbol from an n-set S, such that each symbol occurs exactly once
in each row and at most once in each column. An m x n Latin rectangle can
always be completed to a Latin square of side n.

Let L be a Latin square of side n on symbol set E3 with rows indexed by the
elements of the n-set E; and columns indexed by the elements of the n-set Es.
Let 7 = {(21,29,23) : L(z1,22) = 23}. Let {a,b,c} = {1,2,3}. The (a,b,c)-
conjugate of L, L, has rows indexed by E,, columns by Ej, and symbols
by E., and is defined by L4 c)(2a,%s) = 2. for each (21, 29,23) € 7.

Two Latin squares L; and Ly are equivalent (isotopic) if there are three
bijections from the rows, columns and symbols of L; to the rows, columns and
symbols, respectively of Ly that map Ly to Le. Ly and Ly are main class
equivalent if Ly is equivalent to any conjugate of Lg.
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Two Latin squares of side n Ly = (a;;) on symbol set S; and Ly = (bi;)
on symbol set Sy are orthogonal if every element in S; x Sy occurs exactly
once among the n? pairs (aij, bij), 4, = 1,2,....n. A set of Latin squares of
side n, L1, Lo, ..., Ly, is mutually orthogonal( a set of MOLS), if L; and L; are
orthogonal fori,j = 1,2, ...,n.i # j. A set of MOLS of side n can have at most
n — 1 elements.

Different types of equivalence of MOLS can be defined. In this paper we use
the following definitions of conjugates and equivalence of MOLS:

Let M be a set of m MOLS Ly, Ly, ..., Ly of side n on symbol sets re-
spectively Es. Ejy, ..., Emyo and with rows and columns indexed by the ele-
ments of the n-sets E; and E5 respectively. Let 7 = {(z1,Z3, ..., Tm42) :
L,‘_(:L‘] 5 :1’.'2) = Tj4+3, P= 1, 2, P m} Let {al,ag, S am+2} g {1, 2, Sity m+2}. The
(a1,a2, ..., am+2) conjugate of M, M, 45 .. am.») contains the Latin squares
Li : Li(a1,a2) = @it2, i = 1,2,...,m for each (@1 B9 Bmyn €T,

Two sets of MOLS M, and Mj are equivalent (isotopic) if there are three
bijections from the rows, columns and symbols of M; to the rows, columns and
symbols, respectively of My that map M to Ma. M; and My are main class
equivalent if My is equivalent to any conjugate of Mo.

Proposition 3.1 Let D be a 2-(v,k,\) design and v = 2k.

1) D is doubly resolvable iff it is resolvable and each set of k points is either
incident with no block, or with at least two blocks of the design.

2) If D is doubly resolvable and at least one set of k points is in m blocks,
and the rest in O or more than m blocks, then D has at least one mazimal
m-MOR, no i-MORs for i > m and no mazimal i-MORs for i < m.

The proof is based on:

1) If one block of a parallel class is known, the point set of the second one
is known too. Suppose D has m-MOR R, Rs,...R;m. Consider a block with
exactly p — 1 equal blocks. Denote by 1,2, ...,p the parallel classes of Ry, in
which these blocks are, the blocks themselves by 1;,21,...,p1 and the second
blocks in the classes by 13,29, ...,p2. Since block i; should be with block j2
(i,j = 1,2,...,p) at most once in a parallel class of the m-MOR, the class
numbers of the second blocks form an m x p Latin rectangle. An example for
p =4 and m = 3 is presented in Fig.1.

2) A 2 x m Latin rectangle can be completed to a Latin square of order m.

Proposition 3.2 Let lg_1,, be the number of main class inequivalent sets of
q—1 MOLS of side m. Let q =v/k and m > q . Let the 2-(v.k,mM\) design D
be a true m-fold multiple of a resolvable 2-(v,k.\) design d. If lg—1.m > 0, then
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Figure 1: 4 equal parallel classes of 3 mutually orthogonal resolutions, v = 2k

1 2 3 4 Latin rectangle
R Lila 2425 3132 4i4ds L 2iadid
Ra 1125 2315 3i14s 4137 — 2 1. 4--3
Ra 113z 214s 311s 4429 e AEE
L —l3E 1!r,r—l,'m
D is doubly resolvable and has at least (m = ) m-MORs.
m

The proof is based on:

Consider a resolution R of D, such that each parallel class of R; is equal
to a parallel class of the resolution 7 of d. We can partition the collection of
parallel classes of Ry into subcollections Py, Py, ..., Py, of size m, such that the
classes in a subcollection are equal. m-MOR containing R can be constructed
as follows: the first block of each class equals the first block of the corresponding
class of Ry and the other blocks of P; form a set M; of ¢ — 1 MOLS of side m.
An example for m = 4 and ¢ = 3 is presented in Fig. 2a.

Figure 2: 4 equal parallel classes of 4 mutually orthogonal resolutions, v = 3k

a)relation to a set M of two MOLS of side 4
1 2 3 4 M=M1234

R1 17151 212523 313233 414243 et A TR 1020 & 4
Ro 112233 211545 314513 473508 = 2 14 3 R e
Ra 113243 214533 311:25 4;2515 AN =0 AR R
Ry 114525 213213 312243 441:33 4x 2R i) 2R A8 HRS
b)automorphism « transforming first blocks into second blocks

1 2 3 4
RI 1-_:!1113 222.123 323133 494143
Rz 102133 201145 324] 1g 493123
R:j 123143 204433 321123 422113
Ra 1241235 223113 322143 451133
c)relation to M ;3.4 - the (1,3,2,4) conjugate of S

1 2 3 4 M1.32.4)
Ry 1ydals 2712525 313233 414045 R | INEY I
‘Rg 112243 211233 31—1-‘323 413213 =— AR Al AL =g e sl
Ra 113223 214213 31lody 412033 Satadat 2 ol ey
R.i 114233 213243 312213 4]1223 AN DL AR 38 )

Permutation of design classes, numbers of equal classes, or resolutions of
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the m-MOR invokes respectively permutation of columns, symbols and rows
of all Latin squares in M;. A nontrivial point automorphism a can invoke a
transformation of M; into one of its conjugates (an example is presented in
Fig. 2b,c.) or into a conjugate of M;,i,j = 1,2,...,r/m,i # j. Thus there are
at least l,—1m inequivalent ways to fix M.

The number of different ways to choose u integers i1, ig, ...iy, such that 7, +
fg 4oty = w s Qu,w) = (“'H”_l).

w

Corollary 3.3 Let I, be the number of main class inequivalent Latin squares
of side m. Let v/k =2 and m > 2. Let the 2-(v,k.m}) design D be a true
m-fold multiple of a 2-(v.k.\) design d. and let d be resolvable, but not doubly

T
— =1+4lmn
resolvable. Then D is doubly resolvable and has at least (m i ) m-

m
MORs, no mazimal i-MORs for i < m and no i-MORs for i > m.
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Abstract, The purpose of this paper is to study s-extremal additive codes over
Fi. The concept of s-extremality was introduced in [2] and the s-extremal additive
codes with minimum distance up to 4 were classified. In this paper, our goal is to
construcet (or to classify if possible) new s-extremal codes with minimum distance
d =5 or 6. For d = 5 we classify the codes of length 13, and we construct 1075 new
codes of length 14. For d = 6 we obtain that there is a unique code of length 14.

1 Introduction

The shadow of a binary self-dual code was introduced by Conway and Sloane
[5] in order to get additional constraints in the weight enumerator of a singly-
even binary self-dual code. Let C' be a singly-even binary self-dual code. The
shadow S of C' is

S = {w € F}|(v,w) = wt(v) (mod 2) for all v € C},

where (v, w) is an Euclidean inner product in F5.

Let d be the minimum distance of C' and s be the minimum weight of S.
It is known [1] that 2d + s < n/2 + 4 except in the case n = 22 (mod 24) and
d = 4[n/24] + 6 where 2d + s = n/2 + 8. Binary codes attaining these bounds
are called s-extremal.

After the introduction of s-extremal binary self-dual codes, it is natural to
ask whether there exists a concept of s-extremal additive Fy codes. If so, can
we classify them? This concept was introduced by Bautista, Gaborit, Kim, and
Walker [2]. They gave a bound on the possible lengths of such codes related
to their distances for even d and classified them up to d = 4. Also, they gave
possible lengths (only strongly conjectured for odd d) and (shadow) weight
enumerators for which there exist s-extremal codes with 5 < d < 11.

In this paper, we investigate a s-extremal codes with minimum distance 5
and 6. For d = 5 we give a full classification of the codes of length 13 and we
construct 1075 new codes of length 14. For d = 6 we obtain that there is a
unique code (up to equivalence) of length 14.

2 Preliminaries

Let Fy = {0,1,w,®} with convention that @ = w? =1+ w. We recall some
definitions on additive endes over Fu from 41 [6l
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Definition 2.1 An additive code C over Fj of length n is an additive
subgroup of F'. As C is a free Fy-module, it has size ok for some 0 < k < 2n.
We call C an (n,2%) code. It has a basis, as a Fy-module, consisting of k basis
vectors: a generator matrix of C is any kxXn matriz with entries in Fy whose
rows are a basis of C.

Definition 2.2 The weight of a codeword ¢ € C (denoted by wt(c)) is the
number of nonzero components of ¢ and the minimum weight (or minimum
distance) d of C is the smallest weight among all nonzero codewords in C. We
call C an (n,2*,d) code.

There is an inner product arising from the trace map. The trace map
Tr : Fy — Fy is given by Tr(z) =z + 22, The conjugate of x € Fy, denoted Z,
is the following image: 0 =0,1 =1, and & = w.

Definition 2.3 Trace inner product of two vectors x = (1580 o4 ZR),
y=(y1,¥2:. .-, Yn) in FY is

zxy=Y Tr(zifi) (1)
gi=1

Definition 2.4 If C is an additive code, its dual, denoted C+, is the additive
code {x € F}|lz«c =0 for all c € C}. If C is an (n,2*%) code, then C* is an
(n, 22" %) code. As usual, C is self-orthogonal if C C C+, and self-dual if
C=C".

In particular, if C is self-dual, then C is an (n, 9") code. C is Type II code
if C is self-dual and all codewords have even weight; Type I codes of length n
exist only if n is even [6]. If C is self-dual but some codeword has odd weight
(in which case the code cannot be Fy-linear), the code is T'ype I. There is a
bound on the minimum weight of an additive self-dual code ([10], Theorem 33).
If d; and d;; are the minimum weights of additive self-dual T'ype I and Type I1
codes, respectively, of length n > 1, then

2|n/6] +1, n =0 (mod 6);
dr <{ 2|n/6] +3, n=>5 (mod 6); (2)
2|n/6] + 2, otherwise
d” = 2LIIX€)J +2

A code that meets the appropriate bound is called extremal.

Definition 2.5 Two additive codes Cy and Cs are equivalent if there is a map
sending the codewords of C1 onto the codewords of Ca where the map consists of
a permutation of coordinates, followed by a scaling of coordinates by elements
of Fy, followed by conjugation of some of the coordinates.
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Definition 2.6 Let C be an additive Fy-code of length n which is self-dual with
respect to the trace inner product. The shadow S = S(C) of C is given by

S = {w € Ff|v xw = wt(v) (mod 2) for allv € C}.

If C is Type II S(C) = C, while if C is Type I S(C) is a coset of C.
The next theorem is the Fy-analog of Theorem 1 in [1].

Theorem 2.7 [2] Let C be a Type I additive code over Fy of length n, let
d = dmin(C) be the minimum distance of C, let S = S(C) be the shadow of C.
and let s = wtmin(S) be the minimum weight of S. Then 2d+s < n+2 unless
n=06m+5 and d = 2m + 3, in which case 2d + s =n + 4.

This theorem motivates the following definition.

Definition 2.8 Let C be a Type I additive code over Fy of length n, let d =
dinin(C) be the minimum distance of C, let S = S(C) be the shadow of C, and
let s = Wimin(S) be the minimum weight of S. We call C s-extremal if the
bound of Theorem T is met, i.e., if 2d + s = n+ 2 except n = 6m + 5 and
d=2m + 3. in which case 2d + s = n + 4.

There are some known bounds for the length of s-extremal codes.

Theorem 2.9 [9] Let C be an (n,2",d) s-extremal code. Then n 2 3d—4. If
d is even. then 3d —4 < n < 3d — 2.

For odd d > 3, there are the following bounds [9]:
d=5 : ll=n=<15 di= i i 2l
d=9: 28=<n <27 d=11 : 29 n < 33

3 Lengthening of graph codes

We recall the lengthening of graph codes from [12]. A graph is a pair G =
(V, B), where V = {vg,v1,...,us} is a set of n vertices (or nodes), and E is a
set of distinct pairs of elements from V, ie., E C V x V. A pair {v;,v;} € E is
called edge. We will only consider undirected graphs, which are graphs where
E is a set of distinct unordered pairs of elements from V, and no self-loops
({vi,v;} ¢ E). A graph may be represented by an adjacency matriz I'. This is
a V| x |V| matrix where ['; ; = 1 if {v;,v;} € E and I';; = 0 otherwise. The
adjacency matrix of an undirected graph will be symmetric, i.e., I';; = I';s,
and I';; = 0 (because no self-loops).

A graph code is an additive self-dual code over Fy with generator matrix
C =T + wI where [ is the identity matrix and I' is the adjacency matrix of a
undirected graph, which must be symmetric with 0’s along the diagonal.

011 wll

Example;: '=[ 101 |, C=T+wl=| lwl

14140 N 757
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Schlingemann [11] first proved the following theorem in terms of quantum
stabilizer states.

Theorem 3.1 ([11], [7]) For any additive self-dual code, there is an equivalent
graph code. This means that there is a one-to-one correspondence between the
set of undirected graphs and the set of additive self-dual codes over Fy.

We have seen that every graph represents an additive self-dual code over Fy,
and that every additive self-dual code over Fj can be represented by a graph.
It follows from Theorem 3.1 that, without loss of generality, we can restrict our
study of additive self-dual codes over Fj to those with generator matrices of
the form T' + wl (graph form).

The lengthening of graph codes is based on the following theorem.

Theorem 3.2 [12] If G is a generator matriz of a graph code C' of length n,
and x 18 a binary vector, then

2
G,:(G.l)
x| w

is a generator matriz of a graph code of length n + 1.

Using this construction we obtain new results described in the following
section.

4 Results
To obtain new s-extremal additive codes we use some preliminary results.

Theorem 4.1 (Theorem 4.1 [12]) There are 85845 nonequivalent additive
self-dual (13,2'2,5) codes, 2 nonequivalent (14,2,6) Type I codes, and 1020
nonequivalent (14,2, 6) Type II codes.

These codes were obtained by lengthening of graph codes. Then, their
generator matrices are given in graph form and we can use the same method
to get new results.

It is known that the weight enumerator of the s-extremal codes of length
13 is C(z) = 1+ 392° + 1562° + 46827 + 10532 + 16902 + 202820 4 171621 +
8582'2 + 183z'? and the number of these codes is > 9 [2]. Using the results in
Theorem 4.1 by computer check we obtain the following classification.

Theorem 4.2 There are exactly 33428 nonequivalent s-extremal codes of length
13.

In Table 1 we give full classification (by group order) of the s-extremal codes
of length 13.
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Table 1 Number of s-extremal codes of length 13 with group order «

« 1 2 Sl A6 Bl 12| 52 156
Number | 32134 | 1228 |5 (49 | 7|1 | 2 1 1

In our work we use the program package @ — Extension [3] to obtain the
number of nonequivalent codes and their group orders.

We use the generator matrices of the codes of length 13 to obtain new codes
of length 14 with d = 5. By lengthening of graph codes we construct 1075 new
codes with these parameters (one code is already known [8]). Therefore

Theorem 4.3 There are at least 1076 nonequivalent s-extremal codes of length
14 with d = 5.

In Table 2 we give a group order of the constructed s-extremal codes of
length 14. It is known If2] that these codes have weight enumerator C(z) =
1+ 4225 + 11926 + 40827 + 12812° + 24922° + 348620 + 38642z"'! + 30382 +
1386213 4 2672, and shadow enumerator S(z) = 3082% + 235228 + 7224210 +
5936212 + 56424

Table 2 Number of s-extremal codes of length 14 with group order

a 1 2 3 4 6 8 [ 24 |28
Number | > 915 | >125 | >8|>16|>5|>5(>1|>1

By results in Theorem 4.1 we obtain that there is a unique s-extremal code
of length 14. This code has weight enumerator C(z) = 1 + 1612° + 57627 +
111328 + 224029 + 3738210 4 4032z"! + 287022 + 13442'3 + 309z', shadow
enumerator S(z) = 2124 4 20328 + 256228 + 701420 + 604122 + 543z, and
group order 48. The generator matrix G4 of this code is

(wOllOlOOUOOlUl\
0wl11000001011
11w00010001011
110w0001000111
0100w000011111
10000w00101111
001000w1101001
0001001w010110
00000110wl11101
000010011wl1110
0110111011w000
55400 5 A B e 0 G X o
011111010101 wl
KlllllllﬂlOOOlw)

Gy =
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On mobile sets in the binary hypercube
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Abstract. If two distance-3 codes have the same neighborhood, then each of them
is called a mobile set. In the (4k + 3)-dimensional binary hypercube, there exists
a mobile set of cardinality 2 - 6% that cannot be split into mobile sets of smaller
cardinalities or represented as a natural extension of a mobile set in a hypercube of
smaller dimension.

1 Introduction

By E™ we denote the metric space of all length-n binary words with the Ham-
ming metric. The space E™ is called the binary, or unary, or Boolean hypercube.
The basis vector with one in the ith coordinate and zeros in the other is denoted
by e;. A subset M of E" is called a 1-code if the radius-1 balls with centers in
M are disjoint. The union of the radius-1 balls with the centers in M is called
the neighborhood of M and denoted by Q(M), i.e.,

QM) ={xze E":d(z,M) <1}.

If a 1-code M satisfies Q(M) = E™, then it is called perfect, or a 1-perfect
code. 1-Perfect codes exist only when the dimension has the form n = ok 1,
For n = 7, such a code is unique (up to isometries of the space), the linear
Hamming code. For n. = 15, the problem of characterization and enumeration
of the 1-perfect codes is not solved yet, in spite of the increasing computation
abilities (considerable results are obtained in [10, 2]). In this context, it is
topical to study objects that generalize, in different senses, the concept of 1-
perfect code and exist in intermediate dimensions, not only of type n = oF - 1.
Examples of such objects are the perfect colorings (in particular, with two colors
[1]), the centered functions [8], and the mobile sets, discussed in this paper.

A set M C E" is called mobile (m.s.) iff:

1) M is a 1-code;
2) there exists a 1-code M’ disjoint with M and with the same neighborhood,
ie., MNM =0 and QM) = Q(M');

such a set M’ will be called the alternative of M.

In other words, a 1-code is a m.s. iff it has an alternative.

For every odd n = 2m+1, we can construct a linear (i.e., closed with respect
to coordinatewise modulo-2 addition) m.s. in E™:

M ={{(zmlz]) vo'c B} (1)

"This author is partially supported by the RFBR grant 07-01-010248.
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(Here and below |x| denotes the modulo-2 sum of the coordinates of z.) Re-
spectively,
M ={(z,z,|z|®1): 2 € E™}.
It is not difficult to check the conditions 1 and 2 for these M and M'.
Our main goal is to prove the following:

Theorem. For all n > 7 congruent to 3 modulo 4, there exists an irre-
ducible unsplittable mobile set in E™.

A nonempty m.s. M is called splittable (unsplittable), iff if can (respectively,
cannot) be represented as the union of two nonempty m.s. The concept of
reducibility, which will be defined in Section 4, reflects a natural reducibility of
mobile sets to mobile sets in the hypercube of the two-less dimension.

A simple way to construct a m.s. in a hypercube of a code dimension
n = 28 — 1 is the following. Let C and C’ are l-perfect codes in E™. Then
M = C\ (' is a m.s. Indeed, we can take C'\ C as M’. The cardinality of this
m.s. is C'— |CNC’|. We study the existence of m.s. that cannot be reduced to
code dimensions.

In Section 2 we define extended mobile sets; that concept is convenient
for the description of our construction. In Section 3 we describe a connection
between the mobile sets and the i-components, which were studied earlier. In
Section 4 we describe a construction of increasing dimension for mobile sets;
that construction leads to the natural concept of a reducible m.s. In Section 5
we give the main construction and prove Theorem. In the final section, we
formulate several problems.

2 Extended mobile sets

Like as with 1-perfect codes, it is sometimes convenient to work with mobile sets
extending them by the all-parity check to the next dimension. In some cases
we get more symmetrical objects, which simplifies proofs and formulations of
statements. And. Some statements become more simple and intuitive while
being formulated for the extended case, although geometrical interpretations of
extended objects can seem to be not so elegant and natural as for the original.

Recall that the eztension of the set M C E™ is the set M C E"*! obtained
by the addition of the all-parity-check bit to all the words of M:

M = {(z.]2]) : z € M)} or M= {(z,|r|@l):ze M)}

Puncturing the ith coordinate for some set of words in E™ means removing the
ith symbol from all the words of the set (the result is in E"~1). Obviously, the
extension and puncturing the last coordinate lead to the original set; so, these
operations are opposite to each other, in some sence.

A set M C E™ is called extended mobile (an e.m.s.) iff it can be obtained
as the extension of some m.s.
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We will use the following lemma, which gives alternative definitions of an
e.m.s. As a usual m.s., an e.m.s. M can be defined together with some other
e.m.s. M, which can also be referred as an alternative of M (usually, it is clear
from the context what we are talking about, mobile sets or extended mobile
sets). For the formulation of the lemma and further using, it is convenient to
define the concept of the spherical neighborhood

QM) = Q(M)\ M,

which. for the extended mobile sets, plays the role similar to the role of the
usual (“ball”) neighborhood for the m.s. In particular, part (¢) of Lemma 1
defines an e.m.s. and an alternative similarly to the case of a m.s.

Lemma 1 (alternative definitions of an e.m.s.). Let M and M " be disjoint
1-codes in E", and let their vectors have the same parity (either all vectors are
even, or odd). Let i € {1,...,n}. The following conditions are equivalent and
imply that M (as like as M') is an e.m.s.

(a) The sets M; and M] obtained from M and M " by puncturing ith coordinate
are mobile and, moreover, are alternatives of each other.

(b) The (bipartite) distance-2 graph G(M UM "\ of the union M U M’ has the
degree n /2.

(c) QM) = Q(M"). A

Taking into account (b) and the existence of a linear m.s., we have the
following:

Corollary 1. Nonempty m.s. (e.m.s.) exist in E" if and only if n is odd
(resp., even).

3. --Components

A m.s. M is called an i-component iff Q(M) = Q(M @ e;). Consider the
set M; obtained from M by puncturing the ith coordinate. Let us construct
the so-called minimal-distance graph G(M;) with the vertex set M;, connecting
vertices at the distance 2 from each other. The proof of the following lemma is
similar to Lemma 1, and we omit it.

Lemma 2. A 1-code M is an i-component if and only if the graph G(M;)
is regular of degree (n — 1)/2 and bipartite.

So, Lemmas 1 and 2 establish a correspondence between pairs of alternative
m.s. in E"! and i-components in E"t! (for fixed 4, say, i = n+1). This
correspondence is evident as both objects correspond to a set in E" whose
distance-2 graph is bipartite and has the degree n/2. In the first case, all
the vertices of this set have the same parity. In the second case, this is not not
necessary, but the subsets of different parity will correspond to a partition of the
i-component into independent i-components, “j-even” and “i-odd”. Formally,
we can formulate the following.
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Corollary 2. Sets M, M' C E"! are a m.s. and an alternative if and only
if the set

{(z,|z],0) : z € M}U {(z,|z|,1) : 2z € M'}
is an i-component with i = n + 1.

Corollary 3. A set M € E™"! is an i-component with i = n + 1 if and
only if the sets

M = {z: (z,|z|®a,b) € M}, a,be{0,1}

are m.s., where M7 and M, are alternatives to each other gthe sets M and
Mg correspond to the “i-even” part of the i-component; MY and M7, to the
“-odd”; each of these parts can be empty; and if both are nonempty, then the
i-component is splittable).

An example of i-component is the linear m.s. (1), i = n. Formerly [4, 5]
many examples of nonlinear i-components were constructed. Each of them
is embeddable to a 1-perfect codes and has the cardinality, divisible by the
cardinality of the linear component. Moreover, it was only proved that these -
components cannot be split into smaller i-components. Their splittability onto
mobile sets are still questionable. So, in spite of the fact that the researches are
devoted to common problems and a common approach, the lines are slightly
different and the results do not overlap but complement each other: we give
the embeddability to 1-perfect codes up (which is a weakening) but deal with
a stronger splittability and a wider specter of dimensions.

4 Reducibility

Lemma 3 (on the linear extension of a m.s.). Let M C E" be an e.m.s. and
let M' C E" be an alternative of M. Then the set

R={(,0,0): 2 € M}U{(z,1,1): x € M} (2)
is an e.m.s. with an alternative
R ={(z,1,1): 2 € M}U{(2,0,0): z € M'}.

Proof. Condition (b) of Lemma 1 for M and M’ implies the validity of this
condition for R and R'. A.

An eim.s. R € E" is called reducible iff it can be obtained by the construc-
tion (2) and applying some isometry of the space (i.e., a coordinate permutation
and the inversion in some coordinates). A m.s. is called reducible iff the corre-
sponding e.n.s. is reducible.
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So, the existence of reducible m.s. is reduced to the existence of m.s. in
smaller dimensions. From this point of view, the formulation of the main the-
orem is natural.

Remark. As we can see from Corollary 3, any i-component is either re-
ducible m.s. or can be split into two i-components (“i-even” and “i-odd”),
which are reducible m.s. In particular, the linear m.s. (1) is reducible. More-
over, the linear e.m.s., up to a coordinate permutation, can be obtained from
the trivial e.m.s. {00} in E? by sequential applying the construction from
Lemma 3.

5 Proof of Theorem

Let us fix n divisible by 4: n = 4k. Partition the coordinate numbers into
k groups with 4 numbers in each group; rename the corresponding orts as
follows: gé,e{', eé,eé,eﬁ,..:,e’;. In each quadruple of type {eb, €4, eh, 5} we
chose arbitrarily (there exist 6 possibilities) a pair of different orts e} and ej;

J
by the index of the pair we shell mean the number p{j,t} where

p{0,1} =p{2,3} =0, p{0,2} =p{1,3} =1, p{0,3} =p{1,2} =2

Summarizing the chosen pairs for all i = 1,2,...,k, we get a vector of weight
2k, which will be called standard. Totally, there exist 6* standard vectors. By
the index I(v) of a standard vector v we shell mean the modulo-3 sum of the
indexes of all the pairs of orts that constitute v.

Let us partition the set of standard vectors into disjoint subsets Sp, S1, and
S, in compliance with the indexes of the vectors.

Claim 1. Leti # j, 1,5 € {0,1,2}. Then the distance-two graph G(S;U S;)
induced by the set S; U S; is bipartite and regular of degree 2K.

We first note that the graphs G(S;) and G(S;) are empty. Indeed, consider
two vectors v, u € S;. Either v and u differ in exactly one quadruple of coordi-
nates, and thus d(v, u) = 4, because I(u) = I(v); or v and u differ in more than
one quadruples, and thus d(v,u) > 4, because the distance between standard
vectors is even in every quadruple. So, G(S;U.S;) is bipartite.

Further, it is easy to see that every vector of index i has exactly two distance-
2 neighbors in S;. This means that the graph degree is 2k. Claim 1 is proved.

So, Sy (for example) is an e.m.s. of cardinality 2 - ghst.

Claim 2. The e.m.s. Sp is unsplittable. Assume that P C Sp and Q =
So\ P are nonempty e.m.s. Then P and @Q have alternative, say P’ and Q'.

We will first show that

*) P! (similarly, Q') consists of only standard vectors, i.e., such vectors that
contains exactly two ones in every quadruple. Indeed, otherwise P’ contains
a vector with non-standard quadruple; consequently, (P’) contains a vector
with two non-standard quadruples. But (P) consists of vectors with exactly
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one non-standard quadruple and, thus, cannot coincide with Q(P"), which con-
tradicts to Lemma 1. (¥*) is proved.

The following is another simple statement we will use:
(**) The distance-two graph G(S; U S;) is connected (1,7 € [0,1,2},:¢ 5 3)-
Let us show this by induction on k. For k = 2 the the statement can be
checked directly. Let k > 2. It is sufficient to show that arbitrary u and v
from S; U S; belong to the same connected component. If u and v coincide in
some coordinate quadruple, then this fact follows from the inductive assumption
(fixing this quadruple, we get a subgraph isomorphic to a graph considered in
the previous inductive step). Otherwise, there exists a word w in S; U S; that
coincide with w in the first quadruple and with v In the second guadruple (the
values in the other quadruples are chosen to make the index of w being i or
4). Similarly to the considered case, u, w and v belong to the same connected
component. (**) is proved.

Since P’ and Q' consist of standard vectors, they are included in S; U S2.
Denote

Pra=PipBY) Pr= P15y, Q1 =1Q S, Q2 =Q'NSs.

If P, = Qi = 0, then, as follows from Lemma 1(b), PU P, and Q U Q2
correspond to connected components of G(Sp U S,), which contradicts to (**).
Similarly, P, = @2 = () is impossible.

We have:

Q(PLU Py) UQ(Q1 UQ2) = UP) U Q(Q) = USo)-
Further, (S;) = Q(Sp); thus,

QS \ (PLUQY)) = QP2 U Q)

Similarly,

Q(Ss \ (Py U Q2)) = Q(Py U Q).

So, S is partitioned into two nonempty sets with alternatives in Sp. It follows
from Lemma 1(b) that the graph G(S1US2) is not connected, which contradicts
to (**) and proves Claim 2. :

Claim 3. The e.m.s. Sy is irreducible.

Note that in the construction (2) the sum of the last two coordinates is 0
for every word in R. Taking into account coordinate permutations and symbol
inversions, we can claim that for any reducible e.m.s. there exist two coordinates
whose sum is either 0 or 1 simultaneously for all words of the e.m.s. It is easy to
see that Sy does not satisfy this condition: in every two coordinates there occur
all four combinations of 0 and 1. Claim 3 is proved. The theorem is proved.

6. Conclusion
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We have constructed an infinite class of unsplittable irreducible m.s. Our
construction generalizes the example mentioned in [7]. In conclusion, we formu-
late several problems, which are naturally connected with the study of mobile
sets and with the problem of characterization of their variety.

For constructing m.s., one can apply the generalized concatenation princi-
ple which works for 1-perfect codes [9]. In particular, the construction from
Section 5 can be treated in such terms. Unsplittable m.s. constructed in such
the way will have non-full rank, i.e., for all the words of the set the coordinates
will satisfy some linear equation.

Problem 1. Construct an infinite family of full-rank unsplittable m.s.

Example. Consider the four words

(100 (011 (101 (001
IOl et SULEE I RS 8100 ¢
010) 000) 011) 111)

in E?, listed, for convenience, as 3 X 3 arrays, and all the words obtained from
them by cyclic permutations of rows and/or columns of the array. We get full-
rank unsplittable m.s. of cardinality 36. An alternative can be obtained by the
inversion of all the words.

Problem 2. Construct a rich class of transitive unsplittable m.s., e.m.s. A
set M C E" is called transitive iff the stabilizer Stabj(M) of M in the group I
of isometries of the hypercube acts transitively on the elements of M; i.e., for
every z,y from M there exists an isometry o € Staby(M) such that o(z) = y.
For example, it is not difficult to see that the m.s. constructed in the current
paper are transitive. There are several constructions of transitive 1-perfect and
extended l-perfect codes, see [6, 3] for the last results.

Problem 3. Study the embeddability of m.s. into l-perfect codes: the
existence of nonembeddable m.s. in the code dimensions n = 2F — 1; the
existence of m.s. that cannot be embedded with help of the linear extension
(Lemma 3) into a l-perfect code in a larger dimension. In particular, for m.s.
constructed in Section 5, the embedding questions are open provided n > 11.

Problem 4. Estimate the maximal cardinality of an unsplittable m.s.

Problem 5. Estimate the minimal cardinality of a nonlinear m.s. (the con-
struction of Section 5 together with Lemma 3 give the upper bound 1,5L(n),
where L(n) = 2("~1)/2 ig the cardinality of the linear m.s.), of an irreducible
unsplittable m.s. (the construction gives the upper bound 1,5=3)/4L(n)), un-
splittable m.s. of full rank.

Problem 6. Study mobile sets in other spaces, in particular, in g-ary
Hamming spaces where ¢ > 2 is an arbitrary integer, not necessarily a prime
power.
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Abstract. In this paper we consider a class of cyclic [p™ — 1,p™ — 2m — 1]-codes
over Z,, where p # 2 is a prime number, and we show that these codes have covering
radius at most 3.

1 On the number of solutions of some equations

Let F be the Galois field GF(q) where ¢ = p™ and p = char F is prime. We
assume that p # 2 and that 3 is a generator of the multiplicative group % of
the field F. Let us define the following sets

Q=(pHu{0}={ceF|IeF:a=b"}
of the perfect squares in F' and
N=p3(8%=F\Q={acF|3beF:a=pb"}

of nonsquares in F'.
We shall prove the next lemma following [5].

Lemma 1.1 Let M be the set of the solutions (z,y) of the equation Az? +
By? = C in the finite field F with q elements and let D = AB #+ 0. Then the

following fact holds
—-D

|M| = 4
q-+ (TD) (g—-1),if C=0,

IThis work was partially supported by the SF of Sofia University under Contract
171 /0K 20N8
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Proof. Let us denote

My, ={y € F | Az§ + By’ = C} =

301

-
—4).

Therefore,
0,if =D (23 - &) € N,
Mz = < 1, if (23 -5) =0,
2,if p(z3 —S§)#0and (23— %) €@
e 2_C a0
Y _D T: — =
= (P28 11 (2) (4:5) 1o
q q
where
8 U i a=0;
(—) =<1, if ae@, a0,
1 ~1,if a€N
is the generalized symbol of Legendre in the finite field F' with ¢ elements.
Therefore,
-D z? - & —
iM]:Z|Mm[=Z((( )( A)+1)=q+(—)2(
zEF zeF 1 a 9 7 zeF
First, let us consider the case A = 1 and B = —1. It is clear that
e 11 if ¢ 3'& Oa
M {2q—1, i RGI=I0;
In this case D = —1
5 (:172_%) y {_1, if C#0,
e q g—1.if C=0.

Now in the general case we have that

M| = q+(%) 3>

zel’
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Lemma 1.2 Let f(z) = Av®2+ Bz + C € Flz|, A#0, B+#0, and let
M = {2? |z € F, f(z®) = f(yx?) for some v € N}.

1
Then |M| = %

Proof. Let z be a solution of the equation f(2?) = f(ya*) for some v € N.
Obviously = = 0 is a solution of that equation. For the next considerations we
shall assume that 2 # 0. Then

Azt + Ba? + C = Av*a* + Byz® +C
Az® + B = Ay’z? + By
A(l —7%)e? = B(y—1)

and
—A(1 +v)22 = B,

since vy # 1 (1 € Q).
Note that v € N iff there exists u € F, b # 0 such that v = fu?.
We are looking for v in such form and u # 0.
It is clear that v # —1 (B # 0). Then

5 B 1
T = - ——.
A 1+~
If AB € N then 1+~ € N and we must find v € F such that 14 fu? = fv?.
From Lemma 1.1 we know that there exist ¢ — 1 pairs (u,v) which are the
solutions of the last equation. Note that w = 0 is not a solution and therefore

e —1
different elements ~ such that 1+ € N and |M| = qT +1=

we have 2
g+1
i 1

Analogously, the case AB € ) give us again that [M| = q_—;—_“ Indeed,

1+~ € Q and we must find v € F such that 1 + fu® = v>. By Lemma 1.1

it follows that there exist g + 1 pairs (u,v) which are the solutions of the last
—1

equation. Note that u = 0 is a solution and therefore we have : (v #0)
-1 1

different elements 7 such that 1 + v € N and |M| = Q_ﬁ_, +1= %— O
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2 On covering radius of some cyclic codes

Let us denote by fu(z) € Zy[z] the minimal polynomial of @ € F, |F| = q =
p™. Clearly, f, is an irreducible polynomial and deg fs = deg fg-» = m.
We consider the cyclic code C of length ¢ — 1 over the field F' generated by
g(z) = fg(z).fs-1(z). Hence, C is a [g— 1,¢ — 1 — 2m]-code.

Following the techniques of [1], [3] and [4], we obtain the next theorem.

Theorem 2.1 The [p™ — 1,p™ — 1 — 2m]-code C defined above has covering
radius at most & for p # 2 and g > 36.

Proof.
Let

(18 B ... gt
H_(l Wi st AT

be a parity check matrix of the code C.
Let s = (a,b) € F?, (a,b) # (0,0). We shall prove that there exists a vector
e € F7-! with syndrome s. For that purpose we must prove that the system

a1r] +asxrs + -+ =a

1 1 1 1
m—+ay—+--Fa—=0>b ()
T &9 x)
has a solution with ay,as,...,q; € Zy and z1,22,...,2; € F for some natural

number | < 3.
For [ = 1 it is clear that the system (1) has a solution iff ab is a nonzero
perfect square in Zj,.
Let us consider the following system
1 tartarz3=a
RN ©))

—+—+—=b’
I I €I3

where (a,b) # (0,0) and ab # 1.
Set y; = e Then we obtain an analogous system as (2) in which @ and b

are changed. . Iernt:e, we may assume that b # 0.
Let us consider the function Dj(y) = 4by® + (—ab? + 6ab + 3)y + 4a.
In the case —a?b® 4-6ab+ 3 # 0 by Lemmal.2 it follows that there are c € F

and v € N such that D;(c?) = Dy(y¢?) and ¢? takes gt |

different values. We

choose y = ¢2 or y = v¢? in such a way that D = —yD;(y) is a perfect square.
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-1
If ¢ > 35, it is clear that there exists y such that y # 0, y o - Y # —a and

the system (2) has a solution

i 21 T_(ab—l)y%—\/ﬁ I_(ab—l)y—\/ﬁ
o T (R R T e T R T

In the case —a2b? + 6ab + 3 = 0 we consider the system

a
:1:1+I2+I3=§

1 1 1 b’
—F —+—==
$y s 2y 2

202 _ab
It is clear that —0—1— +3— +3 # 0 and this system has a solution 21, z2, 23

which is a solution of the system (1) with a; = ag = a3 = 2.
Therefore, the covering radius of code C is at most 3. O
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Abstract. We show that every [n, k,d]s code with diversity (®o,®1), 3 < k <5,
ged(d,3) = 1, is (2, 1)-extendable except for the case (®o, ®1) = (40,36) for k = 5,
and that an [n,5,d]s code with diversity (40.36), ged(d,3) = 1, is (2, 1)-extendable
if Ay < 50. Geometric conditions for the (2,1)-extendability of not necessarily
extendable [n, k.d]s codes for k = 5,6 are also given.

1 Introduction

Let Fj; denote the vector space of n-tuples over Fy, the field of ¢ elements. A
linear code C of length n, dimension k and minimum (Hamming) distance d over
F, is referred to as an [n k,d), code. The weight of a vector & € Fy, denoted
by wt(x), is the number of nonzero coordinate positions in . The weight
distribution of C is the list of numbers A; which is the number of CDdE‘WOI‘db
of C with weight i. The weight distribution with (Ao, 44,...) = o) A8
also expressed as 0'd®---. We only consider non-deg Jeneratc, codea hawmg no
coordinate which is identically zero.

For an [n, k, d], code C with a generator matrix G, C is called (I, s)-extendable
(to C') if there exist I vectors hy,...,h € ’E‘ so that the extended matrix
[G,hT, -+ ,hT] generates an [n + I, k,d + slq (ode C' ([1]). Then C’ is called
an (I, s)-extension of C. ‘(1,1)-extendable’ is simply called eztendable. In this
paper we are concerned with (2,1)-extendability of ternary linear codes with
dimension k < 6.

Let C be an [n, k,d]3 code with k > 3, ged(3,d) = 1. The diversity (o, P1)
of C is given as the pair of integers:

=— ) A ¢’1=—;- WL A

3|i,i£0 i20,d (mod 3)

where the notation x|y means that x is a divisor of v.
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Let Di. be the set of all possible diversities of C. Dy has been determined in
3] for k < 6 and in [5] for k > 7. For k > 3, let D} and D} be as follows:

Di = {(6k—2,0), (Bk-3,2-3572), (02,2 3°72), (B2 + 8*72,3¥72)}, Df =Dp\ D},

where 0; = (3! — 1)/2. It is known that Dj is included in Dy and that C is
extendable if (o, ®1) € Dj; ([3]). The necessary and sufficient conditions for
the extendability of C with (®g,®;1) € D} are given in [3-7] for k < 6.

We denote by PG(r, ¢) the projective geometry of dimension r over F,. A
j-flat is a projective subspace of dimension j in PG(r,q). 0-flats, 1-flats, 2-
flats, 3-flats, (r —2)-flats and (r — 1)-flats are called points, lines, planes, solids,
secundums and hyperplanes, respectively.

Let C be an [n. k,d|, code with a generator matrix G = [g1,-- ,gx]". For
P =P(py,-- ,pr) € X, the weight of P with respect to C is defined in [4] as
k
= Wt(zprfgi)-
i=1
;From now on, let C be an [n, k,d|3 code with ged(d,3) =1, k > 3. Let
Frb = {PeZ|we(P)=0 (mod3)},
F, = {PeX|we(P)=d (mod3)},
= {PEZ|UJ{,’(P :d} e = FQ\Fd
= E\(.F{]UF‘Z) F= FyU F;.

Lemma 1.1([4]). C is (2,1)-extendable iff there exist two hyperplanes Hy, Ha
of ¥ such that Fyn Hy N Hy = 0. Equwalently, F U F, contains a secundum of
X,

We give the necessary and sufficient conditions for the (2,1)-extendability
of [n,k,d]s codes with diversity (P, ®1), 3< k <6,d =1 or 2 (mod 3) from
this geometrical point of view.

A tflat II of ¥ with |IIN Fy| = 4, [IIN F| = j is called an (i,7); flat.
An (i,7); flat is called an (i, j)-line. An (i, j)-plane and an (i,7)-solid are
defined similarly. We denote by F; the set of j-flats of ¥. Let A; be the
set of all possible (i,4) for which an (,7); flat exists in ¥. Then we have
Ay = {(1,0),(0,2),(2,1),(1,3),(4,0)},

As = {(4, 0) (1,6), (4,3), (4,6),(7,3), (4,9), (13,0)},
Az = {(13,0), (4,18),(13,9), (10, 15), (16, 12) (13,18), (22,9), (13, 27), (40,0)},
Ay = {(40, o) (13,54), (40, 27), (31, 4a) (40, 36), (40, 45), (49, 36), (40, 54), (67, 27),
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(40,81), (121,0)},
As = {(121.0), (40, 162), (121, 81), (94, 135), (121, 108), (112, 126), (130,117),
(121,135), (148, 108), (121, 162), (202, 81), (121, 243), (364,0)},
see [3]. Let II; € F;. Denote by cftj,} the number of (7, 7);-1 flats in II; and let
st = Iy N Fs|, s =0, 1. (0o, 10) is called the diversity of II; and the list
of rff} s is called its spectrum. Thus Ay is the set of all possible diversities of II;.
According to the diversity of C we give the necessary and sufficient condi-
tions for the (2,1)-extendability of C using some of the following six conditions:

For k > 4, let (Cp-0), (Cp-1) and (Cx-2) be the following conditions:
(Cx-0) there exists a (fx—4,0)x—3 flat d; in X satistying a1 \ Fo © Fe;
(Ci-1) (Cx-0) holds and there exists a (01_g,353),_3 flat &3 in B such that
(51 N 62 is a ((7‘;. --I-U)k—4 Ha.t;
(C-2) there exist two (0x—4,0)r—3 flats 01, 02 in ¥ such that dy Moy is a
(Og—4.0)p—4 flat with (61 Uda) \ (01 Nd2) C Fe;

For k > 4, let (Cg-3) and (Cx-4) be the following conditions:
(C4-3) there are three non-collinear points @1, @2, Q3 € F, such that the three
lines (Q1, @2), (@2, Q3), (@3,Q1) are (0,2)-lines;
(C}-3) there exist three (A5, 0)x—4 flats 01, d2, 03 through a fixed (0—5,0)k—5
flat L such that (d1,02), (d2,03), (ds,d;) form distinct (Op—5,2 - 3k—4);_3 flats
and that (6; Uds U dz) \ L C F; holds;
(C4-4) there are three non-collinear points Py, Py, P3 € Iy such that the three
lines (Py, Py), (Ps, P3), (P3, 1) are (0, 2)-lines each of which contains two points
of F;
(Ck-4) there exist a (0g_5,0),—5 flat L, three (Br_5, 8" *)i_y4 flats &), &5, 6%
through L, and six (Bj_s,0)s_s flats dy,---,ds through L such that (d},d;
forms a (fp_5,2 - 3*~4),_3 flat containing two of d;,---,06 for 1 <i < j <3
and that (U%_4;) \ L C Fe holds.

For k = 5. let (Cx-5) and (Cg-6) be the following conditions:

(Cs-5) there exist a (4,0)-line [ and four skew (1,0)-lines [y, ls, 3, l4 such that
each of Iy, ..., 1y meets | and that (I, l3,13,ls) € F3 and (U{_,l;) \ | C Fe hold;
(Cs5-6) there exists a (4, 3)-plane d in ¥ and a point R € F; such that [; =
(R, P;) is a (1,0)-line for i = 1,2,3,4 and (6 Ul Ul Ulz Uly) N Fy = 0, where
Fonéd = {Pl,...,P4}.

Theorem 1.2. Let C be an [n, k,d]s code with diversity (Po,®1), k = 3 or 4,
ged(3,d) = 1. Then C is (2, 1)-extendable.

Theorem 1.3. Let C be an [n,5,d]s code with diversity (®o, ®1) # (40, 36),
ged(3,d) = 1. Then C is (2, 1)-extendable.
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Theorem 1.4. Let C be an [n, 5,d]3 code with diversity (40,36), ged(3,d) = 1.
Then C is (2,1)-extendable iff one of the conditions (C4-0), (C4-3) holds.

Theorem 1.5. Let C be an [n,5,d]3 code with diversity (40,36), ged(3,d) = 1.
Then C is (2.1)-extendable if Ay < 50.

Theorem 1.6. Let C be an [n,6,d]3 code with diversity (®o, ®1) ¢ {(121,108),
(112,126), (130,117)}, ged(3,d) = 1. Then C is (2,1)-estendable.

Theorem 1.7. Let C be an [n,6,d]3 code with diversity (121,108), ged(3,d) =
1. Then C is (2,1)-extendable iff one of the conditions (Cs-1), (Cs-3), (Cs-4),
(05‘5), (05—6) holds.

Theorem 1.8. Let C be an [n,6,d]s code with diversity (112,126), ged(3,d) =
1. Then C is (2, 1)-extendable iff one of the conditions (Cs-2), (Cs-3), (Cs-4),
(05—5). (Cr,wﬁ) h.Ode.

Theorem 1.9. Let C be an [n,6,d)3 code with diversity (130,117), ged(3,d) =
1. Then C is (2,1)-extendable iff one of the conditions (C5-0), (Cs-3), (Cs-4),
(Cs-5), (Cs-6) holds.

Example. Let C be a [15. 5, 8]z code with a generator matrix

0 <UD igals onl a0l 1 0
T e A T R S O
C= a0 0. 10 02 Osl 10232 16t 20 |
Bea0ueh. 160 0.0, 1.1 0.2 2.2 1.9
0: 0.0 01 2 9.2 20022 0 i

whose weight distribution is 0!860910106211201240131014%0 (diversity (40,36)).
Then we can take Q; = (0.0,1,1,1), Q2 = (1,2,1,2,2), @3 = (1,1,0,0,1) so
that the condition (C4-3) of Theorem 1.4 holds. Since V(ze + 221 + 225 +
x3) NV (2o + 22 +234) = (Q1,Q2, Q3). by adding the column (1,2,2,1,0)T and
(1,0,1,0,2)™ to G, we get a (2,1)-extension of C whose weight distribution is
019381056114612%41380142615816%.

2. Proof of Theorems 1.2-1.4, 1.6-1.9.

Proof of Theorem 1.2. When k = 3, there is a point P ¢ Fy iff C is (2,1)-
extendable. Obviously, any plane have such a point P in F. When k = 4,
there is an (i,7)-line [ with I N Fy = 0 iff C is (2,1)-extendable. jFrom Table
1 and Table 2 in [3], it can be checked that any solid has an (7, j)-line with
(i,3) = (1,3) or (4,0). Hence C is (2,1)-extendable by Lemma 1.1. a
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Proof of Theorem 1.3. There is an (i, j)-plane 7 satisfying = N Fy = 0 iff
C is (2.1)-extendable. From Table 2 and Table 3 in [3], any (Po, @1)4 flat with
(@, ®1) # (40,36) contains an (i, j)-plane with (7, j) = (4,9) or (13,0). Hence
C is (2,1)-extendable by Lemma 1.1. [

Proof of Theorem 1.4. (“only if® part:) Assume that C is (2,1)-extendable.
Then there is an (7, j)-plane 7 satisfying = N Fy = (). From Table 2 and Table 3
in [3], an (i, j)-plane in the (40, 36)4 flat T satisfies (4, ) € {(4, 0), (1,6), (4,3),
(4,6), (7,3)}. The condition (C4-0) holds if (i,7) € {(4,0), (1,6),(4,3),(7,3)}
and the condition (C4-3) holds if (4,7) = (4,6).

(“if* part:) Assume that the condition (C4-0) holds. Let I be a (1,0)-line
satisfying [ \ F € F.. Then, it can be proved that there is a (7,3)-plane
through [ in the (40, 36), flat X. Hence, C is (2,1)-extendable by Lemma 1.1.
Assume that The condition (C4-3) holds. Then the plane § = (Q1,Q2,@3)
forms a (4, 6)-plane satisfying 0 N Fy = 0. |

Proof of Theorem 1.6. There is an (i,7)-solid 7 satisfying = N Fy = 0 iff
C is (2,1)-extendable. From Table 3 and Table 4 in (3], any (o, ®1)s flat
with (®q.®1) ¢ {(121,108), (112,126), (130,117)} contains an (i, j)-solid with
(i,5) = (13,27) or (40,0). Hence C is (2,1)-extendable by Lemma 1.1. O

Proof of Theorem 1.7. (“only if® part:) Assume that C is (2,1)-extendable.
Then there is an (i, j)-solid 7 satisfying 7\ F C Fe. From Table 3 and Table 4 in
(3], an (4, j)-solid in the (121, 108)5 flat X satisfies (i, j) € {(13,0), (4,18), (13,9),
(10,15), (16,12), (13,18), (22,9)}. The condition (Cs-1) holds if (4, j) = (4,18)
or (22,9). The conditions (Cs-3), (Cs-4), (C5-5), (Cs-6) hold if (%, 7) = (13, 18),
(13,9), (16,12), (10,15), respectively.

(“if* part:) Assume that the condition (Cs-1) holds. Then there exist a (4,0)-
plane §; and a (4,9)-plane &, such that I = 6; N dy is a (4,0)-line and that
51\l C F.. Since A = (&1, 8,) is necessarily a (22,9)-solid in the (121,108)s flat
%, we have AN Fy = 0. Hence C is (2,1)-extendable. Similarly, the conditions
(C5-3), (Cs-4), (C5-5), (C5-6) imply the existence of an (i,j)-solid A with
(i, 7) = (13,18), (13.9), (16,12), (10,15), respectively, satisfying AN Fy = 0. O

Theorems 1.8 and 1.9 can be proved similarly to Theorem 1.7.
3. Proof of Theorem 1.5.

Assume that C is not (2,1)-extendable. Then no three points of F are
collinear by Theorem 1.4. Thus, F, forms a cap and hence |F,| < 20 since the
Jargest size of a cap in PG(4, 3) is 20. Every 20-cap in PG(4, 3) is either a I'-cap
or A-cap ([2]).
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Theorem 3.1([2]). Let E be a 10-cap in a solid H of PG(4,3). Let Py,--- ,Pyo
be the points of E and let V be a point of PG(4, 3)\ H. Then the set consisting
any two of the three points different from V' on each of the 10 lines (V, P;) forms
a 20-cap. Such a cap is called a I'-cap or a cap of type I'.

Theorem 3.2([2]). Let Cy,Ca,Cs3,Cy be the points of a 4-arc in a plane 7
in PG(4,3). Let Z1,Zy and Z3 be the points (C1,Ca) N {C3,C4), (Ca, C3) N
(Cy4,C1) and (Ca, Cy) N {C1, C3) respectively. Let Z;1, Zia be the points on the
line (Z;, Zy)(j, k # i) other than Z; and Zy. Let L = {V1,Va,V3,Va} be a line
skew to m. Then the set of points Cy, Ca, C3,Cy together with the points on the
following lines (A, B) other than A and B:

(V;‘, ZJ) (" =1,2; g= 23)1 (V3s Z3h) (h = 1$2)1 (I/d, Z2h) (h =1, 2)
forms a 20-cap. Such a cap is called a A-cap or a cap of type of A.

For i = 1,2, a point P € F; is called a focal point of a hyperplane H if the
following three conditions hold:

(f1) (P, Q) is a (0,2)-line for @ € F; N H,

(£-2) (P,Q) is a (2,1)-line for Q@ € F3_i N H,

(£-3) (P, Q) is a (1,6 — 3i)-line for Q@ € Fo N H.
Such a hyperplane H is called a focal hyperplane of P. We also employ the
following theorem.

Theorem 3.3([8]). In a (40,36)4-flat, every point of Fy (resp. Fy) has the
unique focal (10,15)-solid (resp. (16,12)-solid), and vice versa.

We show that F, cannot form a 20-cap. Then |F| = |Fa| — |Fg| = 45 —
Ag/2 < 20, giving Theorem 1.5. First, suppose that F, is a 20-cap of type I in
Theorem 3.1.

If V € Fy, then the line (V, P;) is necessarily a (1,0)-line for ¢ = 1,--- , 10.
This contradicts that there are exactly six (1,0)-lines through a fixed point of
Fp in the (40, 36)4-flat .

If V € Fy, then (V, B) is a (0,2)-line for i = 1,---, 10. Let H' be the focal
solid of V. Then H' is a (10, 15)-solid by Theorem 3.3. Let E’ be the projection
of E from V onto H' if H # H', otherwise let E' = E. Then E' C Fy. Since
E is an elliptic quadric, so is E'. Hence, there are exactly 10 planes (resp. 30
planes) in H' meeting E’ in one point (resp. four points) in H'. On the other
hand, the spectrum of a (10,15)-solid is (c%gé,cf%.cﬂ) = (10,15,15). Hence

there are at most Cgs()}_ + cfﬁg = 25 planes in H meeting E in four points, a

contradiction.
If V € Fy, then (V, P;) is a (1,0)-line for i = 1,--- ,10. Let H' be a (16, 12)-
solid which is the focal solid of V, and let E’ be the projection of E from V
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onto H' as the previous case. Then E' C Fy. Since Fy N H' is a hyperbolic
quadric in H', FoN H' cannot contain the 10-cap E’, a contradiction. Thus, Fp
cannot form a I'-cap.

Next, suppose that F, is a 20-cap of type A in Theorem 3.2. Since C1,...,Cy
are points of F, in the case, 7 is a (4, 0)-plane or a (1, 6)-plane or a (4, 3)-plane.

Assume 7 is a (4, 0)-plane. Then, one of the lines (Zs, Z3), (Z1, Z2), (Z1, Z3)
must be a (4, 0)-line. If (Zs, Z3) is a (4, 0)-line, then (V1, Zs), (Va, Z3), (V3, Za1),
and (Vy, Zo1) are (1,0)-lines, and L is a (2,0)-line, a contradiction. One can
get a contradiction similarly for other cases.

Assume 7 is a (1, 6)-plane. Since C},...,Cy form a 4-arc contained in two
(1,0)-lines of 7, one of Z,, Zy, Z3 must be the point 7 N Fy. Suppose Z3 € Fy.
Then (Z3, C;) is a (1,0)-line for i = 1,2 and (Z3, Z;) is a (1,3)-line for j = 1,2.
Since (Vi,Z3) is a (1,0)-line, we have V7 € Fy, so (V,Zs) is a (0,1)-line, a
contradiction. One can get a contradiction similarly if Z; € Fy or Z5 € Fp.

Assume 7 is a (4, 3)-plane. If Z3 is a point of Fp, then (Z3,C1) and (Z3, Cs)
are (1,0)-lines, which contradicts that there is only one (1,0)-line through a
fixed point of Fy in a (4,3)-plane. One can get a contradiction similarly if
Z3 € Fy or Z3 € F5. Thus, F, cannot form a A-cap as well. O
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Abstract. We study the relationship between partitions of some integer a in GF(p)
in unequal parts of size at most (p— 1)/2, and binary vectors with so-called value
@. In particular we investigate a group of transformations acting on the family
A={A,A,.., A}, where A stands for the set of all vectors of value i.

1 Preliminaries

Let p be some odd prime. We shall study the partitions of positive integers con-
sisting of unequal parts the size of which is at most (p—1)/2. It will be obvious
that we can represent such partitions by binary vectors ¢ = (€163~ 5 E(p—1) ;2)
of length (p— 1)/2. Here, ¢; = 1 if and only if the partition contains a part of
size i . We interpret all vectors as row vectors. The number of ones in such a
vector ¢ is called the weight of the partition and is denoted by |e|. It stands for
the number of parts in the partition. Let ¢ be some partition. We define

(p—1)/2
a = L je; mod p (1)
j=1

and call a the value of ¢ or wal(c), with a € {0,1,-+- ,p—1}. For a fixed
value a, we collect all vectors having this value in a set A, consisting of |Aa|
binary vectors of length (p — 1)/2. So, this set contains all ”conventional”
partitions of the integers a,a+p, azp, - -~ into unequal parts. We shall call such
a set a constant-value code. We also introduce integers e and n,, being the
qumber of vectors in A, with an even number of ones and an odd number,
respectively. (We suppress the a-dependency of these integers in our notation).
The complement of a partition ¢ is defined as the partition corresponding to
the vector ¢ = ¢ + 1 , where 1 is the all-one vector of length (p— 2)/2. Since
the value of 1 is equal to

L:=(p>—1)/8 modp (2)
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all vectors of a set A, have a complement of the same value L — a. Hence, we
can write AS = Ap_, ‘and we call A the complement of A,. We also need the
"value of the first halve of 17, clefined by

K=1+2+-+[(p—1)/4 = (»"F2p—3)/32 mod p, (3)
for p= F1 mod 4. Consequently we have
L—4K =(1+p)/4 modp (4)
Finally, we introduce the number k € GF(p), defined by
9k'=To=(p*—1)/8 (5)

as equality in GF(p). In order to deal with the sets A, a € {0,1,--- ,p - 1},
we also introduce
2p-1)/2 1 1
-——-—+~—, p==+3 mod p;
N(p) = 2(;}—152 =1 (G)
—  ————, p=+41 modp.
p

2 A group of transformations

Let [ = {1,2,---,(p—1)/2} and let m be some integer with 1 <m < p — 1.
We introduce index sets

ILi={i:iel, mi modpel}, Ir:=I\l (7)
and a permutation matrix P with elements
pij=1, j=mi modp, i € L1,or j=—mi modp, i€ (8)

while p; ; = 0 otherwise.

Theorem 1. Let ! be the order of m mod p. Then the matriz P defined by
(8) represents a per‘mutaﬁon on I consisting of —1)/1 cycles of length 1/2,
for l is even, and of (p— 1)/2l cycles of length [, forl is odd.

Proof. Consider the mapping P : GF(p) — GF(p), P = ma. This mapping
gives rise to a permutation of the elements of I in the following way. First,
P permutes the nonzero elements of GF(p) according to (p — 1)/1 cycles of
length 1. Next, we change all elements @ in these cycles which are not in [ into
a' = a—p, and then omit the minus sign of ¢’. If —1 is in the same cycle as 1,
which is the case for [ is even, this cycle of length [ is transformed into a cycle
of length {/2 followed by the same cycle of length /2. while all elements now



314 ACCT2008

are in I. The same holds for all other cycles. If —1 and 1 are in different cycles
of length [, which is the case for [ is odd, then both cycles become identical
after changing the minus signs. So, when omitting repeated cycles, we end up
with a permutation of the elements of I as described in the theorem. For the
matrix P the same holds. More precisely, this matrix represents the mapping
P~L modified by the above procedure. O

Next, we define a translation vector t = (t1,t2,- - ,t(p—1)/2), With t; = 1 for
j =mi mod p, for i € I, and t; = 0 otherwise. Furthermore, we consider the

transformation T}, := GF(p)®?~1/2 — GF(p)P~1)/2 defined by
Ton(c) = cP +t 9)

Theorem 2. For each m., 1 < m < p— 1, T}, induces a permutation Tm
on the set A = Ao,Al,-- Ap 1 such that Tm( a) = Ay, with b= m(Sm —a)
and Spm =Y icy, i
Proof. We shall determine the value w’ of the vector b = T (a), with
val(a) = w. The components i € I contribute ., mi(1 —a;) to w’ and those
in I yield } 7,/ (p — mia;). Hence, both contributions together and taken
mod p, give w' = Y, mi — ) ;cp mia; = mS — mw. O
Special cases )
m= 2 I]I ,2,-- $[(1&’)—].)/4], IQZI\Il,
1,0,1-++), w' =2(S2 —w) = 2(K —w);
8L Bui: oy = 2 6t = (L 010505,
wgﬂp—ﬂﬁ (Sp-1)/2 — H0=@—1V?(L—K~w%
M=k h= =1 f—U,P:E.
Let w; , be the value, of the set 77 (4;). The integers w;, satisfy in GF(p)
the recurrence relation

Win = 7?1(5171 i wi,n—l)a Uiog = i (10)
which has as solution
m .
U]'t',n = m—_HSm(l — (~'m,)ﬂ) + 3(""m)n. (11)

The permutations 7,,,1 < m < p— 1, generate a permutation group G4 on A.

Theorem 3.

(i) Ga can be generated by a permutation 7_, where « is a generator of

GF(p)*.

(ii) G4 has one orbit Ay of size 1, whereas all other A;, i # k, are in one
orbit of size p— 1.
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Proof. Since « generates the multiplicative group of GF(p), we can write
m = af for any m € 1,2,...,p — 1. The permutation 7, generates a subgroup

of G4. Equality (10) implies that =55, has the same value for all m. Since

Sy = L, it follows that T3 Sm = % Next, from (10) and (11) we have that
w;n = i is equivalent to

(L/2=1)(1=(-m)") =0 (12)

The only i-value which satisfies this equation isi = L/2 = k. So, Ay is invariant
with respect to all transformations of G 4. Furthermore, it will be clear from
(11), that the length of the orbit to which A;,i # k, belongs under the action
of T, is equal to the order of —m mod p. So, if we take m = —a, the orbit
has length p — 1. 0

Example. For p = 11 we have the following data: L = 4,k = 3, K = 3.
The family A of constant-value codes consists of the sets:

Ao = (0,0,0,0,0),(0,1,0,1,1),(1,1,1,0,1) Ay = (1,0,0,0,0),(0,0,1,1,1),(1,1,0,1,1)
A, = (0,1,0,0,0),(1,0,1,1,1)

As = (0,0,1,0.0),(1,1,0,0,0), (0,1,1,1,1) A4 =(0,0,0,1 0),(1,0,1,0,0),(1,1,1,1,1)

As = (0,0,0,0,1),(1,0,0,1,0),(0,1,1,0,0) As = (1,0,0,0,1),(0,1,0,1 0),(1,1,1,0,0)

Ay = (0,1,0,0,1),(0,0,1,1,0),(1,1,0,1,0) As = (0,0,1,0,1),(1,0,1,1,0),(1,1,0,0, 1)

Ao = (0,0,0,1,1),(0,1,1,1,0),(1,0,1,0,1) Ao = (1,0,0,1,1),(0,1,1,0 Ha(101451,0)

In this case, 2 generates the multiplicative group of the relevant field, i.e.
GF(11)*. So, according to Theorem 3 the transformation 72 = 79 is a gener-
ator of G4, and it acts transitively on the family Ajili # k. In order to apply
Theorem 2, we obtain I} = 3,4, 5, and hence Sy = 3+4+5=1 mod 11. Indeed,
the relations 79(Ag) = Ap and b = 9(1 —a) provide us with the transformations:

Ay — Ay, Ag— Ay — As — Ag — Az — Ay — Ag — Ayg — A7 — A1 — Ao

3 Constructing A;., from A;

Next, we shall discuss a method to transform a vector a € A; into a vector
b € Aiyy. For the sake of convenience we assume that 2 is a generator of
GF(p)*. So, the matrix P in (8) corresponds to a (p — 1)/2-cycle which we
denote by

d:= (di(=1),da,...,dp-1)2), i€l (13)

Corresponding to (13) we define a binary vector p of length (p— 1)/2, such that
its i-th component is equal to the parity of the number of dj,j < i, which are
in [ o

Now, let @ be a binary vector representing some partition, and let val(a) = i.
We define a translation vector t as follows. If aq. # pi, 1 < i <k, and a4, = Dr
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for some k, 1 < k < (p— 1)/2, we put tq, = 1, whereas all other components
are zero. Formally, we can obtain ¢ by

01,00 2 00 (14)

where the vector at the rhs contains k ones followed by (p — 1)/2 — k zeros,
while the transformation matrix Q has elements ¢;; = 1 if j = d; and gi; =0
otherwise.

Theorem 4.
(i) Ifa € A;, thenb=a+1t€ Aii1, unless a = ag := p°Q);

(ii) Forp= 43 mod 8, the translation in (i) gives one-to-one mappings A; —
- Ais1, Vi € GF(p)\{k — 1,k}, Ax—1\{ao} — Ax and Ax — Appi\{ag}

(iii) Forp = +1 mod 8, the translation in (i) gives one-to-one mappings A; —
Aiy1,Vi € GE(p\{k — 1.k}, Ar_y — Ap\{af} and Ag\{ao} — Ak -

Proof. We only have to take into account the change in the contribution to
val(a) due to the components ag,, - - -, aq,. These contribute an amount of

k
Z(—l)piadﬂ"_] mod p,

i=1

where the signs are determined by the components of p. Because of the defi-
nition of k, we only have (—1)?* = —1 for those positions where a4, = 0, for
1 < i < k. But these are precisely the positions where b has ones. Hence, we
find

k
val(b) — val(a) = =y 271 + (=1)P(bi — ay)28 1, (15)
p—1

If ap = pp = 1, then by = 0, and if a = px = 0, then by = 1, so the
second term in the rhs always equals 28~!. We conclude that val(b) — val(a) =
—(26=1 — 1) + 281 = 1. The only exception occurs when aq; = p; for all
4, <j < (p—1)/2. In that case k is not defined. So,we proved parts (i) and
(ii) under the assumption that 2 generates GF(p), which is true if and only
if p = +3 mod 8, or equivalently, when x(2) = —1 . Similar results can be
obtained in the case p = +1 mod 8. O

We may conclude from Theorems 3 and 4, applying eq. (6), that for all p
the following result holds.

Corollary For all i # k one has |A;| = N(p), whereas |A;| = N(p) + 1 for
p=+1 mod 8, and |Ai| = N(p) — 1 for p=+3 mod 8.
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Example In our example p = 11, we now take m = 2. For this m-value,
I, = {1,2} and I» = {3,4,5}. The 5-cycle (13) equals d = (1 24 3 5), and
hence p = (0,0,0.1,0).

For @ = (1,1,1,0,1) € Aq, we find k = 3 and t = (1,1,1,0,0)Q =
(1,1,0,1,1). So, b = a +t = (0,0,1,1,1), which indeed is a vector in A If
we take a = (1.1,0,1,1) € A, then k is not defined, illustrating Theorem 4(i),
since ap = (1,1,1,0,1)Q = (1,1,0,1,1). Taking for a the vectors ((0,1,0,0,0)
and (1,0,1,1,1), both from As, yields (1,1,0,0,0) and (0, 1,1,1,1), respec-
tively. The third vector (0,0,1,0,0) € As is the complement a;, thus confirming
Theorem 4(ii).

As an illustration of Theorem 4(iii), we consider the simple case of p = 7,
where k = 3. A generator of GF(7)* is —2. The corresponding matrix P, as
defined by (8), stands for the cycle (1 2 3). Now, if we continue our construction
with 2 (though 2 is not a generator), we have I; = {1} and I = {2,3} , and
therefore p = (0,0,1). Applying this vector, yields the following translations:

a=(0,1,0) € Ay — (1,1,0) € A3, a=(0,0,1) € 43 — (1,0,1) € Ay

In both translations k is equal to 1, while k is not defined for the vector p® =
(1,1,0).

4 Remarks

Research on this topic is still in progress. Our primary motive was to develop
a new approach, i.e in the context of algebraic coding theory, to the old and
famous problem of determining the sign of the Gauss sum G(2) (cf. [1] for a
probably exhausting list of papers on this issue). It turns out that this problem
is equivalent to determining the sign of n. — ng (see Section 1) in the codes A;.
It was this background of which forced us to require the size of the parts in a
partition not to exceed (p— 1)/2. Actually, this condition is not too restrictive,
since partitions of a containing one part of size (p — 1)/2, can be dealt with by
considering the partitions of a — (p — 1)/2 as defined in this paper. Theorems
1 and 2 have their origin in [2, Lemma 4.2.4.4].
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Abstract. The structure of Steiner quadruple system S(v,4,3) of full 2-rank v — 1
is considered. Tt is shown that there are two types (induced and singular) of such
systems. It is shown that induced Steiner systems can be obtained from Steiner
systems S(v,4,3) of 2-rank v — 2 by switching construction which is introduced
here. Moreover, all non-isomorphic induced Steiner systems S5(16,4, 3) of full 2-
rank 15 are enumerated. It is found that there are 305616 such non-isomorphic
systems S(v, 4,3), which are obtained from all 708103 non-isomorphic such systems
of rank 14 studied earlier.

1 Introduction

A Stener system S(n, k,t) is a pair (J, B) where J is a v-set and B is a collection
of k-subsets of J such that every t-subset of J is contained in exactly one
member of B. The necessary condition for existence of an SQS(v) is that v = 2
or 4 mod 6. Hanani [1] proved that the necessary condition for the existence
of an S(v,4,3) is also sufficient. A Steiner system S(v, 4, 3) is called resolvable
if it can be split into mutually non-overlapping sets so that every set is a Steiner
system S(v,4,1). More on the Steiner systems can be found in [2-4] and on
5(16,4,3) in [5-8].

In this work, we consider the structure of the Steiner systems S(v,4,3) of
full 2-rank, i.e. of rank v — 1 over F5. Any such system is one of two types,
which we call induced and singular. The induced systems can be obtained by
a switching operation from Steiner systems S(v.4,3) of 2-rank v — 2. This
operation allows to construct Steiner systems of rank r + 1 from systems of
rank r. This operation, introduced later, is also interesting for the construction
of resolvable Steiner systems. Namely, it keeps this property under certain
conditions on the original resolvable systems.

The case n = 16 is considered in details. In particular, we found exactly
305616 non-isomorphic induced Steiner systems S(16,4,3), which were con-
structed by the switching operation from all 708103 non-isomorphic systems
5(16,4,3) of rank 14. We described the structure of singular Steiner systems.

IThe paper has been written under the partial financial support of the Russian fund for
the findamental research (the number of nroiect OR - 01 - NN226)
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2 Preliminary results

Let E = {0,1}. A binary code of length n is an arbitrary subset of E™. Denote
a binary code C' with length n, with minimum distance d and cardinality N
as a (n, d, N)-code. Denote by wt(x) the Hamming weight of vector & over E.
For a (binary) code C denote by (C) the linear envelope of words of C' over
F,. The dimension of space (C) is called the rank of C over 5 and is denoted
rank(C').

Denote by (n,w,d, N) a binary constant weight code C of length n, with
weight of all codewords w, with minimum distance d and cardinality V. For
vector v = (v, ..., vn) € B" denote by supp(v) its support: supp(v) = {i: v #
0}.

The binary (n,d, N)-code A which is a linear k-dimensional space over Fo
is denoted by [n,k,d]-code. For binary vector z = (zi,--- Zn) and ¥y =
(y1,--+ ,yn) denote by (z-y) = @131 + -+ + Tnyn their inner product over
F,. For any (n,d, N)-code (linear, nonlinear, or constant weight) denote by G
its dual code: C+ = {welFl: (v-¢) =0, Y ce C}. Clearly C+ is a linear
[n,n — k,d*+]-code with some minimum distance d*, where k = rank(C).

Denote by E} the set of all binary vectors of length n of weight 2. Let
Jo = {1,2,...,n} be the coordinate set of E™ and let S, be the full group
of permutations of n elements (thus |S,| = n!). A binary incidence matrix
of a Steiner system S(v,4,3) is a constant weight (v,4,4,v(v — 1)(v — 2)/24)-
code C which is strongly optimal [8]. In our notation the connection between
the system (X, B) and the code C is: B = {supp(w) C X : v € C}. In
this note, the Steiner system S(v,4,3) is identified with the constant weight
(v,4,4,v(v — 1)(v — 2)/24)-code, which uniquely defines this system (8]

Definition 1 Two Steiner systems (X, B) and (X', B') of order n are iso-
morphic, if their incidence matrices S and S’ are equivalent as constant weight
codes, i.e. if there ezists some permutation T € Sp, such that S and T S’ coincide
up to the permutation of rows.

3 Switching constructions of SQS(v)

Let C be a Steiner system S(v,4,3) of rank r < v — 2 over Fa. Applying the
appropriate permutation of coordinates, C' can be presented in the form, when
the [v,v/2,2]-code C+, orthogonal to (C), is of the following form:

CJ' = {ug,uhug,ul—l—ug}. (1)

where g is the zero vector, uy = (11...1]00...0), and us = (00...0[11...1).
Thus we split n coordinates into two blocks of v/2 coordinates such that any
¢ € C consists of two vectors ¢ = (c; | ¢3) where each vector c; satisfies to the
overall parity checking: wt(c;) =0 (mod 2), i = 1,2 (we call it a parity rule).
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Definition 2 Let C be a Steiner system S(v,4,3) of rank less or equal to
v — 2 over Fy with orthogonal code (1). Define the subset Cy,jw,) of C where
wy, wa € {0,2,4} as follows:

C(w1|w2} = {e={(a |b)e C: wt(a) = wi, wt(b) = wa}.

Lemma 1 Let v > 16 be an integer such that v/2 =2 or 4 (mod 6) and let C
be a Steiner system S(v,4,3) of rank less or equal to v — 2 over Fo with dual
code (1). Then C' is a union of three subsets

C = Cup U Cow U Cap

where Clajo) (respectively Cojg)) is a Steiner system S(v/2,4,3) and Caj9) has
cardinality (”éz) x (v/2 —1).

Definition 3 Define the following (constant weight) (8,4,4,8)-codes:

(1111]0000),  (0000]1111), (1110/1000),  (1101/0100),
(1100{1100).  (0011]0011), b (1011/0010),  (0111]0001),
(10101010),  (0101{0101), 7 (1000[1110), ~ (0100{1101),
(1001]0110), ), (0001j0111)

Cp =
(0110/1001) (0010]1011).

For a given permutation m € Sy denote by C(p (respectively, by Cr(ny)
the code obtained from Cp (respectively, from Cy) by applying = to the last
4 columns of the code Cp (respectively Cn).

Note that the middle six columns of Cp define two Pasch configurations.

Theorem 1 (switching construction). Let S be a Steiner system S(v,4,3) and
let C be the corresponding constant weight (v,4,4,v(v—1)(v—2)/24) code with
dual code (1). Assume that C contains as a subcode the code Cy(py for some
m € 8. Define the new code

C*(n(P)) = (C\Cx(p)) U Criw)-

Then:

1). The set C* = C*(w(P)) is a constant weight (v,4,4,v(v — 1)(v — 2)/24)-
code, which defines a new Steiner system S(v,4,3), denoted by S* = S*(n(P)).
2). The new system S* is not isomorphic to the initial system S (since they
have different number of Pasch configurations).

3). If the initial system S is resolvable and if the code Cyp) belongs to exactly
four parallel classes of C. then the resulting system S* is resolvable too.
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4 The structure of Steiner systems S(v,4,3) with
rank v — 1 over Fy

Let S = S(v,4,3) be of rank v — 1 over F3. Recall J = {1,2,...,v} is the
coordinate set of S. Divide J into two arbitrary equal halves: Ji and Js.
Applying some permutation © € Sy, any vector ¢ € m(C) can be presented in
the form ¢ = (e | e2), where supp(¢;) € J; for i = 1,2. Hence without loss of
generality assume that J; is the left half of J and J; is the right half of Js.

Definition 4 For any Steiner system S(v,4,3) of rank v—1 over I, define
the left and right spectrum (i, i, zi), @ = 1,2 as follows:

5 o= le=(cile): wile) =4},
y = |{e=(e1]e2): wt(e) =3},
z = |{e=(e1|e): wtle)) =2}

Lemma 2 Let C be an arbitrary Steiner system (v, 4,3) of rank v—1 over Fs.
Then ¢ = 21 = Ta, Y =Y1 =7yY2, 2= 21 = 2. Furthermore

o= () = aa o =0a s (). @

Clearly for the same system the numbers x,y and z depend on the choice
of subsets J;.

Definition 5 For a Steiner system S = S(v,4,3) of rank v — 1 over Fg
define the spectrum (z,y,z), where 2 takes the mazimal value for given S and
y and z satisfies (2).

Lemma 3 For a Steiner system S(v,4,3) of rank v —1 over Fy with spectrum
(z,y,2), we have

—4
ks r;(u —1)(v—2) \ (1:;’2)
i 24 (u72)
In particularly, x > 6 when v = 16.

Definition 6 We say that 4 different binary vectors of length v and weight
3 form a 4-clique, if
| Uiz, supp(y:)| = 4.

Lemma 4 Let X be a constant weight (v,4, 4, x) code with cardinality < v(v—
1)(v—2)/24—2. Denote by Y the constant weight (v,3,2,y) code, formed by all
vectors of weight 3, which are not covered by codewords of X, i.e. y = (3) — 4.
Then X can be imbedded into a Steiner system S(v,4,3), if and only if all the
codewords of Y can be partitioned into disjoint 4-cliques C1,...,Ck, k =y/4,
such that |supp(C;) Nsupp(C;)| < 2 for any i # j.



322 ACCT2008

5 Induced Steiner systems S(v,4,3)

We say that a Steiner system S = S(v,4,3) of full rank r = v — 1 is induced,
if it is obtained by the switching construction from some Steiner system 5=
S(v,4,3) of rank < v — 2. In the contrary case, we call this system singular.

Theorem 2 Let S = S(v,4,3) be a Steiner system of rank T = v — 1 over IFy
with spectrum (z,y,z) and let v is a multiple of 4. Let X; and Y; be the cor-
responding (v/2, 4,4, x)- and (v/2,3,2,y)-codes, where y satisfies (2) and i,j €
{1,2}. If X and X3 are any subcodes of a Steiner system S' = S(v/2,4,3),
then S is an induced system.

It is known from [6,7] there are exactly 708103 non-isomorphic Steiner sys-
tems SQS(16) of rank 14 over Fy. By computations it was found that all these
708103 systems give 295488 different Pasch configurations. For each system
SQS(16) of rank 14, containing some Pasch configurations we have applied all
possible switchings.

Theorem 3 (Computational results). There are 305616 non-isomorphic in-
duced Steiner systems S(16,4,3) of rank 15 over Fy. They are obtained from
708103 non-isomorphic Steiner systems SQS(16) of rank 14 over Fy by applying
all possible switchings.

Remark 1 Tuking into account the result of [7) we conclude that there are
ezactly 27715 non-isomorphic singular Steiner systems S(16, 4, 3) of rank 15.

6 Derived triple systems

For a system S(v, 4. 3), given by the pair of sets (.J, B), a derived triple system of
(J, B) is a pair (J,, B,), where J, = J\{a} and B, = {b\{a}: a € b€ B}. It is
obvious, that every derived triple system is a Steiner triple system S (v—1,3,2).
For v = 16 we obtain a system S(15,3,2). It is known [9] that there are
exactly 80 non-isomorphic systems S(15,3,2). There is a standard numbering
of these systems by the indices from 1 to 80, related to the number of Pasch
configurations (see [4]).

Given a system S = S(v,4,3), let 3 = 3(S) denote the number of its pair-
wise non-isomorphic S(v — 1,3,2). Clearly 1 < g < v for any S. A system
S is said to be homogeneous (respectively, heterogeneous), if 3 = 1 (respec-
tively, B = v). Among all induced Steiner systems S5(16,4,3), the derived
systems S(15,3,2) that we found are those with indices 1,2,...,77 missing
35, 38, 43, 68,69, 70, 73,74, i.e. all together 69 non-isomorphic S(15,3,2) out of
total 80 such systems. All Steiner triple systems with these numbers occur as
derived in the homogeneous S(16,4, 3).

Denote by Njom(i) the number of non-isomorphic homogeneous systems
5(16,4,3) with rank 15, whose derived systems are S(15,3,2) with number %,
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where i € {1,2,...,7}. Denote by N (/) the number of such non-isomorphic sys-
tems S(16, 4, 3) with rank 15 with given 3. Denote by N(u(i1), p(i2), ..., u(ig))
the number of non-isomorphic systems S(16,4,3) with rank 15 which have
1(is) > 0 derived systems with index is, where is € {1,2,...,T}Hfors=1,...,8,
i.e. in our notation Npom(7) = N(u(7) = 16).

Proposition 1 (Computational results). Among the non-isomorphic induced
5(16,4,3) of rank 15 over Fo, there are 245 homogencous systems. Among
these systems there are:

Nhom(4) = i Nhom(g) == 127
Nhom(g) = By Nhom(lo) = 6,
Npom(11) = 1 Npom (1 2) = 15
NEor ( ) = 6, N.fwm ( ) = 2,
Nhom ( ) . 1 Nhom ( = 1,
Nh.om( ) = 2, Nhom (23) = 6,
Niom(24) = 5 Npom(25) = 52,
Npom(26) = 64, Npom(27) = 5,
Npom(28) = 5, Nuom(29) = 14,
Nhom(30) = 1? thn£32) = 10"
Nhgm(33) = 5, thn (34) = Sl
Nhom 36) = 2, Nhom 52) = 1,
Npom(5 ) = 3, Niom(54) = 9,
Nyom (59 = Niomit60), =11 3
Nhom(bd) = 2: thn (64) = 21
Npom(65) = 2, Npom(71) = 1,

Proposition 2 (Computational results). For induced Steiner systems S(16,4,3)
of rank 15 over Fs. the distribution of the value N(3) is the following:

(et 245 N@) = 1412
N(3) = 2132, N@) = 7553,
N(B) = 9674, N(6) = 19187,
N(7) = 19187, N(8) = 33896,
N(9) = 47645, N(10) = 57794,

N(11) = 57794,  N(12) = 34250,
N(13) = 15607, N(14) = 4758,
N(15) = 884, N(16) = T7.

Taking into account the results of [7], among all Steiner systems S(16, 4, 3)
there are 77 heterogeneous induced systems of rank 15.



324 ACCT2008

References

(1] H. Hanani, On quadruple systems, Canad. J. Math. 12, 1960, 145-157.

[2] C. C. Lindner, A. Rosa, Steiner quadruple systems — A survey, Discr.
Math. 21, 1978, 147-181.

[3] A. Hartman, K. T. Phelps, Steiner Quadruple Systems, in Contemporary
Design Theory: A Collection of Surveys. Dinitz J.H., Stinson D.R., Eds.
John Wiley & Sons. 1992, Ch. 6, 205-240.

[4] C. J. Colbourn, J. H. Dinitz, The CRC Handbook of Combinatorial De-
signs, Boca Raton, FL: CRC Press, 1996.

[5] V. A. Zinoviev, D. V. Zinoviev, Classification of Steiner quadruple systems
of order 16 and rank at most thirteen, Probl. Inform. Transm. 40, 2004,
48-67.

[6] V. A. Zinoviev, D. V. Zinoviev, Classification of Steiner quadruple systems
of order 16 and rank 14, Probl. Inform. Transm. 42, 2006, 59-72.

[7] P. Kaski, P. R. J. Ostergard, O. Pottonen, The Steiner quadruple systems
of order 16, J. Comb. Theory, Ser. A 113, 2006, 1764-1770.

[8] N. V. Semakov, V. A. Zinoviev, Constant weight codes and tactical con-
figurations, Probl. Inform. Transm. 5, 1969, 29-38.

[9] F. N. Cole, L. D. Cummings, H. S. White, The complete enumeration of
trial systems in 15 elements, Proc. Nat. Acad. Sci. USA 3, 1917, 197-199.



Eleventh International Workshop on Algebraic and Combinatorial Coding Theory
June 16-22, 2008, Pamporovo, Bulgaria pp. 325-337

On the error-correcting capabilities of
low-complexity decoded LDPC codes
with constituent Hamming codes

VICTOR ZYABLOV® zyablov@iitp.ru
MAJA LONCAR"™* maja@eit.lth.se
ROLF JOHANNESSON™* rolf@eit.lth.se
PAVEL RYBIN® prybin@iitp.ru

* Tnstitute for Information Transmission Problems, Russian Academy
of Sciences, Moscow 101447, RUSSIA

** Dept. of Electrical and Information Technology, Lund University,
P. O. Box 118, SE-22100 Lund, SWEDEN

Abstract. Hamming code-based LDPC (H-LDPC) block codes are obtained by
replacing the single parity-check constituent codes in Gallager’s LDPC codes with
Hamming codes. This paper investigates the asymptotic performance of ensembles
of random H-LDPQ codes, used over the binary symmetric channel and decoded with
a low-complexity hard-decision iterative decoding algorithm. It is shown that there
exist H-LDPC codes for which such iterative decoding corrects any error pattern
with a number of errors that grows linearly with the code length. The number
of required decoding iterations is a logarithmic function of the code length. The
fraction of correctable errors is computed numerically for different code parameters.

1 Introduction

Concatenated code structures can yield powerful codes, which achieve good
performance with low-complexity decoding, based on using simple constituent
decoders as separate modules. A method for constructing long codes from
short constituent codes, based on bipartite graphs, was introduced by Tanner
in [1]. In his method, one of the two sets of nodes in a bipartite graph is
associated with code symbols, while the other set is associated with constituent
block codes whose length is equal to the node degree. These two sets of nodes
are hereinafter referred to as variable nodes and constraint nodes, respectively.
Tanner’s general code construction unifies many known code families that can
be obtained by choosing different underlying bipartite graphs and associating
different constituent codes with their constraint nodes. For example, product
codes [2], Gallager’s Low-Density Parity-Check (LDPC) codes [3], expander
codes [4], [5], and woven graph codes (6], [7] can all be described using a bipartite
graph-based approach.

This work was supported in part by the Royal Swedish Academy of Sciences in cooperation
with the Russian Academy of Sciences and in part by the Swedish Research Council under
Grant 621-2007-6281.



326 ACCT2008

For Gallager’s LDPC codes [3], each constraint node in the corresponding
bipartite graph represents a single parity-check (SPC) code over the variable
nodes connected to it. In this case, the parity-check matrix of the code coincides
with the adjacency matrix! of the corresponding bipartite graph. If the degree
of each node is very small compared to the number of variable nodes (code
length) the parity-check matrix is sparse. When the bipartite graph is regular,
all variable nodes have degree j and all constraint nodes have degree k. Then
the parity-check matrix contains j ones in each column and k ones in each row,
and it specifies a (j, k)-regular LDPC code.

The error-correcting capabilities of LDPC codes for the binary symmetric
channel (BSC) were studied in [8], where it was shown that there exist LDPC
codes capable of correcting a portion of errors that grows linearly with the code
length n, with decoding complexity O(nlogn). A similar result for expander
codes was proven in [4], [5], [9].

The SPC codes associated with the constraint nodes in the Tanner graph
of an LDPC code can be replaced with other constituent block codes (e.g.,
Hamming codes [10], BCH codes [11], or Reed-Solomon codes [12]), which yields
alternative constructions of LDPC codes, often referred to as generalized LDPC
codes. The parity-check matrix of such an LDPC code is obtained by replacing
every 1 in the graph’s adjacency matrix with a column of the constituent code’s
parity-check matrix, and every 0 with the all-zero column.

Hamming code-based LDPC (H-LDPC) codes were first studied in [13].
Distance properties and iterative soft-decision decoding of the H-LDPC codes
were further investigated in [10] and [11]. In [14], it was shown that an ensemble
of H-LDPC codes contains codes with a minimum distance that asymptotically
almost meets the Varshamov-Gilbert (VG) bound.

In this paper, we consider the asymptotic performance of random H-LDPC
codes, when the code length n grows to infinity. We will prove that there
exist H-LDPC codes which, when decoded with a simple iterative decoder of
complexity O(nlogn), can correct any error pattern with a number of errors
growing linearly with the code length. Our approach builds upon the work of
[8] where such a result was proved for LDPC codes with constituent SPC codes
which have minimum distance dy=2. A similar result holds for the expander
codes if the constituent codes have large enough minimum distance, cf. [4], [5],
[9]. The work presented here, with constituent Hamming codes of minimum
distance dg=3, is a step towards ‘closing the gap’ between these two results.

2 Construction and properties of H-LDPC codes

An (ng, ko, do) Hamming code has length ng = 2™ — 1, dimension kg = ng —m,
code rate Ry = 1 —m/ng, and minimum distance dy = 3, where m > 2 (for m =

'We define the adjacency matrix A of a bipartite graph with two vertex sets, V1 and Vs, as
a |V1| x [V2| binary matrix specifying connections among vertices, that is, (A)y; = 1 iff nodes
1 € V1 and v; € Vs are connected with a branch.
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2 the code reduces to the length-3 repetition code). Hamming codes are perfect
single-error correcting codes, that is, they correct all error patterns with one
error, and no others, and their covering radius is equal to p = | (dmin—1)/2] = 1.

A parity-check matrix Hy of a Hamming code is an m X ng matrix whose
columns are all the nonzero binary m-tuples. We will consider H-LDPC codes
with identical constituent Hamming codes. Let H), denote a block-diagonal
matrix with the b constituent parity-check matrices Hg on the main diagonal,
that is,

o oD O 0
0 e il el O

Hie 5 el ey : ()
0 0 0 --- H

where b is very large. The matrix Hy, is of size bm x bng. Let 7(Hy,) denote a
random column permutation of Hy. Then the matrix constructed using £ > 2
such permutations as layers,

H, m1 (Hy,)
e I{z - Wz(ffb) @)
H, me(Hy)

is a sparse £bm x bng parity-check matrix which characterizes the ensemble
of Hamming code-based LDPC codes of length n = bng, where n > ng. Let
% (no, £, b) denote this ensemble. For a given constituent Hamming code with
parity-check matrix Hy, the elements of the ensemble € (ng, £,b) are obtained
by sampling independently the permutations 7, [ = 1,2,...,¢, which are all
equiprobable. The rate of a code C € € (ng, ¢, b) is lower-bounded by [1]

R 2 i fb(_non— ko)

=1- (1~ Ro) (3)

with equality iff the matrix H has full rank. This imposes a restriction on the
rate of the constituent codes, namely,

1

Rg>1-— 'E

that is, the more layers there are, the higher the rate of the constituent codes
must be.

The construction defined by (2) is a generalization of Gallager’s construction

[3] of the LDPC matrices, where the constituent codes are (ng,ng — 1) single

parity-check (SPC) codes, for which Hg = (1 1 ... 1). In that case, the matrix

H has ng ones in each row, and ¢ ones in each column. Such a matrix has
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density 1/b, and it specifies an (£ ,ng)-regular LDPC code. The parity-check
matrix of an H-LDPC code, given by (2), is, in general, irregular.

The H-LDPC codes from the ensemble % (ng,£,b) contain £b constituent
Hamming codes; b in each layer. Such H-LDPC codes can be represented by
a Tanner graph [1] with n = bng variable nodes, and ¢b constraint nodes, as
illustrated in Figure 1. Each constraint node comprises ng— ko parity-check
constraints specified by the rows of the corresponding constituent parity-check
matrix. If a codesymbol is checked by a constituent code (that is, by at least one
row of its parity-check matrix), there is a branch connecting the corresponding
variable node and the constraint node. Each codesymbol is checked by exactly
one Hamming code in each layer. The graph is regular, with the variable-node
degree equal to £, and the constraint-node degree equal to ng. Moreover, it is
required that the £ constraint nodes adjacent to each variable node all belong

) layer 1

\ layer 2

L layer [

Figure 1: A Tanner graph of an H-LDPC code defined by the parity-check
matrix H given in (2). The graph illustrates the case when the first layer of
H is the matrix Hy, itself, i.e., m1(Hp) = Hp (then the b constraint nodes in
layer 1 are connected to the consecutive blocks of ng variable nodes). Other
layers are obtained with arbitrary permutations.
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to different layers.

Consider communication over a binary symmetric channel (BSC) using H-
LDPC codes with hard-decision decoding. Let v be the transmitted codeword
and e be the error pattern. Then the received sequence is given by r = v + €.
The weight of the error sequence is W = |e| and the fraction of erroneous
symbols is w = W/n. For code length n — oo, the fraction of erroneous
symbols w converges in probability to the crossover probability of the BSC.

The syndrome vector computed at the receiver is given by

s=rH" = (eHT eHg .. eH}) = (81 82 ... 8¢) (4)

where s;= eH;r is the syndrome of length b(ng— ko), corresponding to the lth
layer of H, which can be written as

8y = (811 821 - Sb1)

where s;; is the syndrome of the jth constituent Hamming code in layer [,
§=1,2,...,b,1=1,2,...,0. If at least one of the ng — ko parity-checks of that
constituent code is not satisfied, then s;; # 0, indicating that the constituent
code is affected by one or more errors. When the syndrome s8;; is nonzero, a
maximum-likelihood decoder of that Hamming code assumes that a single error
occurred at the position pointed at by the syndrome value.

We further define a generalized syndrome

(G By . 9y (5)

where S; = (S14 Sa4 ... Spy), whose elements are indicators whether the con-
stituent codes have detected an error or not, that is,

0, ;=0
Sip=9"." ot 1=1,2,...675=1,2,.b.
' 1, s #0

The generalized syndrome is illustrated in Figure 2 for an H-LDPC code with
constituent (7,4,3) Hamming codes and ¢ = 3 layers. Suppose that W = 3
codesymbols are received in error; the corresponding variable nodes are marked
with black circles in Figure 2. They are connected to 5 constraint nodes, marked
with black squares. The first four of these nodes are connected to less than
dp = 3 variable nodes with erroneously received values and thus, these errors
can be detected or corrected. Hence, the generalized syndrome for layer 1 is
§1=(010...01), with weight |S1| = 2, and for layer 2, So = (1 00 570 1),
with |S5| = 2. In layer 3, the constituent code marked with a black square is
affected by 3 errors. If this error pattern is a codeword of the Hamming code,
then S5 = 0, otherwise, the pattern is correctable and |S3| = 1. Thus, in total,
we either have S = (22 1), |S|=5,0r §=(220), |S| =4.

Let a denote the weight of the generalized syndrome, |S| = a. For an error
pattern with W errors, it holds that a < ¢W. Furthermore, let a; denote the
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number of codes affected by exactly one error (that is, by a correctable error
pattern). Clearly, a; < a. If the W errors all affect different constituent codes,
then a = a; = £W. We can state the following lemma:

Lemma 1 For an arbitrary error pattern with W errors, let the number of

8= ()
W =3
or
S=(220)

Figure 2: An illustration of the generalized syndrome value using the Tanner
graph of an H-LDPC code with £ = 3 layers and constituent code length ng =
7. W = 3 variable nodes with erroneously received values (black circles) are
connected to 5 constraint nodes (black squares). The generalized syndrome
vectoris § = (22 1), or § = (2 2 0), depending on whether the three errors
that affect the constituent code in the third layer form a codeword of a Hamming
code or not.
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constituent Hamming codes affected by exactly one error satisfy the condition

ay =z 5 (6)
Then, if the number of constituent codes with one error is a1, the number of
errors is bounded by the inequalities
2a
ap W< Tl (7)
Proof. The lower bound in (7) follows from the fact that if there are W errors,
the weight of the generalized syndrome a cannot be larger than £W, and it
equals /W only if all the constituent codes whose generalized syndrome com-
ponent is nonzero are affected by exactly one error. Then a; = a = (W.
Consequently, the number of errors cannot be smaller than a;/¢. The upper
bound in (7) follows directly from condition (6).

3 Decoding algorithm

Consider an iterative hard-decision decoding algorithm &7, whose decoding it-
eration i, i = 1,2, ..., imax, consists of the following two steps:

(1) For the tentative sequence r(®, where vV is the received sequence ,
decode independently the £b constituent Hamming codes (that is, com-
pute their syndromes 8;;, j = 1,2,...,b, | = 1,2,....¢, and if the value
is nonzero, output the ng-tuple where the position indicated by the syn-
drome is flipped). This yields ¢ independent decisions for each of the n
symbols. If all the syndromes s;,; are zero, output r) as the decoding
decision and stop. Otherwise, proceed with the next step.

(2) For every symbol rf\f), k = 1,2,....,n, in the sequence () for which at
least one of the ¢ decisions requires that the symbol is flipped, check if
flipping the symbol reduces the weight of the generalized syndrome. If so,
flip the symbol, otherwise, leave it unchanged. This yields the updated
sequence (D) If pi+1) = p(0)  declare the decoding failure and stop.
Otherwise, return to step (1).

The following lemma provides a sufficient condition for reducing the weight
of the generalized syndrome in one iteration of the algorithm .

Lemma 2 For an arbitrary error pattern with W errors, if the number of con-
stituent Hamming codes affected by a single error satisfies the condition
W
ay > T
then when decoding the constituent codes there exists a symbol such that flipping
its value results in a reduction of the generalized syndrome weight.
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Proof. Each received symbol is connected to exactly ¢ constituent codes. Some
of these codes are affected by exactly one error, that is, they contribute to a;. If
there are more than £/2 such constituent codes, then flipping this symbol results
in a reduction of the generalized syndrome weight. Assume first that there is no
such symbol. Then each symbol is connected to at most pf constituent codes
which are affected by one error, where 4 < 0.5. The total number of codes
affected by one error would then be at most

JWEW < %

However, according to the condition of the lemma, the number of constituent
codes affected by one error must satisfy

5 ‘W

a —

&2ha

Consequently, there must exist at least one symbol which is connected to more
than £/2 constituent codes affected by one error. O

The number of errors that can be corrected by the algorithm 27 is stated
by the following lemma.

Lemma 8 Let Wy, be the largest weight of the error pattern such that, for any
W < W,,. the number of constituent codes affected by a single error satisfies
the condition

W
ay > T (8)
Then, if the number of errors is such that
W,
W < % (9)
these errors will be corrected by algorithm o7 . Furthermore, the mazimum num-

ber of errors that may be introduced during the decoding process (until reaching
the correct decision) is smaller than the initial number of errors.

Proof. In each decoding iteration, the weight of the generalized syndrome is
reduced. Thus, if the algorithm does not declare a failure, it yields the all-
zero syndrome, which corresponds a codeword. If W < W,,, condition (8)
holds, and, according to Lemma 2, there exists a symbol whose flipping reduces
the generalized syndrome weight. Thus, the algorithm will yield the all-zero
syndrome if the number of errors in each decoding iteration is not larger than
Wa, «

Let Wy be the initial number of errors, and let W, be the number of errors
that are added during decoding. According to condition (9), the initial weight
of the generalized syndrome is not greater than

Wy,

Wy < 5
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Since in each decoding iteration the weight of the generalized syndrome is only
decreasing, then due to Lemmas 1 and 2, the total number of errors during
decoding cannot exceed Wy, , and the decoder does not fail but corrects all the
€ITorsS.

Let us now estimate the maximum number W.. of the added errors. Assume
that in each iteration in the beginning of the decoding we only add errors®.
Then, W.. errors are added during at most W. iterations. Thus, the weight of
the generalized syndrome a is bounded from above by Wy — W, since in each
iteration, the weight of the generalized syndrome has to decrease at least by 1.
On the other hand, since a > a1, then from (8) it follows that a must be larger
than £(Wp + W4)/2. Thus, we obtain the inequality

LWy + W.
Wo — Wy > _(__0_-2{'_‘"_)
which yields
{
W. < Wo——-
e EE)
Thus, we obtain from the conditions of the lemma that the number of errors
introduced by decoding does not exceed the initial number of errors. O

Lemma 4 For any H-LDPC code from the ensemble % (no, L, b), if an error
pattern is such that in each decoding iteration of the algorithm o/ the number
of corrected errors is larger than the number of introduced errors, then the
algorithm of yields a correct decision after O(logn) iterations, where n = bng
is the code length.

Proof. Let W = wn be the weight of the error pattern, and let £ denote a lower
bound on the fraction of errors that are corrected in each iteration, Qs < 1.
Then, after x iterations, the number of remaining errors is at most wn(l —&)*.
The final decoding iteration imax is reached when

wn(l —g)fmex <1

that is,
log(wn) + tmax log(l —€) <0
which yields
1 .
A<= T log(wn). (10)
log (T—_z)

Thus, the number of iterations is a logarithmic function of the code length. OJ

?Hamming codes are perfect single-error correcting codes with covering radius equal to 1.
Thus, erroneous maximum-likelihood decoding of a Hamming code introduces at most one
additional error.



334 ACCT2008

The complexity of each decoding iteration of the algorithm &/ is propor-
tional to the code length n. Thus, according to Lemma 4, the overall decoding
complexity is O(nlogn), given that the number of introduced errors is smaller
than the initial number of errors, which was shown to hold under the conditions
of Lemma 3.

4 Asymptotic performance

As shown in the previous section, the iterative algorithm & corrects any error
pattern with W < W, /2 errors, if the number of constituent codes affected by
exactly one error is a; > £W/2. The question that arises, however, is whether
such a code exists within the ensemble € (ng, £, b). The following theorem allows
us to receive the positive answer.

Theorem 1 In the ensemble € (no,(,b) of H-LDPC codes, there exist codes
(with probability p, where lim p = 1). which can correct any error pattern of
n—oc

weight up to wa,n/2, with decoding complezity O(nlog n). The value wq, is the
largest root of the equation

h(w) — ¢F(ay,w,ng) =0 (11)
where h{w) = —wlogyw — (1 —w)logy(l — w) and the function F(ai,w,np) is

given by

1
Foy,w,ng) £ h(w) — ah(olwnn) -+ max {wlogg s

1 ]
—;}— log, ((1 + 5)"0 — ngs) + oqwlogs ((—+~5)— — 1) } (12)
0

nos

where a1 >1/2 and the mazimization is performed over all s such that

Gtsy 1
ngs =~ aiwnp

Proof. For a fized combination of W = wn errors, the probability that the
number of constituent Hamming codes of an H-LDPC code from the ensemble
% (np, £,b) that are affected by a single error, will not exceed a certain value
a1 {W is upper-bounded by:

P(ay < oy W) < 2~"tF(@1m0) (13)

where the function F(ay,w,ng) is given by (12). The proof of this statement
follows Appendix 1 in [8] and is omitted here for brevity.

Now consider the probability that the number of constituent codes with a
single error is at most a1 ¢W for any error pattern of a given weight W. If this
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Figure 3: Values of w,, computed according to Theorem 1 for seven code
ensembles of rates approximately R =~ 1/2, with the number of layers £ €
{9, 16, 28, 51, 93, 171, 315}. The maximum is achieved with the constituent
code length ng = 511 and ¢ = 28.

probability is strictly smaller than 1, then there exist codes in the ensemble
% (no,¢,b) for which a; > ay W for any weight-W error pattern. Thus, the
existence of such codes is ensured if

(;:/)P(ai < Q1EW) <<l

Taking the logarithm and using the inequalities (13) and

n < 2-nh(_u)
150 e

where the asymptotic equality holds for n — oo, we readily obtain
h(w) — £F (a1, w,ng) < 0. (14)

The largest value of w which satisfies (14) for a given @; is w,,. Finally, we
havé from Lemmas 3 and 4 that for a; > 1 /2, the algorithm &/ corrects up to
Wea,n/2 errors with complexity @(nlogn), which completes the proof. O

Theotem 1 allows us to compute w,, numerically for several choices of code
parameters. The computations confirm the existence of codes with a nonvan-
ishing wy,. First, we consider code ensembles of rates close to 1/2. Figure 3 il-
lustrates the values of w,, computed for several such code ensembles % (no, L, b).
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Figure 4: Values of w,, computed according to Theorem 1 for several code
ensembles of different rates with the fixed constituent code length ng = 511
and with the number of layers £ € {51, 45, 40, 34, 28, 23, 17, 11}.

With increasing ng (and, in order to keep the rate fixed, also with increasing ()
the value of w,, increases only up to a certain point, ng = 511, where it reaches
its maximum. With further increase of ng and £, w,, decays quickly.

Next we consider code ensembles of different rates, but with a fixed con-
stituent code. Figure 4 illustrates the values w,, for H-LDPC codes with the
constituent (511,502,3) Hamming code and with different code rates R, ob-
tained by varying £. We have found a nonvanishing wa, for a wide range of
rates, and its value decreases with increasing rate. Note that all the code en-
sembles considered in Figures 3 and 4 have minimum distances that almost
meet the VG bound, as shown in [14].

5 Conclusions

We have studied the performance of ensembles of Hamming code-based LDPC
codes used over the BSCwhen the code length n grows to infinity. It was shown
that these codes can be.decoded with a simple iterative decoding algorithm
whose complexity is O(nlogn), and that there exist H-LDPC codes which,
when decoded with such an algorithm, are asymptotically capable of correcting
a number of errors that grows linearly with the code length n. Such a property
was previously proven to hold for Gallager’s LDPC codes and for the expander
codes. The maximum fraction of errors correctable with the iterative decoder
was computed numerically for two types of code ensembles, which are known
to have minimum distances that asymptotically almost meet the VG bound:
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codes of rate R &~ 1/2 and codes of variable rates with a fixed constituent code.
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Abstract. Low-density parity-check (LDPC) codes can be constructed using con-
stituent block codes other than single parity-check (SPC) codes. This paper con-
siders random LDPC codes with constituent Hamming codes and investigates their
asymptotic performance over the binary erasure channel. It is shown that there ex-
ist Hamming code-based LDPC codes which, when decoded with a low-complexity
iterative algorithm, are capable of correcting any erasure pattern with a number of
erasures that grows linearly with the code length. The number of decoding itera-
tions, required to correct the erasures, is a logarithmic function of the code length.
The fraction of correctable erasures is computed numerically for various choices of
code parameters.

1 Introduction

Gallager’s low-density parity-check (LDPC) codes [1] are characterized by a
sparse parity-check matrix whose rows specify single parity-check (SPC) codes
over small subsets of the code symbols. LDPC codes can be represented by
a bipartite Tanner graph [2], whose two disjoint sets of vertices, referred to
as the variable nodes and the constraint nodes, correspond to code symbols
and SPC constraints, respectively. The adjacency matrix of such a bipartite

This work was supported in part by the Royal Swedish Academy of Sciences in cooperation
with the Russian Academy of Sciences, in part by the Swedish Research Council under Grant
621-2007-6281, and in part by the Program of fundamentals scientific researches of DITCS
RAS (OITVS RAN), Project no. 5.1.
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graph coincides with the code’s parity-check matrix H; an element (E ) =1
indicates that the jth code symbol participates in the ith SPC code, that is,
there is a branch connecting the jth variable node with the ith constraint node.
For regular LDPC codes, the corresponding graph is regular: all the variable
nodes have the same degree, equal to the number of ones in the each column of
H, and all the constraint nodes have the degree equal to the number of ones
in each row of H (which is the length of the corresponding SPC code).

Alternative constructions of LDPC codes can be obtained by 'replacing’ the
SPC codes in the code’s Tanner graph with different constituent block codes of
length equal to the constraint-node degree. The so-obtained LDPC codes are
often referred to as the generalized LDPC codes, cf., e.g., [3], [4]. Starting from
the sparse adjacency matrix of the underlying Tanner graph, the parity-check
matrix of such an LDPC code is obtained by replacing every 1 in the graph’s
adjacency matrix with a column of the constituent code’s parity-check matrix,
and every 0 with an all-zero column.

This paper focuses on LDPC codes with constituent Hamming codes and
investigates their performance when communicating over the binary erasure
channel (BEC). The erasure-correcting capabilities of Gallager’s LDPC codes
for the BEC were studied in [5], where it was shown that there exist LDPC
codes capable of correcting a portion of erasures that grows linearly with the
code length n, with decoding complexity O(nlogn). Hamming code-based
LDPC (H-LDPC) codes were first studied in [3]; their distance properties and
iterative soft-decision decoding for the AWGN channel were further investigated
in [6] and [7]. Recently, it was shown in [8] that the ensemble of H-LDPC codes
contains codes with a minimum distance that asymptotically almost meets the
Varshamov-Gilbert bound.

In this work, we build upon the results of [5] and we investigate the asymp-
totic erasure-correcting capabilities of random H-LDPC codes, when the code
length n grows to infinity. We will consider a simple iterative decoder whose
complexity is @(nlogn), and prove that there exist H-LDPC codes for which
such a decoder corrects any erasure pattern with a number of erasures growing
linearly with the code length. The paper is organized as follows: ensembles of
H-LDPC codes and their properties are introduced in Section 2. The decoding
algorithm is presented in Section 3. The main result is presented in Section
4 and supported by numerical examples. Section 5 summarizes and concludes
the paper.

2 Construction and Properties of H-LDPC Codes

For any integer m > 2, there exists a Hamming code of length ng = 2™ — 1,
dimension kg = ng—m, minimum distance dg = 3, and rate Ry = 1—m/ng. The
parity-check matrix Hg of an (ng, kg, do) Hamming code is an m X ng matrix
whose columns are all the distinct nonzero binary m-tuples. When a Hamming
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Figure 1: Tanner graph of an H-LDPC code with parity-check matrix given by

2).

code is used for communication over a BEC, it is guaranteed by the code’s
minimum distance that any erasure pattern with dp—1=2 or fewer erasures will
be corrected. Furthermore, it is also possible to correct some erasure patterns
with dg or more (up to m) erasures, as will be discussed in detail in Section 3.

We consider H-LDPC codes whose bipartite Tanner graph is regular, with
the same Hamming code associated with each constraint node. In order to
construct a parity-check matrix of such an LDPC code, we start from a bm x bng
block-diagonal matrix H}, with the b constituent parity-check matrices Hg on
the main diagonal, that is,

) Byiok et tonind
e
TR S SRR

where b is very large. Let w(H),) denote a random column permutation of Hy,.
Then the matrix constructed using £ > 2 such permutations as layers,

H, 7r1(Hb)
H H

= :2 @ ?Tz(: b) @)
H, mg(Hy,)

is a sparse £bm x bng parity-check matrix of a Hamming code-based LDPC
code of length n=bng, where n>>ng. For a given constituent Hamming code
with parity-check matrix Hg, by sampling independently the permutations m,
1 =1,2,...,4, which are all equiprobable, we obtain the ensemble of H-LDPC
codes, which will be denoted by % (ng,Z,b). The rate of a code C € €(ng,¥,b)
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is lower-bounded by [2]

fb(’f!{} == k‘@)

n

R>1-— =1—£(1— Ryp) (3)
with equality iff the matrix H has full rank. Since the rate must be positive,
(3) implies a restriction on the rate of the constituent codes, namely,

1
: 1—-—
Ro > 7

that is, the more layers there are, the higher the rate of the constituent codes
must be.

Note that by replacing the Hamming constituent code with the (ng, no—1, 2)
SPC code, that is, by setting Hg = (1 1 ... 1), the construction defined by (2)
reduces to Gallager’s construction [1] of the (£, ng)-regular LDPC matrices.

An H-LDPC code from the ensemble % (ng,¥¢,b) contains (b constituent
Hamming codes; b in each layer. The jth constituent code in the lth layer is de-
noted by Co;;, and its parity-check matrix by Hoj, j =1,2,...b, 1 =1,2,..., {
(all matrices Ho;, are equal up to column permutations). The Tanner graph
representation of such an H-LDPC code is illustrated in Figure 1. There are
n = bng variable nodes and ¢b constraint nodes. The graph is regular, with the
variable-node degree equal to #, and the coustraint-node degree equal to ng.
BEach variable node is connected to exactly one constraint node in each layer.

3 Decoding Algorithm

Let v be a codeword of an H-LDPC code, transmitted over a BEC with the
erasure probability J, and let 7 denote the received sequence. The number of
erasures in the received sequence r is denoted by W. When the code length is
large, n — oo, the fraction of the erased symbols, w = W/n, converges to the
erasure probability d of the BEC, w — 4.

Consider an iterative erasure-correcting algorithm 7, with two variants
denoted by 2/ and %, whose iterations i, ¢ = 1,2,...,imax, consist of the
following steps:

(1) For the tentative sequence r(¥), where (! is the received sequence r, select
constituent codes Cp;; with 7;; erasures, j = 1,2, ..., pol = 2SNl ench
that:

(a) 7;1 < dp for algorithm .27
(b) 751 < m for algorithm o

(2) Assuming Os on the erased positions, compute the syndromes s;; for the
constituent codes selected in the previous step.
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(3) For each selected constituent code Co;y, construct the m X 7;; matrix
M ;; whose columns are the 7;; columns of Hy,;; which correspond to
the erased positions. Note that, in general, rank(M ;) <71 < m.

Let x;,; denote the 7; ;-tuple of the unknown (erased) transmitted symbols.
These symbols can be recovered by solving the equation system

Clearly, the equation system has a unique solution iff the matrix M,
has full rank, that is, iff rank(M ;) = 7;;. Then the erasure pattern is
correctable.

(4) For every constituent code affected by a correctable erasure pattern find
the erased tuple x;; by solving (4). Replace the erasures in () with the
so-found code symbols. This yields the updated sequence r(+1),

As mentioned earlier, when using algorithm 2%, only some erasure patterns
with more than dy erasures, which affect constituent codes, are correctable. The
following lemma allows us to determine the exact number of the correctable
patterns:

Lemma 1 Let M be an m X 7 matriz whose columns are equal to T columns
of a parity-check matriz Hy of a Hamming code of length ng, where 1 <17 <m
and m = logy(ng + 1). Then the number of matrices M that have full rank,
rank(M) = 7, 15 equal to

7—1
M(r,m) = % IT @™ -29). (5)
e

Proof: The cohunns of the parity-check matrix Hy of the Hamming code
of length ng = 2™ — 1 are all nonzero binary m-tuples, which span the m-
dimensional binary space. Thus, clearly, the number of matrices M, con-
structed from 7 columns of Hy, which have rank(M) = 7, is equal to the num-
ber of different bases of 7-dimensional subspaces of the m-dimensional space.
Let {by, by, ..., b;} denote the set of basis vectors of a 7-dimensional subspace.
The number of such sets is determined in the following way:

e First, Select the vector b; as any of the 2™ — 1 nonzero binary m-tuples;

e Select the nonzero vector by different from by, that is, by # ¢1by, ¢ €
{0,1}. There are 2™ — 2 choices.

e For i = 3,4, ..., 7, select the nonzero vector b; such that it is not equal to
a linear combination of the previously chosen ¢ — 1 basis vectors, that is,
b; # ¢1by + eabs + -+ + ¢;_1b;_1, where ¢y, 69, ...,¢;—1 € {0,1}. Clearly,
there are 2™ — 2¢=1 choices for b;, i = 3,4, ..., 7.
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Finally, note that the ordering of the basis vectors in the set {b;, b, ..., b+ } is
irrelevant. Thus, the total number of bases of 7-dimensional subspaces of the
m-dimensional space is

7—1
I (27~ 24)

M(r,m) = =l 5

Clearly, for a constituent Hamming code, an erasure pattern with 7 erasures
is correctable when the matrix M, constructed from the 7 columns of Hy
corresponding to the erased positions, has the rank equal to 7. Thus, we have
the following

Corollary 1 The number of erasure patterns of length ng = 2™M—1, with ™ < m
erasures, which are correctable by a Hamming code of length ng, is equal to
M(r,m) gwen by (5).

Thus, the generating function for the number of correctable erasure patterns
can be defined as

m m H 2m -
g1(s,mp) = Z M(7, m): Z = s".

el | T=1

Note that the function g1(s,ng) can be written as

1(s,mg) = g1(8,n0) + Z -—_O—;T——--——ST (6)
=g ;

where

g1(s,no) = (T;o) 8-+ (?;0) s’ (7)

is the generating function of all erasure patterns with less than dy = 3 erasures,
which are all correctable.

For a given erasure pattern of length n with W erasures, let a denote the
number of constituent codes which are affected by correctable erasures. In
general, ¢ = aW/, where a < 1. In the algorithm . it is assumed that the
erasure pattern is such that there is at least one constituent code for which the
erasures that affect it are correctable. In other words, we assume that a > 0.
Then, during the first iteration of the algorithm .7, all correctable erasures will
be corrected, while the uncorrectable oné® will result in the decoding failure.
Hence, the new erasure pattern, after one decoding iteration, has fewer erasures
than the initial erasure pattern. Clearly, if in each of the following iterations,
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the number of codes with correctable erasures is larger than zero, then the
total number of erasures in () will decrease with the iteration number i and
the algorithm & recovers the transmitted codeword, i.e., plimax) = 9. Then,
we can state the following

Lemma 2 For any H-LDPC code from the ensemble € (no,L,b), if an era-
sure pattern is such that in each iteration of the algorithm < the number of
constituent codes affected by correctable erasures is larger than zero, then the
algorithm @ recovers the transmitted codeword after O(logn) iterations, where
n = bng is the code length.

Proof: Let £ denote a lower bound on the fraction of erasures that are
recovered in each iteration, 0 < £ < 1. Then, after z iterations, the number of
remaining erasures is at most wn(l — £)*. The final decoding iteration imax 18
reached when
wn(l —g)mex < 1
that is,
log(wn) + imax log(1 —€) <0

which yields
1

imax e
log ()

Thus, the number of iterations is a logarithmic function of the code length. W

log(wn). (®)

The complexity of each iteration of the algorithm &/ is proportional to the
code length n. Thus, according to Lemma 2, the overall decoding complexity
is O(nlogn).

4 Asymptotic Performance

As shown in the previous section, the iterative algorithm &/ corrects any erasure
pattern with W or fewer erasures, if in each iteration @ > 0. The following
theorem allows us to confirm the existence of H-LDPC codes for which this
condition is fulfilled.

Theorem 1 In the ensemble €(no,t,b) of H-LDPC codes, there exist codes

(with probability p. where lim p =1 ), which can correct any erasure pattern
n—oQ

with up to wan erasures. with decoding complezity O(nlogn). The value wy is
the largest root of the equation

h(w) — £F (o, w,ng) =0 (9)
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where h(w) is the binary entropy function, h(w) = —wlogy w—(1—w)logy(l—w),
and the function F(a,w,ng) s given by

1.
F(a,w,ng) = h(w) — ;—Oh(awng) + max {w log, 8 —

—,L logs(go(s, n0)) — awlogy (M)} (10)
)

go(s,no)

where a>0 and the mazimization is performed over all s such that

awno g1 (s,n0)
1—awno ~ go(s,m0)

The function g1 (s, no) is the generating function of all the erasure patterns that

are correctable by the constituent Hamming codes. It is equal to (7) when the
constituent codes correct less than dg erasures (algorithm @4 ). or equal to (6)
when the constituent codes correct up to m erasures (algorithm ). go(s, no)
is the generating function of the uncorrectable erasure patterns and it equals

go(s,n0) = (1 + 8)™ — g1(s, no).

The proof of Theorem 1 is omitted here for brevity.

Theorem 1 allows us to compute numerically the fraction of the correctable
erasures, wy, for several choices of code parameters. The computations confirm
the existence of codes with a nonvanishing w,. First, we consider code ensembles
of rates close to 1/2. Figure 2 illustrates the values of w, computed with
a = 1074 for algorithms 27 and %, for several code ensembles of rates R =~ 1/2.
Using the algorithm &% up to 3.5 times more erasures can be corrected than
with the algorithm 7. For both algorithms, with increasing ng (and, in order
to keep the rate fixed, also with increasing ) the value of w, increases only up
to a certain point, ng = 127 for & and ng = 63 for %, where it reaches its
maximum. With further increase of ng and £, w, decays quickly.

Next we consider code ensembles &' (ng, £, b) of different rates, R ~ %, R~ %
and R =~ %, decoded with the algorithm #%. Figure 3 illustrates the values wq
obtained with @ = 10~* for several code ensembles of different code rates.
We have found a nonvanishing w, for different code lengths and rates. With
increasing R, the maximum value of w, decreases and moves towards longer
constituent codes: ng = 31 for R = ;}, ng = 63 for R = % and ng = 127 for
R= 3.

Note that all the code ensembles considered in Figures 2 and 3 have min-
imum distances that almost meet the Varshamov-Gilbert bound, as shown in

[8].
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Figure 2: Values of w, computed according to Theorem 1 with o = 10~ for
decoding algorithms @ and @4, for several code ensembles of rates R ~ 1/2.

5 Summary

We have investigated the asymptotic erasure-correcting capabilities of random
LDPC codes with constituent Hamming codes, used over the binary erasure
channel. A simple iterative decoding algorithm was considered, which can re-
cover the transmitted codeword after O(logn) iterations, where n is the code
length. It was shown that there exist H-LDPC codes which, when decoded with
such an algorithm, are capable of correcting a number of erasures that grows
linearly with the code length n. The maximum fraction of correctable erasures
was computed numerically for several code ensembles with different code rates
and constituent-code lengths.
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Abstract.

Reed-Solomon code-based LDPC (RS-LDPC) block codes are obtained by replacing
single parity-check codes in Gallager’s LDPC codes with Reed-Solomon constituent
codes. This paper investigates asymptotic error correcting capabilities of ensembles
of random RS-LDPC codes, used over the binary symmetric channel and decoded
with a low-complexity harddecision iterative decoding algorithm. The number of
required decoding iterations is a logarithmic function of the code length. It is shown
that there exist RS-LDPC codes for which such iterative decoding corrects any error
pattern with a number of errors that grows linearly with the code length. The results
are §uppurted by numerical examples, for various choices of code parameters.

1 Introduction

Long block codes can be obtained by combining one or more simpler codes
in various types of concatenated structures. Such constructions are of inter-
est since they can yield powerful codes with good error-correcting capabilities,
which are decodable with low-complexity, using simple constituent decoders as
separate modules.

A method for constructing long codes from short constituent codes, based
on bipartite graphs, was introduced by Tanner in [1]. In this method, one of
the two sets of nodes in a bipartite graph is associated with code symbols, while
the other set is associated with constituent block codes of length equal to the
node degree. These two sets of nodes are hereinafter referred to as variable
nodes and constraint nodes, respectively. Tanner’s general code construction
unifies many known code families that can be obtained by choosing different
underlying bipartite graphs and associating different constituent codes with its
constraint nodes. For example, Gallager’s Low-Density Parity-Check (LDPC)
codes [2], graph-based approach.

1This work was supported by the Program of fundamental scientific reseaches of ONIT
RAN (the Department of Nanotechnologies and Information Technologies)
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For Gallager’s LDPC codes [2], each constraint node in the corresponding
bipartite graph represents a single parity-check (SPC) code over the variable
nodes connected to it.

The error-correcting capabilities of LDPC codes for the binary symmetric
channel (BSC) were studied in [3], where it was shown that there exist LDPC
codes capable of correcting a portion of errors that grows linearly with the code
length n, with decoding complexity O(nlogn).

The codes associated with constraint nodes in the Tanner graph of an LDPC
code can be replaced with other constituent block codes (e.g. Reed-Solomon
codes [4]).

In this paper, we consider the asymptotic performance of random RS-LDPC
codes, when the code length n grows to infinity. We will prove that there ex-
ist RS-LDPC codes which, when decoded with a simple iterative decoder of
complexity O(nlogn), can correct any error pattern with a number of errors
growing linearly with the code length. The work presented here, with con-
stituent Reed-Solomon codes of minimum distance dg = 3.

2 Construction and properties of RS-LDPC codes

An (ng, ko,do) extended Reed-Solomon code has length ng = 29, dimension
ko = ng —do — 1, code rate Ry = 1 — (dp — 1) /no.. We will consider single-error
correcting extended RS code with minimum distance dg = 3,
A parity-check matrix Hy of a Reed-Solomon code is an (dp — 1) X no matrix
- whose columns are all nonzero g-nary (dp — 1)-tuples. We will consider RS-
‘LDPC codes with identical constituent codes. Let H denote a block-diagonal
matrix with the b constituent parity-check matrices Hy on the main diagonal,
that is,

TR O i VS
0 Hy 0F <=2 D

M| (o pilily v 5 WG (2)
0 0 0] v oG

where b is very large. The matrix H is of size b(dg — 1) x bng. Let 7w(H) denote
a random column permutation of H. Then the matrix constructed using £ > 2
such permutations as layers,

H1 1 (H)
H, o (H)

H=1"d=1". (3)
Hy we(H)

is a sparse £b(do— 1) x bng parity-check matrix which characterizes the ensemble
of Reed-Solomon code-based LDPC codes of length n = bng, where n > ngp.
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Let C(no,¥¢,b) denote this ensemble. For a given constituent Reed-Solomon
code with parity-check matrix Hp, the elements of the ensemble C(no, ¢,b) are
obtained by sampling independently the permutations m, I = 1,2, ..., £, which
are all equiprobable. The rate of a code C € C(ng, £,b) is lower-bounded by [1]

R2>1 =1—¥(1— Rp) (4)

£b(ng — ko)
n
with equality if the matrix H has full rank.

The RS-LDPC codes from the ensemble C(no,£,b) contain £b constituent
Reed-Solomon codes; b in each layer. Such RS-LDPC codes can be represented
by a Tanner graph [1] with n = bng variable nodes, and ¢b constraint nodes.
Each constraint node comprises ng—ky parity-check constraints specified by the
rows of the corresponding constituent parity-check matrix. If a code symbol is
checked by a constituent code (that is, by at least one row of its parity-check
matrix), there is a branch connecting the corresponding variable node and the
constraint node. . Each code symbol is checked by exactly one Reed-Solomon
code in each layer. The graph is regular, with the variable-node degree equal
to £, and the constraint-node degree equal to ng.

Let ¢ be the transmitted codeword and € be the error pattern. Then the
received sequence is given by ¥ = v + €. The weight of the error sequence is
W = |é] and the fraction of erroneous symbols is w = W/n for code length
T —2 00.

For a given error pattern with W errors, we introduce the é-tuple @ =
(a1 as ... ag), where a;, | = 1,2,...,£, denotes the number of constituent codes
at the lth layer whose codewords are affected by errors. Note that @ contains
realizations of ¢ independent random variables that are integer-valued in the
range 0 < a; < b, l = 1,2, ..., L. Furthermore, let a denote the total number of
constituent codes affected by errors, that is,

¢
a=la] = Za;.
i=1

In other words, a is the number of constraint nodes in the Tanner graph that
are connected to at least one variable node with an erroneously received value.

3 Decoding algorithm

Consider an iterative hard-decision decoding algorithm A, whose decoding it-
erations 2, i = 1,2, ..., imax, consist of the following two steps:

1) For the tentative sequence r{"), where r(1) is the received sequence r,
decode independently ¢b constituent Reed-Solomon codes (that is, com-
pute their syndromes s;;, j = 1,2,...,b, [ = 1,2,...,¢, and if the value
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is nonzero, output the ng-tuple where the position indicated by the syn-
drome is flipped). This yields ¢ independent decisions for each of the n
symbols.

2) Flip every symbol T‘E}, k= 1,2,...,n, in the sequence r®), for which at
Ifiast. )one of the ¢ decisions requires that. This yields the updated sequence
pl+1)

Assume that the error pattern e is such that the number of errors that can be
corrected by the constituent codes is larger than the number of uncorrectable
errors. Then, during the first iteration of the algorithm A, all correctable
errors will be corrected. Since, in our case, Reed-Solomon codes are single-error
correcting codes, each erroneous decoding will added one new error. Hence, the
new error pattern, resulting from one decoding iteration has fewer errors than
the initial error pattern. Clearly, if in each of the following iterations, the
number of correctable errors is larger than the number of uncorrectable ones,
then the total number of errors in () will decrease with the iteration number
i and the algorithm yields the correct decision, i.e., r(imax) = 4. Then, we can
state the following

Lemma 1 For any RS-LDPC code from the ensemble C(ng,¢,b), if an error
pattern is such that in each iteration of algorithm A the number of errors cor-
rectable by the constituent codes is larger in (1 + &) times than the number of
added errors, then algorithm A yields a correct decision after O(logn) itera-
tions, where n = bny is the code length.

The complexity of each decoding iteration of the algorithm A is proportional
to the code length n. Thus, according to Theorem 1, the overall decoding
complexity is OQ(nlogn), given that the number of correctable errors in the
error pattern is larger than the number of the uncorrectable ones. The following
lemma formulates a condition under which this holds.

Lemma 2 If for any error pattern with w < W errors, the number of con-
stituent Reed-Solomon codes of an RS-LDPC code from the ensemble C(ny, ¢, b)
that are affected by errors is @ = awf with a > 2/3 + &, then the number of
correctable errors in any such error pattern is always larger than the number
of uncorrectable errors.

In other words, & > 2/3 + = specifies the necessary expansion of the Tanner
(expander) graph of the code, which ensures that the number of errors decreases
in each iteration of algorithm A.

4 Asymptotic performance

As shown in the previous section, the iterative algorithm A corrects any error
pattern with W or fewer errors, if the code’s Tanner graph has the expansion
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coefficient o > 2/3 + . The question that arises, however, is whether such
a code exists in the ensemble C(ng,£,b). The following theorem allows us to
receive the positive answer.

Theorem 1 In the ensemble C(no, ¢, b) of RS-LDPC codes, there exist codes
(with probability p, where hlroxo p = 1), which can correct any error pattern of
n—*

weight up to wqn, with decoding complexity O(nlogn). The value wy is the
largest root of the equation

h(w) + wloga(q — 1) — £F (@, w,n0) =0 (5)

where h(w) = —wlogyw — (1 — w) logy(1 — w) and the function F(a,w, no) is
given by

1
F(a,w,ng) £ h(w) +wlogy(qg—1) — n—h.(o:w-n.o)
0
+ max{w log, s — aw logg((l +s(g—=1))" — 1)} (6)

where a > 2/3 + ¢ and the maximization is performed over all s such that

L= !
(PR 2 e
Qawilg

Theorem 1 allows us to compute w, numerically for several choices of code
parameters. The computations confirm the existence of codes with a nonva-
nishing w,. We use o = 0.67, which is slightly above the limit value of 2/3.
First, we consider code ensembles of a rate close to 1 /2. Figure 1 illustrates the
values of w, computed for several code ensembles C(no, £,b) of rates approxi-
mately 1/2. With increasing ng (and, in order to keep the rate fixed, also with
increasing £) the value of wq increases only up to a certain point, ng = 128,
where it reaches its maximum. With further increase of ng and £, wy decays
quickly.

Next we consider code ensembles of different rates, but with a fixed con-
stitnent code. Figure 2 illustrates the values w, for RS-LDPC codes with the
constituent (128,126,3) Reed-Solomon code and with different code rates R,
obtained by varying the choice of {. We have found a nonvanishing w, for a
wide range of code rates, and its value decreases with increasing code rate.
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Figure 1: Values of w, computed for
o = 0.67 according to Theorem 1 for
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Figure 2: Values of w, computed
for &« = 0.67 according to Theorem 1
for several code ensembles of different
rates with the fixed constituent code
length ng = 128.
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