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Unidirectional Error Control Codes and Related
Combinatorial Problems

R. Ahlswede, H. Aydinian, and L.H. Khachatrian

University of Bielefeld, Dept. of Mathematics, POB 100131, D 33501 Bielefeld
E-mail:ayd@mathematik.uni-bielefeld.de

Abstract

q ary codes capable of correcting all unidirectional errors of certain leyel 1 < £ <
q — 2 are considered. We also discuss some related extremal combinatorial problems.

1 Introduction

An extensive theory of error control coding has been developed under the assumption of
symmetric errors in the data bits; i.e. errors of type 0 — 1 and 1 — 0 can occur in a
codeword.owever in many digital systems such as fiber optical communications and optical
disks the ratio between probability of errors of type 1 — 0 and 0 — 1 can be large. Practically
we can assume that only one type of errors can occur in those systems. These errors are called
asymmetric. The statistics also shows that in some of the recently developed LSI/VLSI ROM
and RAM memories the most likely faults are of the unidirectional type. The unidirectional
errors slightly differ from asymmetric type of errors: both 1 — 0 and 0 — 1 type of errors
are possible, but in any particular word all the errors are of the same type.The problem
of protection against unidirectional errors arises also in designing fault tolerant sequential
machines, in write-once memory systems, in asyuchronous systems et al.Codes correcting
asymmetric/unidirectional errors are not well studied since they encounter more complicated
structures than those for symmetric ervors. (for maore information see a good collection
ol papers in [2]). The first construction of nonlinear codes correcting asymmetric single
errors was given by Varshamov and Tennengolts [5]. Modifications of VT codes where used
to construct new codes correcting ¢ asymmetric errors and burst of errors [2]. Very few
constructions are known for codes correcting unidirectional errors (see [2]). We call a code
of length n, correcting ¢ asymmetric errors a generalized VT code if it is given by the set of
solutions (xy,...,2,) € {0,1}" of a linear congruence of the type

Z fli)zi=a mod M
i=1
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where f(i) (i =1,.,.,n) is an integer valued function, a and M are integers. There are deep
relationships between VT-codes and some difficult problems in Additive Number Theory
(6], [3]. In [6] Varshamov introduced a g-ary asymmetric channel. The inputs and outputs
of the channel are n-sequences over a g ary alphabet labelled with integers {0,1,...,q —
I}, If the symbol i is transmitted then the only symbols which the receiver can get are
{1, 4+ 1,...,q — 1}. Thus for any transmitted vector (z1,...,2,) the received vector is of
the form (z) + ey, ..., Tn +€,) where ¢; € {0,...,¢—1} and z; +e; < g -1, i=1,...,n
T'hen Varshamov says that [-errors have occured il e + -+ - + e, = I. Generalizing the idea
ol VT codes Varshamov presented [6] several ingenious constructions of {-error correcting
codes for the defined channel. These codes has been shown to be superior to BCH codes
correcting ¢ arvors for ¢ = 2 and for large n.

2 ( AUEC codes and related problems

Il mumber of symmetric errors in real systems is usually limited, while the number of
inidirectional fasymmetric errors can be fairly large. This motivated several authors to
consider codes that correct a few symmetrical errors and deteci/correct all/many unidirec-
tional (asymmetrie) errors.We introduce now a special type of asymmetric errors in a q-ary
channel. As above the alphabet Q is labelled with integers {0,1,...,q — 1} and for every
fransmitted vector & = (my,...,3,) the output is of the form (z, + €),..., 7y, + €,), where
I denotes real addition, and z; + 6 < g —1; ¢ = 1,...,n.We say that an asymmetric
orror ¢ = (e1,....e,) isoflevel 1 <€ <qg—1if0 < e < £. We also say that t asymmetric
orrors have occured if for the Hamming weight wiy(e) = {. Correspondingly we say that
I unidirectional errors have occured, if the output is either z + ¢ or # — e. The difference
hetween the channel deseribed above and Varshamov's channel for ¢ > 2, [ = 1 is seen in
the figure below.

) P) 2 9
,"/

=t 1 1 1

0 0 0 0

Here we concentrate on the case t = n. That is we consider q-ary codes correcting all asym-
metrie or unidirectional errors of given level £, For those we use the abreviations £ AAEC-
mnd £ AUEC-codes, respectively.For given 1 < £ < g — 2 let A,(n, ), and A,(n,£), denote
the maximum number of codewords in a q-ary code of length n, correcting all asymmetric
and nnidirectional errors, respectively. Clearly A, (n,{), < A.(n.(),. Define two distances
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between & = {J:lr" ’?mil]) W= (ylw - wyn) & Qﬂ = {U, 1, L 1}“-

glen=1., .. nl
ife>yorz<y

do(z, y) = max{|z; —

dulw,y) = {du(w, y),

2d,(x,y), if x and y are incomparable

where © > y means that @; —y; > 0, fori=1,...,n.

Proposition 1. Let € C {0,...,q —1}". Then

(i) C is an I~AAEC-code il for every z,y € C holds d,(z,y) > £+ 1

(ii) C is an £-AUEC-code iff for every z,y € C holds d,(z,y) > 20 + 1.
[t turns out that it is very easy to determine A,(n, £), for any given parameters 1 < ¢ < ¢—2
and n. However this is not the case for unidirectional codes.
Theorem 1. For1 < ¢ < q—2 one has A,(n, (), = {ﬂ_—l]ﬂ.

Theorem 2. Given integers £ > 1, ¢ > 2(£ + 1) we have ¢ (F?'I)“ < Ay(n, £), < h—_ﬁ]“ for
some constunt c.

Write ¢ = 2m +¢, where ¢ € {0,1}, and let @ = {—m, —m+1,...,m-+¢}. Let us define X
to be the set of solutions z € Q" of the equation

n=1

S e+ 1)zi=a (2.1)

=0
It is easy to see that X is a [FAUEC-code.In a special case when ¢ + 1|¢ we can maximize
|.X| over all choices of a.

Theorem 3. For £+ 1|¢ (g = |Q|) max, |X| = (w-‘l'T-]-)"_1 . The maximum assumed for any
a€Q@Q=|-mm+e|in (2.1).

What can we say about A,(n,f),, when {+2 <q <2({+1)?

The simplest case is ¢ = 2(¢£ + 1).In this case A,(n, €), = 2". However, we have no “good”
lower bounds for other cases. A simple lower bound is A,(n, £), > (Lg JJ
2

Can we do it better?

The Case: /=1

For ¢ = 3 we have A,(n,1); > (LgJ)

We believe that one has equality in this case.
For g =4 Ay(n, 1)y =2

g = 5. Simple bounds observed above give us ¢(2,5)" < A,(n, 1); < 3". However the lower
bound can be improved. To this end we look for good constructions of 1-AUEC codes given

R. Ahlswede, H. Aydinian, L. H. Khachatrian (Germany) 9

by means of some equation. Let € = {0,4+1,42}. Given integers ag,...,a,-1,A let X be

the set of all solutions x = (g,...,%,1) € Q" of an equation
n—1
;T = A. (2.2)
i

Proposition 2.The set X is a 1- AUEC code if all subset sums of ag, ..., a,_, are distinct.

Note that for A = 0 this is also a necessary condition. Let {ag,...,a,} C N has disfinct
subset sums. Denote by LA, (n)s the maximum possible number of solutions = € Q" of the
(2.2) over all choices of ag, ..., @, and integer A. A slightly modified version of this problem
was raised by Bohman (see [1]) in connection with a sum packing problem of Erdés [3].

Theorem 4. For some constants i, c; one has ¢,(2,538)" < LA, (n)s < (2, 723)".

lirror Detection Problem The detection problems for asymmetric and unidirectional
errors are equivalent, i.e. any ¢ error detecting asymmetric code is also a t-error detecting
unidirectional code. In fact the detection problem for unidirectional errors is much easier
than the error correction problem. This problem is completely solved for binary channels
(sce Borden in [2]). That is for any 1 < ¢ < n; t,n € N; an optimal code of length n that
can detect up to ¢ errors is constructed. For ¢t < n observe that a code C' detects all patterns
of { or fewer unidirectional errors, iff whenever a codeword z covers a codeword y then for
{he amming distance d{z,y) > ¢ + 1. In this case as an optimal code one has to take as
codewords all veetors with Tamming weight w = L%J mod (f + 1). This follows from a
result of Katona [4].The problem is also solved for the Varshamov's channel, however for the

chinnel we deseribed above the problem is open.
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Extrinsic Information Transfer Functions for LDPC and Turbo
Codes

A. Ashikhmin, G. Kramer, and S. ten Brink
Lucent Technologies, Bell Labs
600 Mountain Ave., Murray Hill, NJ 07974, U.S.A.
e-mail: {aea.gkr.stenbrink | @hicent.com

1 Introduction

Extrinsic information transfer {(EXIT) charts
predict the convergence behavior of iterative
decoding and detection scheme [1]. Experience
suggests the charts are accurate, but there is a
lack of proofs explaining why they work. The
main purpose of this work is to show how to use
EXIT charts for analyzing behavior of LDPC
and Turbo codes and study properties of EXIT
charts in the case of the binary erasure channel

(BEC).

2 EXIT Charts

Let D be an [n, k.| linear code. Let us assume
that D, is used in the following communication

model.

1ty g T I S - |

Extrinsic| *

Bieodes|.
Uy Channel | & &

Source

Here the Extrinsic channel is a noisy mem- |

oryless chanuel.
extrinsic is that during iterative decoding of
an LDPC or Turbo code constituent decoders
transmit extrinsic information from one to an-
other. We assume that the vector (aq,... ,a,)
is decoded by a maximum a posteriori extrinsic

The reason why we call it —

information {(MAP) decoder. In other words
the decoder computes values

Pr{v; = Olag;))

€ =In——"
i Pr(v; = 1ay)
where agjy = (@1, ... ;01,8541 --. , ay).
Let us denote by 14 = L i L (Vi 4;) the

average mutual information on the input of the
decoder and by If, = £ 3% | I(Vj; E;) the av-
erage mutual information on its output. Since
we assume a MAP decoder it is semi obvious
that

I(Vy: Bj) = I{Vii Apy). (1)
Note that if the decoder is not a MAP one then
I(Vi; Bj) < I[V};_A‘!J!}.

In what follows we will consider I as a fune-
tion of [4 € [0..1]. This function is our first
EXIT chart.

Let Dy, be an [n, k] linear code and let us
use it in the [ollowing communication model.

u I — M "
% Extinic | :
v Chomsed | % c
i | MAP
iy | R 14

# o

ua Comunmmt-) L F]

i i) §

) Chinad

i) M |
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Siwilar to the previous case we introduee no-
{ions of average a priory information I4 and
extringic information Tj;. Again it is semi ob-
vious to see that in our model

I(Vj: Bj) = I(Vj; Y Apy)). (2)

We will consider I} as a function of Iy and
this [unction is our second EXIT chart,

3 EXIT Charts
codes

for LDPC

Wi will start with the following generalization
ol regular [2]. [3] and irregular [4] LDPC codes.
Lot € i =1,... .t bea set of [nf, k] linear
vodes. Denote n = Z::l kland N = Y0 nl
Lot €4 = 1,... ,m, be another set of [nf, k{]
linear codes chosen such that 31 nf = N.
We will assume that linear encodings for codes

€} and ¢ are defined.

Lot (7 be a bipartite graph with the vertex
wl VI, V] = t|C] = m, and N edges.
Wo will call vertexes from V' variable nodes

nniel vortexes from € check nodes. We assume
that edges of G are emunerated and that 5 =
[1,..., N} is the set of their indexes. Denote
by I the set of indexes of edges incident to

Wi vortex &1 € V oor O

Lot 8 bo the set of vectors w € {0,1}Y such
that for any vertex i of V or € entries of w
with indexes from £ form a codeword of O
or O respectively.

Let now ey, ... .1, be information vectors
af codes CY, ..., C} respectively. Denote by
iy, oy corresponding codewords. Now let
un define a generalized LDPC code A as the
wil of vectors ¥ = (),... .1y) such that the
voetors w = (wy.... .w,) belong to S.

Note that if we choose C7 codes to be rep-
otition codes and Cf to be single parity check

codes then the above definition will eoincide
with the ordinary definition of irregular LDPC
codes. We also would like to note that a gen-
eralization of LDPC codoes suggested in [6] is a
particular case of the above generalization. In
fact EXIT chart analysis shows that the gener-
alization suggested in [6] does not allow to con-
struct codes achieving capacity in BEC, while
we think that it is not the case for our gener-
alization.

Tt follows from definition of A that its code
length equals . To define the rate 1 of A let us

1 o
denote 7; = %‘— and p; TL:\‘F Let ns also dt'ﬁ*nln
] _ A _m o7
the rates R, =3, 7 aF and Re = 352, Tige-

Proposition 1 R > 1— 130

Define the code D, as the [N, k], k. = 310 kE,
linear code formed by the direct sum [5, Ch.2.9]
of codes Cf i =1,... ,m. Similarly define the
code D, as the [N, k) ky = S0, k!, code
formed by the direct sum of codes CF.i =
| A
finity and that connection of vertices of G is
chosen randomly. Using (1) and (2), it is not
difficult to show that under this assumptions
in the case of BEC the behavior of iterative
decoding of A can be described by the evolu-

TLet us assume that N tends to in-

tion of the average mutual information in the
process of alternating MAP decodings of codes
D, and D,.

Let us consider an example. Let A4 be a
(2,4) regular LDPC code. In other words
C?! are repetition codes of lengths 2 and Cf
are single parity check codes of length 4. We
assime that codewords of A are transmitted
through BEC with erasure probability ¢q. In
this simple example we can compule EXIT
charts explicitly as follows: T§(14) = (L4)?
and I5(I4) =1 —gq(1 — I4). The EXIT charts
for cases of ¢ = 0.3 and 0.5 are presented on
the following picture.
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Using the charts, one can track the evolu-
tion of the mutual information. In the case of
g = 0.5 the charts intersect each other. This
means that at some moment the mutual in-
formation will stop changing and the iterative
decoding will get stuck. On the contrary if
g = 0.3 the charts do not interseci. There-
fore with sufficiently many iterations we can
achieve an arbitrary small probability of error.

In the case of BEC we can establish the fol-
lowing hmportant properties of EXIT charts.

Denote A, = jul g dlyand A, = ]'"] I di
and let €' be the capacity of BEC.

Theorem 2 A, =1 — (1 - C)R, and A. =
1-— R,

From Proposition 1 and Theorem 2 it follows

that

1-Ay (X =C)By
A{: 5 i-_Rc

=6, =G

(3)

From this it follows that if B > C then the
EXIT charts will unavoidably intersect cach
other and the iterative decoding will fail. Tt

@ =R)/R, 1R

also follows from (3) that the larger gap be-
tween the EXIT charts the further the code
rate I from the capacity C.

Let [ _‘,{_.J- be the EXIT chart of the dual code
of D,.

Theorem 3 1{-(£4) =1 —I5(L—14).

A dual relation can be also formulated for the
EXIT chart of the code Dy, but it is more com-
plicated and we omit it in the given text.

Let us consider an example of a generalized
LDPC code. Let all codes Cf be the Hanming
codes of length 31. Let 40 percent of codes
C¥ be repetition codes of length 8 and 60 per-
cent of codes Cf be single parity check codes
of length 11. The corresponding EXTT charts
are presented on the following picture.

1 =
b= o
08 e |
./J
o8
Ll
124
uu
[] [¥] [ [ (1) i

One can see that EXIT charts for this code
liave different form compared to EXIT charts
of LDPC code from the previous picture. This
special form allows one to reduce the number of
decoding iterations needed for achieving a de-
sived probability of decoding error. The exam-
ple also demonstrates a possibility of designing

A Ashikhmin, G. Kramer, S. Ten Brink (USA)
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w ol on sieh an way that there is a gap be-
twoen FBXTT charts in the area of small proba-
Bttty of error (upper right corner). We believe
hnt this property will be useful for design of
Hidte length codes. After several iterations of
Horntive decoding of a finite Jength code ran-
lom variable passing by edges of G become
dopendent. As result the behavior of decod-
Ly process begins (o deviate from the theoret-
lenl prodiction. We expect that keeping EXIT
clinets apart in the area of small error proba-
Lty will help to delay this effect and to lower
tho ooy floor.

ILXIT ehart analysis can be also conducted
fur Horlally Concatenated Turbo Codes [7]. Tn
Ui plven text we omit details and only would
like to mention the following resunlt.

Lot B be the rate of a serially concatenated
turbo code A. Let Ryy and Ry, be rates of
onter and inner codes of A respectively. Tt is
woll known that B = Ry Rin. The question
i how to choose the rates Ry, and Ry,. The
PXIT chart analysis shows that if we want to
npproach capacity in the case of BEC we must

choose Ry, = 1.
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On ranks and kernels problem of perfect codes

S. V. Avgustinovich** O. Heden * ¥ F. I. Solov’eva*!ll

Abstract

In 1998 Etzion and Vardy [6] proposed to clarify which pairs of numbers (r, k)
are attainable as the rank r and kernel dimension & of some perfect code of length n.
Two switching constructions are used fo find an asymptotic decision of the problem.

1. Preliminaries

Denote by L™ n-dimensional metric space over the Galois field (/[7(2) with the Ilam-
ming metric. Let 0 (1) be the all-zero (all-one) vector in E*. A perfect binary code C of
length n with the code distance 3 (further a perfect code) is a subset in £ such that for
any vector y € £ there exists a unique codeword @ € € with d{z,y) < 1, where d is
the Hamming distance. It is well-known that perfect codes of length n with distance 3
exist iff n = 2™ — L,m > L. The kernel Ker(C) of a code C is the set of all its periods
(all codewords = € C' such that « + €' = C'). The dimension of the kernel is denoted by
k = k(C). The dimension of the subspace spanned by a code C' is called the rank r = r(C')
of the code C.

In 1998 Etzion and Vardy [6] proposed to clarify which pairs of numbers (r, k) are
attainable as the rank r and kernel dimension k of some perfect code of length n. It will
be mentioned further as the ranks and kernels problem. Let §(r) be such minimal number
that 250) — §(r) — 1 > r — n + log(n + 1). Denote by U(n,r) the following

U(n,r) =n —log(n+ 1) — é(r)

In 1994 Etzion and Vardy [5] described a spectrum of ranks and in 1995 Phelps and
LeVan [10] described a spectrum of kernel dimension of perfect codes for every admissible
length n > 15. In 1998 Etzion and Vardy [6] established that for full rank perfect codes
for every n > 2™ — 1,m > 3, it is true k(C) < U(n,r) and the bound is tight for full
rank perfect codes for each n > 21 — 1. In 2001 Phelps and Villanueva, see [12], using

*We are grateful o Swedish Institute for supporting this research.
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+This research was partially supported by the REBR 00-01-00916
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T This research was supported by Swedish Research Council

IThis research was partially supported by the REBR 00-01-00822
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Ile e technik generalized the result for perfect codes with any rank r < n and showed
thut the bound is tight for perfect codes of rank r < n for any n = 2™ — 1, m > 3. Denote
by L(n,r) the following

e 277, ifr>n—log(n+1)+ 1,
Linr) { 20— 1, ifr<n—log(n+1)+1.

I"helps and Villanueva [12] established that L(n,r) is the exact lower bound of kernel
dimension of a perfect code for length n > 15 and rank r.

For r < 15 perfect codes of length 15 for all possible pairs (r. k) are given in [11].
l'or o= 15 [ull rank perfect codes with any dimension kernel &, 1 < k < 5 are known,
we [7, 9, 6], for & > 7 full rank perfect codes do not exist [6, 13]. Full survey of the
inventipated ranks and kernels problem and related questions can be found in [4].

lu the paper we are going to get the following theorem.

Theovem 1. Let n and r be natural numbers such thatn = 2" —1,m > 10, n—log(n-1) <
i e Lhen for any natural number k such that Lin.r) < k < U(n,r) there exists a
perfeel code of length noand rank r with kernel dimension k.

2. Construction I

Lot 11" be the Hamming code of length n defined by its parity check matrix with
columns given in lexicographic order. A linear subspace R? of the code H" is defined
an 0 linear span of all vectors of weight 3 with the ith coordinate equaled to 1, ¢ &
{1,.  yn}. It is called reduced i-component. For any vector v € H" a set R = R} 4+ v
In enlled an i-component with the representative v. Let us consider a set of pairs F =
{0y 0y )y (gyig), ey (ugy t5) }, where uy € H®, 4, € {1,2,....n}.

We call a famlly F' separable if the followmg conditions are hold:

I the set of vectors of length log(n + 1) corresponding to the binary representation
ol nabueal numbers iy, 42, ., 1, is linear independent over GF(2);

4 05’ H:?l lII ¢ {1121'-"”.};

A for all ¢ o 018 dn brue that R2)' N R = 0.

Il b @ of pades in the rﬂ.ﬂ‘lll}f 1 is the size of the family. A separable family F
W onll full pank family if s = log(n + 1). Let M = {L;, Ly, ..., L,} be a set of arbitrary
lnent subspaces of the code H". A family F' we call M-separable if besides of conditions
| wnd 2 the lollowing condition is valid

3%, for all ¢ 5 Lit is hold (R + L) N (R + L) =0

Lot all spaces L; in the set M coincide with some space L. Unless otherwise stated a
M weparable family F' we will call in this case L-separable.

et us consider the set

C(F,M) = H“\U RY & LU U R & L: ® ei,),

=]
whete ¢, is the vector with one in only (i:)th coordinate.
Let K(F,M) = _,(R}, & L;). Using the same approach as in [10] it can be proved
the I'oIImvmg fact.
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Theorem 2. Let F be a M-separable family of size s. Then the set C(F, M) is a perfect
code of rank n — log(n + 1) + s with kernel (I, M).

Corollary 1. Let I be a L-separable family of size s. Thercfore there exist perfect codes
of length n of rank n — log(n + 1) + | with any kernel dimension from dim(K(I")) to
dim(K(F,L)).

Last theorem shows that to prove Theorem 1 it is necessary to construct L-separable
family of pairs for appropriate subspaces L. A basis of the construction is given by the
following propositions.

Proposition 1. For all admissible n > T there exist separable families of any size s,
where s = 1,...,log(n 4+ 1).

Proposition 2. Let F be a separable family of pairs of size s of the code HO=Y? and
v € HOP-DEN\ s R v ¢ {0,1}. Then the family F' = F U (v,n) is a R-separable
family of pairs of size s+ 1 of the code H".

Proposition 3. Let I' be a L-separable family of pairs of size s of the code H=12 and
v e He=DI\f_ (R @L),v ¢ L. Then the family F' = FU(v,n) is a (R} & L)-separable
family of pairs of size s+ 1 of the code H".

Propositions 1 and 2 guarantee the existence of perfect codes of any rank s, s < n, with
minimal possible kernel and with kernel dimension till (n — 1)/2. A possibility to choose
any linear subspaces of the space L for the set M gives continuous variation (adding one
with every step) of kernel dimension from the minimal up to (n —1)/2. Proposition 3
leaves a hope that the construction I can be useful to construct perfect codes with big
kernels. However to complete the proof of Theorem 1 we have to use the construction IL

3. Construction II

In the section we describe the class of perfect codes of length n rank r < n and
kernel dimension (n —1)/2 < k < U(n,r). To do it we use well-known iterative Vasil'ev
construction [1]. Let us remind it.

Let C' be a perfect code of length (n —1)/2 = 2™~! — I,m > 2, and A be a function
from C' to the set {0,1}. Let |u| = us + -+ + Un—1)j2 (mod 2), where u = (uy,...,
U(n-1)/2). The set C™ = {(u,u + v, |u| + M(v)) : v € EW=1/2 4 e ("} is a perfect code of
length n.

Let C be a perfect code of length n rank n — log(n +1) < r < n and maximal
kernel dimension U(n,r). First we take into account the existence of perfect codes of
length 15 with different ranks and known maximal size kernels [6, 9, 11, 13] and full rank
perfect code of length 2'° — 1 with maximal kernel (see [6]). Then choosing subspaces
of different dimensions in the kernel Ker(C) and an appropriate function A in iterative
Vasil’ev construction we get the following theorem.

Theorem 3. Let n and r be natural numbers such that n = 2™ —1, m > 10, n—log(n+1) <
r < n. Then for any positive inleger k such that (n —1)/2 < k < U(n,r) there crists a
perfect code of length n and rank r with kernel dimension k.

5. Avgustinovich, O. Heden, F. Solov'eva (Russia, Sweden) Iy

4. Conclusion

I'rom Corollary 1 of Theorem 2 and from Theorem 3 we get Theorem 1. For some
phirs (n,r), where n < 219 — 1 for [ull rank perfect codes the ranks and kernels problem
i utill open. Earlier Theorem 1 was announced in [4]. The verification of the theorem
reguired to use many different switching, concatenation and combining consiructions, see
[2]-[1]. The approach described in Section 3 were used in [2] to construct not full rank
puetlect codes and in [3] for full ranks codes with big kernels. In the presented paper we
tne only two switching constructions.
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The Newton radius of some binary and
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Abstract

For a linear [n, k. d| code €' all errors of weight t < (d — 1)/2 are uniquely cor-
rectable. However, there are errors of weight >  which are also uniquely correctable.
The Newton radius of a code is defined to be the largest weight of a uniguely cor-
rectable error. In this work Newton radii of all binary cyclic codes of lengths up to
31 and ternary cyelic and negacyclic codes of lengths up to 22 are determined.

I Introduction

In [1] the code parameter Newton radius of a binary linear code was introduced for the
largest weight of a uniquely correctable error. Bounds and exact values of the Newton
radius for several classes of binary linear codes were given in [2], [3] and [4]. Later these
bounds were generalized for linear codes over arbitrary alphabets in [5].

II Notations and preliminary results

Here we will summarize the results obtained in the papers mentioned above.

Let us denote by w(x) the Hamming weight of the vector x and by d{.r, y) the ITamming
distance between vectors @ and y. If C' is a linear [n, k] code let z + C be a coset of C.
A coset leader is a vector in the coset of minimal Hamming weight. A coset leader @
is unique if it is the only coset leader in the coset, i.e. w(x) < d(x,¢) for all nonzero
codewords ¢. An error e is uniquely correctable if and only if it is the unique coset leader
in its cosel. The Newton radius ¢(C) of C' is the largest weight ol a uniquely correctable
error, i.e ¥(C') = maz{w(z)|w(zr) < d(z,c),Ye € C\{0}}. The covering radius r(C) is
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(lofined as the maximal distance of a vector from the code, i.e. r(C) = mar{w(zx)|w(r) <
(i, ¢),¥e e C\{0}}. Tt follows immediately from the definitions that

(1) Vg ‘} < 1(C) < 1(C).

A lower bound on the Newton radius is given in [2]
() v(C) = r(C) — k.

For an [n, k; ¢] code without zero coordinates (see [5])

n
(i) w(C)<n——
( q

(g=1n—k—(g—2)-r(C)
g1 '

(1) v(C) <

We will note that there is equality in (1) for perfect codes, in (2) for two times repeated
hinary codes, in (4) for binary codes with k& < 3 and for two times repeated binary codes.

Il The Newton radius of some binary and ternary
cyclic codes

In [6]. [7] and [8] all binary cyclic codes of lengths up to 31, ternary cyclic codes of lengths
up Lo 25 and ternary negacyclic codes of lengths up to 26 were classified and their covering
it were determined. These classifications were used as a basis for our investigation
I e Newton radii of binary cyclic codes with dimensions 2 and 3 were determined by (4).
I'or the rest of the investigated codes upper and lower bounds for 1(C) were determined.
I find the exact value of v(C') computer search was used testing only these vectors whose
wolghts are between the lower and upper bounds for »(C). This way, we were able to
dlotermine all unique coset leaders for each weight between ( and v(C). Unfortunately,
aneh straightforward computations can be used only for codes with short lengths.

The codes which have cosets with more than 90 per cent unique coset leaders, the
nimber of these unique leaders and the corresponding weight of the coset are presented
It the tables below. All the results of this investigation can be found at
hittp://www.moi.math.bas bg/~tsonka.
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Table 1. Binary cyclic codes.

No|[uwkd] |¢(C)| Unigue leaders || No | [n.k.d] v(C) | Unique leaders
1 15..3,.5] 6 425, w=3 10. 27,7,6] 9 2754, w=3
e [21,9,‘3] 4 189, w=2 il [27,6_.[]] 9 2754, w=3
3. |[217.3) |7 |189, w=2 12.|[27.39] |12 |80352, w=5
4. |[21.6,7] |6 5880, w=4 288954, w=0
5. [[21.3,7) |9 |5880, w=4 825552, w="7
18816, w=5 13.|[27,2,18] |12 4540968, w=9
6. |21214]|0  |105987, w=7 [14.|[31165] |5 |4185, w=3
7. |[2555) |10 |2250, w=3 | 15.|[31,11.10]|7  |162099, w=5
11625, w=4 16. | [31,10,10] | 7 162099, w=5
8. |[25/4,10] |10 50625, w=5 17.|[31,6,15] |10 7291200, w=8
9. |[27.93] |9 |324, w=2 18, [31,5,16] [11 | 7490220, w=8
Table 2. Ternary cyclic codes.
No [ [k,d] |»|Unique leaders | No | [nk.d] |# |Unique leaders
1. |[14,2,7] |8]15316, w=4 22.|[20,7,8] |T | 73350, w=4
9. |[16,7,6] 44160, w=3 [ 23.|[20,7.6] |7 |8960, w=3
3. |[16,64] |4]432, wt=2 70084, w=1
4. |[16,5,6] |6|4160, w=3 24, | [20,6,10] | 7 [474960, w=5
5. | [16,5.4] |6]432, w=2 25.][20,6,8] |8 | 73500, w=4
6. |[164,8] |8 |27744, w=4 [ 26.|[20,68] |7 |76150, w=4
7. |[164,6) |6]4160, w=3 [ 27.|[20,64] |8 |700, w=2
8. [[16,4,4] |8]432, w=2 28, | [20,5,11] |8 | 2297880, w=6
9. |[16,3,10] |8 | 135744, w=5 [ 29.|[20,5,8] |9 |76150, wt=4
10.[16,3.8] |8 28206, w=4 445088, wt="5
11, [16,2,12] | 9 | 505120, w=6 | 30.|[20,5.4] [10|700, w=2
12. | [16,2,8] | 8| 28840, w=4 31.][20,4,12] | 10 | 2425440, w=6
131712, w=5 32. [20,4.8] 10 76150, w=4
13. | [20,12.4] | 3 | 700, w=2 449408, w=5
14.][20,11,4] | 4 | 700, w=2 33.|[20,4,5] |8 |8800, w=3
15.[[20,10.4] | 4 [ 700, wt=2 | 34.][20,3,10] | 10| 493120, w=>5
16. | [20,9,6] |5 | 8320, w=3 2368200, w=0
17.[[20,9,4] |5 {700, w=2 35.( [20,2,10] | 12| 495120, w=>5
18. | [20,8.8] |6 70910, w=4 2442000, w=6
19. [ [20,8,5] |6 | 8800, w=3 9340800, w=7
20. | [20,8.4] | 6700, w=2 36.| [22,2,11] | 14 | 4285560, w=6
91.|[20,7.8] |6]73500.w=4
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Table 3. Ternary negacyclic codes.

No|[nkd] |~ |Unique leaders|| No | [nk,d] |~ | Unique leaders

1. |[14,2,7] |8 |[15316, w=4 6. |[20,6,9] |7 |465888, w=5

2. |[18,4.6]|8 |6446, w=3 7. |[2045) |8 |8800, w=3

3. |[18.2,0][ 10| 271152, w=5 [ 8. |[20,4,12]|9 |2443680, w=6
1122912, w=6 ||9. |[20,2,15]|11| 31785000, w=8

4. [[20.8,8]|6 |69440, w=4 10. | [22,2,11] | 14 [ 41285560, w=6

5. |[2085]|6 | 8800, w=3
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between Binary Vectors
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Abstract — The algorithm for comput-
ing the length of a common subsequence of
two binary sequences of length n, which re-
quires a variable number of computations
depending on input data, is presented.
The basis of the algorithm can be effec-
tively used to obtain the probability dis-
tribution of the similarity between random
vectors. This point is demonstrated for
the case when one of vectors is chosen at
random and another one is the alternating
vector.

Let S(u, v) denote the length of the longest se-
quence oceurring as a common subsequence be-
tween two given binary sequences, wand v, of the
same length n. The parameter S(u,v) is called
the deletion similarity between u and v [1], and
n—S(u,v) is called the Levenshtein distance be-
tween u and v. This parameter is important for
designing insertions deletions correcting codes.
It is also relevant to other applications in cryp-
tology and data compression.

We will proceed with the following definition.

Definition 1. The similarity S(u,v) be-

tween two binary wvectors, u = (ug,..., Uy)
and v = (v1,...,0s), 15 the largest inleger s
stich that there exist two vectors, (iy,....i;) and

(Jraoveesgn) withl <4y <dp < oo < i, S oand
1<5i < <. .. <4 < n, such that u;, = v;,
for all d = 1,...,s. The similarity between the
all - zero vector and the all-one vector is defined
as 0.

The algorithms that allow us to compute
S(u,v) with the complexity O(n?) are known [2],
[3]. We address the problem of simplification of
these algorithms.

Let us denote [n] 4 {1,...,n}. Fori = j =
0 and for all 4,7 € [n] with u; = w; introduce
Pijstiy > | as the smallest integers such that

Uil = Vg Vitd = Yigp o

where we assume that u;, = v, and v =

Upgle
NO. Set s =0 and N = {(0,0)}.

N1. Form the sets

Moo= U {65, G, 41) |

(i)EN,

and N, € N/, in such a way that the
pair (i, j') € N, does not belong to the
set N,y if and only if one of the following
two conditions are satisfied : (a) i > n or
4" > n; (b) there exists a pair (i*,j*) €
NN 7)) either with i < 5 = '
oF with §* < §1° = ¢,

N2. If Niy1 # O, then increase s by 1 and go to
NI.
N3. Output s.
The NO-N3 algorithm is illustrated in Table L.
A “direct algorithm” for finding the similarity
between 1 and v can be presented as sequential

computations of the elements of an n X n matrix
S (for example, row by row) using the rules

g -?{: v = S,-J- S;‘J-.

=y = S = 1uux{ S‘-‘J-,

{{=a |hed

Sicygatl },

where

555 2 max{ Si—14:/S55=1 }
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lubile 1: The sets constructed by the NO
M algorithm for the pair of vectors (u,v) =
(001010, 110001); S{ll,v) =4 and C(U‘V} = 1.

=
s N o+
0((00)[(1.3),(31)
R B ) (24)
(3.1)](43),(52)
21 (24)[(36),(45)
(43)|(56) (64)
(5:2) (6.3)
3[(36) (4.7)
(15) (5,6)
(6’3) (T,-‘i)
1] (506) (6.7)

ne
. 2y . " fa3
cither i' =0o0rj' =0 = Sy =0.

I'his algorithm is illustrated in Figure 1.
lor all i, 7 € [n], let us denote

T fa Sf.}" if Si.j > S:_;'
W1 0, otherwise.

Iurthermore, let Tyy A (). Introduce an oriented
praph whose nodes are identified by the pair
(1),0) and by all pairs (i, j) € [n] x [n] such that
Iy = Sij. Define the edges of the graph as fol-
lowy ¢ there is an edge connecting the node (i, 7)
With the node (i, 3" if and only if

?;f‘j':TiJ-Fl, !‘r)i‘ jr>}'

Une can easily check that the graph above is a
tooted oriented binary tree, which we call the
similarity tree and illustrate the construetion in
I'ignre 1. The difference between the NO-N3 al-
porithim and “the direct algorithm” is that we
inmediately build a tree and form S(u, v) as the
[ntpest value of Ty ;, where the maximum is taken
u wll pairs (7, ) € [n] x [n].

Theorem 1. For any peir of vectors (u,v),
the NO-N3 algorithm outputs the value of the
stintlarity between u and v.

@

3

0

oOBE

o
5
\:i“--.

—_ m\m
\

0 0 0 0 0 0 0

1 1 0 0 0 1

Figure 1: IHustration of the algorithm for com-
puting the similarity between two vectors, u =
001010 and v = 110001, and corresponding sim-
ilarity tree.

Notice that p; ; and g; ; can be easily found af-
ter w and v are represented as resulls of concale-
nations of the 0-packets and the 1-packets when
the lengths of packets are computed in advance
and stored in the memory. To “refine” the set
N}, at step N1(b) we also need the number of
computations, which is linear in [N/, ;|. Namely,
let T= (lg;o..fy) and I = (Jy, ..., Jy) be two
auxiliary arrays. Suppose that we have inspected
some number of entries of the set N, formed
the set A1 of cardinality M, and numbered its
entries by (i1, J1)s - -2 (Ear, Jar). Furthermore, let
the arrays I and J be filled in such a way that

Ly =il =m,  me=liaM
‘ﬁe{fh....iu} = =0
F& {0, ndut = Jj=0

Then the inspection of the next entry (¢, j') €

N, proceeds as follows.

LI I = Jp = 0, then set (iag1,0041) =
(¢,j" and Iy = Jp = M + L. Increase M
by 1.

2. Iy = 0 and Jy = r > 0, then com-
pare i with .. If ¢/ > i., then ignore the
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pair (i, j'). Otherwise, replace (i, j-) with
(¢, 7') by setting i, = 1".

3. If [y = r > (0 and Jy = 0, then com-
pare j' with j.. If j' > j,, then ignore the
pair (i, j'). Otherwise, replace (i, j.) with
(i, 7') by setting j. = j".

The number of computations required by the
NO-N3 algorithm can be measured by the sum
of cardinalities of the sets Ni(u,v) = N, s =
0,...,S5(u,v), formed for a given pair of vectors
(u,v). Denote

S(uv)

Cluv) £ ) [Muv)l

In Table 2 we show the average and the max-
imum number of computations in accordance
with the function C :

C. £ 2%y Clu,v),
uy
Crsxn 2 maxC(u,v).
u,v

We also show the values of the average similar-
ity 5, and the entropy H, for the probability
distribution (P,(0),..., P,(n)) whose entries are
defined as

Py(s) 22

{(u,v): S(u,v]:s}‘,

forall s =0,...,n.

Theorem 2. If n+ 1 is divisible by 3, then
the mazimum number of computations can be ex-
pressed as

: e nA41)(2n+5 2
C‘lrlax,ﬂ = C(l.l,_ V) s %} ~ T y
where
i g l!‘[u”{u—!—]}f‘ao’
W 2 nf‘-l("}}(n—t+l]{2‘

and £ 2 (n+1)/3.

Finding of the analitical expression for the
probability distribution of the similarity seems
to be a difficult combinatorial problem. One of

Table 2: Some parameters of the probability dis-
tribution of the similarity between two random

binary vectors of length n.

n | Su/n | Hiflogn | Cofn | Croaxafn
4 | 0.631 0.813 1.078 1.750
5 | 0.649 0.752 1.123 2.000
6 | 0.663 0.711 1.183 2.167
T | 0.674 0.684 1.250 2.429
8 | 0.684 (0.662 1,321 2.625
9 | 0.691 .646 1.395 2.889
10 | 0.698 0.632 1.470 3.100
11| 0.704 0.621 1.547 3.301
12 | (L708 0.612 1.624 3.583
13 | 0.713 0.604 1.701 3.846
14 | 0.7T17 0.596 1.778 4.071
15 | 0.720 0.590 1.856 4.333
16 | 0.724 0.585 1.933 4.562

approaches to attack this problem is the finding
of the probability distribution of the similarity
between a uniformly distributed random vector
u and a vector v, which is fixed in a regular way.
This distribution highly depends on v, as it is il-
lustrated in Table 3 and Figure 2 where we show
the values of the average similarity S,(v) and
the entropy Hy(v) for the probability distribu-
tion (£, (0[v), ..., Pu(n|v)) whose entries are de-
fined as

Pa(s]v) = {u: S(u,v) = s}

for all 8 =0,...,m

Theorem 3. Suppose that n is even and de-
nole va = (01)"%. The similarity between vy and

any binary vector u of length n having k(u) pack-
ets can be expressed as

o n/2+ [(k(u) — 1”21, if uy =0,
S(u, v2) _{ nf2+ [(k(u) = 1)/2], fu =1,

where

k) g]—i—‘{!’ €{2,....n}: w F uiy }I

\' Balakirsky (Russia, The Netherlands)

{ibile 3: Some parameters of the probability distributions of the similarity between a random vector

i nnd a fixed vector v of length n.

n=16 n=24§
v | S.(v)/n | Hy(v)/logn v | Su(v)/n | Hu(v)/logn
(0)* | 0734 0.522 (01 | 0718 0.543
(0212 | 0.749 0.502 (02132 | 0.714 0.542
(012 | 0.708 0.519 o' 0.637 0.601
(1 il 0.621 0.587 o* 0.5 0.848
O 0.5 0.761
Pu(s]v)
2 |
0 1 s/n

I'ijgire 2: The probability distributions of the similarity between a random vector u of length n = 32

und the vectors v = 0%2, (01)'.

(lorollary.
1+
Pil(slve) = (n 1)2"“, Jor all s =n/f2,...,n
28 —mn
i

Py(slva) =0, foralls <n/f2.

Thus,
3n—1

gu("’z) = 4
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Hidden data transmission over the voice channel
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Hidden data transmission in audio signals is a steganographical term that describes the algorithm of
inaudible method of insertion data in audio, i.e. human cannot detect the presence of modifications, but there is a
way to extract hidden data anyway [2], [3], [4]. Transmission over the voice channel means that before the
extraction of hidden data we will transmit the modified audiosignal from speakers to microphone.

The steganographical method of insertion data in audio signal for transmission over the voice channel
declares:

«  possibility to recover hiding data from audio without original signal

e an unauthorized user must not be able to detect the presence of hidden information

s an unauthorized user must not have access to the hidden information

Robustness of the watermark or information that is hidden in audio, in our case means that hidden
information should be strong against following modifications: digital/analog, analog/digital conversations and
transmission over the voice channel (noise, different frequency response, room echo etc. These modifications would
be described later)

In this paper the data insertion model is described,

Inaudible hiding data in audio

The method designed to make the watermarked audio signal stable to voice channel
(transmission “by air”") is combined of the following approaches:

Frequency Masking. Human cannot detect the frequencies too close to peaks, local
maxima ete. in audio signals [1], so the information could be placed in inaudible frequencies.

Temporal Masking. The human ear cannot distinguish two close signals (original and it
echo) - the echo is perceived as added resonance. [4]

Direct Sequence Spread Spectrum. The way of using special noise like signal as
additional information signal. To keep the noise level low and inaudible, the spread code is
attenuated to nearly 0.5% of the dynamic range of the host sound signal.

Transmission over the voice channel
"Voice channel’ is a channel produced by audio speaker and a microphone.

"Transmission over the voice channel” is the term that we use to describe the transmission of

audio file as a sound from PC audio speaker to PC-microphone and then its conversion to digital
form (ADC). It's clear that the file transmitted over the voice channel differs from the original.

The main known modifications of sound during transmission over the voice channel are:
additive noise, phasc shift (room cffect, echo), changing of amplitude-frequency response,.
random broad-spectrum interference.

The effects of all modifications described are: unequal distortions of different spectral
parts of audio signal; peaks and falls of power spectra could not match in transmitted and
received signals. So, there is no way to use frequency spectrum components amplitudes for
direct value storing and no way to use peaks and falls in spectra as delimiters or binders.

To solve this problem the fixed-frequencies binding is used. The decoder should know:
the frequency component for every frame of signal that stores the information. The number of
component depends on the frequency response of speakers and microphone being used. For
standard microphone the frequency components for insertion belongs to interval [3.5:6.0] kHz.

By insertion frequency for the frame we mean the number of frequency component that
will be the binder for the frame, i.e. the insertion frequency is the component in which the center
of insertion signal would be placed. The detector would find the insertion signal center only in
insertion frequency.

A Belogolovy (Russia)

The information bits are represented as special insertion signals that have information in
{heir form factor, not amplitude values. To restore synchronization the pseudo-noise sequence
((lirect sequence spread spectrum approach) is used.

Insertion signals

Lets denote by insertion signals the arrays of 7 elements to be inserted in frequency
spectrum of the one frame of audio signal. The form of insertion signal depends on information
hit and on form of source signal spectrum that corresponds to insertion frequency.

1'2 946 87 ke T B | ek i M- T 3 S |1345t"'7

Fig 1. Fig 2 Fig 3 Fig 4

There are two modes of source spectrum that influences on signal being inserted:

1. Signals for insertion in a spectrum peak or local maximum.

Lets denote by local maximum the spectral component that is greater than 2 of it’s
neighbors. This component gives a frequency masking effect to neighbor frequencies. If the
insertion frequency coincides with the local maximum the 2 insertion signals are used:

Figure 1 shows the form of insertion signal corresponds to “0” information bit value,
I'ipure 2 shows the “1". These signals are designed to be “self-masked”, i.e. the central
component still masks it's neighbors making them inaudible.

2. Signals for insertion in non-peak frequencies

By non-peak frequencies we mean the frequency components that give no frequency
musking effect to neighbor frequency components. Figure 3 shows the form of insertion signal
corresponds to “0” information bit value, Figure 4 shows the “17.

The signals of this pair have to be more different from cach other and at the same time
“1"s signal should be look like “1s signal for insertion in peak case. The purpose of that
would be explained later.

Data insertion process

At first, the coder places the synchro stamp in time arca of the signal using dircct
yequence spread spectrum, It means adding a pseudo-noise sequence with low magnitude but
pood correlation attributes to make able set up synchronization in the receiving side.

The source audio signal is then split to frames of length 512, than the spectral
iransformation (FFT) is applied to every frame. Lets describe the insertion progress for one
frame in frequency representation meaning that after modifications the invert spectral
iransformation (IFFT) would be applied and the new audio signal would be reconstructed from
separate frames.

After having the frequency frame the coder should decide which insertion mode to use. It
nnalyzes the frequency amplitudes near to insertion frequency. If there are peaks (local maxima)
i the range of [insertion frequency-3; insertion frequency+3] than coder switches to “insertion
in peak” mode, otherwise it use “non-peak insertion™ mode.

1. Insertion in peak mode.

In the best case the insertion frequency coincides with the local maxima. In that case
coder selects the information signal from signals for insertion in a spectrum peak corresponding
(v value of information bit (1 or 0) and scales the signal to be the same height as a peak value
(Figure 5).
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The other case takes place when peak (or local maximum) is too closed to inscrtion
frequency but not the same. (Figure 6)

legend
original spectrum
....... «esuss peak frequency

— = potential insertion signal

Fig 6.

In this case if the coder tries to insert signal in frequency f; it would cut the peak and the.

change become audible. The solution is to move peak value to be at the frequency f;, this change
is inaudible if peak movement described occurs only at one frame in succession, i.c. the peak
movement is allowed only to one frame is sequence.

After the movement we have the situation like in case of figure 5, so coder scales

insertion signal up to peak value and inserts it.

Lets point out that due to peak moving the insertion frequency f; should be different for
every consequent frames. To do it lets select f; pseudo randomly, and make this pseudo-random:

rule known to insertion and extraction processes both.

2. Insertion in non-peak mode.

Lets denote by frequency masking threshold the threshold that describes the inaudibility:
of spectral frequency component if it’s value is less than masking threshold. Masking envelope is.
the curve of masking thresholds for every frequency components.

The coder builds masking envelope for the range of frequencies neighbor to insertion
frequency. Than it selects the information signal from signals for insertion in non-peak
corresponding to value of information bit (1 or 0) and scales the signal to make it’s maxim
values equal to values of masking envelope for corresponding frequencies (Figure 7).

legend
— Oiginal spectrum
eessssnnannns peak frequency
—  iNSErtON signal

........ masking envelope

Fig 7.

Detection process

After detecting a synchro stamp (pseudo-noise sequence which was added to sourc
signal) and setting up synchronization the audio stream is split to frames and make a spec
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(runsformation as the coder has done. For every frame detection process tries to decide if there is
i peak in insertion frequency. So there is two detection schemes.

1. Detector decides that there was a peak in insertion frequency

The detector should distinguish the signals for insertion in peak. This could be done by
annlyzing the relative square of the figure bounded with 7 frequency components neighbor to
insertion frequency.

2. Detector decides that there was no peak

The detector should distinguish the signals for insertion in non-peak. It could be done by
¢hleulating the relative difference between 7 frequency components in the received frame and the
pair of signals for insertion in non-peak and selecting the bit value with minimum difference.

Lets point out that the form of signals corresponding to “1” for both modes (peak and
non-peak) is similar to each other. So if the detector decides that there was peak in a insertion
frequency even when there was a insertion signal for “1” made by coder in non-peak insertion
mode it would make the correct decision anyway.

('onclusion

The novelty of method described is that the method is oriented to voice channel, i.e. it
could be stable to transmission of signal with hidden data “by air”.

Transmission data over the voice channel using the method described above is not
feliable itself because of difference in transmitted sound and received one. The detector could
imuke the wrong decisions and the transmitted and received data however would not match. So
(e whole model could be considered as a upper-level channel with errors in it.

The fact is that the errors arising in upper-level channel are non-symmetrical, i.e. the
probability of transition “0-1" is higher then probability of transition “1-0”. So implementation
ol standard well-known codes for correcting symmetrical errors (BCH etc) would not give good
fesults. Now the author works with task of building a special non-symmetrical error oriented
code.
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Abstract The rank distance was introduced in 1985 by E. Gabidulin [1]. He determined
a lower bound for the minimum rank distance of a code. Moreover, he constructed a clas:
of codes which meet this bound: the so-called Gabidulin codes.

In this paper, we first characterize the linear isometries for the rank distance. Then w
determine the isometry group and the permutation group of Gabidulin codes of full length
(i.e. the lenglh is equal lo the degree of the field extension).

1. Isometries for rank distance

Let K = GF(¢™) be an extension of degree m of the finite field GF(¢). Let £ = K’
be the vector space of dimension n over K.

Definition 1 Fora € E, a = (ay,...,a,), the rank rk(a) of a is the dimension of th
GF(q)-vector space generaled by {ay,...,a.}.

Let a and b be two elements of E. The relation d,(a,b) = rk(a — b) defines a distance

over E. Following this definition, it is natural to define the minimum rank distance d, of

a code C'. Moreover, if d, denotes the classical Hamming distance, then for all a, b in E,'f

the rank distance satisfies the inequality d,(a,b) < dp(a,b).

The group of linear isometries for the classical Hamming distance is well-known: it is
the monomial group of n X n matrices over A with one and only one non-zero element
on each row and each column [2]. This group is generated by the permutations of the
support and the scalar multiplications by invertible elements on each coordinate.

In this section, we characterize the linear transformations that are isometries for the
rank distance,

Definition 2 An isometry for the rank distance is a K-linear automorphism f of E which
preserves the rank of the elements of E, i.e. rk(a) = rk(f(a)) for all a in E.

Let Iso(E) be the group of isometries for the rank distance. The following facts are
very easy to check:

e The scalar multiplications hy : a = (ay,..
GF(q™)" are isometries for the rank distance.

by = da = (Adyy...,Aan), A E

e For all M € GL(n,q), the K-linear endomorphism fy, of E defined by a — aM is
an isometry for the rank distance.
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I'le following theorem characterizes the isometries for the rank distance.

I'hwoorem 1 The isomelry group I'so(E) for the rank distance is gencrated by the scalar
mltiplications hy, X € GF(g¢™)* and the linear group GL(n,q). This group is isomorphic
li the product group (GF(q™) /GF(q)') x GL(n,q).

I'voof : As noticed previously, the scalar multiplications and the transformations asso-
pinted to nx n invertible matrices with coefficients in GF(q) are isometries for the rank
dintnnee.

l.et f € GL{n,q™) be an invertible K-linear transformation, and M be its associated
nintrix in the canonical basis. The i-th row of M is the image of e; by f.

Suppose that f is an isometry for the rank distance. The rank of each row must be
o, Moreover, eventually using a scalar multiplication, it is possible to suppose that the
vloments of the first row are in GF(g), i.e. f(e)) € GF(q)".

el i € {2,...,n}. Following the preceding remarks, there exists a ;1 € K* such that
it "fle;) is in GF(q)". Thisis p 'fi; € GF(g) forallj=1,..., n.

Let ¢ be e;+e;. The rank of cis 1. Its image is f(c) = (fia+fin, fratfiz, oo fratfin)
ned must be of rank 1. There exists at least one non-zero coordinate, for example the
fisl, Sel v = f1q + fix # 0. Since the rank ol [(c) is 1, for a fixed j there exists a
i ¢ GF(q) such that fi; + fij = sv, ie. fij+ fij = s{hia+ fir)-

From this fact, we deduce fi; — sfiy = —fi; +sfiq. Set L = fi; —sfiy. This is an
plement of GIF(q) N pGE(qg). Then either p is in GF(g) and the elements of the i-th row
e in GE(g), or t = 0, that implies fi ; = sf1,; for all j: the i-th row is deduced from the
fitst by multiplication by s. This is not possible, since the matrix M is invertible. This
proves the fact that al the f;; are in GF(q) and f is in GL(n, ).

To complete the proof, we first remark that the scalar multiplications by commute with
il the linear transformations. Moreover, the intersection of the linear group GL(n, q) and
ihie group of scalar multiplications is the subgroup of scalar multiplications for which A is
fn (/F(g)*. This implies that Iso(E) is isomorphic to the direct product (K*/GF(q)") x
(‘L(n,q). =]

II. Gabidulin codes

In this paragraph, we restrict ourselves to Gabidulin codes of full length, i.e. of length
1 = m, where m is the degree of extension of K = GF(¢™) over the base field GF(q).
I'he Gabidulin codes where introduced in [1]. These codes are MRD (Maximum Rank
Distance): they meet the best possible rank distance d, = n 4+ 1 — k, where k is the
limension of the code.

We first recall the definition and the main properties needed in the next section. Let
= (g1,---,Gm) be a basis of K over GF(q). Let Gy, be the matrix defined by

q-i 2 FLA L o Jm
1
Fo o - e B
gk.g —
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with the convention al! = a7 .

Definition 3 The Gabidulin code of dimension k relatively to the basis g is the code Gy
of length m over K generated by the matriz Gy ,.

In (1], E.M. Gabidulin proved that these codes are MRD.

Now, we present a more precise characterization of the dual of a Gabidulin code under
their restriction that the length is exactly m.

Let g = (g1, ..., gm) be a basis of K over GF(q), and h = (hi, ..., ) be the trace-

m—1
orthogonal basis of g: h is the unique basis such that 1'r(gih;) = Z: gll-rjhgf] =
=0
Clearly, this relation is equivalent t0 Gm oGr, p = I

Lemma 1 The dual of the Gabidulin code Gjq is the Gabidulin code G,y -

Proof : The Gabidulin code G,,_; i is the dual of Gy, if and only if < gt bl >=0

for all ¢ = 0, ...?k =l and all j = k, ...,m — 1. The result follows from the relation
g:n,h Gy = (< S'Hs Y >)ig = g\‘n,yg:};,h = 1. O

Proposition 1 Suppose k < m. Let Gy, be a Gabidulin code and L be the trace-
orthogonal basis associated to g. A Gabidulin code Gy p s the dual of Gy, if and
only if there exists a scalar a € K* such that h' = ah.

Proof : II the Gabidulin code G,_gu is the dual of Gy, then < gl Bl >= 0 for
alli =0, ....k—1and all j = 0, ...,m — k — 1. These relations are equivalent to
< _t,r[‘_j], WW>=0foralli=0,....,k—landall j=0,....,m—k—1ie < y[’], Bi>=ld
for all s € [0, m[\{k}. Set a =< g, K’ >.

Our conditions become G, o = ack. The matrix G,,, is invertible, and then the
solution is unique. Moreover, G,, o(h*)! = ef, and then h' = ah®l. Clearly a # 0, since
h' is not 0.

The reverse part of this proposition is trivial. a

From this proposition, we can deduce a characterization of the distinet bases who give
the same Gabidulin code.

Theorem 2 Suppose k < m. Two Gabidulin codes Gy, and Gy are equal if and only

if if there exists a scalar a € K* such that g’ = ag.

Proof :
Gabidulin code Gy . O

Remark: This result cannot be directly extended to Gabidulin codes of length n less
than m.

III. Isometry group and permutation group of Gabidulin codes

The scalar multiplication hy : (¢1,...,6n) (Meyy ..., Acm), A€ K7, isiclearly an
element of the isometry group of every K-linear code of E.

Let M € GL(m,q) be a m x m invertible matrix with coefficients in GF (¢) and
f € Iso(E) be its associated isometry.

This result is the previous proposition applied to the dual G—n of the
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Lomma 2 Let g = (g1,-..,9m) be a basis of K over GF(q). Let g = (g},..-.41,) = gM
b ity image by f. The image of the Gabidulin code Gyg by f is the Gabidulin code Gy .

I'raof @ Since the coefficient of M are in GF(q), the image of the i-th row g“"” by fis
"1 The image of the basis (9, . .., g*~") of G, by f is then the basis (¢, ..., g™*~")
il I'o'|,l,;r. (]

Vhoorem 3 Let 1 < k < m. The isometry group of the Gabidulin code Gy, is the group
uf sealar multiplications, isomorphic to K.

Proof : The isometry group Iso(Gy,) of the Gabidulin code Gy, contains the scalar
mnltiplications.

Reciprocally, let f € Iso(E) be an element of Iso(G,). Recall that [so(E) is gener-
ated by the scalar multiplications and the linear group G L(m, ¢). Multiplying eventually
[ I a scalar A, we can suppose that f is in GL(m, k). Let ¢’ = [(g). If A is the matrix
immociated to f, this gives G g = GmgA, and then A = gmfgg,,,_ga.

Moreover, using Lemma 2 and Theorem 2, there exists a scalar @ € K" such that
' = ag. This implies ¢! = aflg" for all i = 0, ...,m — 1. Let A’ be the diagonal
imatrix such that aj; = 1. We obtain G g = GmgA’, and then A = A'. Recall that the
vloments of A are in GF{q), then all = a for all i and the transformation [ is the scalar
iniltiplication by a € GF(g)". This completes the proof. O

Corollary 1 For 1 < k < m, the permutation group of the Gabidulin code Gy, is trivial,
(0, it contains only the identity.

I'roof : The permutation group is a subgroup of I'so(Gy ). The only scalar multiplication
wlhich is a permutation is the identity. O

!onclusion In this paper, we characterized the isometries for the rank distance. Using
(his property, we have been able to find the permutation group and the isometry group
ol Gabidulin codes.

However, the problem of the classical automorphism group of Gabidulin codes for the
IHumming distance remains open.

For example, if k = 1, it is easy to construct a permutation followed by appropriated
senlar multiplications on each component who leaves the code globally invariant.

We never obtained such a non-trivial example for 2 <k <m — 1.
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Abstract

Minihypers in finite projective spaces have been used greatly to study the prob-
lem of linear codes meeting the Griesmer bound; thereby showing their importance
for coding theory. Bul Lhey are also important for a greal variely of geometrical
problems. Using the classification of {d(g + 1),d:n + 1, ¢}-minihypers we obtain
results on spreads of certain finite generalized guadrangles. We discuss both the

application and the result.

1 Introduction

In this section we introduce the concept of a generalized quadrangle, or shortly, a GQ.

Definition 1.1 A (finite) generalized quadrangle (GQ) is an incidence structure S =
(P, B,1) in which P and B are disjoint non-empty sets of objects called points and lines
(respectively), and for which IC (P x B) U (B x P) is a symmetric point-line incidence

relation satisfying the following arioms:

(i) Each point is incident with 1+ lines (t = 1) and two distinct points are incident

with at most one line.

(ii) Each line is incident with 1+ s points (s 2 1) and two distinct lines are incident

with at most one point.

(iii) If = is a point and L is a line not incident with x, then there is a unique pair

(y, M) € P x B for which e TM 1ylL.

The integers s and t are the parameters of the GQ and 8 is said to have order (s,t). If

s =t, then S is said to have order s.

Examples: Classical examples are the symplectic space W(g) in PG(3, q), the hyperbolic
quadric Q*(3, ¢) in PG(3, ¢), the parabolic quadric Q(4, ¢) in PG(4, ¢), the elliptic quadric

;!._ De Beule, M. R. Brown, L. Storme (Belgium)

() (5,¢) in PG(5,g), and the Hermitian varieties H(3, ¢*) and H(4,4?) in PG(3,4*) and
1'0i(4,¢?), which have respectively order g, (q,1), g, (g,¢%), (¢%,q) and (g% ¢*). The

non-classical examples of Tits are given in the following definition:

Dofinition 1.2 Let n = 2 (respectively, n = 3) and lel O be an oval (respeclively, an
wioid) of PG(n, q). Purthermore, let PG(n, q) be embedded as a hyperplane in PG(n+1, q).

ifine points as

(1) the points of PG(n+1,q) \ PG(n,q),

(ii) the hyperplanes X of PG(n +1,q) for which |X N O] =1, and
(iit) one new symbol (oc).
Lines are defined as

(a) the lines of PG(n + 1,q) which are nol contained in PG(n,q) and which meel O

(necessarily in a unigue point), and

(b) the poinls of O.

Incidence is inherited from PG(n+ 1,q). whereas the poinl (0c) is incidenl with no line
of type (a) and with all lines of type (D).

It 15 straightforward to show that these incidence structures are G(3's with parameters

n—1

ne=q,t=4q

Definition 1.3 A spread of @ GQ S of order (s,1) is a set S of lines such that every
point of S is incident with ezactly one element of S. A spread necessarily contains 1+ st
lines. A partial spread is a set S of lines for which every point is incident with at most
one line of 8. A partial spread is called maximal if S is not contained in a larger partial
apread. If the size of a partial spread is 1+ st — §, then d is said to be the deficiency of
the partial spread.

The natural question is whether a partial spread with certain deficiency can be maximal,
or, in other words, can a partial spread with small deficiency be extended? Using mini-
liypers we can give answers to this question for partial spreads of the GQ's T5(O) and
I\(O).

2 The minihypers

Definition 2.1 An {f, m; N, ¢}-minihyper is a pair (F,w), where F is a subset of the
point set of PG(N, q) and where w is a weight function w: PG(N,q) = N: = — w(z),
nlisfying
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Definition 3.2 Let S be a partial spread of T,(O) (n =2 orn =3). Define ws: PG(n+
1.q) —+ N as follows:

1. w(z) >0 < z€F,

b2 ZJ-EF'T!"(:B) =f; and
3 min{d), .y w(z)||H € H} = m, where H is the set of hyperplanes of PG(N, q). (1) if » € PG(n+1,q) \my and x is a hole with respect to S, then ws(z) = 1, otherwise
rng{.r) =0,

Related to certain minihypers are blocking sets of PG(2,¢q). The following theorem about

blocking sets is used for the final theorem. (1) suppese v € O, define wg(x) = 8, with ¢ — 8, the number of lines of S through x.

Theorem 2.2 (A. Blokhuis, L. Storme, and T. Szényi [3]) Lel B e a blocking sel in (ti) we(z) =0, Yo € my \ O.

PG(2,q), ¢ = p", p prime, of sizeq+1-+c. Letes=c3=2 Y* and ¢, =1 for p> 3. - : .
Ihis weight function determines a set I of points of PG(n + 1,q). We will denote the

1 — Il AR i : :
1. Ifq=p*" and c < cyq*/?, then B contains a line. dufined minihyper by (F,ws).

We can now prove

9. If4 < qand q is a square and ¢ < c,q*?, then B conlains a line or a Baer subplane.

To establish the connection between blocking sets and certain minihypers we need one ' ;
,omma 3.3 Let S be a partial spread of T,(Q) (n =2 or 3) which covers (o) and which

has deficiency 8 < q. Then wg is the weight function of a {8(q+1),d; n+ 1. q}-minihyper
(I, wg).

more definition.

Definition 2.3 Let A be the set of all lines of PG(N,q). A sum of lines is ¢ weight
function w: A— No L w(L). A sum of lines induces a weight function on the points
of PG(N, q), which is given by w(z) = Y peazer w(L). In other words, the weight of a
point is the sum of the weights of the lines passing through that poinl. A sum of lines is

said to be a sum of n lines if the sum of all the weights of the lines is n.

I'his lemma leads immediately to

Theorem 3.4 (M.R. Brown, J. De Beule and L. Storme (2]) Let S be a partial spread
with deficiency & of T,(O) (n =2 or 3) covering (00). If § < e, with q + ¢ the size of the

The connection is finally expressed in the following theorem, which will be of direct use wmallest non-trivial blocking set in PG(2,q), ¢ > 2, we can always extend S to a spread.

for our application

Theorem 2.4 (Govaerts and Storme [1]) Let (F,w) be a {8(q+1),6; N, g}-minthyper,
q > 2, satisfying 0 <8 <€, where ¢ + € is the size of the smallest non-trivial blocking set
in PG(2,q). Then w is a weight function induced on the points of PG(N,q) by a sum of
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minihyper.
Definition 3.1 Let S be a partial spread of a GQ. A hole with respect to S is a point of
the GQ which is not incident with any line of §.

Consider a partial spread S of T,(0), n =2 orn = 3. of size g" 4+ 1 — . Referring to the
definition of the GQ T,(0), let mp = PG(n,¢) which contains @ and which is embedded
in PG(n + 1,¢) as a hyperplane. We remark that a partial spread contains at most one
line of type (b) of the GQ, because all lines of type (b) intersect in (00).
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A construction of generalized g-ary Goppa codes with good parameters i
given. Based on Brouwer’s table [1], some good codes are obtained from out
construction.

1 Introduction

To construct a generalized Goppa codes|2,3] over the finite ficld Fy, one has to
choose a set of locators L of polynomials {¥, (z),®; (z)},i = 0...,n from Fylz]
such that for any i, j : GCD(¥;(x),¥,(z)) = 1, deg(®i(x)) < deg(¥;(z)) < L
and GCD(¥,(z), ®i(x)) = 1. The second object that determine Goppa code
is Goppa polynomial - G(x). G(z) is the polynomial degree t over F, and
GCD(G(x), ¥i(x)) = 1 for all ¢ = 0,..,n — 1. Vector a = (ag, @1, ... 1) With
elements from Fis a codeword of generalized (L, () Goppa code if and only if

LY

n=1 (pi (ZFJ) )
gai 7, (2) = 0 mod G(x)

The minimum distance d of the generalized (L, G) codes estimated by:

t—1
dz—z—"l'l

and dimension £ >n —1 .
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[n this paper we construct a class of g-ary linear codes by using approach
I obtain Goppa codes with good parameters introduced by authors for binary

i ternary codes in [2,3]. As result we obtain quasi cyclic codes with good
pirnmeters.

2  Construction

lol’s consider a case, when as the polynomials for locator set are used all irre-
thicible over Fy polynomials with degree ! and deg ®;(z)) <[—1foralli=0,..,n
- is element from F,. In this case length of a code n is determined by number
ol irreducible polynomials degree { over Fj, :

1
I,0) = 7 S nd) g

Cd |
where pi (d) is the Mobius function [4].
Similarly as in [3] let’s choose

G‘(.’L‘) . wq‘_1+q{_ﬂ+ :Q-I—l’

then the i-th column h; of a check matrix H of such code can be written as follows:

[~ 1 1 1 7]
i e
R P
a—1
B EE——!— A
- gttt
hi = $ i &
g Fl=1a ﬁfr«nu“'”‘
e Pl A +—?;-“1,—
il |

L. Lt 5 fi : J
I—1
where 3; € Fyand 8, . 5!, ... ,8f — roots of ¥, (z), and Iy is the extension
over F, of degree .
By executing transformations in each line of i, we have:

7(1)
i}

L)
r.a‘l

T,(87!)
Bl

he=

where 7) (a) is a trace of clement o from Iy . Using the technique deseribed
by the authors earlier in [34] it is easy to show, that in a check matrix H of
Ihis code composed by the columns h; , i = 0....n il is exist not more than
"' —¢'"*— ... —q lincarly independent rows with elements from FAfT(1)#0
and not more than ¢'~! —¢!~2— ... —¢—1if T (1) = 0. Therefore the dimension
k of such generalized (L, G) Goppa code is :
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!_2!—17(
kzn-—;q 2 2

g—=1

if T(1) # 0 and 1 e
— 2= +1
kzn_‘_f_ff_‘*'_

g— 1

T (1)=0.

. . - - . et - ¥ '.
Using an cstimation for the minimum distance d of the generalized (L, G)i
codes we have:

&= +£
(g-=TP0 N

It is easy to show that for | < /g :

d>

L % it e s
LTl Vi N Gils=)
3 Example

In this section, we show example of codes from our subclass in case [ =2, ¢ =8
and G(z) = 2@t i = 1,2,3,4. Let’s choose a set of locators L of polynomials
(U, (z),®; (2)}, j=0,...n—1from F,[z] such that

&,

g

"I’,j

T

(
(x

= i
U'J = ()j

(z+ay) - (:17 - ﬂj)

1

e
)

where a; € I and o # o,
It is easy to show that for these codes

‘ 2 ig+1
T‘Si((_t_—i__l);n:q-q'd>£+_J_|_1‘

2 ET TSR e
n =28 Guling
ik | d dp (2]
1 [2L] 6 6
21510 10
311015 15
4| 6 | 19 19
5| 3 | 24 | 24 optimal

Remark. It should be note that some of this codes was obtained as punc-
tured Reed-Solomon codes by Chaoping Xing and San Ling[5].
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Abstract
A new approach to search for conventional trellis representations for quasi-cyclie codes is presented. It

is based on using parameters of the tailbiting trellises for these codes. Some newly found conventional trellis
representations for quasi-cyclic codes are tabulated.

I. INTRODUCTION

1t is well-known that a trellis representation of a linear block code may be used for efficient
trellis-based decoding procedures. So-called conventional trellises for linear block codes have been
investigated by many authors [1],[2],[3],[4]. Tailbiting trellises were introduced in [5] and have been
rather intensively investigated in recent years [6],[7],[8]. Since a tailbiting code can be obtained
by terminating a convolutional code [5],[6] it can be represented by a regular structure. The
convolutional encoder is initialized with the proper starting state such that the encoder, after
encoding a block of information bits, will end in the starting state. A rate K = bjfc convolutional
code with memory m can be terminated into a rate R = (bl)/(el) block code. We call this quasi-
eyelic linear (cl,bl) block code a tailbiting (TB) code with tailbiting length [ and rate R = b/e.
The maximal state complexity of its trellis representation is equal to bm.

The problem of scarching for new TB codes has very high computational complexity even com-
pared to searching for convolutional codes. To search for the best TB code with maximal state
complexity bm, length [ and rate R = bfc we should test almt1)be otg of be generator polynomials
of degree m (length m + 1 ). For each set of generator polynomials we have to determine the
minimum distance of the code. Tn order to reduce the search complexity we first need efficient
methods to reject weak code candidates, then we need an efficient search procedure for finding a
codeword of minimal weight in a TB code [8].

Due to the nonregular structure of conventional trellises, the problem of finding good linear
block codes of rate R = bfe with conventional irellises having low state complexily is even more
complicated than the problem of finding quasi-cyclic codes and their TB trellis representations.
Thus, only a few conventional trellises for rather short linear block codes [4] and for special classes
of codes [9],[10] have been published. However, if we already have a tailbiting trellis representation
of a linear, B = bje code with state complexity less than or equal to bn, it is rather easy to
construet a minimal conventional trellis with regular structure and maximal state complexily less
than or equal to 2bm. By using the regular structure of this conventional trellis representation it is
possible to significantly simplify the code descriptions and implementations of maximum-likelihood
decoding procedures [11].

First, we briefly review some notions of tailbiting and conventional trellises and their complexity
criteria. Then we describe an approach to construct conventional trellises via tailbiting trellises.
Parameters of some newly found conventional trellises are tabulated.

II. TRELLIS REPRESENTATIONS FOR LINEAR BLOCK CODES — DEFINITIONS.

Let us consider the generator mafrix Gt of a rate R = bjc tailbiting code € with tailbiting
length [ that is generated by a memory m convolutional encoder. We assume with no essential loss

This research was supported in part by the Swedish Academy of Science in cooperation with the Russian Academy
of Sciences and in part by the Swedish Research Council under Grant 2001-3117.
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il rli'llll'.l'ality that the generator matrix of the parent convolutional code is realized in controller
tanonical form. Then, the bl x ¢l matrix G™ has the following form .

* * * ol it * (83 8 s 0 0
0 bk ¥ * | o AT Nk
G BN ARSI ok | ¥ (Bl il )
G"=l0 o S S o
* B {} vee 0 * * * e *
* <2 (PESR-ET E - FUL LN lad
+ iy bk * 0 0 [t: LE.T 0 *)

where the (m + 1) nontrivial blocks of G* marked by asterisks represent binary b x ¢ matrices
and {}‘denotes the trivial all-zero block of the same size. It is known [8] that a tailbiting tlrel]is
Irul- a linear code C with generator matrix G* may be obtained by the product of the elementar

{hilbiting trellises for each row r:'h, i=12...,b, of G The state complexity of tht: taiibitiny
trellis for the code C at each time instant depends on the number of rows in C;”‘h thatlalre a.cil-.ivg
[H| A row is active at time j if its jth element is nontrivial and it is not the last nontrivial (in
II-I'{I"lIlFJ.l"SellSE} element in this row. Moreover, for tailbiting codes obtained from convolutional
; : rl;' :]: 3::,:1. ﬂ;g:;anfg}r ar:atn(:t-:ﬁ realized in controller canonical form, the maximal state complexity

th
@ = max {a;} = bm,
i=1,....cl

where o; denotes the number of active positions of the ith column of G,

'I'Imlminima.l conventional trellis for a linear block code C of rate R = K/N can be obtained
ml-lrl-:rnl-lchng to [3].a3 a product of the elementary trellises for each row of its generator matrix
G=(rfem), i = 1,2,..., K, if G is in minimal span form or, in other words, if both
Aart(rfonv) £ start(r;®™) and end(r{°™) # end(rfo") if i # j, where start(x) (Im.:mtns the
lirst. nontrivial position of vector x and end(x) dencies the last nontrivial position nf.vectlorlx.‘

T'he state complexity of the minimal conventional trellis at each time instant is determined by the
iumnber of active rows in G*"", . .

ITT. CONSTRUGTING CONVENTIONAL TRELLISES VIA TAILBITING TRELLISES

. As mentioned in the introduction, the search complexity for tailbiting trellises (codes) is rather
ln\r.-,h, To speed up the search of tailbiting trellises we rejected weak code candidates ;Lwi];g two i'ypt:éi
Ol the tests deseribed in [8] and choose as candidates only codes with an active distance-slo n; [12]
preater than a predetermined threshold. For finding the minimum distance of the t:od.e wi_' ‘us‘:\(l
IEAST, a bidirectional efficient algorithm for searching a tree, modified for sear(;hing ta.ilbiti:;
todes [11]. Moreover, we performed the search over the reduced set of the subcodes of the tnilhiting
tode that have to be checked to assure that every codeword or a quasi-cyclic shift of it has blcof
tonsidered [11]. . : "

The use of the described search technique made it possible to find new quasi-cyclic TB codes
tome of which have larger minimum distances than the previously best known codes with th:’
e parameters. Tables of some newly found codes of rate B = 1/c¢ are presented in [8] zmd
[ l.l'" Am?]ying the described search technique to time-varying convolutional codes of rate R = 1 fe
with perind T, we found new rate R = T/(T'¢) TB codes with less maximal state f:nlnp](!xiti(-“i'
Moreover, we found rate R = T/(T'¢) TB codes with conventional trellis representations that ha,w:
|-rwv|" maximal state complexity than the conventional trellis representations of the best time-
Invilrmn! R = 1/e 'TB codes with the same length N, dimension K, and minimum distance d,,;
I Table 1, we present the new TB codes obtained via t.imn—varyiﬁg convolutional codes of rri:;lp
! |' 1/2. The parameter dy, in Table T deseribes the lower and upper hounds on the miuimmln-
III.Iiiu'ITII“.(‘. from the Brouwer-Verhoeff table [13], and p!* and ji* are the maximal state tl“nmplt\xit 4
ul the TB trellis and its lower bound [8], respectively, The generators are given in ncl.-a.l. I'nrm.' !
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TABLE I
NEW TAILBITING CODES OBTAINED VIA TIME-VARYING CONVOLUTIONAL CODES OF RATE 1_."2

K dmirl (dmin) ﬂ‘b(ﬁ”’} I Generamrs

18 | 8(8-9) 5(1) 2 | (13,15), (57,75)
'
2

30 | 12(12-14) | 8(8) (507,675)),(573,705)
38 | 14(14-18) | 10(10} (2375,2457),(2515.3073)

Let us show how to construct the minimal conventional trellis for a linear block code C with
given generator matrix G'. Consider again the generator matrix G of a rate R = b/c tailbiting
code € with tailbiting length [ that is generated by a memory m convolutional encoder. It may be
represented in the form G = {g', ) where G* consists of the first b(l — m) rows of G generating
a zero-tail terminated convolutional code [11] represented by the trellis 7, with maximal state
complexity equal to brn. Matrix G! consists of the last bin rows of G'. The corresponding trellis 7;
obtained as the product of the elementary trellises corresponding to the rows of G has maximal state
complexity less than or equal to . By taking the trellis product 7,7; we obtain a conventional
trellis that has maximal state complexity less than or equal to 2im. Clearly, using the algorithm
proposed by Kschischang and Sorokine [3], we can reduce G to the minimal span form matrix
G and obtain a minimal conventional trellis for C with equal or less maximal state complexity.

We are now going to show that, due to the regular structure of the initial TB trellis, we can
represent the obtained conventional trellis by a few generator polynomials and their shifts. Consider
for example a linear block code with parameters N = 20, K = 10, and d,,,;;, = 6. Its tailbiting trellis
representation has maximal state complexity p* = 3, and its conventional trellis representation has
maximal state complexity p®™ = 6. The corresponding generator matrices G™ and G™ have
the form

11110110000000000000 11110110000000000000\
00111101100000000000 00111101100000000000
00001111011000000000 00001111011000000000
00000011110110000000 00000011110110000000

Gt — | 00000000111101100000 |+ wcony _ | 00000000111101100000
00000000001111011000 00000000001111011000
00000000000011110110 00000000000011110110
10000000000000111101 01011000001100010000
01100000000000001111 00010110000011000100
11011000000000000011 / 00000101 100000110001

Tt is easy to see that G may be represented as 7 shifts to the right by 2 positions of generator
11110110 (#6 in the hexadecimal form ) and 3 shifts to the right by 2 positions of generator
0101100000110001 (5831 in the hexadecimal form) (see Table IT). Note that, according to [4], this
conventional trellis is optimal in the sense of complexity. Tt can be shown that for TB codes of rate
R = 1/c the matrix G*"" always can be represented as shifts of ¢ generators,

In Table IT, we present the new conventional trellises for linear block codes of rate B = 1/2. The
parameters 4" and fi®"" denote state complexity of the conventional trellis and its lower bound,
respectively [2]. We represent the generator polynomials in hexadecimal form, and in parentheses
we point out the number of shifts of the given generator and the munber of positions by which it
is shifted. Note that by reducing the matrices G* obtained from time-varying convolutional codes
to minimal span form it is possible to get a conventional trellis with maximal state complexity
less than 2. For example, a linear block code with parameters N = 28, K = 14, and dpq = 8
has been obtained from a time-varying convolutional code of rate B = 1/2 and period T' = 2. 1t
has maximal tailbiting trellis complexity p" = § and its conventional trellis has maximal state
complexity " = 9.

I. Bocharova and B. Kudryashov, M. Handlery and R. Johannesson (Russia, Sweden) 45

TABLE I
NEW CONVENTIONAL TRELLISES FOR RATE 1/2 LINEAR BLOCK CODES

K | duwin{tdmin) | """ (7"} | Generators

10 | 6(6) 6(6) F6(7,2), 5831(3,2)

B[ 7(7) 10(7) FCD(8.2), 5EF38(5,2)

14 | 8(8) 9(8) BDC(5.4),73B(5,4), 3BOOCE(1,0),127748(2,4),0207786(1,0)

15 | 8(8) 10(8) ET75(10,2), 594E78(5,2)

18 | 8(8) 0T) BDC(7,4), 73B(7,4),12700748(4.2),3B0000CE(1,0), 029700786(1,0)

19 | 8(8-9) 10(7) E75(14,2), 59400E78(5,2)

20 | 9(9-10) 12(11) 31EB(14.2), TFDCO0CS(6.2)

22 | 10(10) 12(12) 3B3B(16,2), 69B000033(6,2)

30 | 12{12-14) 16(13) EEG9C(11,4).39677(11,4), 00114B70000DTE(2,4). TEBOOODDED288(2,12),
01F948B700DTE(1,0), 0047D7T00ED288(1,0), 0T06FFBTED288(1,0),
11AGRFBTODTE(1,0)

46 | 16(16-22) | 26{20) DEB2F12(33,2),7288E4800003405C9(13,2)

IV. CoONCLUSION

In this paper, we have presented a new approach for finding conventional trellis representations
for linear block codes via their tailbiting trellis representations. The newly found conventional
trellises have low state complexily, and due to their regular structure, a simple description that
allows efficient implementations of maximum-likelihood decoding procedures. We tabulated the
newly found tailbiting and conventional trellises.
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Abstract

We explore the problem of finding bounds for quaternary equidistant
constant weight codes. For d = 3, all bounds are determined for all values
of n and w. A table of the best known bounds for quaternary equidistant
constant weight codes with parameters 2 < w < nand 4 <n < 10 is
presented.

1 Introduction

Let Z, denote the set {0,1,...,¢ — 1} and let Z be the set of all n-
tuples over Z,. A code is called equidistant if all the distances between distinct
codewords are d. An (n,M,d), equidistant code is a code over Z, of length
n, cardinality M and distance d. Let B, (n,d) denote the largest possible
value of M when the other parameters are fixed. An (n,M,d,w), code is
called equidistant constant weight code (ECWC) if in an equidistant code all
codewords have the same weight w. Let B, (n,d, w) denote the largest possible
value of M in a ECWC when the other parameters are fixed. Codes with such
parameters are called optimal.

Equidistant codes have been investigated by a large number of authors.
Some works published on this topic are [3], [4], [6], [8]. A few papers study
ECWC, for example [2], [5], [7] and [1].

2  General Bounds

For d > 2w, B, (n,d,w) = 1, so we consider only codes with distance d < 2w.
Some bounds for equidistant codes are given by the following theorems:
Theorem 1 B, (n.d) =1+ By (n,d,d).

Theorem 2 (Delsarte) By(n,d) < (g—1)n+1.
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Theorem 3 B, (n,n,w) < g,

B, (n+1,d,w) > By (n,d,w), By (n+ 1,d,w+1) > By (n,d,w).
According to [5] B, (¢ +1,q,9 — 1) < {¢*> +q) /2.

Theorem 4 (the Johnson bounds for ECWC) The mazimum number of code-
words in a g-ary ECWC satisfy the inequalities:

B, (n,d,w) < =~

B —1.d,w),
A ¢ (n w)

B, (nyd,w) < ﬂ%-l—)Bq (n—1,d,w—1).

Theorem 5 [2] For k=1,2,...,n, if PZ(w)> Pk (d) P (0), then

P2 (0) — P, (d) Py (0)
P2 (w) — Py (d) Py (0)°

B, (n,d,w) <

Here Py (z) is the Krawtchouk polynomial defined by

Py () = i (f) (?::) (- (g-1*" and Pp(0)= (}:) (- 1)".

i=0

Theorem 6 [8] The optimal equidistant (n, qt,d)q codes and RBIB designs
(v =qk,b, k,r,\) are equivalent to one another and their parameters are con-
nected by the conditionsv=M, b=nq, k=t, r=n, A=n—d

Theorem 7 If there exists an (n, M, d, w)q code, then there exists a
(An, M, Ad, Aw),, code for all integers A > 1.

3 Combinatorial bounds and constructions

For d = 3, all bounds are determined for all values of n > 4 and w > 2. The
following combinatorial bounds and families of ECWC are obtained:

Proposition 8 There exists a family of optimal ECWC over an alphabet of
four elements with parameters (n,3,3,2), for every integer n > 4.

Proof: Let u be a fixed codeword with length n and weight 2. Considering how
many codewords are at distance exactly 3 from u we obtain By (n,3,2) =3. ®

Proposition 9 The mazimum number of codewords in a (n,M,3,3)y ECWC
satisfy the inequality
By (n,3,3) < 8.
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Proof: We may assume without loss of generality (wlog) that all codewords are
ordered in lexicographic way and the first codeword is 00...0111.

() We cannot have more than one symbol 0 in the last four coordinate positions
in a certain codeword. Otherwise there will be a codeword which will differ
from the first one in d # 3 positions, which is a contradiction. Hence in the first
n — 4 coordinate positions we have only zeros. After shortening with respect
to the symbol 0 n — 4 times we get a code which is equivalent to a (4, M, 3, 3),
code.

(1) By (4,3,3) < 8, which follows from the next reasoning: We may assume
wlog that in the first coordinate position we have 0001... and the first codeword
is 0111. After shortening with respect to the symbol 0 we get a code which
does not contain a symbol 0 and is equivalent to an optimal (3,3,3)3 code.
Hence the fourth codeword will differ from the first three in two positions and
d < 2, which is a contradiction. Therefore in each coordinate position there
are not more than two 0s and By (n,3,3) < 8; [ |

Proposition 10 There exists a family of optimal ECWCs with parameters
(4+ X,8,3,3), for every integer A > 0.

Proof:

(7) We construct a (4,3,3), ECWCs  0111,0222,1(012),2(021) and hence
B, (4,3,3) > 8, where (...) denotes all cyclic shifts of the symbols inside the
parentheses.

(ii) Let us denote the code, constructed in (#) with C. From C we construct a
family of (4 + A, 8,3,3), ECWCs in the following way:

{(uo) o c}
A
where A > (.

(iii) From proposition 9 and (ii) we obtain By (n,3,3) = 8. [ |

Proposition 11 There exists a family of optimal ECWCs with parameters
(44 X,9,3,4+t), for every integer X\ >0 and 0 < t <n — 4.

Proof:

(i) From the code C, constructed in Proposition 10 we construct the code C”
in the following way: we add the all-zero codeword and apply the permutation:
1 — 3,0 — 1 and we obtain the code 1111, 1222, 1333, 2(123), 3(132). Hence
B4 (41 37 4) 2 9.

(i1} We construct the code

0..0a.acl|lcec ,
A—t t
where A >0,0<t<n—4and o =1,2,3.
In a similar way as in Proposition 9 and from (ii) we obtain By (n,3,4) =9. B
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4 A Table of By (n,d,w)

The best known upper and lower bounds (and exact values when these
coincide) for ECWC over an alphabet of four elements, of length n < 10 are
displayed in Table 1.

For codes of small size we apply combinatorial reasoning. All the num-
bers in column d = 3 are obtained by Proposition 8, Proposition 10 and Propo-
sition 11. For the rest of the values of M we use our own, specifically developed,
computer algorithm (based on exhaustive search), which is of exponential com-
plexity.

If in a certain position only one number occurs, then this number is
the exact value of By(n,d, w) and the corresponding codes are optimal. If the
bound is obtained by our computer algorithm, in this case we omit the index.
If two numbers are given, then the right one is the best known upper bound
for By(n,d,w), received by Theorem 4 and Theorem 5. The left one is the best
known lower bound for By(n,d,w).

Acknowledgment. The authors wish to thanks V.A.Zinoviev for helpful dis-
cussions.
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Abstract: We say that a binary code of length n is additive if it is isomorphic to a subgroup
of Z§ x Z_‘f, where the quaternary coordinates are transformed to binary by means of the
usual Gray map and hence o + 23 = n.

In this paper we prove that any additive extended Preparata-like code always verifies
a =0, i.e. it is always a Z;-linear code. Moreover, we compute the rank and the dimension
of the kernel of such Preparata-like codes and also the rank and the kernel of the Z,-dual
of these codes, i.e. the Z;linear Kerdock-like codes.
1. Introduction: Let F'" denote the set of all binary vectors of length n. As usual d(-,-)
denotes the Hamming distance and wt(-) denotes the Hamming weight. Let e; denote the
vector of weight one with the nonzero coordinate at the i-th position for ¢ = 1,...,n. For
any vector v € F" we denote by supp(v) the set of coordinate positions in which v has
nonzero entries.

Let % be a binary operation such that (F", ) is a translation-invariant Abelian group,

that is, a group with the property that
dlz xv, rxu) =d(v, u), Ve,o,uecF" (1)

As can be seen in [2], (F", %) = (Z§ x Z7, +) where a+24 = n and ‘+' is the usual addi-
tion modulo 2 for the Z, coordinates and modulo 4 for the Z; coordinates. An isomorphism
between Zg x ZJ and F" is given by the map

é(ﬂls R ] Yliv:e viny yﬂ) = (.'1'1, ceegidlg | 50(!}1): sy ‘P(yﬁ”:

!Research partially supported by Spanish CICYT Grant TIC2000-0739-c04-01, by Catalan DURSI Grant
2001 SGR 00219 and also by Ministerio de educacidn, cultura y deporte Grant SAB 2000-0058.

J. Borges, J. Rifa, K. Phelps, V. Zinoviev (Spain, USA, Russia) 51

where p(0) = (0,0), ©(1) = (0,1), ©(2) = (1,1) and ©(3) = (1,0) is the usual Gray map
from Z4 onto Z3. Now, il is clear that

Try=(6 '(¥)+¢ (), VryeF".

A (binary) additive code (see [2, 3]) (D, ) of length n = a + 24 is a subgroup of (F", ).
An additive code is a particular case of the more general class of translation-invariant
propelinear codes [2, 8. Note that the case 3 = ( corresponds to a linear code and the case
a = 0 corresponds to a Zg-linear code. In this last case (see [8]) (D, #) is a group, where each
codeword x is associated with a coordinate permutation 7, € &, such that zxy = o +7.(y)
for any y € D.

Recall that the rank of any code D is the dimension of the linear span of D, which we
denote here < D >, and the kernel of D, denoted here by ker(D), is defined by ker(D) =
{veD|v+ D=D]}.

Preparata-like codes are not linear. Concerning to their possible algebraic structure, we
remark that the original Preparata codes [7] have a group propelinear structure see ([8])
and the extended Preparata-like codes defined in [6] are Zy-linear and so, according to [8],
they are propelinear codes.

In this paper we prove the nonexistence of extended Preparata-like codes with other
additive structures different of the Z-linear ones. Given a Preparata-like code P*, it is
well known [11] that the code C* obtained as the union of P* and the vectors at maximum
distance from P* is a perfeci single error correcting code or I-perfect code. If P* is a standard
Preparata code, then C* is linear i.e. a Hamming code. If P is an extended Preparata-like
code, then C is an extended 1-perfect code. We show that if P is Zs-linear, then C is
also Zg-linear. We also prove that, up to a permutation of binary coordinates, the vector
with all the quaternary coordinates 1 belongs to the extended Preparta-like code P, to the
associated extended 1-perfect code C, and to both extended Zy-duals K and H. Finally,
we compute the ranks and kernels of extended Preparata-like code P and its Zs-dual, the
Kerdock-like code K.

2. Preparata-like codes: A Preparata-like code P has length n = 22m 3 (mi > 2),
minimum distance d = 5 and [P*| = M = 2"~ codewords. Such a code satisfies the
Johnson bound and therefore it is nearly perfect [5, 10] and strongly uniformly packed and
so, completely regular [10] (in particular, distance invariant). If we assume P* contains
the zero codeword, then the codewords of weight 5 form a 2 — (n, 5, \)-design [9] with
A= (n—13)/3.

The main results of this section are:
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Proposition 1 Let P* be any Preparata-like code and let P} = {c € F" | d(c, P*) = 3}.
Code C* = P* U Py is a 1-perfect error corecling code and the rank of P* is equal lo the
rank of C*.

Proposition 2 Let P be an additive exlended Preparala-like code and lel Py = {c € F" |
d(e, P) =4}. Code C = PUPy is an extended 1-perfect code and it is partitioned into cosets
of P of weight four.

Proposition 3 Let P be an additive extended Preparata-like code, then so is C = P U Py,

Theorem 4 Let P be an extended additive Preparata-like code and let K = ¢ (P1) be the

corresponding exlended addilive Kerdock-like code. Then P and K are both Zy-linear.

Let g; denote the quaternary vector in Z2™™" with only one nonzero coordinate at the
i-th position, the value of which is 2. In other words, ¢(g;) is a binary vector in Zg‘"’ with
two nonzero positions, corresponding to the i-th quaternary position.

As a natural extension of Proposition 2, now we can give the evident partition of
the extended Zj-linear 1-perfect code C' into the translates of the corvesponding Zy-linear

Preparata-like code P.

Theorem 5 Let P be a Zy-lincar extended Preparata-like code of length n + 1 = 2°™, and
let C = PU Py be the corresponding extended 1-perfect Zy-linear code. Then for any integer
i=1,2,...,(n+1)/2, the ecode C is partitioned into the cosets of P of weight 4 as follows:

{n+1}/2
¢ = |J {(P+ola+a)}
=1
(recall that “+7 means addition modulo 2 for binary vectors and modulo 4 for vectors over
Zy).

Theorem 6 Let 1 be the quaternary vector with all coordinates 1. After a permutation of
binary coordinates vector ¢(1) belongs to C, H, P and K.

3. The rank and kernel a Z,-linear Preparata codes and their dual, Z;-linear
Kerdock-like codes:

Proposition 7 Let C be the extended 1-perfect code corresponding to an extended Z,-linear
Preparata-like code P, of length n+1 = 2°™. Then C is the kernel of a group homomorphism
0 from F™*' onto Z3 x Z3, where v +26 =2m+1 and § = 1.

Theorem 8 Let C' be an extended perfect Zy-linear code. If the length of C isn+1 =
22 > 16, then rank(C) = 2™ — 2m for m > 2 and rank(C) = 2" — 2m — 1 form = 2.
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Theorem 9 The rank of an extended Zy-linear Preparata-like code P of length 22™ is equal
to rank(P) = 2°™ — 2m for m > 2 and rank(P) =2°™ —2m —1 for m = 2.

The rank of Zy-lincar Kerdock-like code K of length n+1 = 2*™ is equal to rank(K) =
2mt+m+ 1.

Theorem 10 Let P be any Zy-linear Preparata-like code of length n + 1 = 2*™ and let K
be its Zy-dual. Then dim (ker(P)) = 2"~ — 2m + 1 and dim (ker(K)) = 2m + 1.
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Abstract

We investigate the asymptotic consequences of a necessary condition for existence of
spherical (2k — 1)-designs of odd cardinality. Our caleulations show that no asymptotic
improvement of the known results can be obtained (despite that the condition works

well in small dimensions),

1 Introduction

A spherical code is a spherical 7-design if and ouly if the average value of any real n-variable
polynomial f(x) = f(x1,29,...,2,) of total degree at most 7 over the whole sphere is equal
to the average value of this polynomial over the code, i.e. the equality

Fle)dpu(x) = % E.f(,r) (1)

gu-—1 rew

holds. The maximal number 7 for which a spherical code € is a 7-design is called strength
of €.
One wants to minimize the size of a spherical design provided the dimensions and the strength

are fixed. Let

Buaa(n, 7) = min{|C| : €' € 8" is a 7-design, C is odd}
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be the minimum possible odd cardinality of a 7-design in n dimensions.
Let 7 = 2k—1 be fixed integer. It follows from the classical bonnd of Delsarte-Goethals-Seidel
[6] that

By(n, 2k — 1) > Z(H i ; 2) + 1
7 —

Some linear programming improvements on the Delsarte-Goethals-Seidel bound were ob-
tained by Boyvalenkoy-Nikova [4, 5] and Yudin [9].

For further notations we refer to Levenshtein [8] and [1].

Levenshtein [7, 8] proved that for any s € [—1,1) there exist real munbers —1 < ey < ay <
- < agoy = & and non-negative pg, py, ..., pr_1, pr such that the formula

k=1

fo=puf(1) + Z.ﬂif(ﬂl)
=M
is valid for every real polynomial f(f) of degree at most 2k — 1. I[ C € 8"' is a (2k — 1)-
design, then these numbers are uniquely determined by |C] = 1/py.
Theorem 1 ([1]). If C € 87! be a (2k — 1)-design with odd cardinality then
plC| = 2. (2)

We express condition (2) in terms of the numbers evg, a0y, ..., op_1.
P

Corollary 2. Let C' € 8" be a (2k — 1)-design of odd cardinality. Then

(1-af)(1—ad):--(1—0af ) > 9. (3)

_u“(u-ﬁ —of)of—ad) - (ed—al_ ) T

2 Asymptotic consequences of Theorem 1

Let 7 = 2k — 1 be fixed and let n tend to infinity. We investigate the impact of Theorem 1
on (2k — 1)-designs of cardinality of order n*='. We need the asymptotic behaviour of ey,
We also use some identities for orthogonal polynomials due to Levenshtein.

The Delsarte-Goethals-Seidel bound implies that

Ikl
Boaa(n, 2k — 1) Z m,

where the inequality 2 should be interpreted as

3 Bﬂd‘.f('ﬂ._ 2k — 1) 2
=
nE‘Tm nk-1 (k=1
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Boyvalenkov-Danev-Nikova [3] improve this to

Boga(n, 2k — 1) = i Tkzl_j?;k_l

In small dimensions, the bounds, obtained by condition from Theorem 1, are better than
those of Boyvalenkov-Danev-Nikova [3] for 7 > 5. Tt turns out however that both bounds
(from [3] and Theorem 1) give the same asymptotic consequences. The reason for this phe-
nomenon is that the asymptotic behaviour of both bounds depends only on the asymptotics
of ag.

Lemma 3. Let n — +4oc and k be fized. Then all rools aparl from ag of the equation

P;'U{t}}_‘l}jﬂ(s) =0 P;.!.'U(S)P,j'_ul(ﬂ =0 tend to zero and og ~ —{-—P"'um

ey

Proof. The first assertion follows from |ap| > |ak-1| > |au| > |ar_s| > -+ (cf. [2, Appendix]

) and s = ay_y <t (the last one tends to zero when n — +oc and k is fixed). i

Now the behaviour of ag can be derived by the Viete formula

kflﬂ' e (1— (n+2k-Dn+k-2) PB"(s)
ae n+2k—2 k{n+ 2k —3) Pf_ﬂl(‘lj
s k (n+2%—-1)(n+k=2) PBYts) PGs)

n+2k—2" (n+2k-2)(n+2k-3) PO(s) P (s)
as n tends to infinity and & is fixed. [
It follows from Lemma 3 and Corollary 2 that it is enough to find the asymptotic behaviour
of the ratio P’(s)/ P,:‘_",(s). This can be done, for example, by using the following identity

due to Levenshtein.

Lemma 4 ([8], equality (5.86)). Fors € [t 1}") we have ‘
pLo (o 10 |
e = (1 - *{;;(")) Ain,ok) = (1 2 _P’Eﬂ}ﬂ) R(n, 2k +2).
£(8) B (s)

Theorem 5. Let i — 400, k be fired and C C 8"~ be a (2k— 1)-design of cardinality |C| ~

R(n, 2k + 1) +yn*t ~ ('}- + “z—l),) n*=t where v is some constant. Then ag ~ —m.

We are now in a position to describe the asymptotic consequence of Theorem 1.

Theorem 6. We have

) ) 1 e 2!,)‘['.!!.—-—” v |
Bockf('”.. BA' s l} Z ‘W * '”.‘ 4
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The first three cases (3-, 5- and 7-designs) are Boga(n, 3) = 2.2599n, B,ua(n,5) = 1.0743n%,
and Bo(n, 7) = 0.3506n*, compared to the bounds Boa(n,3) = 2n, Boa(n,5) = n?, and

Boaa(n,7) 2 i‘; which are ensured by the Delsarte-Goethals-Seidel bound.
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Abstract

We present some results about binary constant-weight codes with parameters
(n=4t,d = 2t,w = 2t — 1) and M = 4t codewords. A complete classification of
these codes for n < 16 and of 1-gencrated eyclic codes for n < 30 is given. All codes
of a special class with n < 60 and the same codes with an additional condition for
n < 124 are [ound.

1 Introduction

An (n,d,w) constant-weight binary code is a set of binary vectors of length n. such that
each vector contains w ones and n — w zeros, and any two vectors differ in at least d
positions. For given values of n, d and w, the maximum integer M such that an (n,d, w)
code with M codewords exists is denoted by A(n. d,w).

The results related to this function are summarized in the encyclopedic work of
Brouwer and al. [3] and Agrel and al. [1]. The existence of optimal (n = 4t,d =
2, w = 2t — 1) codes with M = 4t has been proved for t < 7. We suppose that codes
with these parameters exist for any ¢ and they are optimal. That's why we consider codes
with such parameters.

Iu this paper we classify the codes with ¢ < 4, and the cyclic codes with ¢ < 8. We
construct a class of cyclic codes of this type with ¢ < 31.

2 C(Classification Results

To classify the codes with t < 4, we have used the method given in [3] and a backtrack
search with pruning techniques presented in [4]. For the code equivalence, we have used
the algorithm of [2]. We present the results in the following table:

II. Bouyukliev, V. Vavrek (Bulgaria)

n | Num | AUT

8 |1 1:48;

g s | 1:3: 1:6; 1:240; 2:16; 1:10; 1:12; 1:9; 1:144; 2:24;
16 | 54 14:1; 8:2; 15:3; 2:4; 2:6; 3:8; 2:12; 3:16; 1:24;
1:96; 1:48; 1:21; 1:672

Let a be a binary vector of length n. We define the cyclic code C, as the set of all
vectors obtained by cyclic shift from a. We classify all eyclic codes €, with the parameters
given above by exhaustive search and present the results in the following table:

n | Num | AUT

8 |1 1:48;

12 | 4 1:12; 1:24; 1:144; 1:240;
16 | 2 1:16: 1:672;

20| 8 T:20; 1:2880;

24 | 8 2:24; 5:48; 1:2640

28 | 21 14:28; 4:56; 1:168; 1:4032; 1:4368;
32 | 12 12:32;

3 Construction of Codes

For larger values of n it is difficult to construct codes C,, that is why we investigate a
more special class of cyclic codes. We consider codes C, such that there exists exactly
one codeword of distance > d from a, and the other codewords are of distance d from a.
We denote this class ol cyclic codes by E.

Let pi{a) be the binary vector obtained by i-times cyclic shift from a.

The following Lemma holds:

Lemma 1 Let a be a binary vector such that C, € E. Then:
L. d(a, pi(a)) = d(a, p.—i(a))
2. d(a, pap(a)) =n—2
3. 3be ;" .G, = Coppny

Proof: 1. Tt follows from:

pila + pu-i(a)) = a+ pi(a)

2. Let us consider the vectors a+ pi(a) for i = 1,...,n—1. So we obtain vectors of weight
d and only one of them has weight r > d. The number of 1s in each coordinate is 5 + 1
or 5 —1. Hencer=n—2.
3. The vector ¢ = a + pnja(a) has exactly 2 zeros. Since p,a(c) = ¢, it follows that the
zeros of ¢ are at distance n/2 from each other. |
We define the map
x(b) := 0b0(1 + b)
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Lemma 2. Let a = (ag,a,...,a,), | be an integer relatively prime to n, and b =
(bo, by, . .., by) be the vector for which b; = aj; ot vyt = 0,...,n = 1. If C, € E then
W€ E.

Proof: We have d(b, p;(b)) = d(a, pi.g-1 mod n)(a)) =
Let J = (1.0;1,0,....:0;1) and
n((ao, @1, A1) = (@2-1, -2, .-, 1, )

Lemma 3. If C, ) € E then
{Cy+1); Cxmen Crxrrn)} € E

Proof: To prove the lemma, we have used that p(x(b)) = x(b+ 1) and lemma 2 when
l=n—1landl=n/2+1 m
By a computer search the following lemma was proved:
Lemma 4. If Cyp) € E for b € Fi* 1t = 1,2,...,14 then b = n(b) + J when ¢ is
even, and b = n(b) + J + 1 when ¢ is odd. L
If we suppose that this lemma is true for ¢ > 14. we can consider the vectors of
length ¢ to obtain codes of length 4. In the following table we present vectors b such that
C-'“,-,.) e E.

n b Aut i b Aut

4 0 24 56 1B01539 117936
8 1 48 60  04853ESE 48720
12 02 144 64 2B185K93F 59520
160 2 672 76 023AC2C122 101232
20 0SE 2880 84 0ACEl10BA4CO 137760
24 247 2640 85 1E770152269 158928
28 013A 4368 96  3C46085D644B 207552
36 0FR94 9792 100 0B403189B2AF0 470400
40 1D109 13680 || 108 078FBB02B11496 207648
48 302753 24288 || 120 0CBE11217116BCD | 410640
52 0AI89A0 | 62400 || 124 06CBS805829EA90CE | 453840
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Abstract

We prove that dq(27,5) = 17, dy(31,5) = 20, dy4(24,6) = 14, dy4(28.6) = 17,
di(24,7) = 13, dy(102,5) = 74, d4(231,5) = 172, d4(226,5) = 168, d4(221,5) = 164.
Moreover, we classify the quaternary optimal codes for some values of n and k.

1. Introduction

A central problem in coding theory is to find d,(n, k), the largest value of d for which
an [n, k. d; gl-code exists. An [n,k,d,(n, k); q] code is called optimal. Another important
problem is to classify all optimal codes with given parameters.

Until now, the following exact values for the function d,(n,k) have been known:
Bouyukliev, Jaffe and Vavrek in [2] finished the problem for dy(n, k) when k < 8. Landgev
finished this problem for ¢ = 3 and k < 5 [10]. The quaternary case was considered in
(1], [7], [8], [11], ete. The last unknown values of dy(n, k) for k < 4 were found in [11].

Bounds for d,(n, k) have been published in Brouwer’s tables in [4].

In this paper, we investigate quaternary linear codes. Our main approach is an algo-
rithin for the extension of codes using their residual codes.

There are some classification results of optimal linear codes over GF(4) related to
geometrical constructions [8), Near-MDS-codes [6], and [9], [12], etc. We present some
new classification results.




62 ACCT-VIII

2. About Q-EXTENSION

Let (¢ be a generator matrix of a lnear [n, k,d; g|-code C'. Then the residual code
Res(C,¢) of C' with respect to a codeword c is the code generated by the restriction of G
to the columns where ¢ has a zero entry.

Lemma 2.1 [5] Suppose C is an [n, k. d}-code over GF(q) and suppose ¢ € C' has
weight w, where d > w(g — 1)/¢. Then Res(C,¢) is an [n — w, k — 1,d']-code with
d<d—w+ [w/q]

The program containg two main approaches for extension of codes. The first one is
the extension up to length which is the construction of an [n, k, d] code on the basis of
an [n — w, k — 1,d] code as its residual code, or on the base of an [ — ¢, k,d'] code. The
second one is the extension up to dimension which is the extension of an [n, k, d] code to
[n+1d,k+i.d) or [n+i+1,k+i,d] code. If G is a generator matrix for a [n, k. d] code,

we extend it to
x| 1 3 L Ii_ (1]
G|0 G| 0

where [; is the identity matrix. We take the matrix G in systematic form, thus we can
fix k& colmmns more.
More information on this topic can be found in [3].

3. New bounds for d(n, k)

We have proved the nonexistence of several codes with given parameters and in this
way we have found new upper bounds for the function dy(n, k).

Theorem 3.1. d(27,5) = 17 and d,(31,5) = 20.

Proof: There exists a unique [9.4,5]-code over GF(4). Using Q - Extension, we prove
that this code cannot be extended to a [27,5,18:4]- code, therefore dy(27,5) = 17. There
exist exactly two inequivalent [10,4,6;4] codes. Using Q-Extension, we see that no one of
them can be extended to a [31,5,21:4]-code, therefore dy(31,5) = 20.

Corollary 3.2. No code with parameters [28, 6, 18; 4] exists, therefore dy(28,6) = 17.

Theorem 3.3. d;(24,6) = 14 and d(24,7) = 13.

Proof: There exist exactly 19 optimal [9,5,4]-codes over GF(4). Using Q-Extension,
we obtain that none of these codes can be extended to a [24,6,15;4]-code, and hence
d(24,6) = 14. There exist exactly 23 optimal [10,6,4;4]-codes. Using Q-Extension, we
obtain that no one of them can be extended to a [24,7,14;4]- code, therefore d;(24,7) = 13.

Corollary 3.4. d,(25,7) < 14,d,(25,8) < 13,d4(26,8) < 14,d,(26,9) < 13,d,(27,9) <
14, dy(27,10) < 13,d4(28,10) < 14,

Theorem 3.5. dy(102,5) = T4,d4(231,5) = 172,d4(226,5) = 168, d4(221,5) = 164.
Proof: We construct by heuristic search codes with parameters: [102,5,74], [231 5,172],
[226,5,168], [221,5,164]. The weight functions of the codes are:
[102,5,74] - 1 4 489z™ + 3062™ + 152* + 1622% 4 302 + 212%
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[231,5,172] - 1+ 885272 4 632170 + 752188

[226,5,168] — 1 4 8252168 4 120217 + 3276 4 752'%

[221,5,164] - 1+ 768z'%4 + 1712%8 + 92'™ 4 752'%
4, Classification results

We have presented some classification results for n < 32. The codes with parameters
[16,3,12;4], [20,3,15;4] and [21,3,16;4] are McDonalds so each of them is unique. All results
are obtained by Q-extension. We summarize them in the table.

[ g=4| 3 4 5 6 J
d number | d number d number d number
10| 6 45 6 2 6] glaneg 4™ gy
1|7 25 6 6 16 5 116]
12| 8 16 7 G 6 1 (6]
13| 9 4 8 28 Vi 6
14|10 2 g 1 8 6 T
3 b [ E 10 1 8 8 3
16112 1MD IBATH g ¢ 9 8
17112 12 12 1 BCH 10 9
18|13 2 12 10 10
19| 14 A 12 11 10
20| 15 1MD 13 12 h i
21|16 1MD 14 13 12
22116 6 15 15 14 12-13
23| 16 16 3 15 2 13-14
21| 17 102 16 16 19 14
25 | 18 2T 1T 16 15
26119 5 18 48 16-17 16
Sl [ PR | 19 2 17 16-17
28 | 20 20 1 18 17
20 | 21 38 20 19 17-18
30|22 13 21 a8 20 18-19
2o 1 s 22 ) 20 19-20
32 |24 % 22 21 20
33 | 24 23 22 20-21
34 125 24 22-23 21-22
References

[1] M.Bhandari, M.Garg, "Optimum codes of dimension 3 and 4 over GF(4)", IEEE
Trans. Info. Theory, vol. IT-38, pp. 15641567, 1992.

[2] I.Bouyukliev, D.Jaffe, and V.Vavrek, The Smallest Length of Eight-Dimensional Bi-
nary Linear Codes with Prescribed Minimum Distance, I[EEE Trans. Inform. Theory,
Vol.46, 4,pp.1539-1544, 2000.



64

ACCT-VIll

(3]

[.. 1]

=

[6]

(7]

(8]

(9]

10

11

(12]

L.Bouyukliev and J.Simonis, "Some new results for optimal ternary linear codes”, to
appear in IEEE Trans, Info. Theory.

A.E.Brouwer, "Bounds on the size of linear codes”, in Handbook of Coding Theory,
Edited by V.Pless and W.C Huffman, Elsevier, Amsterdam ete., ISBN:0-444-50088-
X, 1998.

S. Dodunekov, "Minimal block length of a g-ary code with prescribed dimension and
code distance”, Problems of Inform. Transmission, vol. 20, No, 4, pp. 239-249, 1984,

S. Dodunekov, I. Landgev, On the quaternary [11,6,5] and [12,6,6] codes, Applications
of Finite Fields (ed. D. Gollmann), IMA Conference Series 59, Clarendon Press,
Oxford, pp. 75-84, 1996.

P.P.Greenough and R.Hill, "Optimal linear codes over GF(4)7,
Diserete Mathematics, vol.125, pp. 187-199, 1994.

N. Hamada,” A survey of recent work on characterization of minihypers in PG(t, q)
and nonbinary linear codes meeting the Griesmer bound”, J. Combin. Inform. Syst.
Sei. Vol. 18, pp. 161-191, 1993.

R. Hill and P. Lizak, Extensions of linear codes, Proe. [EEE Int. Symposium on
Inform. Theory, Ulm, Germany, p 114, 1997.

I. Landgev, The nonexistence of some ternary fivedimensional codes, Designs, Codes
and Cryptography, 15, pp. 245-258, 1998.

L. Landgev, T. Maruta and R. Hill, On the nonexistence of quaternary [51,4,37] codes,
Finite Fields and Their Applications 2, pp. 96-110, 1996.

P. Ostergard, " Classifying subspaces of Hamming spaces”, to appear in Designs,
Codes and Cryplography.

I. Boyarinov (Russia}

65

Optimal and asymptotically
optimal SCEC two-dimensional
array codes

.M. Boyarinov

Institute for System Analysis
Russian Academy of Sciences
60 years of October ave. 9
117312, Moscow, Russia
e-mail: i.boyarinov@mtu-net.ru

Abstract — Two-dimensional array codes that can correct
two-dimensional clusters (or bursts) of errors are presented.
Constructions of optimal and asymptotically optimal sin-
gle cluster-error-correcting (SC'EC) two-dimensional array
codes are given.

1 Introduction

There are data transmission and storage systems with two-dimensional
data structures that suffer from two-dimensional clusters of errors. For
correction of two-dimensional clusters of errors two-dimensional array
codes were constructed (see [1]-[5] and the references therein). Accord-
ing to the Singleton type bound [4], [6], the redundancy r required for
a by x by cluster error-correcting code is

r > 2biby. (1)

By analogy with one-dimensional codes array codes that meet the
bound (1) are said to be optimal. The ratio z = &rl-"’i can be used
as a measure of cluster-error-correcting efficiency of an array code. An
optimal array code has the cluster-error-correcting efficiency z equal to
1. The cluster-error-correcting efficiency z of asymptotically optimal
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array codes approaches 1 as the size n; x ng of array codes becomes
large. Known SCEC two-dimensional array codes have the cluster-
error-correcting efficiency z equal (or approximately equal) to ﬁ; or less.
Tn this paper we give some constructions ol optimal and asymplotically
optimal SCEC two-dimensional array codes.

2 Optimal SCEC codes

For integers n;, i = 1,2 we consider the set V(n;,nz) of all binary
two-dimensional nj X ng arrays. A linear K —dimensional (K < niny)
subspace C(ny,n2) of the space V(ni,nz) is called a linear binary
two-dimensional array [n; x ne, K| code of size n; x ny with K
information symbols and r = nyny — K parity-check symbols.

Lemma 1 Lel o be a root of the polynomial z° +z+1 over GF(2)
and C be the binary extended Hamming [8,4] code with the parity-check
malriz B
1 @ o® o® o' o® o 0
U IS T R (2)

If M = (L },(g”, A1 ),Lé ),cé”,cgl},cg”) and ) = (c(f},ug‘”,

[2) ( ) (’(—2)1412)’ Ez},cg‘;)) are code words of the code C, then the 4 x 4
mmy

SORNORNURNG

(2) e o2 c?ﬂ)
(84 C .
LS {ln {1} ?1) cill} (8
8
(z) (2) {2} 2
‘8

is a code word of the oplimal binary lwo-dimensional array [4 x 4,8]
code V' correcting single error clusters of size 2 % 2.

Applying the approach of Lemma 1 to binary cyclic Abramson (2™ —
1, 2™ —m —2) codes correcting error burst of length 2 [7] we can con-
struct linear binary two-dimensional array [n; x ng, K] codes correct-
ing single error clusters of size 2 x 2 where ning < gmtl _ 9 and
K <ning —2m — 2,

In Lemma 1 we used the row interleaving scheme with the interleaving
degree 2. Using optimal binary one-dimensional array codes correcting
single error bursts of length b, ( for example, codes from Table 9.3 [8])
and row interleaving schemes with the interleaving degree by we can
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construct optimal binary two-dimensional array codes correcting single
error clusters of size b, x by for any integers b; and bs.

3 Asymptotically optimal SCEC codes

Let Il b;, i = 1,2 be positive integers and [ls < < ohba | et

Uil ur2 ... Ul
U1 U2z ... Ul (4)

(L R e T E S

be a two-dimensional Iy xly array over GF(2%2) such that (u1,1,u1.2.
ey ULy U2 1y U2y e ey U lyy - - -y Ul 15 Uly 25+ -+ 5 ULy 1) 18 & code word of
a (shortened) Reed- Solomon (Lila, Ly — 2} code over GF(21%)

correcting single errors.

There is a one-to-one correspondence between elements of the Galois
field GF(2"%) and binary b; x by matrices. Representing every
element u; ; in u as the binary b x by matrix, we obtain a code word u*
of the optimal binary two-dimensional array [l1by xlaby, l1labiby—2b1bo)
code U* correcting single phased error clusters of size by x bs.

Given a single-error-correcting (SEC) two-dimensional array [l x
Iy, il — 2] code over GF(‘Z"“ bz) we construct the two-dimensional
array [Ail; % Aala, Aphalils — 201 0] code W over GF(2"%2) by two-
dimensional interleaving with row interleaving degree A; and column
interleaving degree Xs. Representing every symbol of a code word w of
the code W as the binary by xby matrix, we obtain a code word w+ of the
binary two-dimensional array [A1l1by x Aalaba, Ay Aalilabyby—2A1 Aabyho]
code W*.

Lemma 2 The binary two-dimensional array code W* corrects single
error clusters of size (A —1)bi+1)x((Aa—1)by+1). As the interleaving
degrees X, and Aa become large, the cluster-error-correcling efficiency
z of the code W* approaches 1.
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Abstract

We consider spherical codes which admit exactly two different nonzero distances be-
tween their points and which are spherical 2- or 3-designs. In the later case we prove

that such codes are maximal.

1 Introduction

A spherical code C is a finite nonempty subset of the n-dimensional unit sphere 5" =1, Denoate
by ¢ = ¢(C') the number of distinet inner products of different points of C'. Then C is called
an f-distance spherical set.

A spherical 7-design is a spherical code €' C 8" such that

1
e B = er

zEC
(p(z) is the Lebesgue measure) holds for all polynomials f (z)

= f(:rl‘- Loy

at most 7 (i.e. the average of f over the set (' is equal to the average of f over S2-1)| The

x,) of degree

number 7 is called strength of C.

We consider (n, M, £, T)-sets which are spherical 7-designs on 8"~! with { = £(C). Since
many known maximal f-distance sets are spherical designs of suitable strength, we decided
to investigate further this connection. A general bound by Delsarte-Goethals-Seidel [5] says
thati+ < 2€.

For { = 2 and 7 = 4 the corresponding codes are tight spherical 4-designs [5, 2, 3]. So

we consider the next two cases 7 = 2 and 7 = 3.
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2 Some preliminaries

Let C C 8" ! be a spherical code and @ € C. Then the system {A,(z) : =1 <t < 1} of
infegers

Afx) =y e C: {x,y) =t}

is called distance distribution of C with respect to . We take only the nonzero entries in
the distance distribution. If C is distance regular, i.e. A¢(x) does not depend on z € C, we
denote A (x) = A,

The following definition for spherical designs is crucial for our approach, If € € 8" ' is
a spherical T-design then for every point y € €' and [or every real polynomial f(t) of degree

at most 7, the equality

> e w)) = KlC| - £(1). (1)
zeC\ {u}

holds, where

1
Srfe T'(n—1)
f = f_'-:'f f(t] 1-— ‘ﬁz}“‘_d}‘”(ﬁ, Oy = T S T
s 2 AT
(fo is the first coeflicient in the expansion f(t) = Lu _ﬁ,f"}{"){t} in terms of the Gegenbauer

polynomials [1, Chapter 22]).

3 ThecaseT=3
Let € € S"! be a 2-distance set and a spherical 3-design. Then

an < o) < E9)

If the upper bound is attained, than C' is already 4-design. Since all feasible parameter sets
ol 4-designs are determined [2, 3] we assume that |C| < n(n + 3)/2 — 1. Then we consider
the whole range (despite the feasible codes with fewer than n(n + 1)/2 points would not be
maximal 2-distance sets).

Theorem 1. C' is a spherical (n, M, 2, 3}-set if and only if it is a maximal code which
attains the Levenshtein bound Ls(n, s) [6].

Scetch of proof. The "+«=" direction is well known. For the "= direction, we observe

that € is distance regular and compute its distance distribution. This gives a connection
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between the inner products and the size M = |C| which implies that M = Ls(n. s), where
s = 5(C) is the larger inner product of C.

Corollary 2. (Lloyd-type theorem) If C' is a spherical (1, M, 2,3)-set then both inner
products are rationals,

Proof. This follows from the Llyod-type theorem in [4, Section 3] which states that all

spherical codes which attain the Levenshtein bound Ls(n, s) have rational inner products.

4 The case 7 =2

Let C C 8" ! be a 2-distance set and a spherical 2-design. Then

n+1<|C

2 n(n +3)
= 2

and C is distance regular. Denote M = |C| =n+ 1+ k, where 0 < k< (n—1)(n+2)/2 s
integer.

The following lemma can be proved by applying a little algebra on the equations which
are given by (1) for suitable polynomials.

Lemma 3. If C is a spherical (n, M, 2, 2)-set then its inner products t; and ¢, are

VD 1 VD 1

“nlntk)A, ntk C

b= = = -
I nin+kA, n+k

where D = nk(n + k + 1)A;, A, is integer.

We proceed by investigation of the derived codes of C. These codes are 1-designs and
2-distance sets, i.e. they are also distance regular. Now caleulations of their distance distri-
bution and Lemma 3 give the [ollowing:

Theorem 4. (Lloyvd-type theorem) If C' is a spherical (n, M, 2,2)-set then both inner
products are rationals or n is even, M = 2n + 1 and the inner products are t; 5 = 1132@

Inferestingly, the later case in Theorem 4 can be realized. We have a construction of
a (6,13,2,2)-set with inner products t,5 = %2‘“3 Moreover, our construction (as in [3,
Section 4]) shows that this code is unique up to isometry.
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Abstract

The classification of the so called doubly perfect binary additive superimposed codes
has been an open problem for about ten years. In this paper we prove that the only sets
of parameters for which such codes could exist are these already known.

1 Introduction

Superimposed codes were originally considered by Kautz and Singleton [5]. They used a binary
“OR” operation as a superposition mechanism. Here we study another type which was first
defined by Chien and Frazer in [2]. The superposition mechanism for this type is an addition
modulo two (i.e. binary “XOR”) of the codewords. A possible application of this scheme is in
identification systems.

As usual with /I (n, 2) we denote the set of all n-tuples with elements from the alphabet GF(2) =
{0,1}. The Hamming distance dy(x,y) between two elements = and y is defined to be the
number of positions where they differ. Let C' be an arbitrary subset of H(n,2). We denote by
C7 the multi-set defined as

Con {4+ +43,:0<8<m, ni€Ci=1,... 8245, iif]).

In other words C7, consists of all superpositions of up to m elements from €. We set the emty
sum fo be the all-zero vector in H(n,2). For the multi-set C} we define its the minimum
distance d(C7,) as

d(Cz) & min{du(z,y) 12,y € CL, T2y}
it C, is genuine set and d(C},) = 0 otherwise.

Definition 1. The sel C is called a (n,d,m,T) binary additive superimposed code (BASC) if
CC H(n2),|Cl=T and d(C},) = d.
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We denote by T'(n,d,m) the maximal T for which (n,d,m,T) superimposed code exisls. In
order to determine the value of T(n,d,m) we have to find upper and lower bounds on this
quantity. A general construction with the aid of binary linear codes is described in [4]. Tt gives
a lower bound on T'(n,d,m) which is

T(n,d,m) > max{T : T < K(n,d) + K(T,2m + 1)}, (1)

where K (n,d) denotes the greatest possible dimension of a binary linear code of length n and
minimum distance d. A general implicit upper bound [4, eq. 6] is

> (M) < g @

- 1
i=0

where A(n,d) is the greatest possible cardinality of a binary code of length n and minimum
distance d.

2 The classification theorem

One of the first bounds on the size of unrestricted binary codes with prescribed minimum
distance is the well known sphere-packing or Hamming bound. It states that

a_ 2
Zi:u (,il) ;

The codes with parameters (n, Ay (n,d),d) are known as perfect codes. One reason for this
name is the fact that all the spheres of radius ¢ with centers in the codewords constitute a
partition of the whole Hamming space H (n,d). Complete classification of the parameters for
which binary perfect codes exist is done by Tietivainen in 1973 [7].

A(n,2t +1) < Ay(n,2t + 1)

The upper bound (2) on the size of a binary additive superimposed code is based on the same
arguments as the Hamming bound. Hence a BASC attaining this bound is called perfect su-
perimposed code. If, morcover, the equality A(n,d) = Ay (n,d) occurs the code is referred to as
a doubly perfect superimposed code. The task of determining the set of all possible parameters
for which perfect superimposed codes exist seems to be impossible to solve. The main obstacle
is the lack of knowledge of the function A(n,d) for almost all pairs (n, d). However the classifi-
cation of the doubly perfect superimposed codes seems to be within reach due to Tietdvainen’s
result. Indeed Theorem 4 in [4] has almost completed this task. The only uncleared situation
is the eventual existence of non-systematic binary perfect codes. At the time of writing [4]
such codes were not known to exists. Solov'eva and Avgustinovich [1] in 1896 showed their
existence for the parameters (2% —1,22°=%=1 3) for all k > 8. Later the existence of such codes
in the cases k = 5,6, 7 was shown by Phelps and Levan [6]. Considering these discoveries the
classification of the doubly perfect superimposed codes was not completed in [4]. However the
conjecture formulated there that the described cases give all the possibilities turns out to be
true.

Here we state the result proving this conjecture.
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Theorem 1 (Classification of the non-trivial DPSC). Lel X be a
doubly perfect superimposed code with parameters (n,d,m,T) such that T > m > 2. Then lhe
d-tuple (n,d,m,T) is equal to one of the following 4-tuples

1) (2m,1,m,2m+ 1), m € N;

21 11:1,3.23);

3) (2211 —1,3,22 — 5 — 1,221 — 25— 1), s € N;
4) (15,3,3,23);

5) (23,7,6,13);

Proof. Binary superimposed codes with parameters described above exist in all cases. All these
codes can be obtained by the main construction. The codes used are given in [4, Table IT]. We
have to prove that these are the only possibilities.

According to the definition if X is a doubly perfect superimposed code we have the equality

AL L TR
I = |Xm| = E (i) =Aﬂ(ﬁ-sd)

i=0

and the set X constitutes a binary perfect code. Such codes exist only for odd distances d.
We consider three cases.

1) Let d = 1. Then X} = H(n,2) and thus X, is a systematic perfect code. Applying Theorem
4 in [4] we obtain that X is either a trivial DPSC (i.e. T = m) or there exists a perfect
linear [T, T — n,2m + 1]z-code. When m > 2 we have two possibilities (T",T — n,2m + 1) =
(2m +1,1,2m 4+ 1) and (T, T —n,2m + 1) = (23,12,7) from which we get cases 1) and 2},
respectively.
1I) Let d = 3. We have

an e

Ay (7’-, 3) = Ll m-

Applying Theorem 2 from [3] we obtain

IR et (e e e,
™ nid _A(T,Qm-l—l}““AH(T,2m-[-1)_Z i)_ o

i=0

which implies Aa(T,2m + 1) = Ay (T, 2m + 1). This means that there exists a binary perfect
(T, A (T,2m + 1),2m + 1)-code. Recall the assumption m > 2. There are two possibilities.
Let first (T, Ay (T, 2m 4+ 1),2m + 1) = (2m + 1,2,2m + 1). Thus T' = 2m + 1 and from the

equation for T}, we get
21 — [ 2m 4+ 1 i
et e

il

giving the equality n +1 = 2"=%", If n — 2m = 0 we have n = m = 0. Otherwise n must be
an odd number and n — 2m = 25 + 1 holds for some s € M. This gives case 3). What is left to
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consider is (T, Ay (T,2m + 1),2m + 1) = (23,2, 7). This directly implies T = 23, m = 3 and
2/(n+ 1) = 2'2. Since n is a positive number we have the unique solution n = 15. These are
the parameters given in case 4).

IIT) The rest of the possibilities for d to consider are d > 5. For these minimum distances
there exist two types of perfect codes. The first are the repetition codes with parameters
(2t +1,2,2¢ + 1). In this case we have T, = 2 which is impossible when T > m > 2.
The second type is actually only one code — the well known Golay code with parameters
(230918 ) Phuaec Vv (T) = 2 and we have to solve a Diofant equation in natural
numbers T' > m > 2. This can be done by exhaustive search since for m we clearly have
2 < m < 11. We obtain two solutions (T, m) € {(90,2),(13,6)}. The second solution provides
the parameters in case 5). Since the Golay code is unique and systematic, according [4, Theorem
4] existence of (23,7,2,90)-BASC implies the existence of a perfect linear [90, 78, 5];-code which
is a contradiction. Thus the solution (T, m) = (90, 2) does not provide a DPSC. This concludes
the proof. [

In the theorem we did not consider the possibilities T' = m. They correspond to trivial doubly
perfect superimposed codes. All these codes are actually bases of perfect binary linear codes
and the classification ol their parameters comes [rom [7].
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Abstract

Let [n, k, d]~code be a linear code of length n, dimension k and minimum Ham-
ming distance d over GF(g). In this paper, eleven new codes over GF(9) are con-
structed, which improve the known lower bounds on the minimum distance,

1 Introduction

Let GF(q) denote the Galois field of ¢ elements, A linear code over GF(q) of length n,
dimension k and minimum Hamming distance d is called an [n, k, d],-code.

A code C is said to be quasi-twisted (QT or p-QT) if a constacyclic shift of a code-
word by p positions results in another codeword. A constacyelic shift of an m-tuple
(0. %1, ..y T;m—y) is the m-tuple (@zm_1, Tos...;Tm-z),a € GF(g)\{0}.

The blocklength, n, of a QT code is a multiple of p, so that n = mp for some integer
m. A matrix B of the form

by by by “ereBgeg VBaly
abm-l E:*l] bl bl bm—3 =2
B = abm-! abm—] ‘50 bm—-l hm—S ( 1 )

aby aby  abs - abn_; by

where o € GF(q)\{0} is called a twistulant matriz. A class of QT codes can be constructed
from m x m twistulant matrices (with a suitable permutation of coordinates). In this case
the generator matrix G can be represented as

G = [Biy By v Bl (2)

*This work was partially supported by the Bulgarian National Seience Fund.
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where B; is a twistulant matrix.

The algebra of m x m twistulant matrices over (7I(¢) is isomorphic to the algebra of
polynomials in the ving GF(g)[x]/(2™ — &) il B is mapped onto the polynomial, d(z) =
by + by + bya? 4 - 4 by 2™, formed from the entries in the first row of B. The di(x)
associated with a QT code are called the defining polynomials [3, 4]. If a = 1, we obtain
the algebra of m x m circulant matrices [6], and a subclass of quasi-cyclic codes (QC). Tt
p =1 then we obtain codes, which we call twisted codes (T). If a =1 and p =1 then we
obtain a subclass of well-known cyclic codes.

If the defining polynomials di(x) contain a common factor which is also a factor of
2™ — @, then the QT code is called degenerate [3, 4]. The dimension k of the QT code is
equal to the degree of hi{x), where [8]

™ —

= ged{am — o, dy(x), daf), -+ dy(a)}

h(z) (3)
If the polynomial A{x) has degree m, the dimension of the code is m, and (2) is a generafor
matrix. Il deg(h{x)) = k < m, a generator matrix for the code can be constructed by
deleting m — k rows of (2).

Let the defining polynomials of the code ' be in the next form

di(@) = g(x), da(x) = falx)gla), -+, dylx) = [u(x)g(x), (4)

where g(r)|(z™ — ). g(z), fi(z) € GF(q)[x]/(2™ —a), ged{fi(z),(x™ —a)/g(x)} =1 and
deg fi(z) < m —deg g(a) forall 1 <i <p.

Then we obtain a degenerate QT code, which, by analogy with one-generator QC codes,
we call one-generator QT code and for this code n =mp, &k =m —deg g(z) .

Quasi-twisted (QT) codes [4] form an important class of linear codes which are a natural
generalization of the QC codes. QT codes were first defined by Berlekamp [1] as constacyclic
codes. In this paper, new one-generator twisted codes are constructed using a nonexhaustive
algebraic-combinatorial computers search, similar to that in [7]. The codes presented here
improve the respective lower bounds on the minimum distance in [2].

2 The New Codes

We have restricted our search to one-generator QT codes with defining polynomials in the
form (4). In all cases we have taken p = 1. The main aim in our search is to find good
g(z), i.e. g(z) which gives better minimum distance. We illustrate the search method in
the following example. Let m = 61, a =8 and ¢ = 9. Then

™ —a =[] hi(),

=1
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where irreducible factors hi(z) are as follows

hi(w)=a® + a1 4 52° + 822 + 2 + 1 hi(z)=a® ot L R 4 brt Lz 41
ha(e) = a® 4+ 6 + 323 + 627 £ 32+ 1 hy(z) = 2® + 32t +62% 4+ 32? + 62 + 1
he{n) =a® 460 Lo 422 + 3z 41 hg(z) = PP+t ¥+t 46+ 1
he(z) = a® 4 T2 + 4% 4 1 ha(z) = 2® + 40¥ 4L Ta® 4 1

ho(x) = 2° 4 8o + 40 + Ta* + 50 + 1 hiolx) = 2® + 5a* + T2 + 42 + 80 + 1
hi(z) = 2% + 7o' + 32% 4 622+ da + 1 fya(x) = @° + 42 + 627 + 32? + Ta + 1
hpa(z) =2+ 1

There are ('{) = (6 possibilities to obtain polynomial g(x) of degree 51, which is a factor
ol ™ — . From these polynomials 64 have Hamming weight greater than or equals 38
(The best-known code is a [61,10. 38];-code.). Taken one of these 64 polynomials

1=12

fi 10
g(x) = [T hi() [T hi)
i=1 i=8
we obtain new twisted [Gl, 10, 39]g code,

Now, we present the new codes. The parameters of these codes are given in the Table
1. The minimum distances, dy,. [2], of the previously best known codes are given for com-
parison. lor convenience, the coefficients of the defining polynomials are given as integers
- a=5 a*=3 o*=8 a*'=2, o =7, a®=6, o' =4, where a is a root of the
ternary primitive polynomial z? + 1. The defining polynomials are listed with the lowest
degree coefficient on the left. The coefficients of the defining polynomials of the new codes
are as follows:

A [37,9,23]-code:  1306568348061805130576538306100000000;

A [41,8,28)c-code: 17426514818713875578317818415624710000000;
The dual of the above code is [41, 33, 6]e-code with Bs = 20992.

A [41,9,25]-code: 18767368620108652568010268637678100000000;

A [61,5,49)o-code:
1804126677606353820513365865283583661802568630344332170510000;

A [61,6,46]-code:
1752206070633051748642450814715087273574180663040302284100000;

A [61,10, 38])s-code:
1883672353624600172826275588423252410037236862436551000000000;

A [73,7,5T)¢-code:
1835422825321247454362087375366253526635T37802634547421235282245381000000;

The dual of the above code is an optimal [73, 66, 6];-code with Bs = 11135712,
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Table 1: Minimum distances of the new linear codes over GF(9).

code | d | dy code | d | dy code | d | di
BTl 23| 22 || [61.5] |49 | 48 [ [73,66] | 6| 5
[11.8] | 28 | 26 || [61,6] | 46 | 45 | [85,10] | 59 | 58
[41,9] | 25 | 24 | [61,10] | 39 | 38 | [91,10] | 64 | 63
[41.33] | 6| 5| [F3.7] |57 ] 55

A [85, 10, 59]~code:
16216285527803035 16658 14810588 LTOG8AT 12274440 14735481 346212835 LBOSS008376221000000000;

A [91,10, 64]-code:

14480723341080762076002842422401 1817271010005438288403620631832462682234735602773100
0000000;

Remark: The weight distributions of the dual codes are obtained with the aid of QLC
[5]. using the MacWilliams’ identities. By this reason B; denotes the number of codewords
of weight 7 in the dual code.
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Abstract

Let [n, k., d]~code be a linear code of length n, dimension & and minimum Ham-
ming distance d over (F(q). Twelve new ternary (¢ = 3) linear codes are con-
structed in this paper.

1 Introduction

Let GF(g) denote the Galois field of g elements. A linear code €' over GF(q) of length
n, dimension & and minimum Hamming distance d is called an [n, k, d],-code.

A code O is said to be quasi-cyclic (QC or p-QC) if a cyclic shift of a codeword by
p positions results in another codeword. A cyclic shift of an m-tuple (g, 2y... .. 2m—1)
is the m-tuple (Zm-1, 20y .., Tm—2).

The blocklength, n , of a p-QC code is a multiple of p , so that n = pm for some
integer m [4]. A matrix B of the form

bo bl b? bm-? bn—.—l
bm—l bO bl it bm—3 bm—Z
B = |l ibnogssbnayeiba s by g |1 (1)

byt by bt i Bnay o

is called a circulant matriz. A class of QC codes can be constructed from m x m circulant
matrices (with a suitable permutation of coordinates [11]). In this case the generator
matrix G can be represented as

G = [Blr By, axx .y, B}‘]* {2)

“This work was partially supported by the Bulgarian National Science Fund.
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where B; is a circulant matrix.

The algebra of m x m circulant matrices over G'F(q) is isomorphic to the algebra of
polynomials in the ring GF(q)[«]/(a™ — 1) if B is mapped onto the polynomial, d(z) =
by + by 4 bya? 4+ 4 by_qa™ Y, formed from the entries in the first row of B. The di(x)
associated with a QC code are called the defining polynomials [4, 6].

If the defining polynomials d,(x) contain a common factor which is also a factor of
2™ — 1, then the QC code is called degenerate [4. 6]. The dimension & of the QC code
is equal to the degree of h(x), where [10]

=]

W(z) = 3 3
May ged{em — 1 dy(2), da(2), - dy(x)} (&)

If the polynomial h(x) has degree m , the dimension of the code is m , and (2)
is a generator matrix. If deg(h(z)) = k < m, a generator matrix for the code can be
constructed by deleting m — k rows of (2).

Quasi-cyclic codes form am important class of linear codes which contains the well-
known class of cyclic codes. The investigation of QC codes is motivated by the following
facts: QC codes meet a modified version of Gilbert-Varshamov bound [2]; some of the
best quadratic residue codes and Pless symmetry codes are QU codes [8]; a large number
of record breaking ( and optimal codes) are QC codes [1].

Iu this paper, new QC codes are constructed using a nonexhaustive heuristic combina-

torial computers search, similar to that in [3], [5], [9]. The codes presented here improve

the respective lower bounds on the minimum distance in [1].

2 The New QC Codes

In this section, we present the new quasi-cyclic codes. The parameters of these codes are
given in Table I. The minimum distances, ds, [1]. of the previously best known codes are
given for comparison.

Theorem 1: There exist quasi-cyclic codes with parameters:
[90, 18, 38]s, [95, 18, 41]3, [126, 18, 58], [133, 18, 62]3, [144, 18, 683, [152, 18, 73).
Prof. The coefficients of the defining polynomials of these codes are as follows:

A [90, 18, 38]s-code:
011121111211122101, 000000001011121202, 000000000102201021, 000112210221022222,
000000000000000001;

A [95,18, 41]5-code:
1111111111120002012, 1211122100212102221, 1112212202111202000, 0012211212111222111,
0000000112121112111;
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A [126, 18, 58])5-code:
011121111211122101,011112121112210010, 000112122200200012, 000112210221022222,
000000000102201021, 00DOO000TOT1121202, 0000000000000000OT;

A (133,18, 62]s-code:
1122121211111112000, 0001211211111111120, 1111111111120002012, 1211122100212102221,
0000000112121112111, 1112212202111202000, 0012211212111222111;

A [144, 18, (68]y-code:
000112122200200012, 011121111211122101, 011112121112210010, 001111212121112001,
(100000001011121202, 000112210221022222, 000000000102201021, 000000000000000001;

A (152, 18, T3]g-code:
1112122212112110102, 1122121211111112000, 0001211211111111120, 1111111111120002012,
1112212202111202000, 0012211212111222111, 1211122100212102221, 0000000112121112111;

Theorem 2: There exist quasi-cyclic codes with parameters:
[57,19,20]5, [76.19, 30]1, [95, 19, 40], [114,19. 51]5. [133, 19, 61]4, [152, 19, T2]4.

Prof. The coefficients of the defining polynomials of these codes are as follows:

A [37,19, 20]3-code:
0000010222212210111, 0000001002102111221, 0000000000000000001;

A [76,19,30]3-code:
0000112011001222100, 0000001002102111221, 0000010222212210111, 0000000000000000001;

A [95,19, 40]s-code:
0001111212112120111, 0000112011001222100, 0000010222212210111, 0000001002102111221,
0000000000000000001;

A [114,19,51]s-code:
0121112122000220200, 0000112011001222100, 0001111212112120111, 0000010222212210111,
0000001002102111221, 0000000000000000001;

A [133,19, 61]z-code:
0001121211120101221, 0000010222212210111, 0000112011001232100, 0121112122000220200,
0000001002102111221, 0001111212112120111, 0000000000000000001;

A [152,19, 72]3-code:
0000122121112222021, 0001121211120101221, 0121112122000220200, 0001111212112120111,
0000112011001222100, 0000010222212210111, 0000001002102111221, 0000000000000000001;

In the following Table [ we compare the minimum distances of the new codes with the
previously best known minimum distances dj, in [1].
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Table I: New codes over GF(3).

code d | dp code d | dy,
[90,18] | 38 | 37 || (57,19] |20 | 19
[95,18] | 41 | 40 || [76,19] |30 | 28
(126,18] | 58 | 57 | [95,19] |40 | 38
[133,18] | 62 | 60 || [114,19] | 51 | 48
[144,18] | 68 [133.19] | 61 | 60
[152,18] | 73 [152,19] | 72| 71

=1
b =1
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Abstract

In this note we present some results on a certain decomposition of a binary self-
dual code having an antomorphism of an order which is the product of two odd prime
numbers.  These results are applied to construet self-dual [34,17,6] codes with an
automorphism of order 15.

1 Introduction

Let C be a self-dual [n,n/2, d] code and let Aut C be the automorphism group of C.

Lemma 1. [4, Lemma 3] Let C be a self-dual code with an automorphism ¢ of odd prime
order p. Then, the cyclic group (@) generated by ¢ is a Sylow p-subgroup of Aut C.

Suppose that the code € has an automorphism o of order pr, where p and r are odd
prime numbers. Due to Lemma 1, the numbers p and r have to be different and we assume
p < r. Since the automorphism o has order pr, ¢ can contain nontrivial cycles of length p, r
and pr. Denote by £, ..., @, the cycles of length p, by Q¢ 11, ..., 4,4, the cycles of length
T by Qgeaits- -0 Qiyprars the cycles of length pr, and by @ epegrty. ooy Qeygtpeaeg the
fixed points of a. Hence, for the length of code C we have

n=rtp+tar +tspr + f. (1)

In this note, we shall call a permutation of order N, having f fixed points and #; cycles
of length ay, f2 cyeles of length ag, ..., 4 cycles of length ap, with | < ay < apy < --- < ay,
a permutation of type N-(t;,ts,...,1; f). For reasons of convenience, the parameters
ay.. .., ay have been left out from this notation. Hence, o is of type pr-(t, s, t3; ).

*On leave from University of Shumen, Bulgaria. This work was supported in part by the Shumen
University under Grant N15/14.03.2002
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Proposition 1. Let C be a self-dual [n,n/2,d] code and let C hove an aulomorphism o of
type pr-(tr,ts; f). Then C has automorphisms of type p-(ty + tyr; tor + [) and of type
r-(ta+ tap; tap+ f).

Proof. The eycles of the permutation o are independent and therefore they commute.
Hence o?=Q7 Q8 ... QF ., .. For 1 <i < t; we have that Q; has length p, and so, af
consists of fixed poiuts with respect to o”.

For the cycle 0, t; +1 < j < t; + 1y, of length r, it follows that Qj-‘ is again a cycle of
length r, since p is prime to r.

It will also be obvious that QF, ¢ +ta+1 < k < t; +ta + 13, is the product of p cycles
of length r with respect to o®. Thus, QF |, (B 1 10. - g 4e, 18 & product of £5p cycles
of length r.

So, we may conclude that o consists of ty + t3p cycles of length r and of typ + f fixed
points, or equivalently, € has an automorphism of type r-(ta + ap; bip+ [).

For similar reasons it follows that the permutation o” consists of ¢ + far cycles of
length p and t,r + f fixed points. Hence, the code C has also an automorphism of type
p-(ty + tar; tar + f). O

We define linear subcodes F,(C) and E,(C) as follows
F,(¢)={vecl| o) =1} (2)

E.(C)={veCl| wi(v|) =0 (mod 2), i =1,.... 8 +tz+13+ I (3)

where v|(), is the restriction of v to £);.
It is clear that v € F,(C) if and only if v € C is constant on each cycle 5, j =
1,2,... t1 +ta+ts + f. Let the projection map 7 be defined by

P Fn{c} s E‘;} -H-.-+£;;+J.l ﬂ-({,lg_‘) _e (4)

for some j €, i=1,2,..., i +la+ s+ [
With the above notation the next proposition holds.

Proposition 2. IfC is binary self-dual code having an automorphism of type pr-(ti,ta, tas f),
then m(F,(C)) is a binary self-dual code of length t; +ta +t3 + f.

Proof. The code C is self-dual, and hence, any pair of vectors u = (tt;, Uz, . - -, Un),
v=(vy,vs,...,0,) € C satisfies (u,v) = 0. In particular for u, v € F,(C) we can write

0= (u,v) = (w(u),m(v)) (mod2),

since p, r and pr are odd, and since u and p are constant on each cycle (4, 1 < ¢ <
t; 4ty + t3 + f. Hence, we have 7(F,(C)) C 7(F,(C))~.
In order to prove that the equality sign holds in this last relation, we first show that

prol
C = E,(C) + E,(C). Take an arbitrary vector v € C. For v’ := Y. o’(v), we have o(v') = v/,
j=0
" T P
and so v € F,(C). If we write v = o'+, it follows that v = Y~ ¢’(v). The automorphism
J=1
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o permittes the coordinates of v[(2;, and hence, wt(o? (v|€%)) = wi(v|) for 0 < j < pr and
1<i <ty + 1ty +ty+ f. Therefore, we have wi(o(v”|)) = (pr — 1) wi(x|Q) =0 (mod 2),
and v € E,(C).

Now, let = € w(F,(C))*. Let furthermore w be a vector of length n, such that w is
constant on €; with value o; for 1 <@ <ty +1t3+ 13+ f.

For any v € C we now have

n tyttattatf
(w,v) = (w0 +v) = (w,) = Z wivh = Z zy; =0 (mod 2),
i=1 j=1

where y = w(v'). So, w € C*, but then also w € C. since C is self~dual. Hence, x = 7(w) €
7(Fo(C), or m(F,(C))* C n(F,(C)). a

Proposition 3. A self-dual code C as described in Proposition 2 can be decomposed ac-
cording to C = F,(C) @ E,(C), where @ stands for the direct sum of linear subspaces, and
dim E,(C) = §(t1(p — 1) + ta(r — 1)) + ta(pr — 1)).

Proof. In the proof of Proposition 2 we derived C = F,(C) + E,(C). Let v €
F.(C)N E,(C). Since wi(|€;) is even and since p, r and pr are odd, it immediately follows
that v = 0, and so C is the direct sum of the two subspaces. The remaining part of the
proposition is a consequence of the self-duality of F,(C). O

Proposition 4. IfC is a doubly-even self-dual code, and if p = 1 (mod 4) andr = 1 (mod 4),
then w(F,(C)) is a doubly-even self-dual code.

Proof. Since p = 1 (mod 4), r = 1 (mod 4), and C is a doubly-even code, it follows
immediately that 0 = wi(v) = wi(x(v)) (mod 4). This implies, by definition, that =(F,(C))
is doubly-even. d

Let Py, P, and P be the sets of even-weight polynomials respectively in Fy[z]/(2" — 1),
Fa[z]/(x” — 1) and Fala]/(2™ — 1). It is well known that P, P, and P are cyclic codes of
lengths p, r and pr.

Any vector of length p, r or pr and with even weight can be identified with a polynomial
in Py, Py and P, respectively.

Let E,(C)* be the code E,(C) with the last f coordinates deleted. Remember that the
coordinates of any vector of E,(C) in the fixed points of o are equal to zero.

We define the map ¢ : E,(C)" — P, x P2 x P by identilying a restricted vector
¥ = (o, 1, - .., vp—y) with the polynomial (v|)(x) = vo +vix + -+ + vy, 12" in Py
for 1 <7 <+#;, and similarly for t; <i <t; +t; and t; +1s < i <t; +1ta+13.

2 An application

Let C be an extremal self-dual [34, 17,6] code. The possible weight enumerators for such a
code are derived in [1]:

Wiaga () = 14 (34 —43)° + (255 + 48)y° + (1921 + 208)y™ + (8466 — 208)y™% + -, (5)
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Wiz (y) = 1+ 6y° + 411y® + 11655 + 10886y™ + -+ , (6)

where 3 is an undetermined integer parameter.
We suppose that C has an automorphism o of type 3 - 5-(ty,t2,13; f). Hence,

34 = 3i; + 5ta + 1585 + [. (7}

From Proposition 1 it follows that C has also an automorphism of type 3-(t; + 5ty; 5t2 + f)
and of type 5-(ty + 3ty; 3t + f).

From [2, Theorem 1] we know that the code C ean have automorphisms of odd prime
order of type 5-(6; 4), 3-(10; 4), 3-(8; 10), 3-(6; 16) or 3-(4; 22). Therefore t;, ta, ty and f
satisfy

A<t +5l <10, ta+3t3=6, 4<BhL+f<22, 3t+f=4 (8)
Combining (8) and (7) leaves only two possible types of automorphisms, i.e. 3-5-(1, 3, 1; 1)
and 3 -5-(0, 0, 2; 4).

Suppose that the code € has an automorphism ¢ of type 3-5-(1, 3, 1; 1). We may

denote the antomorphism o as

a = Ql S}QQ3S}.J “5 Qs, {‘E—J)

where Q0 is a cycle of length 3, Qs, Qy, Q4 are eycles of length 5, Q5 is a cycle of length 15
and Qg is a fixed point.

Let the subcode F,(C) and the map 7 : F,(C) — FS he defined as in (2) and (4),
respectively. From Proposition 2 it follows that m(#,(C)) has to be a self-dual [6, 3] code.
From [3, Table 2| it follows that, up to equivalence, there exists only one such code, which is
C3. Hence, up to permutations of the first 5 coordinates, the generator matrix of w(F,(C))
is

110000
i I AR e R
R L e o (1

So, the generator matrix of F,(C), which correspond to X', has the form

a b 0
N o= b b L] (10)
(o 1)

where a, b, ¢ are all-one vectors of lengths 3, 5 and 15, respectively, whereas non-indicated
entries are equal to zero vectors.

Denote by Py, Py and P the sets of even-weight polynomials in the factor-rings
Fala]/(z® — 1), Fyfz]/(z® — 1) and Fafz]/(2® — 1), respectively. Since the polynomials
a2 4241 and 24 + 23 £ a2+ 2+ 1 are irreducible over Fy, P, and P, are fields with 2* and 2!
elements. These fields have idempotents by (x) = 22 + 2+ 1 and ly(x) = 2+ 23+ + 2+ 1,
whereas a () = ta(x) = o + 1 is a primitive element of Py as well as of P,

The decomposition of the polynomial ' — 1 over the binary field is 2'* — 1 = (z —
1)hy(2)ha(z)hs(x)hy(z), where hy(z) = L +a + 2% + 2% + 2, ha(x) = 1+ 2% + 2%, ha(z) =
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14+ a+a* and hy(z) = 1 +x + 27 are irreducible polynomials over Fy. Let I; be the ideal
of P generated by the polynomial j:f{;)' . Then P =1, & I, ® I & I;. The idempotents
are: e(r) =2 +aB+ 2242 ¥+t +aT a4t 2t 2t +x, e(2) = M 4
P2 e 4 2 42 428 2P ea(r) = 2P+ 2"+ + 2%+ 2t + 2 + 2% + x and
ea(z) = 2" + 2 + 2! + 2% 4 2% + 27 + 2° + o' + 2° + 2. As primitive elements we
take py(z) = c" + 20+ 2P+ P 4+ L p(x) = a + 2B+ 20 +afp P L2 4
ts(z) = £ +aftaT ¥t ol et L and pa(n) = B 2y 104 a9 T S ¥t 1,

From Proposition 3 we have that the dimension of the subcode E,(C) is 14. Denote
by E,(C)* the code E,(C) with the last coordinate deleted. Corresponding to the map
¢ : E,(C)* — P x P2 x P, we have a generator matrix for the subcode E.(C)* of the form

o5 I SR i S

Lt 81 2
s Uy Uy Uz S M, (11)
}/ =
Uy Uz Ug 83 }4
Sy }4

where 7y, sy, w;, for i = 1,...,6, and s, for j = 2,3,4, are right-circulant matrices of size
2% 3,2x 15, 4 x5 and 4 x 15. respectively, and where non-indicated entries are equal to
zero. The first rows of the circulant matrices ry, u; and s; correspond to polynomials of Py,
Py and P.

We are able now to present some possible generator matrices of Dy,

Proposition 5. Let an extremal self-dual [34,17,6] code C have an automorphism of type
3-5-(1, 3, 1; 1). Then a possible generator matriz of C can be writlen as

where X and Y are defined in (10) and (11).

By compnter check it appears that many matrices G from (12) really generate an ex-
tremal self-cdual code of length 34. Here, we present three examples C;, i = 1,2,3, of an
extremal self-dual [34, 17, 6] code, with generator matrices

a b 0 a b 0 a (o 1]
h b 0 ] e |0 b b
¢ |1 b 1 b 1
™ 81 P ™ L3 | 3y ™ 51
1y o Sy Uy Uy 8o 1ty Uy 8y
Uy Uz Sa3 Uy Uz S3 Uy Uz 83
54 54 84

where a, b, ¢ defined as right after (10) and where rq, sy, w;, for i = 1,...,3, and s;, for
j = 2,3,4. are matrices as described right after (11).
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The first rows of the circulant matrices ry, u; and s, correspond to polynomials of Py,
P, and P. respectively. The polynomials and the corresponding fivst vows of r, u; and s; are
listed in the table at the end of this section. The codes C; and Cy have weight enumerators
of type Way (5) with 8=6 and =0, whereas the code C; has weight enumerator Wy 4 (6).
This was established by counting the numbers of codewords of weight 6 and of weight 8,

We may conclude that there exist self-dual [34,17,6] codes with an automorphism of
type 3-5-(1;:.3, 1; 1)

element | polynomial | first row || element | polynomial first row
r I (x) 011 51 pa(x) 110110110110110
w I»(z) 01111 52 (Z(x) | 101001010010100
s aa (@) 11000 53 3(z) | 011000110001100
us o3 (x) 10100 54 es(r) | 111101011001000
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Abstract: Two new recursive decoding technigques are deseribed for Reed-Muller (RM) codes
and their subcodes. We analyze asymptotic properties of these algorithms and show that they sub-
stantially outperform other nonexponential algorithms known for RM codes. Decoding performance

is further enhanced by nsing intermediate code lists and permmtation procedures.

1 Introduction

Below we design new recursive decoding algorithms for general Reed-Muller (RM) codes
{T} of length n = 2™ and distance d = 2™ 7. To do so, we use the Plotkin construction
¢ = (u,u+ v), that builds the code {7 } by taking two subblocks u and v from codes {™ =
and {:'__11 } This recursion can be continued further on the two descendant codes of length
n/2 until we finally arrive at the end codes. These are either repetition codes {g} for any
g =1,....,m —r or full spaces {:} for any h = 1,...,r. The design is shown on Fig. 1,

while Fig. 2 depicts a partial splitting ending at {{} nodes.

(SR

oo
TERIEEr o W
OIY

N\ By
4
s}
Figure 1: Full decomposition.

G {2} {i}

Figure 2: Partial decomposition.

In [1] and [2], the Plotkin construction was recursively used in decoding design to execute

bounded distance decoding with the lowest complexity order of nmin(r,m — r) known for

*This research was supported by the NSF grant CCR-0097125.
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RM codes. Our main goal below is to show that recursive techniques can correct many error
patterns of heavier weights. For this reason, we consider a different setting. Given an infinite
sequence of codes A,(n;,d;), we say that a decoding algorithm has a threshold sequence 0;
with a residual sequence &; if

ez, >0,6;—+0asn; —o0;

e only a vanishing fraction of error patterns of weight (1 — &;)d; is left uncorrected;

o only a vanishing fraction of error patterns of weight (1 +£;)6; can be corrected®.

A similar setting was considered in [3] for majority decoding. Namely, for low-rate
RM codes of fixed order r, majority decoding has threshold & = n/2 and residuals = ~
(m/d)"/**'. Note that § exceeds 2" times the bounded distance threshold d/2. Another
efficient algorithm based on permutation decoding was designed in [4] for RM codes {7 )
This algorithm reduces the e-term to the order of (m/d)'/1. For long RM codes of fixed
rate R, it is proven [5] that majority algorithm achieves a threshold (dInd)/4 with vanishing
e-terms. However, the two latter algorithms increase complexity ol recursive decoding to
the order of n*m and n?, respectively. Below we consider two recursive decoding algorithms
that have low complexity O(n logn) and increase the thresholds known for polynomial-type

decoding algorithms of general RM codes.

2 New decoding techniques

Let y = (¥, ¥") = (1:, m) be the received block. For any output y € R define the
likelihood p = mPr{u =0 | y} —InPr{u = 1|y} that 0 is transmitted. Correspondingly,
define the likelihoods pf, p!, i = 1,...,n/2 on both parts y', y”. The following algorithm
reduces decoding on length n = 2™ to two decodings on length n/2:

a) Estimate the likelihoods p¥ of symbols v; = ¢} + ¢ as
D=plpl/e =l orl (1)

Find a vector v using (soft-decision) decoding v = ¥, (p").

) Given symbols o, estimate the likelihoods p}* of symbols u;:
o=k (<1, i= 1,2 )

Find a vector @ using (soft-decision) decoding & = ¥, (p").

1Note that thresholds §; are defined up to the terms of order d;s;
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¢) Combine ¥ and @ to get a codeword & = (i, 1 + V).
If we recursively apply (1) and (2) to the inputs p¥ and p" we can reach the end codes
{3} and {::} Here we can perform ML decoding with linear complexity. Formally, recursive

decoding &€ = ¥ (p) is defined as follows:

1. If r = 0 decode the repetition code {’E; }

2. If r = m decode the full space code {:}

3. Else recursively decode {™ }:
a) Caleulate pY from (1). Find ¥ := 0" (pY).
b) Calculate p* from (2). Find i := ™1 (p").

¢)e=(,a+%¥)

Another decoding algorithm ®7 is obtained if ¥7" is terminated at the biorthogonal codes
{#}. In this case, ML decoding of end codes {f} has complexity O(nlogn). More detailed
analysis also shows that the overall complexity of both algorithms ®7" and ¥ has the order

ol O(nlogn).

3 Asymptotic analysis of algorithms V" and $]".

Consider a binary symmetric channel with error probability p.

Theorem 1 For RM codes with m — co and fized r, algorithms W and @7 have o decoding

threshold 8 = n/2 with & ~ (m/d)"/*"" for U™ and &' ~ (m/d)'/*" for ®]".

Theorem 2 For RM codes with m — oo and fized rale R, algorithins U7 and " have de-
coding thresholds (dnd)/4 and (d1nd)/2, which increase (Ind)/2 and Ind times the threshold
d/2 of bounded-distance decoding.

The following observation allows to evaluate the output bit error rate (BER) for differ-
ent information symbols. Let a be a block of k information bits that encodes a vector
(u,u + v). Block a™ consists of two subblocks a”~' and a7 that encode vectors u and
v, respectively. These subblocks are decomposed further until we arrive at the end codes.
Thus, any information bit can be mapped onto a specific path j leading from the initial
code {’:‘} to one of the end codes {g} or {:: } For example, the leftmost code { o "}is
mapped on the path (1,...,1) of length m — r, while the rightmost code {:} corresponds

to 27 information bits with the common path (0,...,0) of length r. Below, j = j{ (or jJ!)
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denotes a specific path leading to the code {2} (or {}}), while a; is a bit (or a subset of
bits) associated with this path. For ¢ = 0,1 and - > 0, we use notation o ¢ = 2° 12! and
define the product z o jj = (--- ((z o j1) @ J2) @ Jin g)-

Now let algorithms U™ and & be used on an AWGN channel with a noise power o
(equivalently, the results carry over to a BSC with error probability p = j']?ﬂ e 12 dy [/2r).
These algorithms enter each end code by taking all paths leading to this code. It turns out
that the output BER significantly varies on different codes and even on the different paths
leading to the same code. In particular, the leftmost code {™;"} has the lowest error
protection, and can sustain a noise power a2 = (20" /2"y and o(20" /2" ") for algorithms

™ and P, respectively. More detailed statements are given below.

Theorem 3 For RM codes with m — oo and fived r, algorithm W7 gives a vanishing bit

error rate on a specific path ji if the noise power o* satisfies the following condition
a? o jf = o(29).

Theorem 4 For RM codes with m — oo and fired r, algorithm @ gives a vanishing bit

error rate on a specific path j{ if the noise power o satisfies the following condition

0% o ji = 0(29).

4 Improvements and applications

We use three different techniques to improve the word error rates (WER) obtained for
algorithm ®!". These techniques are:

e climinating a few least protected information bits and using remaining subcodes

of RM codes,

e list decoding technigues using L most probable candidates,

e using permutations of original RM codes.
These techniques give substantial improvements of 2 to 4 dB even on moderate lengths of 256
and 512 (see Fig. 3) and show that nearly ML decoding is obtained on the lengths up to 512
with the lists of moderate size L < 512. The conclusion is that for moderate blocklengths, the
recursive decoding of RM codes combines nearly optimal performance with low complexity

of order nlogn.
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Abstract

Applying an important combinatorial result of K. Engel [2], we improve upper bounds
on the rate of superimposed (s, £} - codes obtained in [3, 4].

1 Definitions and Formulations of Results

We use the symbol £ to denote definitional equalities.

Let N>1,t>1,5>1and £ > 1, where s + £ < {, be arbitrary integers. A [amily of ¢
binary codewords of length N is called a superimposed (s, £)-code [3, 4] ol size | and length N
if for any two non-intersecting subsets of codewords S and L, |S| = s, |£] = £, there exists a
coordinate k € {1,2,..., N}, in which all codewords [rom set & have 0’s and all codewords [rom
set £ have 1's.

Let N(1,f,5) = N(t,s, ) denote the minimal possible length of superimposed (s, £)-code of
size t. For fixed s and £, the number

— logyt
& T 2
R(¢,s) = R(s.f) = tllll'l Nt £.5)

is called [3, 4] a rate of superimposed (s, £) - code.

Let h(u) £ —ulogyu— (1 — u)logy(1 — u), 0 < u < 1, be the binary entropy. To formulate
the upper bound on the rate R(s,f), s > £ > 1, we introduce the funciion [1]

fo(v) £ h(v/s) —v-h(1/s), s=1,2,...,
of argument v, 0 < v < 1. The following three stafements are true.
Theorem 1. 1. If s = 1,2,..., then the rate R(s, 1) < R(s, 1), where

R(1,1)=R(1,1)=1, F(2,1) éorgagtl fa(v) = 0.321928 (1)

and sequence ﬁ(s, 1), s =3,4,..., is defined recurrently as the unique solution of the equation

= R(s,
R(S,1}= f, (1 H?S(—-{l—ﬁ)- (2)
2. The rate
R(2,2) < R(2,2) £ R(2,1)/2 = 0.160964. (3)

"Work was supparted by the Russian Foundation of Basic Research, grant N. 01-01-00495 and the INTAS,
erant N. 00-738
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3. Ifs>¢>2o0rs>{>3, then the rate R(s,£) satisfies the inequality

— = T .y¥
Ro0<Re08 i, min {Ro-nin bS] O

where sequence R(s,1), s = 1,2, ..., and the number R(2,2) are defined by (1)-(3).

The first statement was proved in [1] (see, also [4]). The second statement was proved in [4].
The third statement is an evident consequence of the following result obtained by K. Engel [2].

Theorem 2. (Engel’s inequality [2].) If s = € > 2, then for any v =0,1,...,s — 1 and any
y=0,1,...,£ =1, the rule

-y

R(s,f) < R(s—z,f—y)- [EFTETE

(5)

In section 3, we briefly present the proof of Theorem 2 from paper [2]. The numerical values
of upper bound R(s, £), 1 < £ < s < 4, are:

R(2,1) =.32193, R(3,1)=.19928, R(4,1)=.14046, R(2,2)= 16096,

R(3,2)=.08048, R(4,2)=.04769, R(3,3)=.04024, R(4,3)=.02012
and R(4, 4) = .01006.

2 Asymptotics of R(s, ()

If s — oo and £ > 2 is fixed, then the optimal values of 2 and y in definition (4) of R(s, ) have
theformy=£¢—1, 2z ~ps, 0<p<1, and

o ) ~ guin, (R -p, - @,

(ps + £ — 1)psti=1
Using the asymptotic (s — 00) form [1, 4] of upper bound R(s, 1) ~ 2logs/s%, we get

- . [2logls(1—p)] (ps)*-(£-1)'\  (L+ 1) logs '
) 0<pe1 { 2(1—p)?  (pst+l— pt1 [T el T ©)

where e = 2.71828 is the base of natural logarithm and we took into account that

4

mex {(1 —-p)*pt'} = (- l}f“l——(éur])f+1

with the optimal value p = %% For ¢ > 2, upper bound (6) is better than the similar upper
bound
log s

_ﬁdd(s, £) ~ (£+1)!- e

which was obtained in [4].
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3 Proof of Engel’s inequality

Let s > 1,£>1, and t > s+ £, be arbitrary integers, [t] £ {1,2,...,t} and the set B, of size
[By| = 2¢ be the Boolean lattice constituted of all subsets of [{].
t—a
Introduce the set P = P(t,£,t — s) C By, |P| = |P(t,£,t —s)| = 3 (!), whose elements are
n=_{
n-subsets of [t], where £ < n < —s. Let Z C Y C [t] be arbitrary subsets of [t]. Denote by
J=J(,£,1—3) the set of all intervals I = I(2,Y):

I=IZY)2{X:XeP, ZCXCY}, where [Z|=¢ |Y|=t—s, |[]\Y]=s.

Obviously, each interval I € J is isomorphic to B;_,_y and [I| = 2t=*=*_ In addition, any element
X & P is contained in (1) ( ,:'_’;_,'q) intervals of .J. Taking all X with |X| = £ (resp. all X with
|X| =t — 5) we obtain

7= (0520 (L) () 7

A sel T C P is called a point cover of J if for any interval I € J, the intersection T N1 # @.
The minimal size of point cover T is denoted by 7(t, £, t — ).

Lemma 1. The minimal length of superimposed (s, f)-code N(1,£,5) = 7(t, £, — 5).

Proof of Lemma 1. Let € be a superimposed (s, £)- code of length N and size t. Fix an
order over codewords of C' = {c1,¢3,...,¢:}. Introduce the following correspondence between
coordinates of codewords ey, 9, . . ., ¢ and subsels of [{]: a set X}, C [f] corresponding to a coordi-
nate k, k=1,2,..., N, contains the numbers i of codewords ¢; having 1's in the k-th coordinate.
Without loss of generality, £ < |Xx| < t —s. Consider the set T £ {X;, X5,..., Xy} C P =
P(t,¢,1 — 5). Take an arbitrary interval I = I{Z,Y) € J = J(t,£,1 — 5). By definition of the
superimposed (s, £) - code C, there exists a coordinate k such that all codewords with numbers
in Z have 1's in the k-th coordinate and all codewords with numbers in [f] \ ¥ have 0's in the
k-th coordinate, i.e., Z € Xx C Y. Hence, Xy € I and TN 1[I # @. Therefore, T is a point
cover of J. Thus, we have proved that N > 7(t, 6,1 — s), i.e., N(t. €, 8) = 7(t, £, L — s). To prove
N(t,£,s) < 7(t, £,t — ) one needs to check that superimposed (s, £)-code can be constructed
from a point cover using the correspondence described above.

We introduce several additional definitions. A fractional matching of P = P(t,{,t — ) is a
function f= f(I)>0, TeJ=J(tft—s) suchthat

YX eP: Y <L

IaX
A fractional point cover of J is a function g=g(X)>0, X € P such that
¥lede " DEgEI=T
Xel

The fractional matching number v*(t,{,t — s) and fractional covering number 7°(t, £, 1 — s) are
defined by

v (t, £t — s) £ max {Z f(I): f is a fractional matching of P} g

IeJ
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T*(t,£,t — s) £ min { Z g{X): g is a fractional point cover of J} :
XeP

Lemma 2. We have v*(£, 6,1 —35) =7 (1.6, t—3s) = 5t 111‘1:111 ) ('fi);‘(‘;:"),

Proof of Lemma 2. The first equality follows [rom the Duality Theorem of linear pro-
gramming. Suppose that the minimum in the right-hand side is attained at m = mq. To prove
the second equality, it is enough to find a fractional matching f and a fractional point cover g
such that

Y = {[_,,)) > 9(X). (®)

Ied mg—£ XeP
We choose ;
f(f}g(—,m forall T €.J
and
0, if|X|#mo;
9(X) £ { ks, 1 1X| =m0,

The function f is a fractional matching since

|X| t—|X| t t—s—1f
Yo L) = ,,,U) (‘t",,lf') = (“:”m:'_“:; <1 f{xallXeP,
IED¢ )(f.—.'?—-"lu (}Xf)/’(lxl_g)

and g is a fractional point cover since

(t 5-{')
Y gX)=-2—r =1 forall IeJ

(t s~L
Xel mg=¢

The equality (8) can be verified by straightforward computation using equality (7).

Lemma 3. For fized £, s and t — co, the number 7*(t, €, t — s) ~ %’;—r
Proof of Lemma 3. Let £,5 and u, 0 < u < 1, be fixed. If t — oo and m ~ uf, then

Lt Ht—1)---ft—(s+€-1)] : =
)~ Um—@=0]-m}{(E—m) — (- 1] —m} ["f‘“‘“]] ;

Using the definition of 7*(¢, £, — s) in Lemma 2, we have

-1 s 7l =
Rl {l]'é‘gl [uf'(l_u)s]} o {(.‘3%;]’“} ‘

where the maximum is achieved at u = i"-i-s

Lemma 4. Foranyz=0,1,...,s—1andy=0,1,...,¢—1,

7(t, L, — 8)
T(t—x—y,f— y,t—s—y) T

Tty t — ).
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Proof of Lemma 4. Let T, |T| = 7(t,£,t — s) be an optimal point cover of J(t,£,t — s).
Wehave 0 <y <fl<t—s<t—zand T C P(t,£,t—s) C P(t,y,t —=). For X € P(t,y,t — ),
we define the function

g(X)é{Uf(f—w"y,f—y,t—s—y). fXel,

0, otherwise.

It is enough to show that g is a fractional point cover of J(t,y,t — ). Consider an arbitrary
interval I € J(L,y,t— ) which is isomorphic to the Boolean lattice By—;—,. Morcover, the part
of I which lies between levels £ and ¢ — s is isomorphic to P(t —x — y,£—y,t — s —y). Since the
considered sel T is a point cover of J(t, £, t — s) the intersection T'M I must be a point cover of
the corresponding set of intervals J(t —x — y, £ — y,t — s — y). Thus,

ZQ(X)> i =1
= —z—yb-yt-s-y)

Proof of Theorem 2. If t' £ ¢ — o —y, thent —s—y =+ — (s — 2). Using Lemma 1, we
have T(t —x —y. b —yt —s—y) = N(t —z — y,€ — y, s — ). Therefore, we can rewrite the
inequality from Lemma 4 in the form

N(L, 6, s)=> 7"ty b —x)- Nt —x—y, £ —y,s—1).
For s,¢, z,y fixed and ¢ — o0, the application of Lemma 3 yields

i D

N(t, t.5) = e

N(t, € -y, s —2)(1 +0(1)). (9)

I we multiply by log, ¢ the oppesite inequality for reciprocals in (9) and pass to the limit, then
we obtain inequality (5).

Theorem 2 is proved.
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Abstract

We determine the exact exponential asymptotics of the maximum
number of n-length binary strings every pair of which differ in the
following strong sense: there must be a coordinate in which one of
them has a 1 in correspondence with a predetermined position within
a “long run” of zeroes in the other string.

1 Introduction

A central question of zero-error information theory in the sense of [6] is of
the following type: given a (not necessarily binary) alphabet X" and a natural
number n, how large can a set D C X" be if any two of its members must
differ in some specific sense. The sense in which the sequences must differ
is determined by a model of communication through a noisy transmission
device. If this channel is memoryless, then the corresponding mathematical
problems include the code distance problem in which every two elements of
D must differ in a fixed proportion of their coordinates and Shannon’s graph
capacity problem in which any two members of D must differ in a pair of
letters from the alphabet that form an edge in a fixed graph whose vertex set
is . In information theory it is customary to determine just the exponential
asymptotics of the maximum cardinality of the set of n-length sequences
in question. The asymptotic exponent is often called the capacity or the
maximum achievable coding rate of the channel under consideration. Multi-
user generalizations of these models furnish a framework allowing to tackle
with sometimes surprising success many classical problems of Extremal Set
Theory (extremal hypergraph theory) in the sense of Erdds, cf. Tolhuizen's
breakthrough result [8] and [6].
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In this paper we introduce similar questions for certain channels with
memory. In order to keep this paper short we will not introduce a general
model, rather, we will state the special cases we want to treat in the form of
simple purely combinatorial problems about families of binary strings. We
interpret the two elements, () and 1 of a binary alphabet as silence, (i. e.,
absence of signals) and signal, respectively. Further, as it is usually done,
we interpret the coordinate indices as subsequent discrete instants of time.
We suppose that the presence of a bit equal to 1 somewhere in a transmitted
string can effectively serve to distinguish this string from an other one, having
a zero in the same coordinate, only in case the latter string has, in addition, a
predetermined number of zeroes both preceding and following the coordinate
in question. This gives us two additional parameters, the number k of “zeroes
before” and the number | of “zeroes after”. These runs of zeroes represent a
long enough period of silence necessary in order that the presence of a signal
be perceived as such.

More formally, let us be given two non negative integers, k and . We shall
say that the binary sequences x € {0,1}" and y € {0,1}" (withn > k+[+1)
are (k,l)-different if there is a coordinate ¢ with k41 <7 < n — [ such that
either

zi=1 and y;=0 forevery je{i—k,i+!}
or, vice versa,
y;=1 and z;=0 forevery je€ {i—k,i+(}

Let us denote by M(k,l,n) the largest cardinality of a set D C {0,1}"
every pair {x,y} of distinct elements of which is (k, [)-different in our previ-
ous sense. We will call such a set a code for a (k,l)-long silence. Our aim in
this paper is to determine the asymptotics of M(k,[,n) in n, for every fixed
k and [.

Throughout the paper exponentials and logarithms are to the base 2.

2 Codes for a long silence

Obviously, M(0,0,n) = 2" and M(k,l,n) = M(l,k,n). It is an easy exercise
to show that

Proposition 1
M(U, 1, n) = fn-l-l
where fi = 1, f2 = 1 and, in general, f, = fo—2 + fu-1 is the standard
Fibonacci sequence. Thus, at once, we obtain
145

! 1 . / et
nlggg Hlog M(0,1,n) = log Bk
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It is just a little bit more complicated to realize that

Proposition 2
l .
lim —log M(1,1,n) = 1/2
Jlim, ~log M(1,1,m) = 1/

A more careful analysis of the previous proof gives our general result right
away. The details will be given in an extended journal version [3].

Theorem 1 Let q = q(k,l) be the unique positive root of the equation
Dtk g onelifl) = 1 Then

lim l log M(k,1.n) = q(k,I).

n—=oo n

3 Generalizations

Our problem opens up the way to numerous generalizations. One of these is
fairly obvious and has been already mentioned. In fact, our problem can be
viewed as that of determining the zero-error capacity of discrete stationary
channels with memory, a problem hopelessly general in this form, but proba-
bly reasonable to tackle in case of a three-letter alphabet, in which case one
would ask for the determination of the asymptotic growth (with n) of the
largest size of a set D, C {a,b,0}", where, once again, interpreting a and b as
signals and 0 as silence, one would require for any two strings x and y from
D, to differ in a coordinate 7 so that {x;,y;} = {a,b}, while this occurence
of b is preceded by k and followed by [ consecutive zeroes. This problem is
casy in itself, but the compound channel extension of it in the sense of [4]
might be quite interesting. However, undoubtedly, the most interesting and
practically relevant immediate generalization is for superimposed codes, [5],
(2], [1].

We will say that a set of binary sequences, D,, C {0,1}" is a superimposed
code for a (k,{)-long silence if for any ordered triple of three distinct strings
(x,¥,2) from D, there is a coordinate in which (z;, i, z;) = (1,0,0) and the
k preceding and the [ consecutive coordinates of both y and z are equal to 0.
The determination of the asymptotic exponent of the largest size of such a
set is a well-known open problem even if k = [ = 0 ([2]), yet as in that case,
non-trivial bounds of great practical relevance exist in the literature, cf. [1]

and [7].
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Abstract

In this paper we conlinue Lo investigate the codes uniformly distributed over spheres. We
prove that for the fixed s and other parameters in some ranges it is impossible to distribute
codewords uniformly over spheres of radii ¢ and 2s simultancously.

The binary codes with codewords uniformly distributed over subcubes (and also its charac-
teristic Boolean functions and arrays with codewords written in rows) are studied extensively
in differents fields of mathematics and its applications. Such structures are known as codes
with high dual distance, correlation-immune, resilient and e-biased Boolean functions, orthog-
onal arrays and so on. Such structures are important in statistics to design an experiment, in
cryptology to hide a secret and to generate pseudorandom sequences. The uniform distribution
of codewords over spheres was not studied extensively before (we can mention only the papers
1], [2]) although codes with codewords uniformly distributed over spheres can have some help-
ful applications, for example, when the code plays a hash-like function or when we want to
have for all possible words at the output of the channel approximately the equal numbers of
proper decodings. The characteristic Boolean functions of such codes has a good resistance as
a combiner in stream ciphers against statistical attacks when an opponent has the possibility
to change some (restricted) number of inputs of the function.

The paper [1] introduces the general concept of UDS-codes (uniformly distributed over
spheres, a generalization of the concept introduced in [2] for Boolean functions). In [1] two
nonexistence results on UDS-codes are proved. In this paper we generalize thc theorem on
UDS-codes of high cardinality.

We consider V", the vector space of n-tuples of elements from GF(2). An arbitrary set
of vectors C C V" is called a (binary) code. Each vector from C is called a codeword of C.
The number of codewords in C is called a cardinality of C and is denoted by |C]. For a code
C the code € = V" \ C is called a complementary code. A Boolean function is a function
from V" to GF(2). The weight wt(f) of a function f on V" is the number of vectors r on
V™ such that f(z) = 1. The concepts of a Boolean function and a code are closely connected.
An arbitrary Boolean function f on V" is associated with its characteristic set — the code C:
{x € V| f(x) = 1}. Conversely, an arbitrary code €' C V" is associated with its characteristie
function — the function f: f(z)={lifx e C,0ifz & C.

The Hamming distance d(x,) between two vectors @ and y is the number of components
where vectors « and y differ. The sphere S.(z) with center 2 € V™ and radius r is the set of all
vectors 4 in V™ such that d(z,y) < r. Let € be a code in V™. The weight wt(S;(z), C) of the
sphere S, () regarding C' (or simply the weight of the sphere S.(x)) is the cardinality of the
intersection S,(x) N C.
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Definition 1 Let I; and r; be nonnegative integers, all v; ave different, i = 1,..., h. We say
that a code C C V™ is an UDS(ly,r15.. .31y, 7)-code (uniformly distributed over spheres) if for
any =,y € V" we have |wt((S;, (z), C) — wi((S,,(y),C)| < L, 1 =1,....h. Ifry, ..., Ty lake
all nonnegative integer values from 0 until n and Iy = -+« =1, then we say that C' is an I-UDS
code,

If a code C is an UDS(ly, 715 ... 3 lp. 7h)-code then, obviously. the complementary code €
is also an UDS(l;,71;...:0y,7h)-code. Therefore it’s sufficient to consider only codes €' of
cardinality |C] < 27—,

Some examples of UDS-codes with good parameters were given in [1]. All 1-UDS codes were
described in [2].

Theorem 1 [I] Let I, m, n be positive integers and u > 1 provide (u — 1)n > 3ul + u + L:E
n>6l+3+ L%g_. 9{:“2%"- <m < 2%Y, Then there does not exist an UDS(I, 1;1,2)-code in V™
of cardinality m.

In this paper we generalize Theorem 1 to prove the nonexistence of UDS(I, s;1, 2s)-codes.

Theorem 2 Letl, s €, u > 1, a(s) is some constant of s and m = m(n) provide

“j' =2 <m(n) < (% +a(s))
L0
Then there does not exist an UDS(], s;1, 2s)-code in V™ of cardinality m beginning with some
sufficiently large n.

Proof. Let C be a code in V", |Cl =m =Py _,Tf' ) < 271 where P, is an average weight
3

of spheres of radius s. Suppose that € is an UDS[“I._ 8;1,25)-code. Denote the minimum weight
of a sphere of radius s by h. Then the maximum weight of a sphere of radins s does not exceed
h + 1. 'Dumtc by ti, i = 0,...,1 the numbers of spheres of radius s with weight h+1i. Obviously,
Ef,—.. Zf (h+i)=m- z( i
=0

We deﬁne K as the nnmlwl of pairs (z.y4), 2,y € C, & # y, such that d(z,y) < 2s. First,
consider for any vector & € C the sphere Sy;(x). The weight of this sphere is at least (| Fae| —1).
It follows that the number of desired pairs with a is at least (| P2s| —1). Any desired pair is
counted twice. As a result we have

9K > ?’??‘(LPQ,,J-I):?TJ([;:%(“)J g)gm(;-i(’:)—ul).
= i=0

On the other hand, any pair (z.y) in the code €’ such that d(x,y) = 2s belongs to exactly (i")
spheres of radius s, any pair (x,y) such that d(z,y) = 25 — 1 belongs to exactly 2(2‘;1] = (2:)
spheres of radius s, any pair (2. y) such that d(z,y) < 2s — 1 belongs to O(n) spheres of radius
5. Thus, any desired pair belongs to at least (2:] spheres of radius s. Each sphere of radius s
with weight h + 1 contains M(gﬂ_—l] desired pairs. It follows

i
2aN (h4i)(h+i-1)
< A S
(S )a <Xu : :
It is easy to check that for any 0 < i < j <[ we have

(h+i)(h+i—1) (h+i)h+ji—-1) (h+i-Dh+i=2) (h+j+1(h+])
2 I 2 = 2 & 2 '
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Therefore,
2s (h+i)(h+i—1) hh—=1)  (h+Dh+1-1)
(5)1{ < gt, . <t e > =
- g2 —1
= @+ttt g

m i: ("] —2"h
where t) +t] = 2" and thh + ti(h +1) =m Z (%), it follows ] = —=*4——. Thus,

(?.s) K < o Rh{h—1) s (mz (u) i3 2“}‘.) 2h+1-1
§ 2 N 2

Using the lower and upper bounds for K we have

(O(EEO--) =l PEO-)=)

Next, substitute m = Py—*—. We obtain

gn n
2s 2 :§3 (') 28 2 on aT o i
)P = - Py ——(141) S2"W(h— 1)+ (P, - 2" — 2%h) (2h + 1 - 1).

oo

A
[

(3
®

0 R
e
S

AR
o

M1
-}

i (5)parn <o+ e -nensi- mé@ (1)

i

Decompose the sums of binomial coefficients into powers of n, We can assume that 3 > 2s.

& n* 1+2+A+( —1) 1 T et a—2
Z(T) ﬁ"'(_ 5! : +(a—1)l)n 2

i=0

n® + J"’:————;"’z n'=l + O(n*?)
s! .

i (n) 0 (35— 28" 1+ O(n* ?)

(21

i=l

The last two equalities follow
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Next, substitute these two equalities to (1):

_ a2
‘_;T (ns 4 %w‘—l + O(n_s--z)) Pf o (23) P.-uﬂ i 1) <

35— s?

< (h(h—1)+ (P —h}(2h+f—1)}—1( + n"‘+0(n“‘2})..

Divide hoth sides of the last inequality by L;;i

g — 35? 5
(n+3, 35 +O($)) P2 {1.)' (+1) <

2 a"'1
—5? 1
B) +0 (;)) i

The hypothesis of Theorem follows #P_T < P?.0(L) for s > L. Therefore the term
Q;!E ;?{T(E + 1) can be considered as negligible. Grouping the terms we have

.
A= (n+3'q—2§i—+0(%)) (Ps —h)(Ps—h—1) +

P, (n+33;52 +O(%) — (h+1) (s2+0(%))) +h.(h+l~—.P,)(52+O(%)) <.

In order to prove the nonexistence of UDS (1, s;1, 2s)-codes we demonsirate that under the
hypothesis of Theorem the left side of the last inequality is nonnegative. The inequality P2 —
2P, h+ h? 4 hi = 0 follows

A> (n+35 : +o( ))(Ps _R)(P,~h—I)+52P, (S%Jr“;‘ (é)_: p+o(P*)).

Properties of parabola follow the next inequalities.
First, for any P, it holds (P, — h)(Ps —h—1) = —E&

< (h(h—1)+(Ps — h)(2h +1 - 1)) (n. + 2

i 4—”—+a()

figlds then#2P, (5 32”‘+O( )—e-P+O(P’))2 i'i (5 +ow).

Thus, it is sufficient to prove that — 4 (11 + O(1)) + % {rt +0(1)) = 0. If u > 1 this inequiality

lz
second, if T < Py < = +(0Hst{5)

holds for sufficiently large n. 0
Theorem 2 proves the nonexistence of I-UDS codes for the next cardinalities m:
2 " i
Ul 2 < m(n) < 2 for s=23 .

4 nt+ oY) =1+ O(n*-7)
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In this paper we consider the problem of computing the Fast Fourier Transform
of a polynomial over finite fields. The polynomial is decomposed into a sum of
linearized polynomials allowing one to use fast evaluation algorithms. An example
of the FFT algorithm with the complexity lower than the best one known to the
authors is provided.

1 Introduction

Currently there exist a lot of algorithms for computing the Fast Fourier Transform (FI'T)
over the field of complex numbers. Many of these algorithms can be used in the case of
finite fields, but in practice the problem of construction of FET [or a finite field remains
hard and poorly formalized [3].

In this paper we suggest an universal approach for the construction of FF'T algorithms
over the fields of characteristics 2. The algorithm is based on the decomposition of an
arbitrary polynomial into a sum of linearized polynomials allowing thus usage of the
effective evaluation algorithms [2].

2 Basic definitions

Definition 1. The polynomial over GF(2™) is called linearized if

Lim) = Z:J,-:sz', I, € GF(2™).

It can be easily proved that for linearized polynomials L(a + b) = L(a) + L(b) holds.
This property leads to the following theorem presented here in a slightly modified form:

LThis work was supported by the Alexander von Humboldt Foundation.
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Theorem 1 ([1]). Let z € GF(2™) and let By, B, .. ., Bm—1 be a basis of the field.

m—1 m—1
If =) zf, 2:€GFQ), then L(z)=) xL(f).
i=0 i=0

Let us consider ¢yclotomic cosets modulo n = 2™ — 1 over GF(2):
(0}, {ki, k2, k1 2%, .. i 2™ 1Y Lk k2, k2, . k2™ YY), where k; = ;2™ mod n.

n—1
Then any polynomial f(z) = Z fiz', fi € GF(2™) can be decomposed as
i=0
] mi—1 y
fz) = ZL;(J:"‘), Li(y) = Z Fuat moanlf” - (1)
i=0 =0

In fact ‘(1} represents a way of grouping numbers 0 < s < n into eyelotomie cosets:
s = k;2? mod n. Obviously, this decomposition is always possible. Note, that term fy can
be represented as Ly(x"), where Ly(y) = foy.

3 Fast Fourier Transform

Let us consider the problem of computing the FFT of a polynomial f(x), i.e. computing
values f(a?) = Y17 fia, where a is a primitive element of GF(2™). According to (1),
f(a?) can be represented as f(ad) = 3!, Li(a?k). It is known [1] that a% is a root
of a minimal polynomial of degree m; and thus belongs to a subfield GF(2™), m; | m.
Thus all the values (o®)7 lic in GF(2™) and so they can be decomposed in some hasis
(Bios - -+ Bims—1) of the subfield: a7 = 7™ 1 a.:.B: ., aijs € GF(2). Then, according to
the theorem 1,

{ mi—1 [ e | mi—1
E=feh)=Y" 3 cnlilB) =Y D 104 (Z ﬂ,-%sz,.y) ; )

i=0 g=0 i=0 s=0 p=0

This equation can be represented in matrix form as F' = ALf, where F = || Fj|, f = || f;]],
A is a matrix with elements a;;, € GF(2), L is a block diagonal matrix with elements
2.

It is possible to choose the same basis for all the linearized polynomials of the same
degree m; in (1) and obtain very small amount of different blocks in matrix L. This can
simplify the problem of construction of a fast algorithm for multiplication of a matrix L
by a vector f over GF(2™).

The described transforms are similar to the ones presented in [4]. The main differences
are:

1. Matrix L has regular structure which can be used for a further optimization.
2. There is a single multiplication of a binary matrix by a vector. This ecan be used for a
better optimization.
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Example 1. A polynomial f(z) = Y5, fir!, fi € GF(2°) can be represented as
f(z) = Lo(2%) + Li(z) + La(2?)

Lu(y) = foy
Li(y) = L+ Lyt + L'
Lily)=  fay+ fo + sy

Let us choose as basis elements of G F(2?) the standard basis and represent the components
of Fourier transform as

1@®) = Lo(a®) + Li(a®) + La(a®)

@) = Ly(a®) + Li(a) + Lafe®) = Lo(1) + Li(a) + La(1) + La(e)
Fled) = Lo(@®) + Ln(a?) + La(a®) =  Lo(1) + Li(a®) + La(1) + La(c?)
f@®) = Lo(a®) + Li(o®) + La(a?) = Lo(1) + Li(1) + Li(a) + La(e®)

)= Lo(a®) + Li(0!) + La(a®) = Lo(1) + Ly(@) + Li(e?) + In(1) + Ln(e) + La(a®)

fl@®) =  Lo(a®) + Ly(e®) + Ly(a) =  Lo(1) + Ly(1) + Ly (@) + L1(a®) + L2(a)
fla®) = Lg(a®) + Li(a®) + La(a?) Lo(1) + Ly(1) + Li(a®) + La(a) + La(a®),

Il

Il

where a is a root of the primitive polynomial 2?+2+1. These equations can be represented
in a matrix form as

Fy i (YA IS LSS5 Li(1)
P‘| Ot [ Sl gl i) L|(O:)
Fg iGN il 2l Ll(ﬂ"‘?)
p=|El=la 1.0 00001 1| L:Q) | =48
Fy T T e e (0 0
s 3 s (O L B | Ly(a?)
Fy 1 N 1 O S i WSy (s Jo
Then the problem of computing the FFT of a polynomial f(x) can be represented as
W 0 0 » il
F=A o W o {fl:f:‘.:f-l:fS‘fﬁsfS\fU) 1 W= [ “2 a‘i . {3}
(Fral 047 il a? ot of
biy i1
The first stage of the algorithm is computing | bz | = W [ @ | for i = 1,2, where
bis Qi3

ap = fi, iy = fa, ...y agg = f5 (see (3)). This can be implemented using the following
algorithm:

by = Qi+ Gz + gy

b"g {I((f.,'l + (152) + (l"}((f.,'g + ﬁ,;;;)

bis = o?(ay + ai) + o (ap + ais),

I
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which requires 3 multiplications and 6 additions. At the end of the first stage one ob-
tains the vector § = (Sy,...,Ss) = (b, big, bia, bar, baz, boa, fo). The following algorithm
computes the product of a binary matrix A with vector S:

]‘7 = S:{ =T Sﬁ f“z = ’fg - T'}' == 'I]ﬂ
T‘g:S}_"l‘Sﬁ F3=T:3=Sﬁ"|‘T12
”g=S|+S.1 1'3:11.|='1'|+‘I,|0
Tyy= S5+ S5 Thw=8+T;

Tio =5y + Ty Fo=Ts =T +Ti1

v=Tp=5+T, F=T=T+1T.
F], :T] :T7+Tg

Thus the FFT of length 7 can be computed with 2 x3 = 6 multiplications and 2 x 6413 =
25 additions. This is smaller by one addition than in the algorithm presented in [4].

If one chooses the normal basis in (2) then all the blocks of the matrix L are circulant
matrices. Thus the problem of the multiplication by this matrix can be considered as a
problem of the computing a set of circular convolutions of degree m; | m. Application of
these techniques allowed us to construct the FFT algorithm of length 15 with 3x54+1x1 =
16 multiplications and 3 x 10 + 1 x 2 4 45 = 77 additions which is better than the ones
presented in [4] (16 multiplications and 100 additions) and [3] (20 multiplications and 70
additions).

4 Conclusions

In this paper we suggested an algorithm for computing the FFT of a polynomial over
GF(2™). The task of computing the FFT of length n = 2™ — 1 can be reduced to
computing the circular convolutions of length m; | m and multiplication of a binary
matrix by a vector.
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Abstract

We classify all {01, dvy;t, ¢}-minihypers, d small, ¢ = ph, h > 1, for a prime
mumber pg > 7. When g is a third power, the minihyper is the disjoint union of
PG(p,q)’s and of projected PG(3p + 2, ¢/g)’s; when q is a square, also Baer subge-
ometries PG(2p + 1, ,/q) can oceur.

1 Introduction

We continue the study of the minihypers considered by P. Govaerts and L. Storme [2].

For simplicity, in this abstract, we will describe how to classify {d(¢-+1), d; 3, ¢}-minihypers
F,
At the end, we will also state the general result.

For references and the proofs of the general result, we refer to the article [1].

Definition 1.1 An {f,m; N, q}-minihyper is a pair (F,w), where F is a subset of the point
sel of PG(N,q) and w is a weight function w : PG(N,q) = N: 2 = w(z), satisfying

(1) w(z) >0 z€F,

(2) ¥ pepw(a) = f, and

(3) min{}", 5 w(z)|H € H} = m; where H denoles the sel of hyperplanes.

1This author's research was supported by the Flemish Institute for the Promotion of Scientific and

Technological Research in Industry (IWT), grant No. IWT/SB/ 991011/ Ferret
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Definition 1.2 A blocking set of PG(2,q) is a set of points infersecting every line of
PG(2,q) in al leasl one poind.
A blocking set is called minimal when no proper subset of it is still a blocking set; and we

call a blocking set non-trivial when it contains no line.

Theorem 1.3 (Polverino and Storme, [4]) The smallest minimal blocking sets in PG(2,p?),

p=pl, po prime, py > 7. with exponent ¢ > h, are:

(1) a line,
(2) a Baer subplane of cardinality p* + p*? + 1, when p is a square,
(3) a set B of cardinality p* + p* + 1, equivalent to

{(z,T(2), Dllz € GF(P*)} U {(z, T(x),0)llx € GF(p*) \ {0},

with T the trace function from GF(p*) to GF(p),

A line intersects B in 1,p-+1 or p> + 1 points.

The last intersection will be called o (p? + 1)-sel.

(4) a set B of cardinality p* + p* + p+ 1, equivalent to

(w2, Dl € GFGP)} U (2,22, 0)]}x € GF(p*) \ {0}).

A line intersects B in 1,p+ 1 or p* +p+ 1 points.
The last intersection will be called a (p* + p + 1)-set.

Remark 1.4 These two latter blocking sets (3) and (4) are also characterized as being a
projected PG(3,p) in the plane PG(2,p%). Namely, embed PG(2,p%) in a 3-dimensional
space PG(3,p"). Consider a subgeometry PG(3,p) of PG(3,p*) and a point r not belonging
to this subgeometry PG(3,p) and not belonging to the plane PG(2,p%).

Project PG(3,p) from r onto PG(2,p?).

If the point r belongs to a line of ithe subgeometry PG(3,p). then this PG(3,p) is pro-
jected onto the blocking set of size p* + p? + 1; otherwise we obtain the blocking set of size

P+p+p+ 1

2 The classification

Theorem 2.1 ([amada and Tlelleseth, [3]) Let F' be a {d(g + 1),8; 3, g}-minihyper where
t>3, 0 <2
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between T = (Ziy.vosTn)y 4= (H1y---2¥a) € Q"= {0,1,...,q—1}"
dy(x,y) = max{|z; —p| :i=1,...,n}
da(z)y iz =zgporae <]
du(z,y) = { e . .

2d,(x,y), if z and y are incomparable

where £ > y means that o; —y; 20, fori=1,...,n.

Proposition 1. Let C C {0,...,¢—1}". Then

(i) € is an (~AALC code iff for every x,y € C holds d,(z, y)=£4+1

(ii) C is an ¢ AUEC code iff for every x,y € C holds du(z,y) > 2£ + 1.

1t turns out that it is very casy to determine A,(n, £), for any given parameters 1 < £ < ¢—2
and n. However this is not the case for unidirectional codes.

Theorem 1. For 1 < ¢ <gq—2 one has Ay(n, ), = [e—‘f—‘]n

Theorem 2. Given integers £ > 1, ¢ > 2(£ + 1) we have ¢ (t—'f-i)“ < Ay(m, £), < [ﬁ'—l " for
somne constant c.

Write g = 2m+¢, where ¢ € {0,1}, and let Q = {—m,—m+1,...,m+¢}. Let us define X
to be the set of solutions x € Q" of the equation

n—1

Y (e+1) 'z =a (2.1)

i=0
It is easy to see that X is a [~FAUEC-code.In a special case when £ + 1|g we can maximize
| X| over all choices of a.
Theorem 3. Ior £+ 1|g (g = |Q]) max, | X| = (E{—I)"_] . The maximum assumed for any
a€Q=[-m,m-+e|in (2.1).
What can we say about A,(n,£),, when £ +2 < ¢ <2(f+1)?
The simplest case is ¢ = 2(¢ + 1).In this case A,(n,£), = 2". However, we have no “good”
lower bounds for other cases. A simple lower bound is A,(n, £), > (LE J)

Can we do it better?

The Case: f=1

For ¢ = 3 we have A,(n,1); > (L"éJ)

‘We believe that one has equality in this case.
For g =4 Ay(n,1)s =2

¢ = 5. Simple bounds observed above give us ¢(2,5)" < A,(n, 1)s < 3". However the lower
bound can be improved. To this end we look for good constructions of 1- AUEC codes given

S. Ferret, L. Storme (Belgium) 115

by means of some equation. Let @ = {0,+£1,42}. Given integers ag,...,a,-1,A let X be
the set of all solutions x = (zq,...,2,_1) € Q" of an equation

n—1
Y aizi=A. (2.2)
i=0

Proposition 2.The sot X is a 1-AUEC code if all subset sums of ag, .. .,a,-; are distinet.

Note that for A = 0 this is also a necessary condition. Let {ag,...,a,} € N has distinct
subset sums. Denote by LA,(n)s; the maximum possible number of solutions = € Q" of the
(2.2) over all choices of ay, ..., a, and integer A. A slightly modified version of this problem
was raised by Bohman (see [1]) in connection with a sum packing problem of Erdés [3].

Theorem 4. For some constants ¢i.c; one has ¢(2,538)" < LA, (n)s < (2, 723)".

Error Detection Problem The detection problems for asymmetric and nnidirectional
errors are equivalent, i.e. any i-error deteciing asymmetric code is also a {—error delecting
unidirectional code. In [act the detection problem for unidirectional errors is much easier
than the error correction problem. This problem is completely solved for binary channels
(see Borden in [2]). That is for any 1 < ¢ < n; t,n € N; an optimal code of length n that
can detect up to # errors is constructed. For £ < n observe that a code C detects all patterns
of ¢ or fewer unidirectional errors, iff whenever a codeword x covers a codeword y then for
the Hamming distance d(ir,y) > { + 1. In this case as an optimal code one has to take as
codewords all vectors with Hamming weight w = L%J mod ({ + 1). This follows from a
result of Katona [4].The problem is also solved for the Varshamov’s channel, however for the
channel we described above the problem is open.
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Abstract

New classes of unimodular perfect sequences are proposed. The
lengths of the sequences are the product of two primes.

1 Introduction

A complex valued sequence x = (&g, L1, ..,2Tn—1) of length n containing at
least one non-zero component is called a perfect sequence provided all the
out-of-phase autocorrelation coefficients are equal to 0, i.e.

n—1

Rx (T) = Z IS:BES+T}mOdn = 0" e 1’ 2‘- SRS s l’ (1)
§=0

where z* denotes the complex conjugation of z. The sequence x is called
unimodular if all components of the sequence are unimodular i.e. lying on
the unit circle.

Perfect sequences have the following properties [1]. Let x be a perfect
sequence of length n. Then sequences y = (yo, . . ., Yn—1), Where

o y={yi}yi:=axyla| =1

o ¥ = {0}, Ui =2 Vmodnid = L -, m— 1

o vy =4} = 2iiymodn, 9edlin)=1

oy ={yi}yi =1}

o y={y},yi:=zi®s=1,...,n=-1,"=1,C#10<i<n
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for i = 0,...,n— 1, are perfect as well. In addition, the Discrete Fourier
Transform of a unimodular perfect sequence is the unimodular perfect se-
quence.

These transformations induce the following equivalence relation: perfect
sequences x and y are equivalent, x ~ y, if and only if they can be obtained
one from another by using several above transformations.

Thus the set of all unimodular perfect sequences is disjointed into equiv-
alence classes.

The general problem is to classify unimodular perfect sequences up to
equivalence and to construct unimodular perfect sequences.

From now on we consider only the case n = pyps, where p; and po are
primes.

It is known that there are only finitely many of equivalence classes ([1],
[2]). For any n = p;p2, construction is known for single equivalence class.

We propose a number of new equivalence classes. In addition, some
sequences are obtained numerically.

2 Known results

There is a known construction of unimodular perfect sequence of length p) ps
in the case when two unimodular perfect sequences of prime lengths p; and
p2 are known([4]).

Let x = (x0,...,%p,—1) and ¥ = (Yo,--.,Yp,—1) are unimodular perfect
sequences. Then a sequence z = (20, ..., 2p;ps—1), Where

Zi = Timod py Yi mod pas (2)

is the unimodular perfect sequence. This procedure is referred to as Chinese
Remainder Theorem (or CRT) construction.

To the best our knowledge, no other unimodular perfect sequences are
known.

3 Sequences of length 6

It is convinient to represent unimodular perfect sequence
x = (xp, 1, T2, T3, T4, T5) as a 2 X 3 matrix

X={1 T4 a:g]_ 3)

T
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We can rewrite the set of equations (1) as follows:

n—1 e
i o (4)
i—g L(i+7)modn

e

Then we can apply theory of exclusion consecutively for each variable x;.
Thus, equivalence classes may exist only in the next cases:

= —1;

Lobs

L
e o=

] ;IT% + T3z -i—l‘% —H1
° 2:%4—.‘1’724—1:0;

o 22+ 2123 = 0;

® ;::1"-4-1:;;:(];

The above cases led us to 2 non-equivalent solutions. Their representa-
tives are:

1.

e ®)

where ( is a primitive root of degree 3 of identity. This solution was
known previously [4].

N
x3=[i on iC}‘ (6)

where C = .3660254038 + .9306048591i is a unimodular root of poly-
nomial k(z) = o* + 22% + 2z + 1.

4 Sequences of length 15

We have found that all sequences of length 15 can be disjointed into 71
equivalence classes. These classes can be described as follows:

e 1 previously known sequence, CRT-constructed from sequences (1, 1, (3)
and (1,C5,C§, g,CE,), where C_“;’ =1 and Cg = g
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¢ 1 previously known sequence, CRT-constructed from sequences (1, 1, (3)
and (1,¢2,¢2,¢2,¢2), where (§ =1 and (§ =1

e 1 2-phase sequence (1,1,a,a,1,a,1,a,a,a,a,1,1,1,a), where Rea =

7

g

e 1 3-phase sequence (1,a,b,b,1,b,a,b,b,b,b,a,1,1,b), where Rea =
—%, Reb = —%

e also 67 sequences not listed here.

5 Results

We propose several new equivalence classes for unimodular perfect sequences
of non-prime length, namely 1 new class for length n = 6 and 69 new classes
for n = 15. 3 classes are presented in the paper.
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Representation of a finite field by
symmetric matrices and applications
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Abstract
It is well known [1] that a field GF(g") can be deseribed in terns of an n x n
matrix A such that all the powers A', i =1,2,...,¢" — 1, corresponds to [ield

elements o', where o is a primitive element of a field. We show that for binary
fields GF(2") a matrix A can be chosen as a symmetric one. This representation
is useful in theory of rank codes. The standard fast decoding algorithm can be
applied to a corrupted received code matrix as well as to the transposed version of
this matrix. It allows to correct rank erasures in more easy way.

1 Matrix representations of a finite field

Let GF(q") be a finite field with a primitive element a. Let a be a root of an irreducible
primitive monic polynomial

f{A} = A7 + {J‘.n_ll\n_l s 11,,_-3/\“'_2 o RS ﬂ-]/\l + ag. (1)

The elements of, j =1,2,...,¢" — 1 are all non zero elements of GF(g"). Moreover, for
i+ j, we have o' — o’ = at.

Let A be an nn x n matrix over the base field GF(g). We say that the matrix A
represents the feld GF(¢") if and only if all the powers A7, j = 1,2,...,¢" — 1 are
distinet, A7" 1 = I,,, where I, is the identity matrix of order n, and A* — 4/ = A*, i # j.

It is known [1] that the companion matrix C' of the polynomial (1)

P e ¢ I
T O A
oE sl B R SR (2)
e 0 2
R (0 e e L

represents the field GF(g"). The characteristic polynomial of this matrix is f(z) from
(1).

All the other matrices representing the same field are of the form A = QCQ !, where
( is a square nonsingular matrix of order n over the base field GF(q).
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2 Symmetric matrices representing a field

From now on we consider binary fields only, i.e., ¢ = 2. We find a symmetric representing
matrix A in the form

w1 0 0 0 Ty
O | i idgoud
0 1 U3 0 Ty
A= S AL . (3)
e RTS8 ey L s
0 0 0 1 Yn—1 Tn-—
Ty Ty T3 v Tp—9 Taoi Un

Let A(21, 23,...,2,) = det J,, where J, means a three-diagonal Jacobi matrix

B 0 AR OEY s
i % f L. g0 e
0 1 g0 0 0 {)
R 8 T P S 0
(] R T B 2]

[ (SR ) 1L iR

Let F(A) = det(A], + A) be the characteristic polynomial of the matrix (3). For i =
1,2 coaymylet = Ao

Lemma 1 The characteristic polynomial of the matriz (3) is given by

T84 ey Zn—l)'l‘

b PR ;n—l}"'

To Ay (21) An-3(28) 245+ s Zn1)+
mﬂ—‘}An-—f{{zl H e 2.'"_3)A]_(2“_1)+
Lo ANzl 2z e Zaa )

F(X)= 20A iz
1 Au—a(2

LS

13
234

We have to prove that there exist binary entries 1,42, .. .. ¥t @1, 29, ..., Z,_1 such that
the polynomial #'(\) coincides with the irreducible palynomial (1).

The leading coefficient of F(A) is equal to 1. All the other coefficients are rather
complicated functions of y;, zx, j = 1,...,n; k = 1,...,n — 1. We will consider these
entries as i.i.d. binary variables with the uniform distribution.

Theorem 1 All the coefficients of F()\) except the leading coefficient 1 of \* are i.i.d.
binary variables with the uniform distribution.
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This means that, in fact, there exists a matrix of the form (3) with any characteristic
polynomial of degree n. In particular, there exists a matrix of the form (3) with the
characteristic polynomial coinciding with the irreducible polynomial (1).

Prool of Theorem 1 is based on a few lemmata. The idea is that each coefficient of
F()\) contains some y and @ as a linear part and these linear parts are lincarly indepen-
dent.

Consider a special case of Jacobi matrices when 2y =z =23= ... = 2, =

Lemma 2 The polynomial A, (N A, ..., \) contains only odd powers of A if n is odd,
and only even powers of X if n is even.

Lemma 3 The variables y1, 42, ... Yn ave linear parts of coefficients for powers of A
defined by polynomials

vt AAM—?( 1 Ar 1 A)
Y2t /\An—ﬁ( |A~ )AI(A}

Yn=11° /\AN—E(A| }«. g ,).)
Un - An_1(A A,,..,/\),

Corollary 1 Variables {y} are linear parts for the next powers of A: {n —1,n —3,n—>5,....

Lemma 4 Polynomials corresponding to variables Y, Yn—1,- .., Yjz)+1 are linearly inde-
pendent.

Lemma 5 The variables 2y, %, ..., &, are linear parts of coefficients for powers of A
defined by polynomials

Ty - An—‘.’(’\!)‘\“'a)‘)

Tyt An—:i(/\‘)'u“‘\)‘)&l.(’\}

LIRS B &u- (}\7/\: ’\)&I(A)
Ep—1: u—Z(Aa )‘1 A)

Corollary 2 Variables {x} are linear parts for the next powers A: {n —2,n —4,n—6,....

Corollary 3 Couples of variables {xy,@u_1}, {®2, Las} ... arein the same linear parts.

Lemma 6 Polynomials corresponding to variables T,y To-z, ... Y] are linearly inde-
pendent.

Corollary 4 Linear parts for powers of A n — 1,n—2,n—3,...,2,1,0 are linearly
independent.
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2.1 Examples
Next symmetric matrices represent fields GF(2?), GF(2*) GF(2%), GF(2°), GF(25):

& 010 b
A22(1 1)“‘13: 11 115 A=1lp 190 0
L 1.1 ¢ 1
0100 1 geg e b
10100 1
10100 :
010100
Ar,IO].O].]. Aﬁ=
001010
0 u0ulad Ja
S Vg Tl s ¢
010001

with the corresponding irreducible primitive polynomials f;(,\)

=N+ A+1, fa(A) =
MAA+1 ) =M+ X3+ 1 ) =N+ 2 +1, fi(A) =2+ X

3 Applications to rank codes

. b ‘ - n—1
Consider a Rank code consisting of the set of binary n x n matrices {0, U2 (C?) }

where ' is the companion matrix (2) of an irreducible primitive polynomial. This code
is a maximal one and can correct up to L@J rank errors, or, up to n — 1 rank erasures.

If we represent each column of all the code matrices as an element of the extended
field GF(2") then we obtain a G F(2")-linear [n, 1,n] Rank code of length n, number of
information symbols 1 and rank distance n (see, [2] for details). There exist fast algo-
rithms for correcting rank errors and similar algorithms for correcting column erasures.
Correcting row erasures is still more complicated.

On the other hand, if we represent each row of all the code matrices as an element
of the extended field GF(2") then we obtain a GF(2)-linear [n, 1,n] Rank code. To the
best our knowledge fast decoding algorithms do not exists for thl‘: representation.

Use a symmetric representing matrix A instead of the companion matrix C' allows to
overcome the difference between columns and rows. Lifting to the extended field GF(2")
by columns is equivalent to lifting by rows. Hence we have dual symmetric algorithms
to correct both row erasures and column erasures.
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Vandermonde and F-metrics
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Abstract
Metrics based on projective sets (F-metrics) first have been introduced in [1]. Special F-metrics
asgociated with generalized Vandermonde matrixes is used in this paper to construct a linear code.
Weight distribution of the code is found. Algorithms of coding and fast decoding are described.

1 Introduction

A lot of paper in algebraic coding theory are devoled to codes in Hamming metrics, rank metrics as
well as Lo burst-correcting codes. Other metrics, e.g. F-metrics suggested in [2], [3], [1], are not very
well examined. One can mention for example, papers [5], [6] and others. However, these metrics can
open possibilities not only for correcting new types of errors but also for applications in other fields,
for example, in cryptography. In this work we use a class of F-metrics associated with generalized
Vandermonde matrix. It happened possible to construet a meaningfull theory for the class of metrics.

“The paper is organized as follows: in Section 11 F-metrics associated with generalized Vandermonde
matrix are introduced. Code properties in the metrics are examined. Weight distribution and fast
decoding algorithm are found.

Some [uture directions are mentioned in conclusion.

A reader interested in definitions and general properties of F-metrics as well as in that of the parent
code should refer to [1].

2 Codes in Vandermonde F-metrics

2.1 Vandermonde F-metrics
Let 2 be an n-dimensional vector space over a finite field I, = GF(g). Usually Q will be a vector space
Ffl

™

Let the vectors fi, fa,..., fiv defining a projective F-metrics be columns of a generalized Vander-
monde matrix.

uy Uy A up
upL UgiLs e UNTN
2 et |
= i UpT  Lie  UNEY A (1)
nlz{‘_l -ugur;‘_l s uN;r:f.{{_l

*gabipop3.mipt.ru
tobernikhin@8ka.mipt.ru
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where n < N, z; € I, are different from each other and u; € Fy do not equal zero, 7 € fils ety )
We will take the liberty to refer to the above F-metrics as " Vandermonde F-metrics”.

Parent code (see [1]) for the F-metrics will be GRS-code. Coset weight distribution for the code is
well known.

2.2 Codes

Linear [n, k] code C is defined hy its transposed generator matrix

g gn ... gk
etk @
Mn G2n .. Gkn

If & = (a1, a2,...,a:)7 is a message, the corresponding code vector is calculated as § = GT - d. Let
us define GT matrix:

{51 ta e Vg
o, min u),y«:; < Vgl
Gh= vyt vals ... R ) (3)
e S e
viyy T tayy o ... TRy

where v; € F, are not equal to zero and y; € Fy differ from each other.

Besides, let us choose y; in a way that no y; equals x;, i € {1,...,k}, j € {1,...,N}. Code di-
mension k must satisfy an inequality k + N < g+ 1. We impose the last condition because maximum
number of columns in a generalized Vandermonde matrix over GF{g) equals g+ 1 and we would like for
a concatenation of the two matrixes: F and G'to be the generalized Vandermonde matrix.

Lemma 1. If § is a non-zero code vector

j=aG¥.

and its Hamming weight is dy (@) = m, then Na(§) =n —m + 1.

Proof. Proof follows directly from the fact that any n columns of the Vandermonde matrix are linearly
independent., 0

Corollary 1. Mazimwm F-distance dr of the code C equals n — k + 1. Ilence, the code can correct up

to ly = ["é"”] F-errors.

Corollary 2. (F-weight distribution of the code C). The number A(i) of code vectors that have F-
weight equal to i is defined by the formula:

siy=[bi=0

g S [ 1 B et o= GRS S M 5
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2.3 Fast decoding algorithm

We reduce decoding in the F-metrics to the decoding of GRS codes.

Let § be a code vector and & be an error. We will show there is a fast decoding algorithm if the
F-weight Nr(€) is not greater than [4571] .

Let us consider concatenation (F|GT) of the matrixes F and G7. If R is a non-singular square
matrix formed by last n — k columns of F and k (all) columns of G*, then

- ~ B 0
-1 Ty T = n—k 4
R (FIG)—(F[G )_(13 0 Ek) (4)
where Ey is an identity { x {-matrix. Matrix B,y (v g-n) 15 a generalized Cauchy matrix with elements
by = @i - B; that can be obtained explicitly. If we represent the error vector & by a linear combination:
i — vj

my - f'; + my - f‘:; P 1 V) f w, the Hamming weight of the vector i is less or equal to t;. To derive
the original code vector § we will multiply the resulting vector & = §+ & by R~ L

4!

R'-(G+8=R - F+F-m)=G+F-n=§+¢

N,

The first n — k components of the vector 5’ will be zeroes:
0
0
0

Gn-k i1
fn—k+2

LT
Il

all

So, we will know the first n — k components of the vector €. This knowledge allows us to reconstruct
vector i which weight is

dr(C) =1
dy(m) =t <ty = [%]
We need to solve the system of equations F.ii=é
€
&
my :
E,._ Mz S ~
(B 0 k ) : = | én-k (5)
y *
mu

E. Gabidulin, V. Obernihkin (Russia) 127

Let us consider the first n — k rows of the system (5): a matrix H containing the first n — k rows of
the matrix F is a concatenation of a generalized Cauchy matrix and identity matrix. Therefore, it can
be converted to a generalized Vandermonde matrix H'. We will refer to the mapping from H to H' as ¥.

So, we have a system of lincar equations:

H-m= ¥-

€n—k

This is a problem of decoding a GRS code which has a solution when dp () < [#5%]. This is true
in our case.

3 Conclusion

In this paper codes were constructed for a projective F-metrics associated with a generalized Van-
dermonde matrix. Fast decoding algorithm was presented. It seems quite interesting to find useful
F-metrics and fast, decoding algorithms for other codes. 11 is also interesting to consider applications of
codes in F-melrics in other fields, e.g. cryptography.
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Abstract

[n this paper we consider two methods to construct codes over rings, The first
method generalizes to rings the constructions of [GOJ, the second method uses the
quadratic double eirculant codes of [G]. As an application we extend the tables of
best known self-dual codes over the ring Zy = Z/(4) to length 42 for the Lee and
Euclidean distances, we construct a self-dual code over the ring Z/(25) which gives the
first unimodular lattice of dimension 43 and norm 4, and we construct codes over Zy
of rate 1/2 which realize some of the best Lee and Hamming minimum distances for
lengths 8 to 22.

Keywords :  sell-dual codes, lattices, codes over rings.

1  General construction

For general definitions and notation related to codes over rings and the different distances
we refer to [RS]. In this paper we only consider the Euclidean scalar product.

Let R bea ring. Let €' be a self-dual code over R of length n. Let (7 be a generator matrix
of €. Now define n % n square matrices M, satisfying for A, invertiblein R: M, - Mty T
For 11y, ..., 11, permutations of the symmetric group S, (r > 1), we consider the codes ('
with generator matrices Gy G, = GM;I1 -~ M,IL. In fact this action keeps the self-duality
of the code as we show it in the next proposition.

Proposition 1 [GOJ If the code (' is self-dual then so is €.

Since we are interested in simple constructions of codes, we take all matrices M; to be
equal to a simple matrix M, constructed from smaller square b; x b; matrices I5; ipie=al )
satislying: B, - BI = Ay, and [rom a 3 in R such that 3 = A. Then the block matrix
M consists of k; times the matrix B; on the diagonal and ks times 3 on the diagonal, with
ks + ¥ biki = n.

Now, we identify the set {1,...,n} with the quotient ring Z,, and we take all the permu-
tations equal to the same permutation r acting on Z, as:

Ve &, w(z)=a-(z41).

with @ and n coprimes. We say that a code is obtained from construction (a;r) when it is
obtained after applying r times the matrice M and the permutation 7 to the matrix .
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2 Self-dual codes over Z;,

We now consider the particular case of self-dual codes over the ring Z;. These codes have
heen classified up to length 15 and bounds for the Lee distance are given in [R], these bounds
are tight up to length 24 [RS]. For higher lengths few is known except for lengths a muliiple
of 8, corresponding to Type IT codes. In the following we extend tables of the best Lee and
Euclidean distance for self-dual codes of lengths up to length 42.

We denote by Og, iy and A, the following matrices corresponding to matrices of self-dual
codes:

TR ) I U b
i & i |
L b i s e Al -
Os = S e I = .0 2 0.2 | jand Az = (2).
Q100 =2 k2
S i s

We take for i the generator matrix obtained by the direct sum of nadg, ny Ny and nyOs,
with ny = n div 8, ny = (n mod 8) div 4 and n3 = n mod 4.

For the square n x n block matrix M, we consider the two matrices By and By defined
respectively by:

il i
Dy 3l TR D sk
200 TS e T

8'121:111'3"':11121::
L il i

R

If n is a multiple of 4, then M is obtained by a sequence of matrices Iy on the diagonal and
else M is built by assuming that each B; equals to the same matrix By and that 3 = 1 with
ks = n mod 6 on the rest of the diagonal.

We give in Table 1 the best Lee distance (dr) known for self-dual codes of lengths 25 {o
42 and we also give their Fuclidean distance (dg). A reference (a;r) in the table precises
the construction used to find the code.

n | dp | dg | reference n | dp | de reference
258 8 D) 3110 [ 12 (1:10)
% 8 8 (1:5) 35 [ 10 | 12 (1:10)
W88 (15 36 12 |12 | (19;44)
2810 [ 1Z | (1511) 37 (12 [ 12| (1059)
39 (10 | 12 | (2:180) 38 [12 |12 (3:22)
30110 |12 | (155 30 [ 14 | 16 [GH]
311212 | [RS 40 | 14 | 16 | (21;223),[RS]
32 | 14 | 16 RS DI B B (s (1;23)
33|10 | 12 (L;10) 42 | 12 | 16 (1;:58)

Table 1: Best known Lee and Fuclidean distances for self-dual codes over Zy

3 Self-dual codes over Z»;

Sell-dual codes over the ring Zos have not really been studied, in that case no eflicient Gray

map is known but it is still possible to apply Construction A of [CS] to build unimodular
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lattices. One obtains for @ = (wy.--- ,a,):
Ai(C) = -f-{;r € Z"|(xymod 25, -+ ,a,mod 25) € ('},
3

and the minimum norm of Ays(C') is min(5, i-alf-l ).

We take for generator matrix G of length n the direct sum of [2, 1, 2] codes with generator
matrix (12,9) to which we add the code generated by (5) at the beginning of the diagonal il
n is odd. We let:

8 99
Bi=: 9 & 9
9 98

Then applying different permutations as in the previous section we obtained a code with
minimum Buclidean weight 100 with generator matrix (A;Ay), where A, is a 22 x 21 malrix
composed [rom the identity matrix of size 21 and a last line of zeros and :

994 1 7 15 2 1012 4 2 2121 8 2315 6 1322 11 19 22 11
0 T6l ni1Re2l 2 8119023 4 A 5 218 7 T8 2018 80 22
37 182121162022 14 1 151317 8 7 17 9 1411 5 4 18
994 16 /6 20 7 19 11°22 1910 7 2220 1821 23 0/ 18 7 10 1
T ey A oo N g Tl g 2 12 e 4091 180182
191 12 1317 2 17 122321 12 0 24 2 10 12 14 1 18 16 22 12
11521 9 2011 3151813232 23 5 0 7 2423 8 1 21 6
L6 29U 8o 4 s 19T 216 9 T 121 3
12023 0 10 9 8 124 7 8 7 161918 8 1 24 16 17 8 19
41618 1T 17 5 21 0 14 § 22 1412 19 1218 4 0 11 0 24 4
012 14 6 11 14202024 20 6 9 8 2415 0 3 21 8 8 21 23

A= 49 9 903 1 022169232197 019108 1 0 1216
414 6 15 7 1321 1616 2 15 4 20152 5 1 19 1820 24 13
119 5 2223 5 151621 0 12 23 23 10 0 10 24 11 17 20 5 17
393 3 0 201517 7 22 0 1424 4 11 4 1521 15 18 21 16 14
112 11°16'12 1911 18'20 6 0 1423 18 3 41 8 8 38" 3 1521
DUl S o0 TA. 8 14 100 20990 2¢ o2l @ o) 200 L 1547 5 0
3 9401246 1320 12 6 4 1922 1 60 2.2 20 4 3T 17 20
9 6 9232017231115 2 20 3 1324 6 141416 13 4 4 2 12
017 0 171417 5 20 15 7 1423 2 15 9 6 1623 11 4 2 22
000 142015 0 17145 1+ 221 7 0l g 021 1 15
510 15 0 1515 0 15 10 1010 5 15 15 15 20 20 5 20 20 15 15

By construction A this code leads to the first extremal unimodular lattice of dimension
43. The only remaining open cases for polential optimal unimodular lattices of norm 4 are
dimensions 37 and 41 [NS].

4 Construction of optimal Z, codes of rate 1/2

In [G], quadratic double circulant (QDC) codes were introduced over fields. Although these
codes can be generalized over any ring we only consider in this section the case of the ring
Z. Over Zy, self-dual QDC codes for lengths a multiple of 2p + 2 with p = 8k + 3 a prime
were considered in [(alS] but it is also possible to consider these codes for other primes, in
that case one loses sell-duality but one still obtains codes with good parameters, often better
or equal than these of self-dual codes for lengths inferior to 23.
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For ¢ a power of an odd prime and «,b and ¢ in Z; we consider the g x g quadratic matrix
Q,(a,b, ¢} and the (q+1) % (g+1) matrix Sy(a,b,¢) (with @ = a, 3 = 3 = 1) defined in [G]. We
recall that the QDC codes are the codes with generator matrices Py (a.b, ¢) = (I|Q,(a,b,¢))
and B, = (I|5,(a,b,¢)).

We give in Table 2 the best known Lee distances (d;), and Hamming distances (dy) for
lengths 8 to 24 of Zy codes of rate 1/2. The notation S(C') corresponds to the code obtained
after shortening the code (7 in the first column and adding the all 2 word to fhe shortened
code. The code Cy7 is constructed by taking the extension of the quadratic residue code over
Zyof length 17 (X@Q7) in a cyelic form. The code can then be written in the form ({A4) and
(17 is obtained by multiplying the first row by 2 and then deleting the first column. For
length 22 two different codes are given.

n | dp | dir Code n | dy | dy Code
g6 ] 4 [RS] 18 () L 7

9 | ¢ 3 P5(3.2,1) I8 8 | 6 NQy-
05| 4 | Ps5(0,3.1) 9] 6| 3 RS

11| 6 | 3 | S(Bs(0,3,1)) 200 8- ].4 RS
2764 B5(0,3.1) 21 8] RS
131601 8 | S(PH2.3:2) 210 6 | Pu(0,1,2)
4] 8 | 4 Pr(2,1,3) I s e A )
15 6 | 4 RS 2320 RS

16| 8 4 RS 24 |12 | 8 RS

Table 2: Best known codes of rate 1/2 over Z, of length 8 to 24

The support of words of fixed Hamming weight of these codes contain in general I1-designs.
As in the GGF(2) case the supports of words of X7 with a given Hamming weight hold
2-designs and 3-designs if one considers the reunion with the words of the dual. Also the code
of length 10 holds a 3-(10.5,3) design in its words of Hamming weight 5. Although there
is a unique linear binary [28, 14, 8] code, the binary image of the code of length 14 gives a
new non-linear (28,2'.8) code. It is also worth noticing that the Lee weight distribution of
the code of length 11 corresponds to the weight distribution of the unique [22. 11, 6] self-dual
binary code.
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Abstract
Applications of minihypers in finite geometry are discussed. [n particular, it is
explained how minihypers can be used in the study of (partial) spreads and covers of

finite projective and polar spaces.

1 A particular class of minihypers

An { f. m;n, q}-minihyperis a pair (F, w), where [ is a subset of the point set of PG(n, ¢) and
w is a weight fanetion w : PG(n, q) —+ N: 2 w(x), satislying: (1) w(z) >0< 2 € F. (2)
Yepw(a) = frand (3) min{}",_, w(x)|H € H} = m, where H is the st of hyperplanes of
PG(n.q). In the case that w is a mapping onto {0, 1}, the minihyper (#, @) can be identified
with the set £ and is sinply denoted by F.

Minihypers were introduced in [3] and are usually studied because of their relation to
linear codes. But minihypers are also important in finite geometry, especially those with
parameters {§v,y, dvi;n, g}, where v; = (¢° — 1)/(g — 1). For small values of 8, these have

been classified.

Theorem 1 ([3, 2, 1]) L. Let q = p", p prime, and lct € equal /7 + L when q is o squore,
(g + 3)/2 when q is a prime, and c-pr,:!“ + 1 otherwise. Here ¢, equals 1/ V2 if p ¢ {2.3)
and 1 otherwise. If (I w) is a {Sve, . 0vg n, g} -minthyper, g > 2. salisfying 0 < 8 < ¢ and
L < n—1, then w is the weight function induced on the points of PG(n, q) by o swm of 6
t-spaces.

2. Let g > 16 be a square. A {§vy . Svy:n, g} -minihyper F. § < N2 1, s a unique
disjoint union of 1-spaces and subgeometres PG(2t + 1. /7).

3. A {duvy,, 0ve n, gh-minihyper F, ¢ = p**, h = 1, p > 7 prime, § < 2 — 6ph, is the
disjoint union of PG(t,q) s, (projected) PG(3t + 2, ¢/7) s, and PG(2t + 1, /@) s.

Remark that in part 1 of this theorem weights are allowed, while this is not the case for

parts 2 and 3.
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2 Partial spreads and covers

A -spread (a parlial {-spread, a t-cover) of PG(n, q) is a set of {-spaces such that every point
of PG(n,q) is contained in exactly (at most, at least) one of these f-spaces. A partial {-
spread (a t-cover) is called mazrimal (minimal) if no f-space can be added (deleted) to obtain
a larger (smaller) partial #-spread (t-cover). The deficiency (ezcess) is the number of f-spaces
it lacks (has too many) to be a (-spread. A hole (mulliple point) is a poinl of PG(n,q) that
is not contained in an (contained in more than one) element of the partial t-spread (t-cover).
The surplus of a point of PG(n, q) with respect to a f-cover C is the number of elements of
C that pass through this point minus one.

It is known that PG(n.q) has a t-spread iff (¢ + 1)|(n+ 1).

Theorem 2 ([3]) 1. Let S be a purtial t-spread of PG(n, q), (t+1)|(n+1), with deficiency
d < g, and let F be the set of holes of 8. Then F is a {dvy4q, dvy; n, g}-minthyper.

2. Lel C be a l-cover of PG(n.q), (t +1)[(n + 1), wilk excess § < q. Lel F be the
set of multiple points of C and let w(p) = surplus(p) for p € PG(n.q). Then (F.w) is a

{8vis1, 8vp: m, g} -minihyper.

The finite classical polar spaces are: (1) Wa,.1(q), which arises from a symplectic polarity
ofl PG(2n+ 1,q), n = 15 (2) Q= (2n + 1,q), which arises from a nonsingular elliptic quadric
of PG(2n+1,¢), n > 2; (3) Q(2n. q), which arises from a nonsingular quadric of PG(2n, q),
n > 2; (1) QF (2n+1, q), which arises from a nonsingular hyperbolic quadric of PG(2n+1, ).
n > 1; (5) H(n,q%), which arises from a nonsingular Hermitian variety in PG(n, ¢?), n > 3.

Let P be a finite classical polar space. The definitions of (partial) t-spreads and i-covers
of finite classical polar spaces are very similar to these of (partial) t-spreads and i-covers
of finite projective spaces: it suffices to replace “t-space” by “totally isotropic or singular
{-space”.

For P to have a f-spread, it is necessary that |PG(, ¢)| divides |P|. If this condition is

satisfied, P’s size is said to admit a t-spread.

Theorem 3 ([4]) Lel P be a classical polar space in PG(n, q) whose size admits a (-spread.
1. If 8 is a partial t-spread of P with deficiency § < q, then the set F of holes forms a
{8ve41, O n, g} -minihyper.
2. If C is a t-cover of P with excess § < q, then the weight function w(p) = surplus(p)
for p € P defines a {8vy4y, v n, q}-minihyper (F,w), where I is the set of points of P that

are covered al least twice by elements of C.
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3 On the structure of partial spreads and covers

Theorems 2 and 3 provide enough information Lo apply the results on minihypers [rom

Theorem 1 to obtain results on the existence of maximal partial {-spreads.

Theorem 4 Let P be either a space PG(n,q), q # 2, or a classical polar space in PG(n, gq),
q # 2. Suppose that P’s size admits a t-spread. If P = Wy(q). then suppose that g is even.
Suppose thal 8 is a mazimal partial i-spread of P with deficiency § and thal the condilions
for q, n, t, and & of Theorem 1 are met. Then, either

1. the set of holes forms a disjoint union of subgeometries PG(2t+1, /q), implying 6 = 0
(mod /G +1); or

2. the set of holes forms a disjoint union of PG(2t + 1,,/9) s and (projected) PG(3t +
2, Yq)s.

Similarly, restrictions on the existence of (-covers can be obtained. However, in this case

only part 1 of Theorem 1 can be applied, since weights are allowed in the minihypers.

Remark 5 For a more detailed discussion of these applications and for further applica-
tions (partial ovoids and blocking sets in finite classical polar spaces and in the split Cayley

hezagon), we refer to [4].
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Abstract

We propose an nbstract model of error-cortecting codes
over fields, and also generalize several notions concern-
ing codes. Then we demonstrate the solution of a prob-
lem, which shows how to correct errors on our abstract
madel. Our model is obtained by abstracting the quo-
tient structure from linear codes and has the form of
ashorl exact sequence of general groups, modules, and
similar algebrnic objects.

1 Introduction

The main purpoese of this paper is Lo generalize or extend
the coding theory to the level of a more abstract algebraic
structure (group extensions). More specifically, it aims
1. to extend the notion of errors to Lthe abstract group
extension structure,

(<]

. to introduce the notion of distance which measures
the size of errors,

. to establish an error correcting method (decoding
algorithm) for our abstract model (group exten-
sions) using homological algebras and the technique
of spectral sequences,

4. to reveal and abstract the essence of coding theory
and clarily what kind of structure is important and
essential in this theory, and

. to prove that group extensions are a fundamental
model of coding theory using our error correction
method,

Note that prior this paper, none of the above items have
previonsly been proposed or achieved yet.

=

First, we must draw the reader’s attention to the following
poinks:
1. Cur model for coding theory (group extensions) does
not have any basis general.

ta

. Our result for the decoding algorithm of group ex-
tensions are a natural generalization of the existing
decoding algorithms which can correct errors of lin-
ear codes that have a global basis.

3. None of the existing decoding algorithms ([4], [5],
[a]}, except for the algorithme proposed in this pa-
per, can correct errors of our models (group exten-
sions).

*2.4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237,

Japan. E-mail address: imaificslab.kecl.ntt co.jp

Next, we state the motivation of our research. In a
simple sense, a code C is a subsel of FJ, where I, is
a finite field of g elements or some kind of finite set
of alphabet. For various reasons one often restricts
cousideration to linear codes or linear subspaces of Fj
over . Howeverjthere are some types of nonlinear
codes, such as the Nordstrom-Robinson, Kerdoc, and
Preparata codes, which are in some ways superior to
linear codes. Therefore, the notion of linear subspace is
not essential for the coding theary., On the other hand,
these nonlinear codes have been proved to be the image
of some mapping (Gray map) of submodules of R",
where 1 is a ring ([6]). Thus, in this paper, we plan to
prove thal the essense of error correcting codes iz the
subquotient. structure of some more abstract algebraic
objects, We selected group extensions as the abstrach
algebraic ohjects with a subquotient structure because
they need not have any kind of general basis, and thus
they can be considered here as the most general objects,

The significance of our contribution is comprised of
two parts, One part relates lo practical application;
that is, various types of subquotient algebraic structure
can be considered as information transmission methods
with error correcting procedures. The other part relates
to the mathematical solution of the problem; that is,
what the error correcting method becomes in the more
abstract algebraic framework without basis and matrix
calculation. In this problem, we are allowed only to
use the restricted data of Cokernel (or syndrome) and
derive the corrected data. In this paper the derivation of
errors under this restricted condilion is proved by using
Lyndon-Hochschild-Serre type spectral sequences .

Now let us state a problem in order to generalize a decod-
ing problem of error correcting codes into a more abstract
level where we cannot utilize the power of ordinary lin-
ear algebra. This ahstraction reflects what is essential in
decoding methods as well as enlarging the notion of error
correction, and this enables us to apply it to more general
abstract algebraic objects,

Definition 1.1. Let @ and A be groups (assume A is
abelian). An extension of A by G for (7 by A) is an exact
sequence

0—A-SE S0 41
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Herve A is a G-module with the G-action defining the con-
Jugation action in E. That is, foru € A and s € E wiih
w(4) =g, sila)s™" = i(ga). Here G can be any group.

Problem 1.1. {Group crtension version) Let 0 —+
A E T4 (0 —+ | be an extension of A by (7. Assume
that some wiformation can be represented as cach element
of group A. Then we have an open problem of how to de-
tect or correct ervors which appear in group extensions by
utilizing their redundant structure.

In this research we discuss this problem and try to es-
tablish a decoding method for a group extension of G by
A by utilizing its redundant. structure and Lry Lo abstract
the substance of error correction methods.

2 Summary of cohomology the-
ory of groups

Let E be a possibly non-abelian group, A an abelian nor-
mal subgroup, and (¢ := /A, We write £ and its sub-
group A additively , but we write the quotient group G
multiplicatively. Therefore 0 refers to a unit element of
E and A, but 1 is used as a unit element of 7,

Definition 2.1. 1. An calension of A by G, 0 —
A— E— G —1,
phism 8 : G — Aul{A), where AutfA) means the
group of all automorphisms of A,

determines a homomor-

2. Anertensionl — A — E — G —+ 1 is called a
central extension if A C Z(E), where Z{E) denotes
the center of b

4. A stem extension of (7 15 a central extension satisfy-
ing A C [E,E], where [E, E] means the commutalor
subgroup of E.

Proposition 2.1. [f0 — A — F — G — 1 is an
extension, then A is o lefi BG-module. Specifically, the
action of ¥ € (7 vn a € A s defined by

rai=fa)=Ar+a—Ar EA,

where Ar € E s a Wfting of & (i.e., e —+ x). Then
the action of an arbitrary element of TG0 s defined by

(S mur)a:= 3y m.(ra).

Conversely, every extension arises from some data
(G, A, #); however, as we will see later, the correspon-
dence between extensions and G-module structures is not
one Lo one. The theory of group cohomology makes this
relation clearer.

Definition 2.2. Let 0 — A — E — G — | be
an cetension, {f A 1 G — £ is a lifting (need not be
a homomaorphism) , then lmA is a complete set of coset
representatives of A in E |, which i3 called a transversal
of A in E, so that A+ IlmA = E. [fa € ANImA, then
a = Al = 0. Therefore coery element of £ can be uniguely
given by a + X for some « € G. Since the cosel of May)

and that of Ar + Ay are the same, we have some element

[w.y] € A such that
Ar + Ay = Axy) + 5, y] ()
and
ra=Adr+a—Az ... (I}

This defines the new function [+, ] : (7 % 6 — A, which
5 called a factor set.

Definition 2.3, Z°((, A) is the abelian group of all fac-
tor sels under poinlwise addition . Note the zero of
ZGLA) ds the factor sel which i3 identically zero and
corvesponds o the semulivect product. The definition of
factor sets depends on a choice of lifting X, and represen-
tatives of factor sets can classify the class of extensions
through liftings.

Proposition 2.2. Let0— A — K — G —1 be an
extension, and let X and p be liftings. If [+.+] and (*,+)
are the corresponding factor sets, then there is a function
{#} : G — A salisfying

1 (=10

2. (5,0) — o = 2} = (0) + (=), Y,y € G
Definition 2.4. We define a subgroup 8°(G,A) of
Z3 0, A) as follows:

B G, Ay ={f:Gx0G— 43 ):G— A with(l)=1,
satis fying flao, y) = o{y) — (xy) + (=)}

We call cach element of B*(G, A) a normalized cobound-
ary.

Definition 2.5. e((, A) 1= Z%(C, A}/ B*(G, A).

That is, e(G,A)= (normalized factor sets)/(normalized
coboundaries). Two faclor sels stemming from an exlen-
ston through two choices of liftings delevmine the same
element of the above e(G, A).

Definition 2.6. Two exlensions,

00— A—E—G—land0— A — £ — G — 1

. are said to be equivalent if there exist factor sets [+, +]
and (#,+) cach of which corresponds to the above exten-
sions, respectively, satisfying [+, +] — (+,4) € B*((, A).

Definition 2.7, Let G be a group, A a lefi G-module,
and suppose that 7 (i.e. the ring of integers) is considered
as a tramal (-module, Then we define

H™ (G, A) := Ext3s(Z. A), HL(G, A) :=Tork(Z, A).

Groups H" are called eohomology groups of G with co-
efficient A and groups H,, are colled homology groups of
a.

We can establish an isomorphism H* {0, A) = {7, A) by
constructing some good normalized G-lree resolutions of
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3 Spectral Sequences

Spectral sequences are certain types of sequences of ho-
mology or cohomology modules. One can divide and
weaken the complexity and difficulty of computing some
kinds of homology or cohemology modules. Suppose one
has a short exact sequence of groups

0—N—3 G —30'—1

and suppose A is a (F-module. Then we have a speetral se-
quence which relates the cohomology of group & with the
cohomology of N and Q. This spectral sequence, which
is valled the Lyndon-Hochschild-Serre spectral sequence,
is used for correcting the errors which ocour in extensions
ol groups.

Theorem 3.1, Let G be a group with normal subgroup
N. For each G-module A, there ts a spectral sequence sal-

wfying
B8 = HP(GIN, HY(N, A)) == H" (G, A), (3.1)
and there 15 a spectral sequence satisfying

B2, = Hy(G{N, Hy(N,A)) = H,(G.A). (32

4 Main Theorem

4.1 Statement of the main problem
and our contribution

Suppose ¢ 1s a group with a normal subgroup N. Let
NG5 GYN be an extension of the group and A be
a G-module. Considering the extension which takes the
above form to be sufficient to solve the problem proposed
in the introduction, we restate the main problem that we
should consider below,

Problem 4.1, Let N = = /N be an ertension, As-
sumne {(N) to be a kind of encoding in group (7. Suppose
w € i(N) i mapped to the element u+ e € G which has
an ervor e. Then establish the method which enables us
to oblmin the information aboul where the error e should
exigh in G provided thal we ave allowed lo use only the
data about syndrome (e).

Before we state our contribution to the above problem,
we provide some definitions used in this section.

Let
N=Gish <G 2 G < Sp=G (4.1)

be the composition series of gronp G which starts from
N and let

G. =[N, n(e)] (4.2)

be the normal subgroup generated by N and w(e). Then
we can reformulate the above problem 4.1 as follows.

Pn"'nhlem 4.2. We wuse the above notations. Let N —
G — GYN be an extension, Assume i(N) lo be u kind of
encoding in group (. Suppose u € i(N) is mapped to the
element u + ¢ € 7 which has an error 6. Then find @ in
1245 n such thal

G @ Gic1.Ge =06, and G, C Gy, (4.3)
using the information arsing from the data in GfN.

Definition 4.1. In the above situation, Iet ¢ be the num-
ber satisfying (4.3). Then we define the distance which
measures errors by the number i.

Now we state our contribution to the above prablem.

Theorem 4.1. [Main Theorem] In the above problem
4.2, suppose we are given the data {H"(N, A)} for some
coefficient G-module A. Then we can deduce the number
i such that (. = G using the information arising from
the data in G [N, or there exists a computation sequence

(muay be infinite) which provides the mformation about the
number i.

5 Examples of error correction

5.1 Free abelian groups of finite rank

Let G be a free abelian group of finite rank &, and N be a
subgroup of rank f, (1 < k). Now consider the extension,

0— N — G — GIN —0.

Suppose u € N, and we encode u and then obtain #(u) €
. Now i(u) is supposed to be mapped to 1{u) +e. where
¢ denotes an error. Let (/. := [N.x(e]]. In order to
estimate e, we have only to compute the x := rank((:. ),
that is, the rank of (.. We are allowed to use the following
data:
HA(N,Z) = a free abelian group of rank('), if{>n >0,
N T s otherwise,
(5.1}
where (%) denotes the binomial coefficient symbol. In

order to measure (7. , we must compute the cohomology of
G, Gy, oo G successively using the speciral sequence,

Y = HP (G [G HY(GLL B)) = HPY G g, ).

Since Gy /G = I, we know EPY = 0 for p #£ 0, L.
Therefore only two columns exist in the FI'", so there
are exacl sequences

O ERTLL y HRG Y ——y ER—a (5.3)
Since H™™Y(G,,2) is (Giy1 /G = T)-trivial, we have
EI" = H'(Guy /Gy H' (G E)))
= Hom(Z, H" 7' (G, %)) = H" ™G, B).

By induction, this group is a [ree abelian group of
rank ( s ). As for another term ﬁf'“. we have

n=1

ES® = H(Gin f G HP(GLLB)) 2 H™ (G ),
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also by Z-triviality of H*((+,, Z). By induction, this group
is a free abelian group of finite vank ("1'). It follows
that the exact sequence (5.2) of abelian groups splits;
and then H"(G.1 %) = HY G, B & H"'J[G,,R}. Hence
H™(Gigr,8) is a free abelian group ol riulk(”-':fl}.

If we are given the information of the syndrome
{H"((.,Z)] ,which can be computed using B =
HP(GL N, HY(N, L)), then we can deduce the number
¢ such that G; = . by comparing {H"(G, Z)} with
{H™ (G, Z)).

5.2 Elementary abelian groups of or-
der p"

Let p be a prime number and let & be an elementary

abelian group of order p". It is known that px H3 (7, Z) =

0 . In almost the same way as in the previous example,

we can compute { H2(C,, Z)} inductively, and then we can
show that

- : sint)
Hi(G1, E) 2 elementary abelian of order p— #,

where n = log,, (the order of G;).
By theorem 3.1, there exists a spectral sequence which
computes Hu (G431, %) satislying

B2 = o0 /G Hy G ) = Hpgo(Gigr, B).
(5.3)

Then we have the following hiltration which shows the
above spectral sequence collapses:

0=F'H,c FP"H:. C F'H; ¢ F*H>= H,.

Since (41/G is cyclic, B3y = H:(Giy1/GLE) = 0.
Thus the above fltration of H2{G.+1,%) has only two
steps. By collapsing we have B35 = L5, and E7 = B?.
Therefore there is an exact sequence

O—s B2, — HalGi1,2) —+ By — 0. (5.4)

As px Hy Gy, 2) = 0, the term Hy(Gizy, E) is a veclor
space over ZfpZ, thus the outside terms of 5.4 are also
vector spaces and then the sequence 5.4 splits. Now we
have

Hi(Gy 2y = Gyl ) 2 G [T 2/pz,

=1
where ord( () = p~"). Therelore we have
iy = Hy(Gig /G (G, 2) = T Hi(Gins /G, 24pE)
n—1
= [[ ztpz.

n—1
As for the term Ef 5, we have

Ej 3 = Ho(Gipr/Ge, Hi(Gh,B)) = Ha( Gy, Z).
By induction, EJ ; is clementary abelian of

fn—1){n=4)
]

and therefore Hz((,41, ) has dimension

n — 1+ log, (the order of Hy(Gi,Z)) =p™ T .
If we are given the information of the syndrome
{H2(G., %)}, which can be computed using E:.v =
Ho(Gof N. H{N,Z)), then we can deduce the number
i such that ; = G, by comparing {H:(G,,Z)} with
{Ha(G., )}

6 Conclusion

We have established an abstract model of the theory of
error correcting codes. The proposed abstract model of
codes requires only guotient structures of groups and the
proposed decoding method on this model requires only
homological computation. Therefore we have expanded
the subject of error correction to the calegory of general
groups. The future theoretical problem that we should
investigate is how to establish a kind of geometric gen-
eralization of error correction, or how to give error cor-
rection geometric meaning. Some of the future practical
problems which we should solve are to reduce the com-
plexity of the proposed decoding method and to apply
our method to nonlinear codes.
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Abstract

In this work we present a construction of extremal doubly-even [80,40,16] codes,
possessing an automorphism of order 13 and give 35 new examples of such codes.

1 Introduction.

The extended quadratic residue code Q Rso of length 80 [3] was the only known doubly-
even [80,40.16] code for a long time. In [1] Gulliver, Harada and Kim found three new
extremal doubly-even codes Bsoi. Bsoz and Bsgs as a bordered double cirenlant [80,40]
ones. Other extremal codes were obtained via antomorphisms. All the odd primes p
dividing the order of the group of a doubly-even [80,40,16] code are 79, 19, 13, 7. 5 and 3.
Q Rsp is the unique up to equivalence extremal doubly-even code of length 80, possessing
an automorphism of order p = 79. There exist exactly 11 doubly-even [80,40,16] codes
with an automorphism of order p = 19 [5]. We have been intrigned to investigate the next
value of p = 13. There are six previously known codes with an automorphism of order 13:
@ Rso, Bso1, Bsoz, Bsoa and two codes announced in [6] with an automorphism of order
39. Let denote these codes by Rso 1, Rso2. In this work, using the field with 2'? elements,
we construct 35 new doubly-even [80,40,16] codes, possessing an automorphism of order
13. Thus we improve the lower bound for the number of known doubly-even [80,40,16]
codes from 17 to 52.

*Research supported by The Technical University of Gabrove, Project 111.7/25.03.2002, and by The
Konstantin Preslavsky Universily, Project 15/14.03.2002.
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2 Results.

We make use of the method for constructing sell-dual codes via an antomorphism of odd
prime order developed by Huffman and Yorgov in [2, 7, 8]. Suppose C is a doubly-even
[80,40,16] code with an automorphism o of order 13. It can be shown that o has 6
cyeles and 2 fixed points in its decomposition. Up to equivalent code we may assume
o= (1,2...13)(14,15...26)- - (66,67...78). Let £,(C) be the set of those vectors in C,
which have even weight in each cycle of o. Denote I,(C)={v € C| ve = v}. The code
€ can be decomposed as a direct sum of its subcodes F,(C) and E,(C). Each vector v
from F,(C) is constant on any cycle of . Define the map = : F,(C) — F§, where for
v € F,(C) m(v) is the binary vector of length 8 obtained by choosing a coordinate from
each cycle of v. Then m(F,(C)) is a binary self-dual [8,4] code. Since C is doubly-even
and the multiplicative order of o is 13 = 1(med4), the code 7(F,(C)) is also doubly-even
one [8]. According to [4] it is equivalent to the Hamming code Hs. As the group of Hs is
triply transitive we can fix the generator matrix of F,(C) in the form

iF g “1
: J J 1 1
gen(Fy(C)) = i o il
J e )

where J is the all-one vector of length 13 and the blanks are zero’s.

Let P be the binary cyclic code of length 13, generated by x + 1. Since the parity
check polynomial ":‘11 is irreducible, P is a field with 2'* elements. We let E,(C)* be
the code I,(C) with the last two coordinates deleted. The restriction of every vector
v € E,(C) on the cycles of & can be viewed as an element vy 4 vy + ... + vgpx'? from
P. In this way we define the map ¢ : E,(C)* — P°. It follows from [[8], Theorem 2] that
the image @(£,(C)7) is a sell-dual [6.,3] code over P with respect to the following inner
product (u,v) = wvf + ttgl?gé == .k ut;ﬂés ==

We consider the elements 3 = x4+ et +ai+af+a®+2' 022 and v = a2+ o'042!!
from P of multiplicative order 63 and 65, respectively. Therefore 37 is a primitive element
in the field and P\{0} = {#'4, for 0 <i <62 and 0 < j < 64}. By a computer search we
establish that any 3-weight vector in o E,(C)”) generates a vector of length less then 16
inC. Sog(E,(C))is an [6,3.4] M.D.S. code over the field P and any three coordinates are
information positions. By row reducing, up to equivalent code, we obtain the generator
matrix of p(F,(C)*) in the form:

i gk; Iﬁkg(sq Idi.:s(gis
G= &' Bh plgn ghan |
55:1 IH"':T b’kn,ys:; p’kg,}ﬁa

where the blanks are zero’s, §d = 7% = 1 +a' + 20 4+ ', 0 < i; < 4, for j = 1,2,8,
0<hk<62fort=1,...,9and 0 < s <64 for [ = 1,2.3,4. Because of the self-duality
of the code ¢(E,(C)") we obtain the following restrictions:
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Bh g Bl gl =0, gh4 gl e =0, R+ gl 4 Bl =,
I{-))k.-}.l-,, i IB;"’J"'"‘@-}-“”-*""I + I_,rji:3+k<;.:].1.'!i_;—sz = ().
ﬁkl-i-k'; iL !.3*:2+R‘A.Tl3i'a—a:l + J.nf')’f\':t-F-kﬂ,),l-'iis---‘id ={ and
ﬂk4+*~'7 L I{ik5+kﬁ7al—33 4 ﬁ*‘s+ko_¥-*7—54 =1

To get a generator matrix for E,(C)" we replace any element g;; from G by a 12 x 13
binary circulant type matrix with first row corresponding to ="' (g;) for i = 1,2.3 and
j=1,2,...,6. So the generator matrix of the code C has the form

st 0 gen(E,(C)) 0
_,;,__(C}—( gen(F,(C)) )

For different values of the parameters in & we construct 35 new inequivalent doubly-
even [80,40,16] codes. Denote them by Cy.Cs....,Cas. The corresponding values of the
parameters are given in Table 1.

The weight enumerator of a doubly-even [80,40,16] code is uniquely determined in [3],
with 97565 minimal weight vectors. Let Dy be the number of ordered pairs codewords of
minimal weight in distance 16 in a code. In Table 1 we give the invariants Dy for the codes
constricted. They are different for all of the codes. In Table 2 we present the invariants
D for the previously known doubly-even [80,40,16] codes with an antomorphism of order
13. They are different to the invariants in Table 1. Thus we prove that the constructed
35 codes are new. We improve the lower bound for the number of known doubly-even
[80,40,16] codes from 17 to 52. The results are summarized in the next theorem.

Theorem 2.1 1)There are at least 52 nonequivalent extremal doubly-even [80,40,16] bi-
nary codes. 2)There are at least 41 nonequivalent extremal doubly-even [80,40,16] binary
codes with an automorphism of order 13.
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Table 1. Parameters in G = gen(p( £, (C;)")) and
the invariant Dyg for the doubly-even [80,40,16] codes C;

Code | f1.92.05 | Ky ko, K taain | kd ke, ke 81,80 | by oheiko, 83,84 D
Cy 24,2 0 14,41,3,24,62 14,41,3,2,42 20044440
Ca 34,1 0,23,231,4 4,55,58,40,29 4,7,54,62,49 19979310
Ca 4,44 A 4,27,56,35,28 16,35,45,60,29 19923640
Cyq 1,20 21,38,62,39,52 29.41,34,6,59 19967610
Cs 0,2,0 5,39,54,32,14 11,10,33,54,47 | 19920020
Ce 3,01 T.56,9.8,54 12,45,41,54,4 20035080
Cy 1,01 46,57, 48,56,23 G1,29,3,60.9 19975410
Cs 2,04 12,22,27,35,17 58,39,3,6,52 19952790
Ca 4,0,2 Y 43.9,55 52,47 46,38,15,59,24 19987110
Cia 34,0 2,1,26,0,1 62,24,61 37 4 34,33,43,16,20 | 19952400
Ciy 1,3,0 2,1,26,3,0 49,37 ,43,8,56 56,40,61,46,32 | 20014800
Cia 3,03 2,1,26,4,1 32,10,29,29,25 8.,30,57,49,35 18955130
Cis 1,22 2,1,26,44 153,44,17,35,51 18,55,5,29,44 19090230
Ciq 0,44 2,26.1,1,0 3,57,43,47,69 48,29,50,61,26 | 19945770
Cis 41,1 2,26.1,1.0 39,24,17,31,63 30,54,31,27,28 | 20031960
Cie 1,4,0 2,28,1,2,3 35,36,28,15,6 27,4,56,12,13 19969170
Cir 1,10 2,26 1,44 0,25,25,28.6 2,34,62,744 19975800
Cis 43,1 26,1,2,1,3 f 17,40,3,16.7 19967220
Cis 1,0,3 26,1,2.4,1 15,47,27,25.8 | 20027670
Cag 3,04 1,5,11,3,1 45,36,27,35,35 | 20010120
Cay 2.4 1,58,20,0,1 62,23,32,25,20 50,2348 | 20011290
Cag 0,34 3,1562,3,0 43,31,16,16,21 57,8,30,33,27 19983210
23 33,2 3,19,54,24 28,58,25,29,43 5374 19970340
Cay 3,0.9 5,38,44,1,4 46.16,5,47,19 50 | 20007390
Cas 2,0.2 7,61,39,1,2 13,43,20,53,2 48,2 11 | 20002710
Cag 4,2,2 24,3.9.1,2 14,39,11,59,19 2,58,42,38,23 | 20003490
Caz 34,3 29,613,241 19,25,69,48,28 | 47,33,50,56,26 | 20033520
Cag 4,2,3 45,1,49,4,2 51,36,20,1.4 30,5247 37,32 19966440
Cag 1,34 46,61,1,29,4 26,29,57,23,56 | 20000760
iy 2i4,1 3,04,41,54,9 28,25,58,6,62 19963710
Cuy 22,2 58,39,3.8,23 23,40,26,42,62 | 19974630
Caz et ; 20,47 A9,18,63 | 20003100
Czz 1,10 21,06,31,14,32 19952010
Caq 3332 36,30,62 58 41 19990230
Cas 3.3,0 §,24,4,52,52 34,34.0,52,52 19962540
Table 2.

Code e Cude Dz | Code Dis

QFso | 21104850 | Bso, | 20062380 | Bypo | 20117370

By | 20034300 Raop | 20138430 | Happ | 20062380
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Abstract

We examine the binary codes obtained from the adjacency matrix of the trian-
gular graph T'(n) for n > 5 and show that permutation decoding can be used for
these codes by finding explicit PD-sets.

1 Introduction

For any n, the triangular graph 7'(n) is defined to be the line graph of the complete graph
K., i.e. the vertices are the 2-subsets of Q@ = {1,2,....n} and vertices {a,b} and {¢,d}
are adjacent, if they have one letter from Q in common. The valency is 2(n — 1) and
the graph is strongly regular. The binary codes formed from the span of the adjacency
matrix of these graphs have been examined in [9, 5, 3, 4, 1, 2]. The dimension and weight
enumerator of these codes are easily determined. Here we examine the codes and their
duals further, and show how the case n = 6 distinguishes itscll. We show that S, is the
full automorphism group of the code for n > 5 except in the case n = 6. We also look
at the question of minimum-weight generators for the code, and for its dual, and obtain
explicit permutation-decoding sets for the code.

The code is also that of the 1-(5(—-"2_—'}, 2(n —2),2(n — 2)) design D obtained by taking
the rows of the adjacency matrix as the incidence vectors of the blocks; the antomorphism
group of this design will contain the automorphism group of the graph, the latter of which
is easily seen Lo be S,. Similarly, the automorphism group of the code will contain S,.
However for n = 6 the group of the design and code is larger than the group of the graph
(Ss), and we will use the words of weight-3 in the dual code to explain this.
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2 Terminology

An incidence structure D = (P, B,T), with point set P, block set B and incidence Z is a
t-(v, k, A) design, if [P| = v, every block B € B is incident with precisely k points, and
every t distinct points are together incident with precisely A blocks. The code Cj of
the design D over the finite field # is the space spanned by the incidence vectors of the
blocks over /. If the point set of D is denoted by P and the block set by B, and if @ is any
subset of P, then we denote the incidence vector of @ by ve. Thus Cp = {v“ | B € B).

If a code C over a field of order g is of length n, dimension k, and minimum weight d,
then we write [n, k, d], for C. A generator matrix matrix for the code is a k X n matrix
made up of a basis for C. The dual code C'* is the orthogonal under the standard inner
product (,). A check (or parity-check) matrix for € is a generator matrix H for C' L. the
syndrome of a vector y € F" is Hy'. Two codes are isomorphic if they can be obtained
from one another by permuting the coordinate positions. Any code is isomorphic to a code
with generator matrix in so-called standard form, i.e. the form [I; [ A]; a check matrix
then is given by [—A” | I,_]. The first k coordinates are the information symbols and
the last n — k coordinates are the check symbols. An automorphism of a code C' is
an isomorphism from C to C.

Permutation decoding was first developed by MacWilliams [7] and involves finding
a particular set of automorphisms of the code, called a PD-set. The method is described
fully in [8, Chapter 15] and [6, Section 8]. A PD-set for a t-error-correcting code C'is a set
S of automorphisms of C' which is such that every possible error vector of weight s < ¢ can
be moved by some member of S to another vector where the s non-zero entries have been
moved out of the information positions. Thus every t-set of coordinate positions is moved
by at least one member of S to a f-set consisting only of check-position coordinates.
Such a set, if it exists, will fully use the error-correction potential of the code: see [6,
Theorem 8.1].

The algorithm for permutation decoding is as follows: given a t-error-correcting [n, k, d],
code €' with generator matrix G in standard form and check matrix H. Thus G = [I;|A]
and i = [ATU,, &, for some A, and any vector v of length k is encoded as v(@. Suppose
x is sent and y is received and at most £ errors occur. Let & = {g1,..., 9} be the PD-set.
Compute the syndromes H(yg;}" for i = 1,...,s until an i is found such that the weight
of this vector is ¢ or less. Now look at the information symbols in this vector, and obtain
the codeword ¢ that has these information symbols; decode y as g™

3 The binary codes

Let n be any integer and let T'(n) denote the triangular graph with vertex set P the (;)

2-subsets (or duads) of a set 2 of size n. The 1-design D = (P, B) will have point set P
and [or each point {a,b} € P, a# b, a,b € §, a block {a, b} defined in the following way:

{a,b} = {{a, 2}, {b,y} |z # a, b; y#a, b}
Thus B = { {a,b} | a,b € Q, a # b}. The incidence vector of the block {a, b} is then

plad} — Z plast 4 Z plbu}

wfa yib
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If a, b, ¢ are distinet points in €1, write

vlebed = plod) 4 plbel 4 plact,

Proposition 1 Let C be the binary code oblained by the row span of an adjacency malriz
for the triangular graph T'(n), where n > 5.

If n = 2m then C is a self-orthogonal [(*%)"),2m — 2,4(m — 1)}, code with weight
distribulion the zero vector and, for m even,

2m 2 12
< 4(m— ]),( ;n) >,<8(m-2},( ;n) S m?,E( m) =
m

and, for m odd,

2m 2m . 2m
4(m — 1), >, < 8(m —2), e mt =1,
< 4(m )(2) (m )(4)> <m 1(m—1)>

If i is odd, then C is a [(;), n—1,n—1]s code with weight distribution the zero vector
and

=1 2 2= 28), (;) S
i

where 1 <i < (n—1)/2.

The minimum weight of C* is 3 and any word of the form vlede js in OL, Ifn £ 6,
these are all the words of weight 3 in C+, and the number of words of weight 3 is thus
(3)- If n = 6, further words of weight 3 have the form vlodt o pledt 1 yled} where
Q = {a.b,c,d,e, f}; in this case there are 35 words of weight 3.

The automorphism group of C' is S, unless n = 6, in which case it is PGLy(2) = Ag.

(Here < i, j > denotes j vectors of weight i.)

Concerning the question of bases of minimum-weight vectors for C and C'%, it is clear
that if n is even then C has a basis of minimum-weight vectors, since the incidence vectors
of the blocks are the minimum-weight vectors and span C by definition.

Proposition 2 Forn > 5, C has a basis of minimum-weight vectors. The code CL has
a basis of minimum-weight vectors for n odd, but not for n even.

4 Permutation decoding
To obtain specific PD-sets for the codes we order the points as follows:

Pi={1n}, Pp= {20} o Pay={n—=1mn} (1)
first, followed by the set

Pa={1,2}, P = (1,3}, P o= {2.3},... Py = {n—-2,n-1}. (@
a
The generator matrix for C'', using the words of weight 3 (with 7 il n is even), is then
a check matrix for €' in standard [orm. The generator matrix for C' will then also be in
standard form, with the first n — 1 coordinates the information symbols for n odd, and
the first n — 2 for n even. We find PD-sets for the codes in Sy:
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Proposition 3 For n > 5 PD-sets can be found for the code C. Using the ordering of
the point set P given in Equations (1) and (2), the following sets of permutations in S,
in the natural action on the points P are PD-sets for C.

1. Forn =5 odd, a PD-set of n elements is

S={lgju{(i,n) |1<i<n—1}
2. Forn > 6 and even, a PD-set of n> — 2n+ 2 elements is

S={1gu{(,n) |1<i<n—1}U{{i,n—-1)Gn)]*" |1<i,j <n—2}.
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On Dominant Error Sequences for Some ISI
Channels with White Gaussian Noise

Victor D.Kolesnik, University for Air Space Instrumentation,
St.Petersburg, Russia

Abstract

We consider the binary data transmission through the Gaussian
channels with the intersymbol interference (ISI). Given the target
polynomial T'(D), we assume that the linear equalization is used for
getting the partial response (PR) model of this channel. The algorithm
Viterbi provides a symbol detection for the PR channel. We show that
for lowpass PR channels (e.g., wire telephone links, magnetic channels
with the perpendicular recordings and so on) the dominant error se-
quences for large enough signal /noise ratio are mainly bursts of length
2 or greater.

1. Introduction
We consider binary channels with the intersymbol interference and assume
that the channel output r(t) is represented by the following linear model:

r(t) = (ar — ax-1)g(t — kTo) + w(t),
"
where ....ax_1,dx, ... are input binary symbols, a; € {—1,+1}, spaced by
interval Tp, g(t) is the step response of the channel and w(t) ~ N(0,0°) is
the white Gaussian noise. The function h(t) = g(t) — g(t — Tp) is called a
dibit response. Then r(t) = S aph(t — k1) + w(t). The channel is called
a lowpass if the spectral density of A(f) is concentrated in low frequencies.
Two examples of step responses for lowpass ISI channels are given below

" { maz(0,1 — exp(—5-)), for unloaded telephone wire link, (a)
g\t) =

crf(%@), for perpendicular magnetic recording, (b)
(1)
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where Dy is the channel parameter responsible for the interference power and
erf(z) = = [y exp(—y?)dy is the error function.

Even in absence of noise the channel filter creates a signal distortion be-
cause of interference especially for small T}, and large Dj. The equalization is
usually used for decreasing interference length and simplifying the maximum
likelihood detection. Let a(D) = Y apD¥, h(D) = ¥ huD*, hy = h(KTy),
and r(D), w(D) be the correspondent D—transforms of sampled signals r(t)
and w(t). Then, r(D) = h(D)a(D) 4+ w(D). In order to get the partial re-
spouse (PR) channel the signal (D) at the channel output is processed by
the linear filter (equalizer) E(D) :

y(D) = E(D)r(D) = T(D)a(D) + n(D),
where T'(D) = E(D)h(D) = To+Ty D+ ...+ T D" is so called target polyno-
mial and n(D) = E(D)w(D) is a filtered Gaussian noise with the covariation

)
R,(D) = ¢*E(D)E(D ). Given target 1'(D), the equalizer can be found by
a standard procedure (see, for example, [3]).

Fig.1 Trellis for PR channel with the target T(D) = 1 + 2D + D*

The noiseless output 7(D)a(D) of the partial response channel can be rep-
resented by the trellis diagram with 2% states. Any path in the trellis cor-
responds to some information sequence a(D). Given the received sequence
y(D), the detector searches the most probable path in the trellis. Two paths
corresponding to information words a;, a; differ in so called input error se-
quence e, = =2 The most popular for PR channels are the Viterbi detector
and BCJR detector [4] that additionally supplies decisions by its confidence
values.

It is known that the target polynomial T(D) = 1+ 2D + D? is a good
enough for chanmels (1a) and (1b). Four sections of the trellis corresponding
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to this target is shown in Fig.1. Two paths at the lowest Buclidean distance
are also shown in this picture, these paths differ in the input error sequence
e, = %l = ...00 + —00... . The output error sequence e, is the convolution
of e and T =(121): e, = e, * T = (...00 ++ — —00...), where (4) denotes
+1 and (—) denotes —1. The information word ag = (+—++) is transmitted
by the sequence y = ag* T =(...4 202 4...). An input error e, appears if the
detector carries out the decision in a favour of a; = (++++), a3 = (—+++)
oras = (——++) : €y = (0+00), e,s = (—+00), or e,3 = (—000). The set of
squared Euclidean distances for the codeword ay is S(ag) = {dg; = 6.d%, =
4,d%, = 6}, where d%; = ||e,; * T||*. For other codewords we have a different
set of distances, e.g., S(a;) = {6,6,20}. In general, the error sequences are
of infinite length. We write e, as a finite length sequence assuming that it is
zero everywhere except positions where they are equal to e,.

The target polynomial may be chosen in many ways. Usually it is chosen
to minimize the error probability at the output of the detector. The problem
for finding the best target was considered in the literature (see, e.g., [1],[2]).
It was found that spectral properties of the dibit response and the target
should be similar, however, not obviously coincide. If the channel is lowpass
than the optimal target should be the lowpass filter.

The input error sequence e, = (£1,£2,...,6N) €{-1,0,+1}",e1,en # 0,
is called a dominant if it has the much greater probability of appearance
among all input error sequences for all information words of a given length.
The notion of dominant error sequences is informal and usually is employed
only at a weak noise. It is easy to prove that for relatively weak Gaussian
noise the probability of e, is as follows:

2
Pr(e,) ~ (:&XI)(—~§%‘5_ , & = |lea * T %, (2)

where o2 is the variance of noise at the equalizer output. Therefore, the
dominant error sequences can be found by the analysis of squared distances
d? for the given target T'(D).

Our aim is to formalize the notion and find a criteria for searching dom-
inant error sequences in a way convenient for error prediction. Moreover,
we would show that for lowpass channels these dominant error sequences are
mainly solid bursts of length greater or equal 2.

2. Dominant error sequences

Definition. Let e, be a concatenation of two subsequences: e, = (e, e).
We call e, the head and e, the body of e,. Let E,, By be two sets of sub-
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sequences ey, e, and assume that E, does not contain a zero subsequence.
We call the set Ep = {ep, e} the {E;, Ej}—dominant set of sequences if
the conditional probability Pr(e, € Eyley), for e, € Ey, is greater 1-a and
Pr(e, € Eyle),) for any e, ¢ Ky, is less than « for some small o > 0. In other
words, e, = (e, ;) is a dominant {E,, By, }—error sequence if nonzero body
lies in E;, with very high probability only when the head belongs to Ej.

Unfortunately, this definition depends on a and for some « there might
not exist Ej, E,. However, it becomes valuable and convenient in applications
for channels with a weak and specific noise. The following examples illustrate
this definition.

Example 1. Let N = 3, E;, = {(0 1),(0 -1)} and E,={(1),(-1)}. Assume
that Pr(e, = +1lep =(0 €)) > 1 — « for any e = +1 and small enough
a > 0, while Pr(e, = +1lep =(-¢ ¢)} = Pr(ey = tl|en, = (e -e)) < « and
Pr(e, = £1le, =(0 0)) < a. This means that {E;, E;}—dominant sequences
are solid bursts of length 2. Hence, for this channel the dominant are error
sequences of the form (0 1-1 0) or (0-11 0).

Example 2. Let N > 3, E;, = {(0 1),(0-1)} and E;, be the set of nonzero
sequences of length N — 2. Assume that Pr(e, # Oley, =(0 €)) > 1 — a for
any ¢ = +1 and small enough . For this channel the {ej, E;}—dominant
sequences are bursts of length 2, ..., N — 1. When some error sequence starts
with the head e, € E,, the body belongs to E;, i.e., they are nonzero se-
quences of length N — 2 with the high enough probability.

The main property of channels with {Ej, E;}—dominant error sequences
from Examples 1,2 is the exact prediction of the error in the body-subsequence
if we have information about errors in the head-subsequence. If the head of
some error sequence equals (0 1) or (0 -1), then one can predict with proba-
bility greater than 1-a that the next subsequence (the body) is in error.

The main result is in the following theorem. It relates to the lowpass ISI
channels and shows that the dominant input error sequences are bursts of
length 2 or greater.

Theorem 1. Let L be the degree of T'(D) and Eyp 1y = {e = (ep, €1, ..., €30..1)}

be the set of sequences over the ternary alphabet {-1,0,1} with ey = ey 3 =
. = g1 = (L If the following inequality is valid

lle  T|P?, (3)

2 2 o
min [le * T||” < min
€Eyy 1ie1=189=—1 ee by 1:e1=1g2=0

then the dominant error sequences for T'( D) and for a weak noise are {Ey, E; }-
dominant error sequences, where E, = {(0 1),(0 -1)} and E, is the set of
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nonzero sequences of length L. This means that the dominant error sequences
are of the form e = (..., 0, €;, €41, -, €i11-1,0, ...), where e; and e; are both
nonzero. In other words, if (3) is valid, then the dominant error sequences
are bursts of length 2 or greater.

For illustration we consider PR channels with Ty(D) = 1+ 22 + 2? and

Ty(D) = 14+-25+122+0.523. For the first polynomial minlec g, , ,:e;=1.e0=—1||€ * T =

4 and mineep,, ,,:e1=1,c0=0 ||€ * T,||* > 6. For the second polynomial we have
lni-neef?zr.+|=51=||€2=-| ”e* T?H2 = 3.5 and Inineef‘?m_+|?61=|,52=9”e*T2”2 2>
6.25. Hence, dominant error sequences are bursts of length at least two and
we may expect that for T5(D) the appearance of bursts as dominant errors
will be observed for less SNR than for T)(D). The other example we have
for the target T3(D) =1+ D — D? — D* : mineeg,, , :e1-1.0——1 /€ ¥ Ty||? =
Millee gy, , e1=1.ca=0 ||€ * Ts||* = 4. We cannot affirm that for this target the
dominant error sequences are bursts. Note that this channel is not a lowpass
channel.

The inequality (3) may be reformulated in a spectral language, where
it is a direct consequence of the lowpass property of the target filter. Tt
is evident that ||e % T||* is the energy of the output of the filter with the
pulse response T(D) fed with the sequence e. It is easy to conclude that
the sequence e €y 1 meeting the conditions €; = 1,e2 = —1 has more
high frequency spectral components than the sequence e € Eyy 1 meeting the
conditions ; = 1.3 = 0. The inequality (3) reflects that T(D) corresponds
to the filter with less transfer in low frequencies, i.e., to the lowpass filter.
Therefore, the following consequence is true.

Consequence. The dominant error sequences for the lowpass ISI channel
with the weak Gaussian noise are bursts of length 2 or greater.

The more detailed analysis shows that the bursts are mainly solid (com-
prising of nonzero symbols only) bursts.

3. Simulation results

We simulate the transmission through telephone wire link (see (1a)) at
SNR=19 and 20 dB with Dy = 2 for 2 target polynomials T\ (D) = 142z +2?
and T3(D) = 1+ 2z + 12? + 0.52°. The 31-tap equalizer is found for each
target by the Least Mean Square approach [3] with the oversampling rate
1:10. The best value of a sampling phase is searched to achieve the best SNR
at the output of the detector. The detector for the PI? channel is developed
on the base of the BCJR [4] algorithm.

The binary stream ol errors at the output of the detector is considered
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as the stream of 8-bit byte errors. For each two adjacent bytes B, and
Bt We calculate statistical probability Pr(B, ..y # 0|Bgy.) which is the
conditional probability of error in the next byte for a given current error
byte pattern. Probabilities Pr(B et # 0| Bewrr) are presented in the following
table, where stars denote unknown binary symbols:

TD) D) | GO BD)
B 19 dB 20 dB 19dB  20dB
(o ko k% ) 0.0362  0.0157 0.0193  0.0071
(%% xkk x1) 0.5991  0.5789 0.5192  0.5104
(o * % % %% 10) 0.0652  0.0318 0.0373  0.0135
(% %% % 01) 0.9601  0.9815 0.9720  0.9906
(e eskxxx 11) 0.4730  0.4846 0.4889  0.4947

For these channels we have {E,, E;}-dominant error sequences, where E;, =
{(0 1),(0-1)} and E, is the set of nonzero 8-bit bytes. These error events
corrupt at least two adjacent bytes. This can be effectively employed for
error prediction in the multi-step decoding of RS codes in IST channels (see

[5])-
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On Error-Detecting Properties of RS-Codes

Victor D.Kolesnik
University of Air Space Instrumentation,
St.Petersburg, Russia

Abstract

We consider Reed-Solomon (N, K, d)—codes, d = N — K + 1, over
GF(q), ¢ = 2™, with the algebraic error correction of all £—error pat-
terns, t < fy < 4—51. It is well known that RS codes have the high er-
ror detection capabilily, i.e., almost always when the number of errors
exceeds #p the algebraic decoder (ADy,) detects these error patterns
as uncorrectable. 'We make this stalement quantitative. For every
t > tg we found a fraction fi,(t) of t—error patterns that cannot be
detected by the AD;,. We show that for long enough RS—codes hay-
ing large minimal distance the fraction fi,(t) is very small. This can
be effectively used for achieving error correction beyond the minimum
distance bound. We also consider the fraction g,,(t) of uncorrected
t-error patterns, £ > tp. and show that this value may be estimated
by the same technique as used for finding f;,(1).

1. Introduction

Let d be the minimal distance of the g —ary linear (N, K, d)—code C. As-
sume that the decoder employs Hamming balls of radius t, < [%5%] centered
at codewords as decision regions. Let ¢ € C, r=c+e be sent and re-
ceived words. The decoder corrects any error sequence e of Hamming weight
wt(e) =t if t < ty. For wt(e) >t the error sequence e can be detected and
the received word r can be marked as uncorrected (or erroneous) if e does
not lie in any decision region. For the g — ary linear N —space let us denote
by S;(x) the radius ¢ sphere centered at x and by By (c) the radius o ball
centered at c. Then e, wt(e) =t > ty, can be detected if it does not lie in any
intersection S;(0)N By, (c) for ¢ € C. We call the value

| Ucec {5:(0)N By, ()}
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a fraction of undetected t—errors in decoding with ty-error correction. It is
evident, that fi,(¢) = 0 for { < d —lp — 1. The case lp = 0 was intensively
studied (see, e.g., [1],[2] and references therein). It is well known, that for
many codes, particularly for Reed-Solomon (RS) codes, fi,(t) stays very
small for ¢, > 0 even for ¢+ much greater then . Although this statement
is well known and popular there is no a quantitative study of that (see [4],
Ch.14, for a sight to this problem).

Note, that the classical algebraic decoding algorithm for BCH codes
(based on the Berlecamp-Massey method , see e.g., [4]) supports the de-
coding in Hamming balls of radius t; < ég—l.W\e denote such algorithm as
AD,,.

In this report we consider AD,, and calculate fi,(t) for g—ary linear codes
using its weight distribution A(w). We show that for long enough RS—codes
the value f,(t) is very small. This observation can be successively employed
for improving decoding schemes ( [5]) for a product of RS—codes.

2. Fraction of undetected error patterns

Let B,,(clw) be the same as By, (c) under condition that wt(c) =w.The
cardinality I(w. to,t) of the intersection S;(0)N By, (c|w) depends on fo, t and
the weight w of ¢, but does not depend on ¢ itself:

I(w,te,t) = |S:(0)N By, (clw)| =

T (G L

udv+r = tbw—v+u<tpw—-2vtl—tp<r<t—v.

Nonzero codeword ¢=(c ¢ )2
w N—w

c N_w=0. w(e)=w;

Error sequence e=(:ev,e’_,eu);

w(e)=t, d(e,c)=w—vtu<= IO

Fig.1 On the calculation of intersection cardinality

The calculation leading to the expression (2) is illustrated by the diagram (see
Fig.1), where two words are shown: the weight w codeword ¢ = (c,, cy albs
¢, # 0,and the error sequence with three nonzero parts e = (ev,er,eu).
Similarly shading parts of words coincide and the unshaded parts are zero
subvectors. Here we denote by x,, a ¢ —ary vector having a support of length
Tre.
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We havev > w4+u—-tg=w+t—v—r—ty>2t—ty,v=t—r—u<it,
hencer > w—2v+t—ty, r=t—v—u<t—wvand

I{w, Lo, 1) |S:(0)N By, (c|w)| =

- - w) fw—v N —w
o (U)( = )(f_ ?,_r) (a—2)(g— 1)
v=t—tg r=w—2u+t—fp

The numerator in (1) can be written in a following way:

Il

Il

| UCEC {S!(O)ﬂ BI-:)(C)H = | Um {UCEC,HIF(C}=N'{ S!' (O)HBFD (C‘U))}}l
Since balls By, (c|w) do not iutersect, we have

t+tn

| Ueec {SHON By (@)} = >

w=max{dt—tg}

A(w)I(w, Ly, t), t > Lo, (4)

where A(w) is the number of codewords in C of Ilamming weight w and we
take into account that the intersection S;(0)N By, (c|w) is empty for |w—t| >
tu-
The fraction fi,(t) of undetected {—error patterns, ¢ > fy, may be found
from (1),(4) and from the expression for the size of radius ¢ sphere in Ham-
5 N
ming space: |S¢(0)| = ; ) (q— 1)

3. Fraction of undetected error patterns for RS-codes
The caleulation of fi,(f) uses the weight distribution of a code. Fortu-
nately, the weight distribution for RS—codes is known (see, e.g., [3]):

w-—d

N i W=l w—d—j e
Afw) = (g~ 1) ( ) > -1y g Yot w2 @
J:
Then, the fraction of undetected error patterns for RS—codes is as follows:

Z:.-j:r?nax{d,!.—t.n} A(IU)I( U, tu‘ 3‘) (6)
|S¢(0)] '

f-‘-u (f) =

For ty = 52 the function f;,(t) can be directly calculated. The results are
presented in Fig.2 for some RS—codes.
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We can simplify calculations to get an approximation for f;,(¢) for RS-

codes. First, we note that
=1 ‘N‘ w—d
. )((q~1)(w)q !

R > [

The upper bound in (7) is very tight for large enough N and w. For some
natural suggestions the doubled single term in the sum (3) corresponding to
v=w—tlyand r =t + ty — w gives a good enough bound for I'(w, g, t):

lg £+.'
I(w, 1, <7 B
(‘w’ i ) (fﬂ) (t + tu = '(U) (I

Hence, the following approximation is valid:

titn

1
o® = Foy 2

w=max{d,t—tg}
2to(0 ~ D7) (a0 _200e-1) ()
(f:’) (q — 1)t gto (1 F %)r

If error vectors of equal weights are of the same probabilities, then f, (#)
coincides with the probability P..(t) of undetected t—error patterns if de-
cision regions are the radius fy—balls in a ¢ — ary Hamming space. This
probability together with the simplified bound (8) is shown in Fig. 2 as
a Munction of ¢ for {5 = d%‘, N = 255, ¢ = 256 and minimal distances
d = {15,21,27,33}. For example, let N = 255, d = 27, t; = 13 and ¢ = 18,
then the fraction f5(18) = P.,(18) of undetected errors of weight 18, as well
as for all other ¢, 13 < t < 50, is very close to 107!, The approximating
bound is in the range (2x107',10~).

A(w) I (w, tg, 1) =

(8)
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0 T I T !

2 ' : ! =19
Qb e : ey
I : : ; ]

s _ 33—
51 1
bt ;
20k e - 4
a5 1 1 ! ; | |
=) 10 20 30 40 50

-log10(Per(t)) for (N K d) PS-code with N=255, K=h-d+1,
1 - simplified upper bound, 2 - exact value

Fig.2 Probability of undetected errors

4. Fraction of uncorrected error patterns for RS-codes

The algebraic AD;, decoder corrects all error patterns with wit(e) <t;.
However, there exist many patterns of weight ¢ > #; that could be corrected,
e.g., by using the exhaustive search or list decoding. So, the error sequence
e, wi(e) =t, not belonging to any ball B;(c'), ¢’€ C, can be corrected since
t = d(r,c) <d(r,c). The fraction g,(t) of error sequences that cannot be
corrected because they belong to the intersections I(w, 1, ) is given by (27),
where {; = :

g(t) < |S 0)| ,X;,A w)l (w, t,t), (9)
where
I{w,t,t) = [S{0)NBy(clw)| =
w\ fw—v N—w :
= —2)"(g—1)""{10
Zuzz( )( )(,__ﬂ_r)(q 2)"(q — 1)"""7(10)

We have the inequality in (9) because Hamming balls of radius greater than
d ! may have nonzero intersection. By this reason the bound works well only
for relatively small values t.

The following table shows the upper bound (9) for some RS-codes with
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g =256, N = 255 and t, = [%51] :

g, (t) |t=tg+1|t=tg+2|t=ta+3[t=ty+4[t=1t,+5
d=19/[88A00% = = z -

d =27 01055 | Lo 10 5= Z =

d=233]| 68107 [31:10°T |[1.0:10°% |- k

d=41 24107 | 1.1-107% 1321677 | 80-10°% | 1.910°2

For example, the algebraic decoding procedure for RS-code (255,215,41) over
GF(2%) corrects all patterns of 20-errors. Potentially, this code can correct
almost all patterns of 21...24-errors and about 98% of patterns of 25-errors.
The value (d+t)-(1— gy, (t)) is the lower bound of real error correction excess
that can be achieved by decoding beyond the minimum distance bound.
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Nonadaptive search with sets of given sum

E.Kolev
Institute of Matematics, Bulgarian Academy of Sciences
8 G.Bontchev str, 1113 Sofia, Bulgaria

Abstract

We consider nonadaptive search for unknown element z from the set
A={1,2,3,...,2"}, n > 3. For fixed integer S the "questions" are of
the form: does x belong to set B3 such that B C A and the sum of the
elements of B equals S7

1 Introduction

Consider the set A = {1,2,3,...,2"}, n > 3 and let © € A be unknown element.
For given natural number S we are allowed to ask whether = belongs to a set

B such that B € A and Zy = §. All questions are stated in advance, i.e.
yelR

this is nonadaptive search. Call the set of subsets By, Ba.... By, good set of

weight S if for all i = 1,2,...,m we have Z = § and the unknown element x
e,
can be found using all of the elements of this set as questions. Note also, that

since the sum of all elements of A is 2" (2" +1) then if By, By, . .., B is good
set of weight S then By, Ba,. .., B,, where B; = A \ B; is good set of weight
22" +1) - S.

There are two problems of interest:

Problem 1. Find all S for which a good set of weight S exists.

Problem 2. Find all S for which a good set of weight S and cardinality n

exists.

2 Problem 1

It is clear that if for any a,b € A there exists question B such that a € B and

bg Bora¢ B and b € B then the set of all possible questions is good. Thus,
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it is easy to prove the following proposition.

Proposition 1. Good set of weight S exists iff

Sepr —1.antir 1y - (27 - 1)].

3 Problem 2

For each set B consider characteristic vector (aj, a3 . ..azn ) wherea; = 1ifi € B

and a; = 0 otherwise. Also, for the set By, By,..., B, consider characteristic
matrix G having as rows the characteristic vectors of By, By, ..., B,. It is clear
that if the set By, Bs,..., 3, is good set of cardinality n then the columns of
G are all binary vectors of length n. Define weight of matrix G as

on

wt(G) = Zwt(aij.i
i=1
where a; are vector columns of G.
Proposition 2. If a good set of weight S and cardinality n exists then
(21’1—1) 'Zn—])

22!? 2+2H 2+L
2

i 227?—2_1_2!1—2

Proof: If a good set of weight S exists then the characteristic matrix G is
of weight n.S. Thus, to find minimal S we have to find minimum of wi(G). It is
clear that this minimum is achieved when the first column of G is all-one vector,
next n columns are the vectors of weight n — 1, and so on, the last column is
all-zero vector. Lo find the weight of such matrix we have to compute

(l + ()@ (2 1)) (@ (2a) o D)@+ () + (7))
2 2

o O () ()t )+ ) + Gl -+ ()
2

It is not difficult to find that the above sum equals n (22“—2 e e

(%;‘:f))
g

Denote by G; the matrix with columns all binary vectors of weight 7. Let

and we get the assertion of the proposition. o

C; be the matrix such that G + G; = J where J is the matrix all entries of
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which are ones. If n = 2k + 1 then it is casy to see that
{l) G= (GhGh'“GinH)

where G;, G, -
G- is characteristic matrix of good set.
whG) = (212" -1
[13,23] of Proposition 2 there exists good set of the form (1). For example, if

Gi,,, is a permutation of the matrices Gy, Go, G1, 4 i 21
Note that if wi(G) = nS then

) —=n)S. In the case n = 3 for all integers in the interval

we denote by Gg the characteristic matrix of good set of weight S then

1 et 1= g

Gia=(GoGiG1Go)=] 1 1 01 0 1 0

P S gEitig e

10 Qo= V1 B0

Gu=(GGi1GeG1)=|1 1010010

s e o o o |

o A [ (W T

Gis=(G1GeGgG1)={ 1 01 10 0 1 0

= 0001

i e Sl sl Ll 1 1)

G]ﬁ—(C:[GanGl)—- e e s )

RO W s Y T

(AN (O Ty s R e

Gir=(GeGoG1G1))=| 01101010

(e sl S S O

100 040 sshes]

Gis =(CyG1GG) = | 10 10 01 0 1

A6 e et e )

Gio=Gir, Gn=GCGis, Gu=Gis, Gn=Gu. Gu=GCGu.

)

Remark 1. It is easy to show that is an integer iff n is not power of 2.

Remark 2. In the case n = 5 the interval from Proposition 2 is [201, 327]. For
all but 14 values of S € [201,327] a chatracteristic matrix of good set of weight
S of the form (1) exists.

We conjecture that for all integers S in the interval from Proposition 2 there

exists a good set of weight 5.
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Multistage decoding for error-free Elias construction.
Sergey Kovalev

St. Petersburg University on Acrospace Instrumentation,
B.Morskaja 67, St. Petersburg, Russia,
e-mail : s-kovalev@nwgsm.ru

Abstract. We consider a multistage decoding algorithm for the Elias iterative codes. In the
proposed algorithm the decoding bit error probability decreases faster with increasing code
length than in the original Elias decoder. Thus the code rate of the Elias codes can be increased

significantly while keeping the same output bit error probability. Simulation results are
presented,

L. Introduction .

In 1954, Elias [1] was first to propose a class of error correcting codes and their simple decoding
algorithm, such that for given £ and Ry, the decoding bit error probability was guaranteed to be less
than & while the code rate R >R;,. The construction of the Elias codes is qﬂuite simple. Let us consider
an iteration of the extended Hamming codes of length 2", 2™'!, 2™ 2! (;>1) This s-
dimensional iterative code possesses the code length N, the code rate R and the minimum distance D:

N=24m6-02) . p =(l—m+l][l o m+2]m[1 _m+ts ] . D= 45 -
= o 2mri vas--l £ 2

Elias considered the binary symmetric channel with transition probability p. Each dimension of the
iterative code was decoded with correction of one error (or less). Decoding starts from the shortest
length. The main Elias’ result is based on the following proposition ; if the average bit error
probability in the code word of the first dimension is less than %, then the decoding bit error
probability tends to zero with increase of the dimension. The “threshold” value of p for each m was
calculated precisely by Berlekamp[2]. The efficiency of the Elias construction can be increased by
choosing stronger codes in the first several iterations [3].

In this paper we investigate an improvement of the Elias construction using a more complicated
decoding algorithm which is closed to a simplified turbo decoding algorithm for iterative block codes.

2. The decoding algorithm.

Consider a set of binary linear block codes g;(n;, ki, d;), i=1,2,...5, of length n;, dimension &, and
minimum Hamming distance o; . Let us denote the m-dimensional iterative code by
G(N.K.D)=g,®g:®...8g, . The main code parameters, such as the iterative length N , the code rate R,
the information dimension K and the minimum distance D are cqual to the product of the
corresponding parameters of the iterated codes.

Decoding of iterative codes is based on decoding of conventional block codes in cach dimension
using information from decoders in other dimensions. The basic operation of the multistage decoding
scheme is recalculation of the hard decisions and symbol reliabilities by a decoder of the code g, in

the dimension / using information from the previous dimension or the previous stage.

We assume that the s-dimensional iterative code is used for transmission over a memoryless binary
symmetric channel (BSC) with transition probability p. Let X € G, Xje {-1+1} be transmitted
codeword and Y, Yie {-1,+1} be the corresponding output of BSC. For the multistage decoding we
introduce the following notations :

Y denotes s-dimensional matrix of soft decisions for J-th stage; Y=y:
7 denotes s- dimensional matrix of hard decisions for ¥ :

Z=-1if Yi<=0;Z=+1if ¥Y>0, Z'=Y.
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Our algorithm consists of the following steps:

Generate the initial matrices ¥’ and Z".

f=I.

=]

Extract all vectors y' from ¥/ in the dimension /. and decode independently each y/ by a
decoder for g,. The decoder recalculates y/ using ' according to a decision rule. The new

vectors y/ update ¥ in each dimension immediately and form ¥ after decoding in the last
dimension.

i=i+/[.If i <sthen go to 4. ;

The result of the decoding stage is an updated matrix Y.

If(Z € G)or (= prescribed upper bound) then go to 9.

j=j+l Goto3. )

The end of decoding. The final result is Z.

e e

¥H00) =4 O LA

Different approaches to the “soft in-soft out” decoding of the conventional code_ yield di[_’ferenl
decoding algorithms for the iterated codes. Let us consider a simple decoding dei:lsmn_ru[e for the
block codes which uses symbol reliabilities and do not use complex float-point operations such as
exp(), log(), multiplication and division.

Let e be a binary error vector such that eje {0,+1}, (z,(-1)",z,(-1)",..) €g:

Wine)= z_vl. be the generalized weight of the vector e. Let us consider the calculation of v/ using
A=)

»'and 7, For each k we find two error vectors ¢” and e' such that e =0, e} =1, ¢’ has minimum

generalized weight among all error veetors with e, =0, ¢’ has minimum generalized weight among all

error vectors with e, =1. For the Hamming codes of moderate lengths these vectors can be found

using simple known algorithms [5].
We propose the following decision rule [4]:

yi=yi- (W, ) Wi, )iz; (1)

3.Simulation results.

The described above algorithm was checked by computer simulations for several Elias codes
obtained from the extended Hamming codes of lengths 4,..,64. The simulation results for multistage
decoding are shown in the following Table. More than 10° channel symbols were processed for each
simulation. The number of stages was restricted to 10, Results for the Elias decoder were adopted
from [2].

m=3, m=4, m=3,
Puutput P input =0.08 P input = 0.04 P mput ={}-0 1 9
Elias decoding , s=2 0.019 0.0098 0.0049
Multistage decoding, s=2 0.002 (.00038 0.000071
Elias decoding, s=3 0.0098 0.0049 0.0024
Multistage decoding, s=3 (1% - -

*_ 10° code words were simulated. It is more convenient to estimate the code rate gain. For example,
multistage decoding of (32*32)-code is equivalent to the Elias decoding of (16*32)-code with
Piopui=0.04, Poypu= 0.01. At the same time, Ryig+32) =0.56, Ry32+32=0.66 . Other example :
G1=(8*16*32) ,G2=(16*16). The Elias decoding of Gl code for Pippu = 0.08, Poypw = 0.01 has the
same performance as multistage decoding of G2 code. Note, N1=4096, N2=256, R1=0.33, R2=0.49.



164 ACCT-VIlI

4.Conclusion remarks.

As follows from the simulation results, the proposed algorithm is essentially better than the Elias
decoder. Moreover, the decision rule (1) is not much worse than the classic symbol-by-symbol MAP-
decoding which usually supposes an analysis of each codeword of the code (or the dual code) and
requires complicated floating point operations. The computer simulations implemented for AWGN
channel and iterated extended Hamming codes (16*16*16) show almost the same results for rule (1)
and for MAP-decoding. For £,/N,=1.5dB the bit error probability £, =2+#10"° was obtained for
the both decoding rules [4,6]. Other comparison was done for the single parity check (SPC) iterative
codes. Simulation results for (8*8*8*8*8) iterative SPC code and MAP decoding rule obtained
P,=10" for E,/N,=2dB [7], whereas the rule (1) achieves only P,=10"". Thus, the proposed
algorithm may be useful for communication systems with restricted complexity of the decoding
scheme.
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The Kerdock Codes and Separating Systems
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Abstract

Tt is shown that one-shortened Kerdock code is (2,2)— and (2, 1)~ separating sys-
tem. The parameters #, 6" of the separation obtained.

I. (2,2, 6)-separating systems

Let us consider the binary code C of length n. The code C is (2, 2, #) —separating system
(—s.5) [1, 2, 3], if the arbitrary ordered quadruple of distinct vectors

T — (fi(ll}1 n'gl), - u.sn, 3t n},”)
Sg:(a(l?},aff},..‘,agz},...,agj) (1)
B (ﬂ:l::),ﬂ.%:::. iy uf(—_::i, S ﬁg;)
seo=(ay ‘,a.z T e G )
contains not less than # so-called regular columns of the form
(aada)”,
Let, 12z, 7y, Ny be the numbers ol columns respectively
(aaaa)” or (aaaa)’,
(aaaa)” or (aaaa)”,
(aa@a)” or (aaaa)”.
a.=0, 1 pe="1-1l
Denote
s =((s;1 + 82+ 83+ 84) mod 2, (2)

w(s) as the weight of vector s and d(s;,s;) = di; as the distance between vectors s;, s;
respectively.
It is easy to see, that

w(s) = ny + N, (3)
dig = ng+mny, dig = ny+ny, (1)
46 = d|3 +d]4 + dgg +d2_| = 2d12 == 2!‘f3.-1 -+ 21‘13,. (5}
We obtain from (4) and (5)
40 = dy3 + dyg + dos + day — dyg — dag — (1ny + ny). (6)

Ifd and D are respectively the minimal and maximal distances of code C, then

dd — 2D — (ny +ny) >0 (7)
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is the sufficient condition to a code to form a (2,2, #)-s.s. for some .
Let us consider the one-shortened Kerdock (K (2™ —1, 2" 1)) code [4] of length n = 2" —1
with 221 codewords, m is even.
It is casy to prove that the list of distances of the K (2™ —1, 2% ') includes only following
values
0, gm=1_ Q{m—:!),l’li‘ 2m—l! gm—1 - 2[m—2}{2‘ (8)

The following lemmas are obvious:

Lemma 1. The K(2™ — 1,22""1) is the subcode of the one-shortened second-order Reed-
Muller code, because the Kerdock code is the subcode of the second-order Reed-Muller code.

Lemma 2. Mazimal distance of the one-shortened second-order Reed-Muller code is equal
ggm=2,

Let the vectors in quadruple (1) belong to K(2™ — 1,2 1)

The Kerdock code is not linear code. Therefore vector s in (2) might not belong to
K(2™ —1,2*%1), and w(s) in (3) is not necessary contained in the list (8). But vectors (1)
belong to one-shortened second-order Reed-Muller code (see Lemma 1). Hence by Lemma 2
Ty + 1y < 3-277% Thus, we have taking into account the equations (6) and (7) and Lemma
2: The K(2™ — 1,2?™1) is (2,2,6)—s.s. when

A6 > 4(2m : T g(m 2];’2} a2 2(.2m 1 Ay 2(m 2){?) gnm o gin o 3. ng"z = . (0}

This inequality is fulfilled by m > 8. Eq. (9) gives for mm = 8 and 10 respectively ¢ >
4 and 40, whereas computing analysis gives respectively # > 12 and 48,
II. (2,1, 6")-separating systems

The code Cis (2, 1, #)—separating system (—s.s), il the arbitrary ordered triple of distinct
vectors

Si:= (u(l]), ug), iy uE'J, S as,l})
82 = (H{J)‘ af!_z)r rimiey "IEIZJ.\ ririaig Gs{”}
sl it k)

contains not less than #° regular columns of the form
(aga)”.
Let us denote rz;, -u'u the number of columns respectively
(aga)” or (dea)”,
(aa@)" or (aaa)”.
a:ﬂ,]; {_,IZ]U
It is easy to see, that

! i’ I 3
dp=8+n, dp=0+n,, dy=n,+n,.

Hence
26" = dys + dyy — dya.

Finally, the K(2™ — 1,2%" 1) code is (2,1,0%)—s.s. when

29* > 2(2m -1 _ 2[m—2},|"2) ol 2:’“—1 ) 2{"1—2,1!2 - Qm—l R 2{m—2},|’2 > 0. (10}
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This inequality is fulfilled by m > 4. The values of Eq. (10) coincide with the results of
computing analysis for m = 4,6, 8, 10.

ITI. Conclusion

Now we can formulate the problem of existence of some linear subcode L of second-order
Reed-Muller code (RM(m, 2)), such that Kerdock code and more over the K(2™—1,2*"1)
L ¢ RM(m, 2). With this assumption is we have the opportunity for improving of parameter
B of the (2, 2)-separation.
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On decomposition of (n,4"~!, 2); MDS codes and double-codes !
D.S. Krotov 2

The union of two disjoint (n,4"~", 2) MDS codes in {0.1,2,3}" is a complete double-code. 1f adja-
cency graph ol the complete double-code is not connected then the double-code can be decomposed onto
complete double-codes of smaller dimensions and the (n, 4"~ 2) MDS codes are also decomposed.

Let A £ {0,1,2,3} and n be a natural number. For & = (21,22, 0yn) we use the
following notations: ;i-f“'}#y £ (1) oy Tty Yy Thep1y ooy Tn) and :{kl"‘i"“‘kf)#(.gl,y-_;_....!yz) ¢
(oo (R0 gy )Rty ) gty

Edge (i-edge) of A™ is a set of four elements of A™ which differ in only one (ith) coordinate.
Let edge;(x) denote the i-edge containing # from A", If § € A" then edge(S) 4 U edgei(x)

res
. df A LA v
and W ;.55 = {(h,e) € A*: J:(“J}#U), c) e S}

A set § C A" is called a (n,4"', 2)y MDS code if each edge of A" contains exactly one
element from S. A set § € A" is called a double-code if each edge of A" contains zero or
two elements from S. A double-code S © A" is called complelc if each edge of A™ contains
exactly two elements from S. If a double-code is a subsel of some complete double-code we call
it complemented. 11 a double-code is complemented and nonempty and can not be partitioned
onto more than one nonempty double-codes we will call it simple,

Note. The union of two disjoint (n,4"~*, 2); MDS codes is always a complete double-code.
The reverse statement is not true for n > 3.

Jjole|e olo|e|e
D)0 |e|e o|le|O|e O|le| @O
a) b) ¢) d) )]
®|® |00 L AR Bisg el L A=K Bi+] ®|C| @O
elejo|o NOEE AOEE NOBEE

Figure 1: The black circles identify the elements of double-codes in A*. The results of operation
\1 are identified by the white circles.

Example. Figure | shows all double-codes in A% up to permutations of rows and columns.
The double-cades a)-d) are complemented and e) is not. The double-codes ¢) and d) ate com-
plete. The double-codes b) and d) are simple.

Proposition 1. (1) The supplement of a complete double-code in A" is a complete double-code,
(2) A double-code S C A" is complete if and only if |S| = |A"|/2 = 227~1,

(3) Let S = {Sy,..., 85} be a partition of complemented double-code S onto simple ones, Sy be a
simple double-code and Sy C S. Then Sg € S.

Proof. (1) follows from the definition of complete double-code.

(2) is abvious if one considers the partition of A™ onto i-edges where i is fixed.

(3) For arbitrary double-code §' € A" we consider the graph (J(S) with vertex set S/,
two vertex being adjacent if and only if they differ in exactly one coordinate. The degree of
Gi(S") is n. To a simple double-code corresponds a connected graph. To the partition of S
onto simpe double-codes corresponds the partition of G(S) onto connected components. The
subgraph G(5Sp) of G(S) is connected and has degree n. Consequently, it contains all edges of
G/(S) beginning in Sp. It means that G(Sy) is a connected component of G(S). A

For § C A" and i € {1, ..., n} we denote \;S < edge;(S)\S.

'This research was supported by the REBR under the grant 00-01-00822
*Sobolev Institute of Mathematics, pr. Koptyuga 4, Novosibirsk 630000, Russia, e-mail: dkrotov@mail.ru
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Proposition 2. Let §5,58" € A" be double-codes and i,i' € {1,...,n}. Then

fi1) Sirh8 =1}

(2)\i\eS = 5;

(3) 18] = \iSl;

(4) 8 C 8" if and only if \iS C \:S';

(5) S is complete if and only if \;S is complete double-code;

S is complete iff \iS = A"\S; (6) S is complemented iff \;S is complemented double-code;
(7) S is simple if and only if \;S is simple double-code;

(8) if S is simple then either \;S = \;nS or \;S N \sS = 0;

(9) if S is complemented then \i\yS = \i\iS:

(10) S is complete if and only if |S| > 0 and \;\;+S = 8 for each j,j' € {1,....n}.

Proof. (1) is clear.

The set edge;(S) = edge;(\;S) = SU\;S can be partitioned onto i-edges. Hach edge of the
partition has two elements from S and the other two from \;5. It follows (2) and (3).

(4). Let S C S". Then edge,(S) C edge(S'). Each edge edge,(F), ¥ € edgei(S), contains
two elements from S and the other two from \;S. They are also elements from S and \;5’
respectively. So, each element from \;5 is in \;5'. The reverse statement is proved by the same
way.

(5) follows from (1), (3), and Proposition 1{2).

(6). First we will show that \;S is a double-code. Let edge;() be arbitrary edge, where
j €{0,..,n} and & = (21,...,z,) € A", If j = i then |edge;(F) N S| = |edge;(F) N \;S] € {0,2}.
Let j # i. It is clear that ¥; ;55 is a double-code in A? and Wy ;.z\;S = \1¥;;;zS. Furthermore,
the fact that S is complemented implies that W; ;=S is complemented too. It is easy to check
(Fig. 1(a-d)) that \1%¥; ;;zS is a double-code. Consequently. |edge;(Z) 1 \;S| = |edgea(xi, 2;) N
\10; ;S| € {0,2}, and \;S is a double-code by the definition. The fact that \;$ is complemented
follows from (5) and (4).

(7) By (6) we may assume that S and \;S are complemented double-codes. Let 5 be non-
simple. And let § = S; U S;, where S; and S, are disjoint nonempty double-codes. Since S,
and S; are complemented, then \;S; and \;S; are also complemented double-codes, It follows
from (4) and (2) that \;S1 N \iS2 = \i(S1 N S3). Therefore \;S; and \;S; are disjoint and the
double-code \;S = \;S; U\;S2 is not simple, which proves the statement.

(8) Let S C S”, where S” is a complete double-code. It follows from (4) that \;5 C \;S" =
A"\S”. On the other hand \»S C \yS” = A"\S". By Proposition 1(3) the simple double-
codes \;§ and \yS belong to the partition of the complete double-code 4"\S" onto simple
double-codes. Therefore they are either coincident or disjoint. ,

{9} One need check only that \5\;;8{“-!;3 = \,‘!\,‘S,'Igr;f for each 7 € A", where S;‘;!;_p_ :j.
{z0") 4 (b, ¢) : byc € A}. Equivalently, \;1\2¥; 1S = \2\1¥; .25 for all € A". The last can
be checked directly taking into account that W; ;.S is a complemented double-code (Fig. 1a-d).

(10) If S is a complete double-code then |¥;;:zS| = 8 (Fig. 1(c,d)) for all i,j &€ {1,...,n},
i # j,and T € A". Therefore, \;\;5 = S.

The reverse statement. For the contradiction let S be non-complete. Then there exist #,Z €
A" such that edge; (F)NS # 0 and edge; (2)NS = 0. Consider the sequence # = #°, 7*,...,3" = %
such that #7~! and #! coincide in all coordinates exept jth. There exists j € {2, ...,n} such that
edgei(F1)NS # 0 and edge (7)) NS = . Then |¥,,;:S| ¢ {0.8} (Fig.1(a,cd)), that
contradicts to \1\;5 = S. A

Let S be a complete double-code in A", and Sy C S be a simple double-code. We will say
that i and i’ from {1,...,n} are equivalent, or i ~ ', if \;\»Sp = So. It follows from Proposition
9(2,7,9) that ~ is an equivalence relation. The sets S, § € {0, 1}* are defined by the equalities

St ¥ So and Sgge, A \i,1S5- This definition is correct by Proposition 1(2.9).
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Let Ky = {innvingseniym b K2 = {idigs ot oo Ko = ik des s feni ) be the
equivalence classes of ~. From Proposition 2(10) we have

Proposition 3. The double-code S is simple if and only if k = 1.

The next proposition is also a corollary of Proposition 2.

Proposition 4. (1) For each y € {0,1}* the set Sy is a simple double-code. If y is even then
Sy € 8. If j is odd then Sy C A™\S.

(2) For each i from {0,1}* the equality Sy = \o\inSy is true if and only if i',i" € K; for some
ped1 L k)

(3)5 = U, oy Sy and ABNS= Uye ooy S where {0, 1}F is the set of the cven elements

of {0, 1},
Let o =Xs! A™ — {0, 1} be the characteristic function of S and a;(y;, coes Ynj) y
i a{ﬂ('l""“":}#(y. vy W) (J = 1,..., k) be its subfunctions.

Proposition 5. For every i, i", which belong to different equivalence classes, for every v € A"
and for every o', a" € A il holds

o (&) o(e#a’) @ o (2" #a") @ o (20 (a!, a")) = 0.
Proof. Let 5! C 8 be asimple double-code such that S"Uedge, () # § (Proposition 2 implies
its existance). Let us consider the sets 5% = W, v S and 5 = Wy 0287, Since \;\»S" # 57, by
Proposition 2(8) it is true that \y\»S'NS" = 0 and, consequently, \;\257 N 5 = (). Therefore

5% corresponds to case ¢) of Figure 1 up to rows and columns permutations. The statement
follows from the obvious identity

X 52 (bf? b”) B X 52 (‘-’rs b”) & x g2 (b’s CH) B Xg2 (‘-\‘: C”) =0, Vbrv E’Ha (‘", 'ed A

Proposition 6. Let P = {py,....pn} C {L,..on}, Q = {g1.-..q0} C {1,...on}, and each K; is
disjoint with at least one of P and Q. Let & = {ay,...;4,} € A". Then

g(ﬁ) ) U(G{Fl'mmm]#(xpu vy Eppa) ) B C’{ﬁ(m""’qr)#{mqa sey o)
@ (01 PmAtr el fh (s By gy ooy Fr)) =0

Proof. By Proposition 5 we have

@ @ ( a(ﬁ(ph""p'_l'“""'qr_l}#(xps: sy Bp, gy By ey Lapsy))

s=1t=1

o’(ﬁ(pl‘"”p'_lIQLP".'“}#(IPI Aixtey zp:—-‘n qul it xqr))

@
@ g{[-](pl""‘P"'“""'q"l}#(Zpl AR o ::qr_l)j
@

OO P Ay 21 20))) =0
Collecting similar terms proves the statement, A

Proposition 7. For each T from A™ it holds

k
o(z) = @0’}(1‘{,,, e :r,-JJJ] & ((k - 1) mod 2)a(0).
=1
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Proof. Let &; = {:--;JII,.'L',-j_Q,A..,m;MJ]. Without lost of generality we can assume that
(Fray s Tatiste st e gy e dpnn ey ?‘kr,,_k} = (1,..:,n). So, T = (&,%2,...,%x). By Proposition 6
we have

k
G (0) @ 0 (F1yvees Ejty 0y oorg O) B (0,0, 2510, s, 0) B 0 (F1, oy Fjt 5,0y s 0) = 0
s

and the statement is proved by collecting similar terms. A

Proposition 8. For each j € {1,...,k} the function o; is the characteristic function of a simple
complete double-code.

Proof. g; is a subfunction of @. Therefore it is the characteristic function of some complete
double-code S;. I §; is not simple then Propositions 3-7 lead to contradiction with the fact
that K; is an equivalence class. A

The following theorem is a corollary of Propositions 7 and 8.

Theorem 1. (decomposition of complete double-codes) a) The characteristic function x5 of a
complete double-code S is representable in the form

k
xs(2) = P xs; (£5) & oo,

i=l1

where &j = (i |y ey ‘T";.n_,} are disjoint collections of variables from &, S; are simple complete
double-codes in A™ and s € {0,1}.
b) § is a union of 25~ simple double-codes.

The next theorem gives the representation of (n,4"~!, 2), MDS codes, which is based on the
decomposition of complete double-codes presented in Theorem 1.

Theorem 2. (decomposition of (n,4"~1,2), MDS codes) Let S be a complete double-code in
A", C be a (n,4""1,2)4 MDS code, and C C S then

C= {(311- . ..,En) I (xl'_,'_nxa'_,lm\ "'|z€j_njlyj) € C.fl i=1 By (yroonye) € Cl]}\

where C; is a (nj +1,4™,2)y MDS code for j =1,...,k, Cqy is a (k, 45=1.9), MDS code, and
k.nj, i, are specified by Theorem 1.
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Several Properties of Public-Key Cryptosystems based on
quadratic orders *

Kshevetsky A.S. 1

Abstract. A possibility of construction of a signature based on the public-key cryptosys-
tem with quadratic decryption time [2] is analysed.

1 Introduction

J. Buchmann and H. C. Williams suggested to use quadratic orders for cryptographic purposes. They
applied a Diffie-Hellman like key exchange cryptosyvstem and a RSA like public-key cryptosystem as
described in |5] and [4]. Both schemes have cubic time of encryption and decryption. Here and be-
low calculation lime means time, measured in bit operations and depending on the bit length of input
parameters, Then D. Hiihlein, M. Jacobson, Jr. and S. Paulus suggested an ElGamal like public-key
cryptosystem in |3| with encryption and decryption of cubic time and pointed out a way for building
signature, based on this cryptosystem. And finally, S. Paulus and T. Takagi proposed a new public-key
cryptosystem in 2| with cubic encryption time and quadratic decryption Lime as an alternative to RSA
and ElGamal cryplosystems,

We showed, that the size of a cipher text is more than six times grealer ihan the size of a Imessage
text in the cryptosystem [2].

There is an open question about signature based on the cryptosystem with quadratic decryption time.
It is proved in the paper, that there is no way to create signature schemes based ou that cryptosystem.

The section 2 of this paper reminds common issues of quadratic field theory. The section 3 contains
description and analysis of proposed cryptosystems based on quadratic orders. Analysis of signatures is
in the section 4.

2 Imaginary Quadratic Fields

Imaginary quadratic field is the extension of the field of rational numbers @ with an element /3, § being
in Z~ and —d being not a full square. Elements of quadratic field are represented as r + sv8, where
r,s € Q. Norm of an element o of quadratic field is defined as N(a) = r? — §s2,

Let A be discriminant of quadratic field. Discriminant satisfies the equality: A = 0,1 mod 4.
Discriminant is said fundamental discriminant Ay, if Ay = | mod 4 or Ayf4 = 2,3 mod 4. A non
fundamental discriminant Ay can be decomposed in a fundamental discriminant A and square of a
number f. called conductor: Ay = Ay A

Ring ol integral numbers in imaginary quadratic feld is defined by Op = Z + '5"'2“;33, it is called
quadratic order. Integral ideal in quadratic order has the form m(aZ + “’%’EZ), where ma e Zt, be
Z, —a<b<a and A = b* mod 4a. ldeal is called primitive, if m = 1. (m, a,b) is called the standard
representation of ideal, (a,b) - the one of primitive ideal, The norm of ideal equals to m2a. Primitive
ideal is called reduced if N{a) < N(!’—ﬂzg}, where N(a) denotes norm of an element a of quadratic
field. The norm of primitive reduced ideal is less than +/JA[]/3. Primitive ideal with the norm less than
VIAf|/4 is always reduced.

An ideal a is called coprime to a number f, if ged{N(a), f) = 1. Coprime to [ ideals form an
abelian group Jx, (f) in the quadratic order with the discriminant A;. Principal coprime to f ideals
form a subgroup P5,(f) in da,(f). A quotient group CU(Af) = Ja, (f)/Pa,(f) is classes group. Its
order is denoted by h{Ays). A class group in the quadratic order with fundamental discriminant A, is
Cl(Ay) = 3a,(f)/Pa,(f). There is only one reduced ideal in every class. Given an ideal from class,
one could evaluate the reduced ideal in the class. This operation is called reduction feds. Hence, every

“Some results of this paper were announced on XLIV Scientific Conference of MIPT in [1].
"Moscow Institute of Physics and Technologies, e-mail: alex{idgap.mipt.ru
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closs of C1(A;) can be uniquely identified with reduced ideal. Classes arithmetics can be performed as
reduced ideals arithmetics, For example, multiplication of two classes is done by multiplication of their
reduced ideals and consequent reduction.

Let consider the relation between idealsin Oa, and O . It is possible (o defline isomorphisms for ideals
hetween groups da, (f) and Ja,(f). For an ideal a € da,(f) there is an isomorphism ¢(a) = ala, =u €
Ja,(f). And for an ideal u € Ja, (f) there is an inverse to ¢ isomorphism ¢! (1) = uN0a, =a € a, ().
liquality for superposition ¢-¢ ' = ¢ ! - ¢ =1 holds.

Map ¢ can be thought as homomorphism of class group C1{Af) into CI{A;). This is the mapping
manv-to-one. The kernel of this homomorphism is a group of ideals mapping to the subgroup of principal
ideals Pa, (f) in da,(f) by homomorphism ¢.

When it is mentioned about ideals, it implies isomorphisms ¢ and ¢~', and when it is mentioned
about classes of ideals, it implies homomorphism o.

Let f =g be a prime and /|A,|/3 < q. Then all reduced ideals in Oa, are coprime to g and hence
belong to da, (g). In this case h(A,) = h(A)(g—e(Ay, q)), where ¢(Aq, g) denotes the Kronecker symbol.
That is, (g — ¢(A;, ) classes of CI(A,) are mapped to one class of C1(A,).

Operations of reduction Reda(a), isomorphisms ¢(a) and ¢~'(a) have quadratic bit complexity
O(log*(N(a))), multiplication of ideals a « b — O(log®(max(N{a), N(b))}), multiplication of a num-
ber o € O and ideal a — O{log* (max(N(n), N(b)))). Because the norm of any reduced ideal is less than
/TA[/4, bit complexity of operations with them is O(log?(A)), .

Isomorphisms ¢, ¢ ! can be performed, if both numbers A, and f are known only. Operation of
reduction Reda requires knowledge of a discriminant A.

Algorithms for these operations can be found in 2], [6].

3 Cryptosystems, based on quadratic orders

J. Buchmann and H. C. Williams suggested a Diffie-Hellman like key exchange eryptosystem and a RSA
like public-key cryptosystem in |3] and [4]. Cryptosystems are built in multiplicative group of classes
CI{A[). Operations with classes are equivalent to operations with reduced ideals, as in every class only
one reduced ideal exists and this is the ideal with the minimal norm. Cryptosystems have cubic time
O(log® Ay) of encryption and decryption due to exponentiation, used in Diffie-Hellman and RSA schemes.

D. Hiihlein, M. Jacobson, Jr. and S. Paulus improved technique of cryptosystems applying over
quadratic orders in [3]. They involved two orders with discriminants Ay, A, = Aqq® respectively and
isomorphisms ¢, ¢~', which map ideals between orders O, and U4, . Suggested an ElGamal like public-
key cryptosystem is built in a group of classes CT(A, ). Encryplion is done in C1(A,), it maps a message
ideal m to a cipher ideal ¢. Decryption is done in CI{(A )

o the reduced eipher ideal ¢ from CI(A,) is mapped to a reduced ideal uin CI{A; ) by the isomorphism
8

e decryption algorithm (exponentiation, multiplication and reduction of ideals) is applied in CI{A,)
to u to produce reduced ideal uy;

e the ideal uy is mapped by ¢~!, providing the message ideal m.

Mapping of ideals into CI{A;) allow to increase decryption performance. Decryption has cubic hit
complexity O(log*A1) and encryption has cubic complexity of O{log®A,) = O(27 log?Ay). Complexity
i« cubic due to exponentiation, used in ElGamal scheme. Note, that eryptosystems by I. Buchmann and
H. C. Williams could be modified to work by similar manner.

Recently, 8. Paulus and T. Takagi proposed a new public-key cryptosystem [2] with quadratic de-
cryption time as an alternative to RSA and ElGamal cryptosystems. Their cryptosystem is a further
development of [3]. It uses the fact that (q — e(A.q)) classes of CI(A,) are mapped to one class of
CI{Ay) by ¢. Encryption is done in CI(A,;} and has cubic bit complexity O(log*A,) due to exponentia-
tion. Decryption technique is the same as in above work [3] except that decryption algorithm in CI{A,)
does not, include exponentiation and has quadratic bit complexity O(log®A,). Consider the cryptosystem
in details according to [1].

» Key generation. Choose random big primes p = 3 mod 4 and g > /p/3. Let Ay = —p,
A, = Aig®. And let k and [ be the bit lengths of /|A;[/4 and (g — €(A1, g)) respectively. Secret
parameters are factorization of A,: (A, ). Public parameters are (A, k[, p), where p is a random
ideal from the kernel of the isomorphism ¢. The ideal p is evaluated by choosing a random number
a € 0a, and computing p = ¢~ (a4, ).
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e Encryption. First, a text message m is transformed to a reduced ideal m in Ja (g), an ideal
u = ¢y(m) being reduced in J5, (g). This can be done as [ollows.
Let the message m be a number of & — 3 bit length. Then the number o = 1.M is formed by bit
concatenation of 1 and the message m. A prime number o is generated: o = 3 mod 4,2 < 0 < 2r.
The difference d = a — x is stored. The bit length of a is at most k — 1, that is, @ < /]A|/4. Try
to solve the equation b = Ay mod 4a for b by the formulae b = iA‘(,"H}H mod a. I the founded
b is not the square root (the probability is 1/2), repeat generation of the prime a again. Construct
a message ideal m = (a,b). The ideal m is reduced, N(m) = a < /[A,[/4, and belongs to g4, (g},
N{m) = a < /|A]/3 < q. Note, that the norm N{¢(m)) = N(m) = a < +/|A|/4 and, hence,
@(m) is the reduced ideal in Ja, (g).
Generate a random number » with the bit length of [ — 1. Inequality » < (g — (A}, q)) holds.
Encryption is done by multiplication of the message ideal m and the ideal p from the kernel of
the isomorphism ¢, exponentiated in the power r. Reduction operation is performed after every
multiplication to reduce tho norm of resulting ideal and, therefore, to increase performance. That
is, ¢ = Heda, (mp”) € da, (q).
So, encrypted cipher text is represented by the reduced ideal ¢ = (a;, D)), and the difference d,
required to restore initial m [rom the prime number a.

e Decryption. Decryplion is done as [ollows:
— apply the isomorphism @ Lo the cipher ideal ¢: ¢(c) = uy € a4, (¢);
— make reduction Heda, (1) = u; ideals u; and u = ¢(m) belong to the same class of CI{A,);
make ¢ ' (u) = m.
— restore m = a — d from the ideal m = {a,b)

The advantage of this eryptosystem is quadratic decryption time.
The drawbacks are:

s The ciphertext ¢ takes the size 6 time greater than the size of original message m. The bit length
of original message is L,, = k = logs +/[A1]/4 = Llogs|A;|. The bit length of the ciphertext ¢ =
(ay.by) is Le = logsay + logaby + logad = 2logany = 2logs/|A,| = 2-3logs /| Ay | = 3loga|Ay| = 6k.

The ideal p from the kernel of the homomorphism ¢ is published. Currently, there are no evidences
that it could compromise the scheme. Until safety of publishing of p is not proved, it is a potential
flaw.

® The person encrypting a message can not verify that given ideal p actually belongs to the kernel of
the homomorphism ¢.

The technique of transformation of the message m into ideal requires calculation of a square root b
modulo prime: A, = #* mod 4a. Because of A, = 1 mmod 4, direct calculation is not applicable and
algorithm of solving is probabilistic and has average cubic bil complexity. It could be found in |8]
for example.

e As we converl a message to a prime number, we should provide additional open information,
namely, the difference d, in order to make the inverse conversion. This additional informalion is
sent as open text.

4 Analysis of signatures

In the works [5] and [4] there were proposed public-key cryptosystems and signatures in multiplicative
groups, namely in the group of classes Cl(Ay), based on well-known Diffie-Hellman, RSA and ElGamal
schemes. The public-key eryptosystem [2] uses properties of homomorphism between two groups of classes
Cl{A;) and Cl{Af) that allow to deerypt a ciphertext with quadratic time.

The isomorphism (homomorphism) ¢ and the inverse isomorphism ¢~ can be performed if decom-
position of A, = A¢” is known only. It can be said that the knowledge of ¢ and ~' is the secret key in
the cryptosystem [2]. In this cryptosystem two classes of the group CI(A,), represented by the reduced
message ideal m and the reduced cipher ideal ¢, are mapped by the homomorphism o to a one class of
the group C1(A). The message ideal m is mapped by the isomorphism ¢ to a reduced ideal in Ja, (g)
and can be recovered by the inverse isomorphism ¢!,
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Our task is to consider signatures based on the cryptosystem [2]. We will suggest that decomposition
and mappings ¢ and ¢~ are the secret key of signer.
Let describe a common scheme of signing in this [ramework.

e A message i1 is transformed to a reduced ideal m & Ja, (q), representing a class in the group CI(A,);

e The message ideal m is mapped by ¢ to an ideal u € Ja,(q), the ideal u representing a class in
Cl(A);

e Some evaluations are made with u, preferably without exponentiation. We remind here that we
deal with classes; classes are represented by reduced ideals. So, every step of evaluations should be
followed by reduction in order to decrease the norm of ideals and therefore to decrease the time of
calenlations. The resulted reduced ideal u; will represent the same class, as the one represented by
u (in the case of simple reduction of u as in |2] it is done). Or the ideal u; will represent an another
class of C'I{(A;).

The resulted rednced ideal u; is mapped by ¢ ' and then is reducing to a signature ideal s € da_(g),
representing a class of the group CT{(A,).

The task of a verifier is to make sure that the ideal s actually corresponds to the message m. More
precisely, the verifier should check that two classes of Cl1(A,), one, represented by the reduced message
ideal m and another represented by the reduced signature ideal s, are in a relation defined by the signing
scheme. This relation can be one of following:

® The message ideal m and the signature ideal s represent two classes from a subgroup of CI(A,),
which are mapped by the homomorphism ¢ to a one class of C{4Aq);

o The message ideal m and the signature ideal s represent two classes from a subgroup of CI(A,),
which are mapped by the homomorphism ¢ to different classes of Cl{A,).

There are three statements:

o Verifier could not check that given ideal p is actually from the kernel of the homomorphism ¢. So,
an ideal p could not be a session specific parameler, it could be a constant public key of signer.

o Verifier could check that two ideals belong to a one subgroup of CI(A,) mapped by ¢ to a one class
of C1{A;) by the only manner: he should multiply one of ideals by the ideal p from the kernel of
the homomorphism ¢, exponentiated in a some power r. Calenlation of the number r is the taking
logarithm made by signer indeed.

e Verifier could check that two ideals belong to different subgroups of CI{A;) mapped by ¢ to
different classes of CI(A) by the only manner: he should be convineed that the taking logarithm
task from p” has no solution.

These three statements prohibit any signature scheme to be constructed.

Let, consider the case of composite f. We note here that the decomposition task of the discriminant
Ay should be computationally infeasible. Hence, the discriminant Ay must have big prime conductors.
Suppose, the conductor is f = gp. Brief analysis of discriminants Ay, A,, Ay, Ay leads to the same
problem of detection of relation between two classes of CI{A).

There is no way to construct a signature scheme based on the public-key cryptosystem |2].
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The aim of this note is to survey the present state of knowledge in the research of the
function 14(5, d), defined as the minimal length of a linear code of dimension 4 and minimum
distance d over F;. In the same time we find the exact value or refine the current estimate for
several d's. We approach this problem from its geometric side and consider the equivalent
arcs in the projective geometries over the field with four elements.

Let us note that the exact value of ny(k,d) is known for all k& < 4 for all d [3, 6, 9].
There has been a considerable amount of research on optimal quaternary codes of dimension
5[1, 2, 8, 10, 11]. At present, the exact value of ny(5, d) is undecided in the following cases
[12]:

n4(5,d) = g4(5,d) or g4(5.d) + 1 for the following values of d:
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Let us note that linear codes with parameters [47,5,33]; and [48,5. 34|, are equivalent

ares with these parameters do not exist.

ny(5,d) = gy(5,d), ga(5.d) + 1 or g4(5,d) + 2 for the following values of d:

1 725l Rl T T 267 268

287 288 297 298 301 302

345 346 347 348 349 350 351 352 356
360 361 362

{0 (47,14)- and (48, 14)-arcs in PG(4.4), respectively, which are easily seen to be caps. By

o recent result, by Bierbrauer and Edel [4], the maximal size of a cap in PG(4,4) is 41, so

Recently, H.N Ward proved that there exist no codes with parameters [98.5,72]; [13].

So, the value d = 72 should be moved to the next group.

(5, d) = ga(5,d) + 1 or g4(5,d) + 2 for the following values of d:

24 37 38 39 40 41 42 43 M
45 46 47 48 49 50 51 52 57 58 59 60
61 62 63 76 8 90 91 92
93 94 95 96 97 93 99 100 102 103 104
106 106 107 108 109 110 111 112 113 114 115 116
147 118 1190 120 123 124 141 142 143 144
153 154 155 156 157 158 159 160 163 164
165 166 167 168 169 170 171 172 173 174 175 176
299 300 303 304 313 314 315 316

317 318 319 320 363 364

17 18 21 33 34
65 66 67 68 69 70 8 82 83 84
129 130 131 132 133 134 135 136 137 138
259 260 263 264 265 266
269 270 271 272 273 274 275 276 277 278 279 280
281 282 283 284 285 286 289 290 291 292
203 204 295 296 321 322 323 324 325 326 327 328
329 330 331 332 333 334 335 336 337 338 339 340

341 342 343 344 353 354 355 357 358 359

A maultisel in PG{k — 1,q) = (P.L,I) is a mapping &: P — Ny. The integer &(P) =
> pep Y(P) is called the cardinality of the multiset E. For a subset Q of P, we set §(Q) =
> peo t(P). The integer €(Q) is called the multiplicity of the subset Q. A point of multi-
plicity 7 is called an i-point; i-lines, i-planes ete. are defined in a similar way, A multiset £
in PG(k — 1,q) is called an (n,w, k — 1,¢)-are, or an (n, w)-arc for short, if

(a) &(P) = n;

(b) for each hyperplane A in PG(k — 1,¢), 8(A) < w, and

(¢) there is a hyperplane A with B(A) = w.
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Given a (n,w; k—1,q) arc, we define by 7;(£) the maximal multiplicity of an i-dimensional
flat in PG(k—1, ). i.e. 7(k) = max; £(d), i =0, ..., k—1, where § runs over all i-dimensional
flats in PG(k —1,q).

The existence of a linear [n, k,d], code of full length (no coordinate is identically zero)
is equivalent to that of (n,n —d; k — 1, g)-arcs [3]. Moreover two linear codes with the same
parameters are semilinearly isomorphic if and only if the corresponding arcs are projectively
equivalent. For an (n,n — d;k — 1,¢) arc & let @, be the number of hyperplanes A in
PG(k —1,q) with e(A) =i, 1 = 0,1,..., and by A, the number of points P from P with
E(P) = j. The sequence (ay,ay,...) is called the spectrum of t.

The following argument will be used throughout this note. Let € be an (n,n—d; k—1,q)
arc. Fix an i-dimensional flat 6 in PG(k — 1,¢), with €(6) = ¢. Let further = be an j-
dimensional flat in PG(k —1,¢) with i + j = k— 2 and N« = 0. Define the projection ¢,
from & onto 7 by

P\d — =
P (1)
Q — T M{s, Q)
Note that w5, maps (i + s)-flats containing § into (s — 1)-flats in 7. Given a set of points
F C o define p(F) = 32, (pert(P). If Fis a K-dimensional flat in 7 then u(F) <
Terisr —

Let t be a (123 — i, 31)-arc in PG(3.4), i = 0,1,2,3. Then its structure can be deseribed
as follows. Denote by [ a line in PG(3.4) and by 7, j = 0,...,4, the planes through [. Let
further ¢ be a plane, different from the planes m; and let b be a plane (5 + . 1)-bloking set
in & which has b({ N §) = 0. Set

1 ifPe(mum)\d
1-k(P) HP 7
E(P) = ( ) € (ﬂuUTl}nﬁ (2)
2 ifPE(TF-gU?T3U?T4)\§
Q—b{P} 1[-P€(?T2U’R'3U?TJ)H(5

Hence all ares with parameters (123 — ¢, 31) can obtained by choosing a particular blocking

set b in 0. These blocking sets are well-known (see [7]).
Theorem 1. (i) There exists a unique (123, 31)-arc in PG(3,4).

(i) Every (122, 31)-arc is extenduble.
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(iii) A (121,31)-arc is cither extendable, or else obtained by the above construction, where

b is a Baer subplane.

(iv} A (120,31)-are is cither extendable, or else obtained by the above construction, where

b is the indecomposable (8, 1)-blocking sef.
Clearly, the possible multiplicities of the planes ;.
(g ooy rs) = (15'= 8,15/~ 61, 81 — €2, 31 — &3, 8L — £4),; 3)
where 3 £; = 1.
Theorem 2. There exists no (483,122)-arc in PG(4.4).

Proof. Assume such an arc, say € does exist. Clearly. it has the structure deseribed above.
Fix a 122-solid &, and a 31-plane, 7 say, through the 0O-line ! in §. Denote by d; all solids
through 7. Consider a projection ¢ from the 0-line ! onto some plane disjoint from [. Set
I, = @(5;), j =0,...,4. The types of the lines I; can be obtained from (3). Now we have

the following possibilities:

(A) (allo), ..., p(le)) = (122,122,122, 122, 119);
(B) (u(lo):- -+, p(la)) = (122,122,122,121, 120);
(€Y (ullo),-- ., p(la)) = (122,122,121, 121, 121);

The set {X|X € Ul_;, k(X) > 29} is a (9, 3)-arc. Now a simple counting argument gives that
for any point Y on 1y we have u(Y) < 19. Hence p(ly) < 3144-19 = 109, a contradiction. O

Corollary 3. There exist no codes with parameters [483,5,361], and [484,5,362];. More-
over, ny(5,362) = 485 or 486, and ny(5,361) = 484 or 485,

Theorem 4. There exists no (478, 121)-arc in PG(4,4).
The proof of this theorem is similar to that of Theorem 2.

Corollary 5. There exist no codes with parameters [AT8,5,357]4, [479, 5, 358]4, [480, 5, 359]4
and [481,5,360]y. Consequently, ny(5,357) = 479, n4(5,368) = 480, ny(5,359) = 481,
n4(5,360) = 482 or 483.
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Introduction.

By Ej we denote the set of all n-words over the 2-ary alphabet.Speaking of
linear codes, we assume that EJ is a linear space over the field F}'. Let G be
a k x n generator matrix of binary linear k-dimensional (n,k) code C and do
correspond the Gilbert-Varshamov distance

d
dy = min {d: Z(:‘) > 2“""} :

=0

We use a short notation [n] for set {1,2,..,n}. Let W C [n] and let 4 be a
matrix with n columns. By A(W) we denote the submatrix A formed by the
columns of A labeled with indices from W. Thus, y(W) is the projection of the
vector y on its coordinates in W. Let y = {y1,¥2,...,¥n} be the receiving vector.

An information set is a kset W C [r] such that the corresponding k x k
submatrix G(W) is nonsingular. The remaining n-k coordinates are called a
check set.

Let S be the collection of the information set of code C. If the error vector e
has zeros on W € S, we shall be able to find the transmitted codeword ¢ from
the received word y = e+e¢. One of the methods to choose the collection S is the
method of random choice. For hard decision decoding the obvious suggestion
is to take random uniformly distributed k-subsets of [n]. We call the [ollowing
algorithm the covering set decoding [1]. Let

L, (k) = (nlogn)(3,)/(G;*)
Covering set decoding;:
1. Set ¢=0.

2. Choose randomly a k-subset W. Form a list of codewords

L(W) = {c € Cle(W) = y(W)}.
3. If there is a ¢ € L(W) such that dist(c ,y) < dist(c ,y), assign ¢ + c.
4. Repeat the last two steps L,(k) times. Output c.

For soft decision decoding the problem of choosing information sets is a
different one. Any received output y from the Euclidean space R still gives the
most probable "hard decision” vector a = (ay, az, ...,an) € Ef . However, each
symbol a; has its own reliability v; = In[p(a;ly;)/p(bjly;)], that is the log of
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the likelihood ratio of the more probable symbol a; to the less probable symbol
bj = 1 — a;. Obviously, different subsets of k positions are not equally reliable.
Therefore we should more often include more reliable symbols in information
sets and less reliable ones in check set. Let’s consider two methods for finding
an error-free information subset in a number of random-search trials:

1. Algorithm of Dumer [2] with a concrete choice of parameters.
2. Information set with the help of the Markov process.

Decoding algorithms.

Let the Forney criterium [3] be the choice eriterium for the error-free in-
formation set. The received reliabilities are normalized so that 0 < v; < 1.
The received symbols y; are arranged according to the decreasing normalized
reliability vy > v > ... > v,,.

Let’s define a rule for the choice of an information set for the algorithin of
Dumer with a concrete choice of parameters (1). To each symbol of the hard
decision a; we shall assign the probability p;, corresponding to the following
relations:

1. z?-__ol pi=k.
2. Y1) Ha(yi) = k, where Ha(z) = —zloga(z) — (1 — z)loga(1 — x).

3:i= 1—-;%;—,—, A -is determined from formula 2.

4.0<p <1—27.

The probabilities corresponding to the relations (1) - (4) ensure a minimum
covering EY by ellipsoids [2]. The condition (4) for the choice p; is specified as
follows [4]:

5. pi = ni(1 — 2%;)™, where 1; normalizing factor ensuring the realization of
relation 1, m is a positive number.
If m is increasing, an explicit division of the probability p; into three groups
takes place:

A: the choice probabilities are approximately identical and relatively large
for all symbols which are included in the given set.

B: the choice probability is close to zero.

C: those which are not included in either in group A or B,

Thus, the choice m determines the size of the groups A,B and C. If m —
the size of set A approaches a certain number h with a choice probability of
the symbols p; = % , the size of set B approaches n-h with a choice probability
of the symbols p; = (0. Thus, the problem of information set decoding (n,k)
code is reduced to information set decoding (h,k) code with random uniformly
distributed k-subset of [h]. We define the decoding algorithm 1 as follows:

Let T be the maximum number of the selected information sets.

Decoding algorithm 1.
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1. Setie=8:

2. Choose m, with the help of simulation, so that it ensures minimum prob-
ability of the error sequence. I: = 0.

3. Form an information set I as follows: we include a symbol a; in an infor-
mation set with probability p; .

4. Compute a codeword ¢ = (&1, %2,..2,) = y(I)G~1(1)G .
5. £ Y0 vi(-1)'"% >n—d, than ¢ is the output. Otherwise [ := [+ 1.
6. If I > T, is the output.

Now the method of the dependent choice of information sets with the help of
of the Markov process (2) should be considered. Tt ensures less error probability
in case the ratioes signal / noise are large in comparison with algorithm 1(figure
1). The error probability of a symbol y; in case the value of the reliability v;

is defined by the following ratio: r; = 1“—;’;— . The choice probability of the

accepted reliabilities can be changed. The rule of the recalculation of the choice
probabilities of a symbol into an information set can be described by the Markov

process with the following matrix of transitional probabilities A of a size (n, n):
1. Ay=1-r31<i<kA;;=0,i#51<4,j2k

3 A =157

=1

‘4”,,‘9—1—1STSR.A;JZO,i¢j,k+lﬁi,j£n-

3. Aij =a(l — i)y = le <i<kk+1<j<mn.
j=k41 o

4. Afj :Ajfak‘l'] Sfé'ﬂ-,l S.?Ek

Decoding algorithm 2.

1. Choose the first k of the most reliable symbols which present an informa-
tion set I, I: = 0. Set ¢ = 0.

2. Compute a codeword ¢ = (%1, 2y n) = y(I)G (DG .
If Y0 vi(~1)""" >n—d, than ¢ is the output. Otherwise [ := 1+ 1.

3. Exponentiating A = A', reduce the matrix to the following : A; =
Y A 1< i kA =0i£ 1<, i SkAu=3"_ Aijik+1<
i,j < n.Ajj =0,i # j,k+1<14,j <n. The information set is organized
as follows: the probability 4;; i € [1,k] is the probability of the symbol
entering an information set, the probability A;; is the ¢ symbol from the
information set is substituted by the j symbol of the check set. Obtaining
an information set I, go to step 1.

4. If 1 > T, c is the output.
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Matrix A is a bistochastic one. Therefore, the matrix A becomes stationary
at certain degree [ = u , which means that any element from the matrix A;; =
I/n, i.e. if we are not able to decode for u steps, the problem of decoding
becomes a case in which all the symbols are equiprobable. According to matrix
A, we can estimate an amount of information sets necessary for ensuring the
required error probability.
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Figure 1: Output bit error rate for the (63,30) BCH code with decoding list of
size T=100 for algorithms 1 and 2.
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Some tables for (w,r) superimposed codes

Vladimir Lebedev!

Abstract

We give some constructions for (w, ) superimposed codes of small size. We also
prove new asymptotic upper bound on rate of (w,r) superimposed codes.

1 Introduction

Definition 1. An N xT (0,1)-matrix C is called a (w, r) superimposed code of size N x T,
if for any pair of subsets I, J C [T such that |I| = w, |J| = r and I N.J = 0, there exists
a coordinate & € [N] such that ¢;; =1 foralli € I and ¢,; =0 for all j € J.

The main problem in the study of superimposed codes is to find the maximal cardinal-
ity T(N.,w,7) of a (w,r) superimposed code for a given length N, or the minimal length
N(T,w,r) of a (w,r) superimposed code for a given cardinality T'.

Obviously N(T,w,r) = N(T,r,w); thus we may only consider the case w < r. There
are simple examples of (w,r) superimposed codes. If we take a matrix whose rows are
all possible binary vectors of weight w, then this matrix satisfies the (w, 1) superimposed
property for any 7. We call this matrix the trivial (w, r) superimpose code of size N x T',
where N = (7). It is easy to prove that N(w +r+ Law,r) = (*"o*') for all w < r (see
141, [6]-

We now give some constructions for (w, r) superimposed codes.

2 Some constructions for (w,r) superimposed codes

The notion of a super-simple 2-design was introduced in [5]. A 2— (v, k, A) design is called
super-simple if the intersection of any two blocks has at most two elements. We define
a super-simple t-design to be a t — (v, k, A) design in which the intersection of any two
blocks has at most ¢ elements.

Theorem 1. [6] A super-simple t — (v.k,A) design is a (t,\ — 1) superimposed code

. A
of size N x v, where N = &,

1

Corollary 1. There is a (2, 2) superimposed code of size 18 x 9.

1V 5. Lebedev is with the Institute for Problems of Information Transmission of the Russian Academy
of Sciences, Bol'shoi Karetnyi per. 19, Moscow 101447, Russia (lebed@iitp.ru).
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Our second construction use a notation and constructions of 3-covering array from
[10].

Definition 2. t-covering array with alphabet size ¢, length n and size k consists of k
vectors of length n with entries from {0,1,...,¢9—1} with the property that the projection
onto any ¢ coordinates contains all ¢* possibilities.

Let g(n) denote the minimal size of a binary t-covering array of length n.

Theorem 2. For (2,2) superimposed codes

N(2T,2,2) < N(T,2,2) + g5(T)

Proof. Let A be a (2, 2) superimposed code of size N x T' and B be a binary 3-covering
array of length 7. Then it is easy to check that

oo

A
B
is a (2,2) superimposed code (where the bar indicates the complementary array).

The same constructions were considered in [10] for a binary 3-covering array and in [7]
for (2,2) superimposed code. But in [7] the matrix B is a complete separate (1,2) code
and there are two additional rows with all zeroes and all ones. So our theorem 2 usual
gives better values of (2.2) superimposed code’s size.

These two constructions give good (2,2) superimposed codes only for small size of
codes. But using well known idea of concatenating we can construct good codes from
these codes.

Let B be an external g-ary code of size N, x T, and let C' be an internal code of size
Ny x Ty with T} = ¢q. Then there is a concatenated code B o C of size N x T, where
N = N,Ny and T = T, ie. each g-ary element § € [¢] in the codebook matrix of the
external code B is replaced by the #-th codeword of the internal code C

The following result (see [3]) which is a natural generalization of Sagalovich’s result
(B], w = r = 2) and D’yachkov, Macula, Rykov’s result ([2], w = 1) shows how to use
concatenated construction in constructing (w, r) superimposed codes.

Lemma 1 (concatenated construction) [3). Let B be a q-ary (w,r) separate code of
s1ze Ng x Ty and C be a binary (w,r) superimposed code of size Ny x Ty with Ty = .
Then the concatenated code B o C is a binary (w,r) superimposed code of size N x T,
where N = NyN; and T =T,.

Corollary 2 [3]. Let w,r > 1 and A > 1 be integers and q > wr\ be a prime power.
Then

N{g™ w,r) < N(q,w,7) [wrA+1].
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If ¢ is not prime power then we can use
Proposition 2 [6]. Suppose there are = mutually orthogonal Latin squares of order
M and z+1 2 wr. Then

N(M?,w,1) < N(M,w,7) [u.l?‘ +1].

Let us summarize all known results about the size of (2,2) superimposed codes and
(2,3) superimposed codes in the following tables. These tables show that Theorem 2 gives
many good examples of (2, 2) superimposed codes.

Table 1. Optimal length of some (2, 2) superimposed codes.

N R G e
6 10 14 14 14 18

Table 2. Existence of some (2, 2) superimposed codes.

48 56 60 64
67 68

24 28 32 36 40 44
38 42 43 48 50 53 61 65

TOF 127 16 18 200722
20 22 26 30 32 34

(A

T
N(T,2.2)

88 112 128 144 512
80 96 100 109 126

= 72 80
N(T,2,2)< T4 76

Table 3. Existence of some (2,3) superimposed codes.

10 15 16 21 24 49 225 2197 4096
56 76 147 294 546 624

T= 6 7
N(T,2,3)< 16 21 30 42 48

3 Asymptotic upper bound on rate of (w,r) superim-
posed codes

The idea of using a recurrent method to obtain an asymptotic upper bound of a rate
of (2,2) superimposed code was considered in [9]. The following method is a natural
generalization of that idea.

Consider a binary code C of size N x T. Let =,y > 0 be integers. Consider x + y
fixed codewords and denote by ', the submatrix of C of size N x (z +y). Define a
super-distance for the = + y codewords be a number of rows from the matrix C., with
weight 2. Denote by d,, the minimal super-distance for some 2 4y codewords from code
(. It is easy to see that d; ; is a minimal Hamming distance of the code C.




199 ACCT-VIII

Theorem 3. The following asymptotic bound for a rate of binary code with super-
distance d., is true

(z+y)*¥d,,

R(N,d,,) <1
( .y) = .l:'“y”c_.,f_,,yf\'

This asymptotic bound gives well known Plotkin bound for case # = y = 1. The
following Lemma is a natural generalization of the Lemma Kabatianski (see [6]).

Lemma 2. If there is a (w,r) superimposed code of size N x T then there is a
(w — =z, 7 — y) superimposed code of size [d,,/C*, | % (T —z —1y).
W~ zty Y

1 T1':‘0r a (w,r) superimposed code C' of size N x T, we define its rate R(C) by R(C) =
“&=. Denote by R(w,r) the asymptotic rate for (w,r) superimposed codes.

Theorem 4. For (w,r) superimposed codes

R{w,r) < min min Rlw—z7-7) J
<< 0<y<r ff(w =g — .y) + {.’L’ + y):.'-!-y/(_ra:yy)

Proof. It follows from Theorem 3 and Lemma 2 that

(x+yy*N(T —x —y,w — 2,10 — )

Rlw,r)<1—
aZy? N(T, w,r)

So
(z+y
YW R(w — x,r —y)

R(w,r)(1+ =y

Corollary 3. For case w = r we have
3

R(w,w) <
(w,w) < 4w=9(30(2,2) +1) -1’

where C(2,2) = 6,2125692.

Theorem 4 gives better upper bound then the upper bound from [4] for all values w
and 7. We give some numerical values of the upper bound only for case w = r.

Table 4. Asymptotic upper bound on rate of some superimposed codes

(w,r) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8)
R(w,r) < 0.0386843 0.0095784 0.0023889 0.0005969 0.0001492 0.0000373
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Remark. If for case # = y = 1 we will use more stronger upper bound from coding
theory then the method give us better mumerical values then mumerical values from table
4. So for case z = y = 1 we can use the follows proposition.

Proposition 2. For 2 < w < r the rate
R(w,r) < R(w,7)

where R(w,r) is defined recurently:
if we know R(w — 1,7 — 1) then R(w,r) is the unique solution of equation

2R(w,r)
R(w—1,7 —1)

such that R(w,r) < R(w — 1,7 — 1)/4 where Hy(z) = —zlogyx — (1 — z)logy(1 — ).

£ 2R(w, 1)
Rw—1,r-1)

R(w,r) = Hy(1/2 — \/ (1 ),
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Iteratively Decodable Sliding Codes on Graphs'
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1 Introduction

When Gallager in the early 60’s introduced low-density parity-check (LDPC) block codes [1],
together with a probabilistic iterative algorithm to decode them, he demonstrated that good
performances could be achieved with rather simple decoding methods. The convolutional
code counterpart of Gallager’s codes, low-density parity-check convolutional codes, were
introduced in [2] and further developed and investigated in [3][4]. These codes form a large
family of convolutional codes that includes, as a special case, the well-known turbo codes.
The code sequences of the LDPC convolutional codes are produced by an encoder that is
sliding over the information sequence and continuously generating the coded bits.

In this paper we consider a class of sliding codes, where instead of trivial single parity-
check codes any arbitrary systematic binary codes of rate R, > 1/2 can serve as component
codes. For block codes, such a generalization of the original LDPC codes was introduced
by Tanner [5]. In contrast to LDPC convolutional codes, which are defined through their
parity-check matrix, the presented class of codes includes non-linear codes, that are neither
convolutional codes nor allow a definition based on parity-check matrices.

As an illustrative example, we consider in the following in more detail the particular
case where the component codes are Hamming codes. The resulting sliding codes are a
convolutional code version of the generalized low-density parity check (GLDPC) block codes,
investigated in [6]. As a measure for the asymptotic iterative decoding performance, when the
memory of the sliding codes tends to infinity, we calculate bounds on the iterative limits of
the considered codes, based on the ideas given in [4]. We also present results from computer
simulations for sliding codes with finite memory and compare them to corresponding GLDPC
block codes.

2 Code Construction and Encoding Procedure

Both the construction of sliding codes and the encoding procedure can be illustrated by
means of an infinite two-dimensional array. For (7,4) Hamming component codes, a sketch
of such an array is given in Figure 1. Each column and each row contains seven symbols:
one information and six parity—check symbols. The information symbols u; are placed on the
diagonal. In each column three parity-check symbols lie above the diagonal and three below.
In the same way, in each row three parity—check symbols are to the left of diagonal and three
symbols to the right.

At each time ¢ all symbols above and to the left of the information symbol u; have alveady
been encoded before. The parity-check symbols o', vf2, and v are chosen such, that the
seven symbols in the tth row form a codeword of the component Hamming code. Analogously,
the seven symbols in the tth column form a codeword of the component code. During the
encoding procedure the encoder is continuously sliding along the diagonal. At each time

"This work was supported in part by the Swedish Research Council for Engineering Sciences (Grant 01-
3123).
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Figure 1: IHlustration of the encoding scheme.

instance seven code symbols are generated. The code rate is R = 2R, — 1, where B. =4 /718
the rate of the component code in our example.

This encoding procedure can be generalized to the case of arbitrary, rate R, > 1/2, length
N, companent codes, Then each row (column) consists of N symbals. The K = (2R, — 1) N,
middle symbols are information symbols. To the left (above) and to the right of (below) them
are (1 — R.)N, parily check symbols. The array can be divided into three parallel diagonal
type strips. The first strip has (1 — R.) N, parity check symbols in each column and row, the
second (middle) strip (2R, — 1)N, information symbols, and the third, last strip has again
(1 — R.)N, parity—check symbols in each column and row.

A particular code is now defined by the positions of the symbols in the rows and columns
of the array. This can be represented by a corresponding infinite matrix having a one al
each position containing a symbol, and zeros elsewhere. Such matrices can be constructed
from elementary permutation matrices in a similar way as the parity-check matrices of LDPC
convolutional codes [2][3]. We define the memory 1 of a sliding code to be the largest distance
between t and the time index of a symbol used by the encoder at time £, in analogy to the
syndrome former memory my of a LDPC convolutional code.

The sliding code resulting from the proposed encoding procedure can be described by
an infinite Tanner graph and decoded iteratively by the component codes, as other codes
on graphs. Another graph representation is given in Figure 2. All vertices correspond to
constraints of the encoding scheme illustrated in Figure 1. Left vertices correspond to row
constraints and right vertices to column constraints, resulting from a horizontal and vertical
component codes, respectively. The edges correspond to code symbols. Each set of edges
leaving a particular vertex forms a codeword of the component code. The code definition
above assures, that the graph will have at most one edge between each pair of vertices. From
this follows directly, that the corresponding Tanner graph has at least girth eight.
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pEtne N. 7 15 16
0O \ gy 121 R 17 7/15 3/8
El &N SNRy | 1.32dB | 0.86 dB | 0.91 dB
row - [] \ [ column AWGN | D 0.824 0.566 0.630
constraints *\ _ constraints
B Bl 0.291 0.141 0.122
. / - Po 0220 | 0098 | 0.123
: % —
D{ 1 BSC Dy 0.828 0.595 0.657
: : Do | 0200 | 0137 | 0.119
Figure 2: Graph representation of a Table 1: Bounds on the iterative limits and corre-
sliding code. sponding critical values De,.

3 Performance of Iterative Decoding

Like turbo codes and LDPC codes, which are known for their remarkable performance, the
sliding codes are well snitable for iterative decoding. The horizontal and vertical component
codes are decoded by an a posteriori probability (APP) decoding algorithm and pass their
results to each other during the iterations, as described in [6]. In conirast to GLDPC block
codes, the sliding codes allow a continuous transmission (after some initial delay), when being
decoded using a pipeline realization, like suggested for LDPC convolutional codes in [2]. In
this case, the decoding iterations can be performed by independent processors in parallel.
Following the approach in [4], we calculated bounds on the iterative limits for sliding
codes with Hamming components of length N. = 7, 15 and 16, considering a two phase
algorithm. We proved, that if the Bhattacharyya parameter afler the first decoding phase
becomes smaller than some critical value D, then the bit error probability P, goes to zero
al least double exponentially with the number of iterations I. For componenis of length N,
the critical value D, is given by the smallest positive root of the equation
I
Dy = D(‘h 'é'_%z"‘ﬂ 3 (l)
where A(D) is the weight enumerator function of the component code and Dy, = exp(—RE,/Np)
(or Doy = /4Ap(1 — p)) is the Bhatlacharyya parameter of the statistics received from the
AWGN channel (or BSC with crossover probability p). Particularly, for N, = 7,
!
ADec) _ 312 4 4ps 4 18 @)
Ne
Together with a numerical analysis of the first decoding phase, based on Monte Carlo methods,
we obtain upper bounds SNRy (lower bounds pg) on the iterative limits. The resulis are
presented in Table 1. In the derivation of the bounds the decoding of an individual symbol
is analyzed using a tree-like graph, which has the same structure for both sliding codes and
GLDPC block codes. The bounds on the iterative limit are therefore valid for both cases.
Simulation results for iteratively pipeline decoded sliding codes with (15,11) Hamming
component codes are presented in Figure 3. The simulated codes were picked randomly and
decoded with 50 iterations. For comparison also results for GLDPC block codes are presented,
taken from [6]. Even for a relatively small memory m = 105 the sliding codes achieve a bit
error rate of 107% already at signal-to-noise ratios Ej, /Ng around 1 dB.
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Figure 3: Performance of rate R = 7/15, memory m sliding codes (solid) and length N
GLDPC block codes (dashed), based on (15,11) Hamming components. The vertical line
shows the bound on the iterative limit.
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1 Introduction. Comma-free index and
difference systems of sets

Let I} be the set of vectors of length n over the alphabet Iy, = {0,1,...,q — 1} and
d(z,y) be the Hamming metric. For any & = -1, € I,y =y yn € I7, and
i=0,1,...,n—1, we denote ;41 --- 2y -- -y by Ti(x,y) and call Ti(x,y) a joint of x
and y. In particular, T}(x, z) is a eyelic shifl of x. The comma-free index p(C') of a code
C C F}' is defined as mind(z, T;(x, y)) where the minimum is taken over all z,y, 2 € ik
and ¢ = 1, ...,n — 1. We denote by M,(n, p) the maximum cardinality of a code C C I"q“
with p(C) = p. The comma-free index p(C') allows one to distinguish a current code word
from a joint of two code words (and hence to provide synchronization of code words) if
at most |p(C')/2] errors have occurred in a code word.

The problem of synchronization of words of a code C' C F}' was first introduced in the
paper by Golomb, Gordon, and Welch [3] where comma-free codes are defined as codes
with p(C) = 1 and it was proved that

My, 1) < =37 (g (1)

where the sum is taken over all divisors d of n and p(d) is the Mébius function. Bastman
[2] proved that this bound is tight for every ¢ > 2 and every odd n. The best known upper
and lower bounds on My (n, p) for p > 1 are obtained by Levenshtein in [4]. In particular,
he proved that for any fixed p > 1,

1 2H

A > £
Ma(n,p) 2 e(ple n

as n— oo (2)

*Research supported by The Russian Foundation for Basic Research, grant 02-01-00687, and by the
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where ¢(p) is a constant (in particular, ¢(1) = ¢(2) = 1, ¢(3) = 14, ¢(4) = 18). The
codes C C FJ that were used to prove this statement have redundancy n — log, |C| that
grows only as log, n when n — oo. However, these codes are complex for coding and
decoding. Therefore, it is natural to consider the same problem for cosets of linear [n, k-
codes C C F. (Any linear code contains the zero vector and, hence, its comma-free index
equals zero.) Bassalygo [1] proved the following inequality for the redundancy r =n —k
of a linear [n, k] code C C FJ' with a coset of comma-free index p:

r=n-k>/pn. (3)
In order to construct cosets of linear [n, k]-codes C' C F' with redundancy close to

the bound (3), Levenshtein [5] introduced and investigated the following combinatorial
notion. A collection of g disjoint subsets Q;, i = 1,....q, of Ny = {1,2,...,n} is called a
difference system of sets (DSS) if for each number s, s =1, ...,n — 1, the equation

r—y=smodn (4)

has at least p solutions such that € Q;, y € @y, i,j =1,...,q, © # j. (It is important to
underline that = and y belong to different subsets.)

We call 37, |Q;] the redundancy of a DSS and denote by r,(n,p) the minimum
redundancy of a DSS with parameters n, ¢, and p. A DSS is optimal if its redundancy is
equal to r,(n, p). Given a DSS with redundancy r, we can define a lincar code C C Fi!
with redundancy r whose information positions have the numbers from N, \ UL Q;, and
the remaining positions are zeros. Then the sets @;, i = 1, ..., q, determine a coset of the
linear code C' and ensure that the comma-free index of this coset is at least p.

A DSS is called perfeet if for every number s, 1 < s < n — 1, the equation (4) has
exactly p solutions. A DSS is called regular if all subsets @; are of the same size. We use
the notation DSS-(n,m, q, p) for a regular DSS with ¢ subsets of size m on the set N, and
parameter p; its redundancy equals r = gm. Any cyclic (v, k, A) difference set (cf., e.g.
[6]) is a perfect regular DSS-(v, 1, k, A). Thus DSS are a generalization of cyclic difference
sets. Levenshtein [5] proved that for any DSS with parameters n, g, and p,

ap(n —1) 5)

rq(n, p) 2 )

with equality if and only if the DSS is perfect and regular. Tt follows that any perfect
regular DSS is optimal. In [5], optimal DSS were found for ¢ =2 and p =1 or p = 2, and
for all n > 2, and it was proved that

ro(n, 1) =]v/2(n—1)[, 72(n,2) =12vn —1J. (6)

Similar results are not known for g > 3, although some examples of regular perfect
DSS-(n, m,q,1) have been found by computer. For instance, the sets @y = {1,10},
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= {2,19}, @, = {4,15} form a regular perfect DSS-(25,2,3,1). It scems natural to
expect that for any fixed ¢ > 3

ry(n,1) = O(v/n) as n— . (7)

Note that from (5) (or (3)) it follows that r,(n,1) 2 /n as ¢ = oco. This bound is
asymptotically tight for the cyclic difference sets (¢* — ¢ + 1,¢, 1) where ¢ — 1 is a prime
power. Towever, in this case ¢ grows as /n. For applications in coding theory, it is
significant to prove (7) when ¢ is fixed or grows slowly in comparison with n.

2 DSS from cyclic difference sets

Theorem 2.1 The existence of a cyclic (v, q, p) difference set implies that for every h =
2,3,... there exists a regular DSS-(n,m,q,p) with n =" and m = (¢" — 1)/(q —1).

The proof of this theorem is constructive. The DSS described in Theorem 2.1 is
regular but not perfect. In particular, one can use as (v, g, p) the cyclic difference sets
(v=p"+p+1Lg=p+1,p=1)related to the projective plane of order p, where p is an
arbitrary prime power. Then, for a suitable choice of h, the construction above implies
that r,(n, 1) = O(y/n) for ¢ = O (|,1|('f.:1,,.}) when n — oo.

The next construction gives perfect and regular DSS obtained as partitions of eyclic
difference sets.

Lemma 2.2 Let D C {1,2,...,n}, |D| =k, be a cyclic (n,k,\) difference set. Assume
that D can be partitioned into q disjoint subsets Q,,...,Q, that are the base blocks of
a cyclic pairwise balanced 2-(n, {7y,...,7,}, A1) design, where 7; = |Qi], i = 1,2,...,q.
Then the sets Qy, ..., Qy form a perfect DSS with parameters (n, 1, ..., 7q, p = A — Ay).

The [ollowing theorem gives infinitely many perfect DSS obtained by partitioning the
trivial eyclic (n,n — 1,n — 2) difference set.

Theorem 2.3 Let n = myg + 1 be a prime, and let o be a primitive element of GF(n).
The collection of sets @y = {a%,0™,...,a™ =1}, Q2 =aQy, ..., Q, =a7'Q, is a
reqular perfect DSS-(n,m,q,p=n—m —1).

The DSS in Theorem 2.3 is formally optimal but it has redundancy v = n — 1. The
following example suggests that it is somelimes possible to obtain a DSS with smaller
redundancy as a sub-collection of the DSS described in Theorem 2.3.

Example 2.4 Let n =19, ¢ = 6,m = 3. The DSS from Theorem 2.3 has p = 15, and the
six sets @; of size 3 are {1,7,11}, {2,14,3}, {4,9,6}, {5,16,17}, {8,18,12}, {10,13,15}.
The two sets {1, 7,11}, {2,14, 3} form a regular perfect DSS-(19,3,2,1) with the minimum
redundancy r = 6 (see (5)).
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The following theorem is based on a construction that uses Singer difference sets and
finite geometry and yields regular perfect DSS with substantially smaller redundancy

rq(n, p).

Theorem 2.5 For every prime power p and every mtrqw g = t!wn“ e.rwts' a perfect

regular DSS with paramelers n = -"—», m=p+1 g= p—a_—l %ﬁ

The proof uses a partition of a hyperplane in the projective space PG(2s,p) over
G'F(p) into disjoint lines, each belonging to a different Singer cycle.

Example 2.6 Let p = 2, s = 2. We consider 1,a,a?,...,0" as points of PG(4,2),
where @ is a primitive element, of GF(2°) defined by the polynomial 2% + z* + 1. The
following set of 15 points H = {1, &, 0% o*, 6% o, all,a!t, a'®, a’% a?? o, a® o™, o™}
is a hyperplane in PG(4,2), and hence a (31,15, 7) difference set in the multiplicative

group of GF'(2%). The following partition of H,

0 ={1,6%a®} U {a,a® a®} U {a® a", a®}u{a’, o', o®} U {a'®, a'%, o®}

has the property that each ol the five 3-subsets is a projective line, and these five lines are
the base blocks of a cyclic 2-(31,3,1) design under the multiplicative group of GF(2%).
Thus, these five 3-subsets define a regular perfect DSS with parameters n = 31,m =
3,q=5p=6

The construction of Theorem 2.5 can be generalized by using partitions of hyperplanes
in PG(n,p) into subspaces of dimension larger than one.
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Identifying vertices in the binary n-cube
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Abstract — A code € C I} is called r-identifying if the sets B,(z) N (', where B,(z) is the
ball of radius r centred at x, are all nonempty and distinet. Let M,.(n) be the minimum
cardinality of an r-identifying code in IF;. We prove that if p € [0.1) is a constant, then

limy, oo ™! log, M, (n) =1 — H(p).

1 Introduction
Denote by IF, the binary alphabet {0,1}, by d the Hamming distance, and let
Biz)= (e I} ) <), Sie) = Tn. OIS : iy, 3) =,
Vi(n, ») = |Bi(z)| = Z (’;)‘
=0
The problem of constructing identifying codes in IF; and other graphs was introduced in
[14], and Las been studied in a number of papers since. We say thal a code (' is r-identilying

il the sets

() =8, (z)NC

are nonempty for all @ € I} and no two of them are the same. If r = n, there are clearly
no r-identifying codes. The minimum cardinality of an r-identifying code in IF} is denoted
by M.(n).

We call C" an r-covering, if the union of the sets B.(¢), ¢ € C, is the whole space IF}). In

other words, for all x € IV}, the sets B.(z) N C' are nonempty.
2 Py
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In particular, for the same code length n, the set of r-identifying codes is inchided in
the set of r-covering codes.

In the Hamming space, the study of M, (n) and some related problems have been con-
sidered, among others, in [14], [2]. [9]-[L1], [15]-[17].

It is known that for any fixed r, there are constants o and 7 (depending on r) such that
for all large n, . o

a2 B
Ving < M, (n) < Vi)

bul there is no value of » for which the known values @ and # would coincide. For r = 1,

there is a sequence (n;) such that n; —+ oo and

y M,y {niJ =
B V(e D)

This follows from [14, Corollary 1] using the covering codes described in [6, Theorem 4.5.8],
which in turn are oblained using codes from [8].

In this paper we consider the problem asymptotically, when p is a constant, 0 < p <1,
and r = [pn|. Based on a non-constructive argument, we prove that

uh—}!\]} n log, ﬂ[b'ﬂj(”) =1-—H(p).

where H(x) = —alog,a — (1 — 2)log,(1 — a) is the binary entropy function.

2 A Construction of Asymptotically Optimal
Identifying Codes

The following theorem is not new: cf. Theorems 12.1.2, 12.2.1 and 20.3.4 and the corre-

sponding Notes in Sections 12.9 and 20.4 in [6] as well as [3]-[5].

Theorem 2.1 Assume that L C {0,1,2,....n} and L # 0. There exists a code C C 1},

with cardinality K salisfying

K < [n2"In B/Z (n).|‘ such thal U U Si(e)=1Ir5.
i

iEL ceCieL

Proof. It follows [7]; see [12]. 0

Our construction is based on using codes with the property that every vector in the Hamming

space has distance exactly r or r + 1 to at least one codeword.
Theorem 2.2 [f0 <r <n—2 and Cy € I} has the properly that

U (Se(c)U Sppi(c)) = P, then the code (' = U Sile) s r-identifying.

ceClh cECh
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Classification of linear codes by preclassification
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Abstract. We consider the problem of computing the equivalence classes of u set of linear codes.
This problem arises when new codes are obtained extending codes of lower dimension. We propose
a technique that, exploiting an invariant simple to compute, allows to reduce the computational
complexity of the classification process. Using this technigue the [13,5, 8]7, the [14, 5, 9]5 and the
[15, 4, 11]y codes have been dlassificd, The same technique can be applied to the problem of the
classification of other structures,

1 Introduction

This paper deals with the problem of classifying sets of linear codes. This problem
arise, for example, using computer-based extension processes that construct new codes of
dimension d; starting [rom codes of dimension ds, ds» < di. For examples of papers using
such technique see [2], [3], [5] and [7]. In particular in [5] and [7], we constructed new near
maximum-distance separable (NMDS) codes adding new rows to the generating matrix of
NMDS codes of lower dimension. For a deseription of the properties of the NMDS codes
see [3] and references therein.

When extending a code in this way, several equivalent copies of the same code are
obtained, A classification step allows to compute the set of nonequivalent codes, but, when
the number of examples to classify is high, some strategy has to be adopted to reduce the
computational complexity of this phase.

The most direct and simple algorithm that can be used for the classification of a set S
of codes keeps a list L of nonequivalent codes. Initially L is empty. All the codes C'of § are
considered: if there exists a code in L equivalent to ', than C' is neglected, otherwise C' is
included in L. At the end [ contains the set of representatives of the equivalence classes of
S. The computational complexity of this simple algorithm is O(|S| x |L|), therefore it can
be used only when |$| and |L| are relatively small. In [2], the program described in [1] has
been used. It deals with the problem of computing equivalence between codes exploiting
invariants and signatures. In [4] a set of invariants has been introduced that allows to
determine if binary codes of dimension three are equivalent or not.

To reduce the computational complexity of the classification step, we propose a tech-
nique of preclassification based on the use of an invariant. The condition on the invariant
is that it must be easier to compute than the equivalence between two codes. In our case
we used the minimum weight of the code.
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Using the invariant in opportune way, the set S of the codes to classify is partitioned in
subsets S, such that C; € S, and Cy € S; are not equivalent if i £ j. Then it is sufficient
to classify separately the codes in each S; and the set of the the representatives of the
equivalence classes in S is the union of the sets of the representatives of the equivalence
classes in S;. If cach S; contains only one equivalence class, the computational complexity
of the classification step is O(|S]). In our practical applications we finished with almost all
the subsets S; containing one or just a few equivalence classes. There is an adjunctive cost,
the computation of the invariant for the codes of § and for several truncated codes, but it
remains negligible respect to the cost of the classification phase.

Our technique is of general interest. In fact not only different invariants can be applied,
but also other computational classification problems can be faced, as long as there is a way
to construct substructures preserving the invariant property.

The preclassification technique is described in Section 2. Section 3 contains some ex-
perimental results concerning the classification of the [13,5, 8], of the [14,5.9]s and of the
[15,4, 11]y codes.

2 Preclassification using an invariant

Our aim was the classification of a set of codes S. Two [n. k. d], codes, (7 with generating
matrix G and €' with generating matrix G, have been considered equivalent in monomial
sense, i.e. if there exist an invertible (k, k) matrix A, an (n,n) permutation matrix P
and a field automorphism o such that Gy = p(AGLP).

To reduce the number of the expensive computations of the equivalence between two
codes, we used a numeric invariant easy to compute (the minimum weight of the code in our
case) to divide the set of codes S in subsets S; such that all the codes in §; have the same
value i of the invariant. Then to classify the codes in S it is sufficient to classify separately
the codes in each S;. The best situation is when each S, contains only one equivalence class
because the computational complexity of the classification step becomes O(|S]). But if the
invariant is simple this will not be the case. Some S; will contain a number of equivalence
class of the same order of magnitude of S. Then we used the same invariant to further
divide each S;. To do that we exploited the fact that if Cy and Cs are equivalent [n, k] codes
and C is an [n — 1, k] code obtained from C by truncating, then there exists an [n — 1, k]
code O obtained from € by truncating such that C, and ', are equivalent. This fact
lollows immediately from the definition of equivalence.

Then for each code C' in each S; we computed a first level index defined as the sum
of the minimmm weights of the n [n — 1, k| subcodes obtained truncating C' by deleting
a column of the generating matrix in all the possible ways. If two codes €y and Cy have
different first level index, then they are not equivalent. In this way each S; can be divided
in subsets S;, such that C; € S;, and Cy € S;, are not ecuivalent if j £ k.

The process can be iterated computing the second level index defined as the sum of the
minimum weights of the n+ (n — 1)/2 [n — 2, k| subcodes obtained by truncating from an
[n. k| code C' deleting two columns of the generating matrix in all the possible ways and
so on. Exploiting the indices of different levels the initial set of codes S is partitioned in
subsets containing an ever-decreasing number of equivalence classes.

The computational cost of the computing of the index of order i of an [n, k] code is
(0] (g’:)) In the practical application we verified that it is sufficient to consider relatively
small Values of i to obtain sets of codes containing one or just a few numbers of equivalence
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classes. We note that two codes can have the same index of level i, but different indices
of level j, j < i. Therefore when doing the preclassification it is useful considering all the
indices belonging to the interval [1,] and not only the index of maximum value i.

3 Experimental results

This scetion deseribes the application of our preclassification technique for the classification
of the [13, 5, 8], of the [14, 5, 9]x and of the [15, 4, 11], codes.

All our computations have been done using MAGMA, a computer algebra package
developed at the University of Syduey. In [5], extending the 923 nouequivalent [11.3.8];
codes, we obtained 80326 examples of [13, 5, 8]; codes such that any other [13.5, 87 code
is equivalent to oune of our examples. In analogous way we obtained 4331 examples of
[14,5.9]5 codes and 69471 examples of [15.4.11]y codes extending respectively the 4181
[12,3,9]s codes and the 105193 [14, 3, 11]y codes found in [6].

Table 1 contains, for each set S of codes, the number of examples to classify, the number
of classes obtained, the munber of levels used in the preclassification step, the running time
T'p, in hours, of the preclassification step, the running time Te, in hours, of the classification
step, and the ratio between the two running times. The duration of the preclassification
does not exceed the duration of the classification step.

Code IS Classes | Levels | Tp | Te | Ratio
113,5,8]; | 80326 | 988 6 | 111 600 | 18.5%
[14,5,9]s | 4331 58 4 35| 48 | 7.3%
[15.4,11]g | 69471 | 6585 ) 140 | 168 | 83.3%
Table 1: Running time of the classification of the codes

Table 2 contains, for each set S of codes, the number of sets obtained in each level of the
preclassification step. In the first and in the second case we stopped the preclassification
when the number of sets obtained at the current level is alimost equal to the number of
codes of the previous level. This means that we can expect, as it is confirmed by Table 3,
that almost all the sets contain just one class, the desired condition.

Level
0 1 2 3 4 H
13,5.8]; | 13| 156 | 343 | 565 | 664 | 690
Code | [14,5,9z | 13 | 39 49 59
[15,4,11] [ 16 | 196 | 681 | 1464 | 257
Table 2: Number of sets obtained at level k

Table 3 contains, for each set S of codes, the number of sets obtained in the last step of
the preclassification that contain k classes. In the first and in the second case almost all the
sets containg one class. This means that the computational cost of the classification step is
O(|S]). In the third case almost all the sets contains a small number of classes, therefore
the computational cost of the classification step is near to O(|S)).

Classes
1 2 a3 4—-10 |11 =20 | 21 — 89
1968, | 541 | 67 [ 17| 30 5
Code | [14,5,9]s 52 3
[15,4, ll]g 1690 | 365 | 160 2062 56 37

Table 3: Number of sets of maximum level containing k classes
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Abstract

There are at least four diversities of ternary linear codes of dimension &, mini-
mum distance d with 3 < & < 6, ged(3, d) = 1, which are always extendable. Every
[k, d]3 code with diversity (fr_2,0), (Br_3.2 - 352) or (f_s + 32,32, d=1
(mod 3), k> 3 is doubly extendable, where §; = (37 —1)/2,

1. Introduction

Let € be an [n, k, d], code, that is a linear code over GE(g) of length n with dimension
& whose minimum Hamming distauce is d, where GEF(q) stands for the finite field of order
¢. The weight distribution of C is the list of numbers A4, which is the number of codewords
with weight i. The weight distribution with (Ag, Ay, ...) = (1, @, ...) is also expressed as
0'd= - - .. We only consider non-degenerate codes having no coordinate which is identically
ZEe10.

The code obtained by deleting the same coordinate from each codeword of € is called a
punctured code of C. If there exists an [n+1, &k, d+1], code ¢’ which gives C as a punetured
code, C is called extendable (to ') and €' is an extension of C. C is doubly extendable if
its extension is also extendable. Throughout this paper we deal with [n, k, d]3 codes with
ged(3.d) = 1, k > 3 (see [6] for the case k < 2).

Let C be an [n, k,d]y code with & > 3, ged(3.d) = 1. Define

q)u o % Z A,:. @L = i z ."l,"
= 3liir0 i20.d (mod 3)
We call the pair (@, @) the diversity of C. It is known that C is extendable il ¢; = 0
([3].[4]) or if @y + @y < By + 3572 ([7],[9]), where 8; = (37! — 1)/2. Our aim is to
find all the possibilities of the diversity for which € is extendable for k = 3,4,5,6. Note
that 8 | = 0,6, = 1,8, = 4,6, = 13,05 = 40,8, = 121,05 = 364. Our main results are
suminarized in the following theorems.

Theorem 1.1. Let C be an [n, k. dls code with diversity (®y, 1), ged(3,d)=1,3 <k <6,
Then

(1) (@0, 1) € {(4,0),(1,6), (4.3}, (4,6),(7.3)} when k = 3.

(2) (®o, @) € {(13,0),(4,18), (13,9),(10,15), (16, 12), (13, 18),(22, 9)] when k = 4.

“This research has heen partially supported by Grant-in-Aid for Scientific Research of the Ministry of
Education under Contract Number 304-1508-126 10137
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(3) (®o, 1) € {(40,0), (13,54), (40,27), (31,45), (40,36), (40,45), (49,36), (40,54), (67.27)}
when k = 5.

(4) (Po, 1) € {(121,0), (40,162), (121.81), (94.135), (121,108), (112,126), (130.117),
(121,135), (148,108), (121,162), (202,81)} when k = 6.

(5) C is extendable if (B, ®1) € {(F1_2,0), (0 3,2:352) (85, 2:372), (6 2+3F2 3]

Theorem 1.2. Let € be an [n, k., d]y code with diversity (®y, @), ged(3.d) = 1. Then C
is nol exlendable if (1) Ticizaimod 3y Ai = 0 when (®y, ®1) = (4,3) for k = 3,
(2) Ticizdtimnod 3y Ai < 6 when (B, 1) € {(13,9),(10,15),(16,12)} for k =4,

(3) ! b A < 18 if (®y, By) € {(40.27), (31, 45), (40,45), (49,36)} for k =5,
d<i=d{mod 3)

4) T A <24 if (B, ®y) = (40,36) for k =5,

d<i=d{mod 3)

(5) ¥ A < 54 when (®g,Py) € {(121,81). (94, 135),(121, 135).(148,108)} for
d<i=d{mod 3)

k=6,

(6) ¥ A; < 72 when (@, ®) € {(121,108),(112,126), (130.117}} for k = 6.
d<i=d(mod 3)

Theorem 1.3. Let C be an [n, k, d]y code with diversity (®9,®,), d =1 (mod 3), k > 3.
Then C is doubly extendable if (®g,®1) € {(fr_2.0).(F_s, 2+ 3572), (0p_s + 32, 35-2)].

For example, a [200,6,130]; code found by Gulliver ([2]) is doubly extendable, for
its weight distribntion is 01130'"1131221132613312134%2130%2140%142%21 4451481150152
(diversity (40,162)). Hence a [202. 6, 132]; code exists.

Theorem 1.3 can be proved cuite similarly to the proof of Theorem 1.2 in [§], so we
omif the proof in this paper.

2. Diversities of ternary linear codes of dimension &, 3 < k <6

We denote by PG(r, ¢) the projective geometry of dimension r over GF(g). A j-flat
is a projective subspace of dimension j in PG(r,q). O-flats, 1-flats, 2-flats, 3-flats and
(r — 1)-flats are called points. lines. planes and hyperplanes vespectively as usual. We
denote by F; the set of j-flats of PG(r, g).

Let C be an [n, k. d], code with a generator matrix G. Then the columns of G can be
considered as a multiset of n points in ¥ = PG(k — 1, ¢) denoted also by C. An i-point is
a point of ¥ which has mmltiplicity ¢ in C. Denote by 74 the maximum multiplicity of a
point from T in € and let C; be the set of i-points in T, 0 < i < 4. For any subset S of
¥ we define the multiplicity of S with respect to C, denoted by me(S). as

an
me(S) =Y i|SNCy,
i=1

Then we obtain the partition © = CoU 'y U--- U C,, such that
n=me(Z), n—d=max{me(n) | € Fi_a}.

Conversely such a partition of ¥ as above gives an [n, k. d], code in the natural manner il
there exists no hyperplane including the complement of Cj in ¥. Note that the number
of yperplanes & with me(r) =i is equal to A,_;/(¢—1). Since (n+1) — (d+1) = n—,
we gel the following.

Lemma 2.1. C is extendable iff there exists a point P € © such that me(w) < n —d for
all hyperplanes © through P.
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Let ¥* be the dual space of X (considering Fi_» as the set of points of £°). Then
Lemma 2.1 is equivalent to the following:

Lemma 2.2. C is extendable iff there exists a hyperplane 1 of ©° such that

IIC {r € Frs | me(w) < n—d}.

From now on, we assume that C is an [n, b, d]y code with diversity (@, ®,), ged(3.d) =
1,3 <k <6. Then n — d # n (mod 3). Define Iy and Iy as follows.

Fo={r € Fia | me(r)=n (mod 3), F, = {7 € Fr_a | me(x)# n, n—d (mod3)}.

Then F = FyU Fy forms a blocking set with respect to lines in the dual space ¥* of ¥ =
PG(k — 1,3) ([7]). that is, every line of £* meets F in at least one point of ©*. The
following is straightforward from Lemma 2.2.

Lemma 2.3. C is extendable if F includes o hyperplane of 7.

C is extendable if FU {x € Fi_a | meln) <n—d, melr)=n—d (mod 3)} includes
a hyperplane of ¥ even if F does not, by Lemma 2.2 (see Example 1 (3)). Note that
|Fﬂ| = @y, |F]| = €.

Lemma 2.4([7]). Let L be a line of &* with FOL = {my, .., w.}, melm) =81, 1 <i < u.
Then ¥, si=n+ (u—1)(n—d) (mod 3).

\\(' denote by F7 the set of j-flats of £%, 50 F7 = Fp 0, 0 < j <k — 2. Asubset T
of ©* is called an (i, j)-set if |T N Fy| =i, ITﬂ F1| = j. A line I which forms an (i, j)-set
is called an (i, j)-line. An (1, j)-plane is defined ‘\]lllllcﬂ 1\

Assume 2 <t < k—1 and let & € F;. Denote b}' ; the numbers of (£—1)-flats which
form (¢, j)-sets in & aml let @ = |60 F,|, s =0,1. {.pu“’ @' is called the diversity

of & and the list of r s is called its spectrum. An easy counting argument yields the
following:

(e A t oo 4
Z (#'J = ei- Z 'J’Cr-.j e f?':_ll,'.?u{ ]a Z JC‘J = Hg._lplu}.

(4,7 )EA 1 [ED 1= VY (i grEA

il @ol” J ) _ @t
Z 2 Cij =02 2 | Z Gij = fh_a 9 i
(Fd )AL (L1)EA 2 b

Z i+j [tJ 9 @' + @
2 t=2 2 1
(1.)eA—y iy

where A, is the set of all possibilities of ("=, =) Ay is obtained from Lemnia
2.4 as

At ={(1,0),(0,2),(2,1),(1.3),(4,0)}.

We refer the above simultaneous six equations as ().

Assume ¢t = 2. When rﬁfj = 0 the above equationus have the four solutions (a-1), (a-5),
(a-G), (a-T) in Table 1. When q ) = 0, we get the three solutions (a-2), (a-3) and (a-4) in
Table 1.
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Table 1

@™ ) ¢y {3 £ ffi f'(zzl} ¢ tlz,!:i f'glr?}
(a-1) 4 0 12 0 0 0 1
(a-2) 1 G 2 9 0 2 0
(a-3) 4 ) i 3 i 0 0
{a-4) 4 6 0 3 6 4 0
(a-5) T 3 1 0 9 1 2
{a-6) 4 Y 0 0 0 12 1
(a-7) 13 0 0 0 0 0 13

Theorem 2.5. Let C be an [n,3,d]y code with diversity (®g, ®1). ged(3,d) = 1. Then
(1) (Do, ®,) € {(4,0).(1,6),(4,3),(4,6),(7.3)}.
(2) € is extendable if (Pg, Dy) € {(4,0),(1,6).(4,6), (7,3)}.
(3) € is extendable iff VB Ai > 0 when (g, $1) = (4,3).

d<i=d{maod 3)
Proof. When k= 3, (&g, ®;) = (920'?,21®) and &y + &, < 85, for {7 € Fy | me(mw) =
n —d (mod 3)} # #. Hence we get (1) from Table 1. Since f[lg:i + -‘."Eﬁ!, > 0 for all cases
except when (@o'®, ') = (4,3), we get (2) from Table 1 by Lemma 2.3,
(3) Assume that (Pg,®) = (4,3). Since ¢l = 6 and since any two (2,1)-lines meet in
a point of F, every point of 6\ F is on a (2,1)-line. Hence it follows from Lemma 2.2
that C is extendable iff {r € Fr_y | me(w) < n —d, me(r) = n —d (mod 3} # 0. ie
E:F(J‘:‘rﬂnmll 3y Al > (. a

Solving () recursively, Theorems 1.1 and 1.2 can be proved.
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Abstract

Tor g = 4 we construct a code I over the field ' = G'I'(¢) whose parameters
generalize the parameters of classical binary Preparata code. We explicate the idea
of [6]: the code P iz a Reed-Solomon representation of a linear over the Galois ring
R = GR(q* 4) code P dual to a linear code K with parameters near (but not equal)
to the parameters of generalized linear Kerdock code over R [1, 6, 7).

1 Introduction

Let R = GR(q%,4) be a Galois ring with identity e of characteristic 4 and cardinality ¢°,
=2, 1> 1. Theset [(R) = {r € R: r% = r} is called the p-adic (or Teichmueller)
coordinate set of the ring B. Any element r € R is a unique sum r = rg + 2r;, where
re = 3(r) € I'(R), t = 0,1. If we define @ on I'(R) by the rule u & v = ~g(u + v) then
(T'(R),®,-) is a field GF(q). In the following we fix the short notation: F' = I'(R).
Let F={wy=0,w; =e,....w,1} and 7.: R — F? be the map acting on an element
r=rg+2r; € R by the rule

’}'*(7')= [rlnrl@wlrﬂa"' 371 e‘uq—lrﬂ}' (l}

Then 7.(R) is [g, 2, g— 1], Reed—Solomon code over F = GF(q) and therefore the map 7.(R)
is called RS-map [7]. Note that if ¢ = 2, i.e. if R = Zy, then 4. is the so called Gray map
from [3].

With any h-code K C R* over the ring R we can associate its RS-representation K =
YH(K) € F*™. 1t is a code of the length gh over F', consisting of all words

2%(@) = (1 (u(0));.. yy(u(h~ 1)), TeK. (2)

So K is a concatenation of the code K over R and a linear over F code 7.(R). Note
that if K is a subgroup of the group (R",+) then K is distance invariant. In the last case
the Hamming distance d( K) of the code K is equal to the minimum of Hamming weights of
nonzero words in K.

*The work was partially supported by RFFR grants 99-01-00941, 99-01-00382.
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If K is a linear code over R, i.e. K < pR" (so it is a submodule of the R-module g R"),
we call K an (I, v.)-linear code (and sometimes briefly an R-linear code). An H-linear code
K is distance invariant but may be nonlinear.

Let now K2 be a code dual to a linear cade K < z R" relative to a standard scalar product.
Then again K” < pR" and we shall call the A-linear code K, =~4(K") C F*™ R-dual to the
(f-linear) code K.

In [2, 3] the Zlinearity of classical binary Kerdock (2m+!, 22m+1) 9m _ 93 code, where
m is odd and A = [m/2] [1], was discovered. Further in the paper [5] it was discovered that
the classical binary Preparata code with parameters (2m+! 242" =1=m) §) i5 Z ,dual to the
binary Kerdock code. Simultaneously in [1] a generalized Kerdock code K,(m) over any
Galois field F' = GF(q),q= 2. > 1 with parameters (n,n% ((g— 1)/g)(n — 7)), n = ¢"*
was constructed. This code has a form K,(m) = 7(Kn(m)), where Kg(m) < pR" is a
special linear code of the length i = ¢ called base linear code (see below).

However the attemnpis to build a generalized Preparata code by analogy with [5] as a
code R-dual to K,(m) were unsuccessful: for ¢ > 2 the ecode K (m), = K r(rm)”) has the
distance 3(g—1) (see [6] and [8] for B = Z 2, ¢ — prime, odd). So the formula of the distance
of such “generalization” of the Preparata code is not a generalization of that of the distance
of the original binary Preparata code: for ¢ = 2 we have 3 instead of 6 = 3q. Nevertheless
this very construction was called in [8] the generalization of the Preparata code. We propose
some alternative approach to the definition of this notion based on the idea of [6].

Let us consider a parameter A = ":__11 .
Preparata code can be expressed as (2741, 2227=1=m) gy — (g(A 4 1), ¢*4=™). 3¢). We show
that for ¢ = 4, (m.q—1) =1 there exists a (g(A+ 1), ¢~ 3g)-code over the field F' and
it is R-dnal to a code with parameters near to the parameters ol generalized Kerdock code.

Note that for ¢ = 2 the parameters of the binary

2 General constructions.

Here we suppose that ¢ = 2.1 > 1. Lel § = GR(¢*",4) be a Galois extension of the
degree m of the Galois ring R = GR(q¢*,4) with Teichmueller coordinate set I'(S) = {5 €
§: B7" = 3}. Any element 3 € § is a unique sum 3 = fo + 23, where 3, = 3(3) € I'(5),
i =0,1. If we define @& on I'(S) by the rule u @ v = yg(u + v) then (I'(S), B, -) is a field
GF(g™) and the field F =T(R) ={f# € §: "=} is a subfield of @ = I'(S),

Let us take an element £ € ° of order ord¢ = d such that () = F(£) and consider the
code K p[€] of the length h = d 4+ 1 over [? consisting of all words

v =(n(0)...v(h—1))
such that for some o € S, c € R
v(i) = Tri(a€) +¢, i=0h—2. vlh—1)=c, (1)

where Tri(x) is the frace-function from S onto R ( Tri(z) =Y, a(x), o spans the group
of antomorphisms of S over 7).

It d = qg" — 1 then Kp[€] = Kgr(m) is the base linear code mentioned above.

We consider the case d = A. In this sitnation we shall call Kg[€] the reduced base code
and denote it by Kf(m). Correspondingly we shall call a code f’\';""{m} = Ah(Kd(m))
the reduced {generalized) Kerdock code. Our main object is the generalized Pereparata code
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P,(m) which is defined as R-dual to K[*!(m) code: P,(m) =+L(P),P = Kj'(m)’. It is not
difficult to see that P is a linear code of the length h = A + 1 over the ring It with check

matrix
O 1@ Tk e
H_([l il e g‘A-‘)

3 Main results.

Proposition 1 The length n and the cardinality C' of the reduced Nerdock code 1'{:',"""’('::1) are

n=ad+1) = ol +4-2), C=¢" = (== +2)"
Ifq=4,(m,q—1) =1, then the distance d of this code salisfies the inequalities
A7 Al g g li AT 2

In comparison with the parameters (n, n?, %(n —/n) of the generalized Kerdock code over

F ihe cardinality C' of our code is larger: € =~ (¢ — 1)%n?, but the distance is smaller. The
last inequalities allow to state that for ¢ = 4 there is an equality

r{:r,«—.l.

(n —c{m)y/n), where 6.54 > e(m) > 0.577 2" X = [m/2].

. Apparently the last estimations are rather rough. The following results of calculations for
g = 4 allow to conjecture that for m > 4 really 3 > ¢(m) > 2.

i n 4m— 4t | d 4m _ Hom 49 clm) = 7-‘-—““ ek
3 n

2 24 12 12 -4 1.77

4 344 240 238 167 1.44

H 1368 1008 962 845 2.31

i 21848 16320 16146 15661 2.17

8 87384 (5280 65048 64087 2.21

Our main results about the Preparata codes are the following.
Theorem 2 If (m.q— 1) = 1 and g = 2' then the generalized Prepararta code P,(m) is a

(g(A+1), ¢* A=) d > 3¢)-code over the field F'= GF(q). Ifm is even then 3¢ < d(P,(m)) <
Ag—1).

More precisely the value of d(P,(m)) was calculated in some particular cases.
Proposition 3 Under the conditions of Theorem 2 if my|m then d(Fy(m)) < d(Py(my)). If
q =4 and m is a multiple of 2, 5 or 7 then d(P,(m)) = 3q.

Note that if ¢ = 4, m = 2 we have still that P,(m) and ]\'q’"’(m) are hoth (24, 4%, 12)-codes.
These results allow us to ormulate the [ollowing

Conjecture. The equality d( P,(m)) = 3q holds for any q = 2"

If this conjecture is true then we can say that Zduality of binary Kerdock and Preparata
codes is in some sense a casual result. In fact the code f-dual to the generalized Preperata
code over GF(2!) is the reduced Kerdock code f\',;"d('n.ﬂ.} which is equal to the generalized
Kerdock code K, (m) ouly if ¢ = 2.
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Abstract

We obtain low complexily tail-biting trellises [or some extremal sell-dual codes
for various lengths and fields such as the [12,6,6] ternary Golay code and a [24,12,8]
Hermitian sell-dual code over GF(4). These codes are obtained from a particular family
of cyclic Tanner graphs called necklace factor graphs.

Keywords : self-dual codes, tail-biting trellises, necklace factor graph.

1 Introduction

The representation of linear block codes by trellises is a very powerful description which
allows an efficient soft decision decoding. We consider a family of codes introduced in [2]
based on the unse of short length codes and interleavers. From this family it is possible to
extract a sub-family of codes adapted to iterative decoding. Indeed every code of this sub-
family is associated with a necklace factor from which a tail-biting trellis can be deduced.
Among this family, it is interesting to find codes with the best minimal distance as in [3].
Herein, we obtained some extremal self-dual codes over GF(2) and Z .

[n this paper, we extend the construction [2] to several fields and we formalize the con-
straints on the necklace graph given in [3] to get codes with the best minimum distances.
By this way, we have low complexity tail-biting trellises for several codes like the [12.6.6]
ternary Golay code and a [24,12.8] Hermitian sell-dual code over GF(4).

2 Necklace Factor Graph

For an introduction to factor graphs we refer the reader to [1]. We recall that a factor
graph of a code €' over GF(q) consists of eheek nodes representing local constraints of O,
and variable nodes which take values in an alphabet. We distingnish between two types
of variable nodes: symbol nodes which are associated with the symbol of the codewords of
' and state nodes which are used for computing the codewords of (' but which are not
transmitted, A variable node is adjacent to a check node if the corresponding variable is
involved in the corresponding local constraint.

*This work was supported in part by France Télécom R&D.
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We consider [N, K, D] linear codes " over (F(q) obtained from a [n.k.d] linear base
code B over GF(qg) (see [3]). We focus on codes having a cyclic Tactor graph Ny(C') with 1
necklaces like the one given in Figure 1.

Fy

@ check node
a  state node

®  symbol nede

Figure 1: A necklace factor graph of order 1.

Each check node represents the base code B. Symbol nodes take values in GF(g)". State
nodes take values in G'F'(q}% if & is even and in (}'F{q)lgj or G’F(q}m“ if not. All the
variable nodes adjacent fo a check node form a codeword of B and all {he symbol nodes of
the N(C') form a codeword of (.

Proposition 1 If all the local constraints of a necklace factor graph representing a code €
are self-dual codes over GF(q) then (' is also a lincar self-dual code.

Proof It is an application of Theorem 7.3 given in [4] since any necklace graph is a normal
tactor graph.

a

3 Constraints on the Necklace Graph

Among all the codes that have necklace graphs described in the Section 2, we are particu-
larly interested in those that have the best minimum distances. We meet this requirement
firstly by defining the properties that should satisly a necklace graph, and then by searching
exhaustively interleavers that check them.

Property of diffusion: for any check node which has degree four, il one of its adjacent
state node has non-zero {(Hamming) weight, then at least three of them has non-zero weights.

Property of expansion: for any check node which has degree three, if exactly one state
node has non-zero weight, then the symbol node has always a weight greater than a certain
constant b > d — k2.
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4 Low Complexity Tail-Biting Trellises
lemma 1 Any necklace factor graph N,(C') of a code C' can be put into the form of a t-scction
tail-biting lrellis Ty(C).

Proof It is sufficient to group together variable nodes and check nodes of the same level
(see Figure 2) to obtain a new factor graph which is basically a tail-biting trellis.

O

Figure 2: Transformation of a necklace graph into a tail-biting trellis.

There exist several types of complexity for a tail-biting trellis ([1]). We are ouly interested
in the maximum state complexity.

Definition 1 Let ' be a t-seetion tail-biting trellis with state spaces Sg, ..., S;—1. The max-
imum state complexity S,... of 1 is defined as

B =000 58] | St Fe

lemma 2 Let C' be a [N, K, D] lincar code over GF(q) with necklace graph Ni(C') obtained
from a [n, k. d] linear code B. Each states space of the tail-biting trellis Ty(C') deduced from
N(C) is of size ¢ and therefore S, is equal to ¢° states.

The following table gathers the parameters of the obtained codes along with the com-
plexities of their associated tail-biting trellises.

q B 0 t | SmaslTHE))
3 [.23] | [843] |2 3¢
3 [4.2,3) | 12.66] |3 32
3 [4,2,3] | [16.8.6] | 4 3*
3 [4,2,3] | [20,10.6] | 4 3
3 [12,6,6] | [24,12,9] | 2 3
4 Buclidean | [4,2,3] | [84.3] |2 42
4 Euclidean | [4,2.3] | [12,6,6] |3 42
4 Buclidean | [4,2,3] | [16,8,6] | 4 42
4 Hermitian | [6,3.4 [12,6.4] | 2 43
4 Hermitian | [8,4,4] | [24.12,8] | 3 41
5 63,4 | [189.0] |3 5
5 [8,4.4] | [24,12,8] | 3 51
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Abstract

We present a new technique of decoding codes in rank metrie. The decoding problem is mod-
eled as solving a system of quadratic equations in the field GF(g). Several strategies for solving
the system by guessing certain unknowns are considered. The result is two new algorithms for
decoding a general (n, k) lincar rank distance code over GF(g) correcting errors of rank r in
O ((Nr)Egtr=10+1) and O ((k + r)riglr=VN=7) operations in GF(g), respectively.

Introduction

Codes in rank metric, introduced by Gabidulin in [1], well suited for correcting burst errors
and lattice-pattern errors in parallel channels. Another application of codes in rank metric
is public key cryptography, namely they are used in the GPT PKC [2] and its modifications,
and in Chen’s authentication scheme |[3].

In this paper, we [irst recall the definition of rank codes and formulate the decoding
problem for them. Then we show how to model this problem as solving a system of quadratic
equations in the base field GF(g). After that we consider several methods for solving the

system and estimate their complexities.

1 Rank distance codes

Let. GF(g) be the finite field with ¢ elements, and let GF(q") be the extension field with
¢" clements, ¢ is a power of a prime, Let x = (21,...,2,) be a vector over GF(¢q"). The
rank of x over GF(q), denoted r(x|q), is defined to be the maximal number of z;’s that are
linearly independent over GF(q). The rank distance d,(x,y) between two vectors x and y
in GF(g")" is dr(x.y) = r(x— ylg).

Let C be an (n, k) linear code over GF(¢V). Tn the sequel, we only consider linear codes.
For the code € the (minimal) rank distance d(C) is defined to be d(C) = min{r(cly) |
c € C,c#0}. If C has minimal rank distance d, then it can correct all errors e with
rlelg) <t = [(d—1)/2]. We call ¢ the rank error-correcting capability of the code.

The problem of decoding an (n, k) code C over GF(g") with rank distance d may be

formulated as follows. Given a length n vector ¢, find a k-vector m such that the difference
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e = ¢ — mG has the smallest possible rank, where G is a k x n generator matrix of C. If
r(elg) < t, then this is bounded decoding, and exactly one solution exists.
Let r(e|lq) = r < t. The problem of bounded decoding for € can be formulated as the

problem of finding a codeword of the smallest rank in the code C. with generator matrix

oe[f- 3]

where Ep — k x k identity matrix. The code C, has rank distance r, and all codewords of

rank r are multiples of e, hence they are of the form ce, where £ € GF(g™)\{0}. The value
of £ may easily be computed from the two vectors ceH” and cH” = eH”, where H is a

parity-check matrix of C.

2 Modeling the decoding problem as a set of quadratic equations

Qur approach to solving the decoding problem is to find a system of equations on the
components of the error vector e, and then to solve that system.
Reduce the generator matrix given in (1) to a systematic form Gy = [Exqr R]-
Partition e as e = (e, eq), where e, is the first &+ 1 components of e, and ey is the last

i — k — 1 ones. Evidently, r(e;|q) < r(elq) = r. Assume that e; # 0. It can be shown that
ey = elR. (2}

Thus, we need to find a vector e; with r(ei|g) < r such that the vector (e, e;R) has

rank exactly r. The vector e of rank r can be represented as

Goy vt Ogkg gk Opg
o=y m e eyl S : . PR T
Qpq1 v Qr_ k41 Qp_gpkge o Qe
where g, @1, ..., 7,1 € GF(g")\{0} are linearly independent over G'F'(q), and A is some

r % n matrix over GI'(q) of full rank r. Since we are looking for any multiple of e, we can
put 7o = 1. The parts e; and e, are now written as e; = xA,, e; = xA,, where A, and A,
are the first & + 1 and the last n — k — 1 columns of A, respectively.

For every j. j=4k+2,...,n, [rom (2) we obtain the equality

XAI(J)FJ = 01 (3)

£,
£y = I : : .
where A,(j) = I:Al : ], Ti= [ ] } ,and r; is the (j — k — 1)-th column of R. Taking
: -1

Dyl
different indices j in (3) we get a system of n —k — 1 equations in the unknowns @y, ..., o,

Ay, Ay. We are going to rewrite the system over the base field GF(q).
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Let €2 be a basis of GF(g") over GF(q). For every b € GF(¢"™) put into correspondence
elements 8y, By, ...,0x € GF(q), called coordinates of b in the basis ©, and wrile this
correspondence as b 4 (f, ..., fAy). For twoelementsb <+ (5;,...,8y) and ¢ & (&1,...,6n)

the coordinates of the product ¢b  (8y,...,dy) are
Je=108., VLB A el en) s =1 N, (4)

where NV x N matrices Ay with elements in GF(g) are all non-singular, pairwise different,
and depend only on the choice of £2, hence known.

For the column r; we can associate a (k + 1) x N matrix T? m-th row of which is the
representation of m-th component of r;. Let —1 ¢+ A = (A, ..., Ax).

Let ¢;; be the i-th component of the vector A,(j)r;. Denote z; ¢ (Y, Yoiy oo TNi)-

Using (1), we find the representation of z;¢;; ++ (01(2), 02(i5), ..., on(if))
oe(i5) = (s das- s ) B¢ [T AT (oiri0ay oo ogmaay)s  d=1,.0,r =1, (5}

Since zy = 1, the formula for zeco; = ¢y; is simpler, a4(0, j) = p(j)(ao1: - s Q041 05) ",
where p,(j) is the £-th row of [TJ- ,\T] ;
In conclusion, equation (3) for each j, j=4k+2,...,n, gives the following system of N

quadratic equations in the base field GIF'(q):

(E55} kpy
r=1 :
Z(ﬂh‘"ﬁmf"”f’m'i)Af [Ti AI] iy lu'{(-}} =0, t=1,...,N. {6)
i=1 0 kg1 k1

(a #H) Qg

For any solution to system (6) compute e; = e, R, and check the rank of e = (e, ey). If
r(elq) = r, then decoding is successful. Otherwise search for another solution.

If the value r(elg) = r is not known beforehand, start decoding assuming that r = 1. If
no solution was found, assume r = 2, and so forth. Complexity of solving system (6) grows

exponentially in r, so only the final step determines the overall complexity of decoding,.

3 Solving the system of equations

In this section, we suggest different strategies for solving system (6). It is not necessary to
use all the equations in the system, since it suffices to find e, to recover e. Assume that we

use a subset of m elements from the set &+ 2, ... n for the index j, say {ji,...,jm}

Strategy 1. Guess values of ay, 04, ..., 04441, and ay; for every i = 1,...,7 — 1, and

J € i, Jus ey dm}- Now we have a system of Nm linear equations in vy = (r—1)N+k+m+1
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unknowns. The system is solvable if there are more equations than unknowns, so we require
m>[{((r=1)N+k+1)/(N=1)].

Solving the system takes about O (v}) operations. In fact, there is no need to gness all
(r — 1)(k + m + 1) unknown a;;. What we need is to guess a matrix A, consisting of all
k+ 1 columns of A, and some m columns of A; except the first component of each column.
Since e = xBB ' A for any non-singular matrix B over GF(q), we can consider both A and
A, to be in row-reduced echelon forms. There exist M, < g~ Dktm+1-142 oqndidates for
A, that we have to check. Thus, for any fixed A, we solve a linearized system derived
from (6). The overall complexity of this strategy of decoding is W, = O (v} M,) operations

in GF(g). Asymptotically, when values #, N and k go large, we have m ~r, k~ N, and

W, =0 ((rN)“q(f- 1S ”) : (7)

Strategy 2. In this strategy we also linearize the quadratic terms in (6) by guessing values
of v, £=1,...;,N, i=1,...,r =1, i. e. the basis for e. So we get a system of Nm
linear equations in vy = (k+1+m)r unknowns oy, ..., 0481, 05 forevery i =0,... .7 — 1,
7 € {j1.jase s im}- Obviously, m must satisfy the inequality m > [(k + 1)r/(N —7)].

As in Strategy 1 we do not have to consider all possible bases for e. It is sufficient to
look through only non-equivalent bases leading to different e. It is readily shown that there
exist My < gr=DN=)42 difforent bases with zy = 1.

Altogether, the total complexity of this strategy is Wy = O(v3 M) operations in GF(q).

For large k, r, and N we have m ~ 7+ 1, k ~ N, and
Wy = O ((k + 1) r?gl=DN=) | (8)
Example. Let C; = (12,6) and C, = (24,12) be optimal rank codes over GF(2'%)

correcting errors of rank 3 or less. For code C; we obtain W) ~ 2% and W, = 2%, Code C,

is decodable in W, = 2! and W, ~ 2% binary operations.
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The Switching construction and kernels of g-ary

1-perfect codes *
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Abstract
The kernel of a g-ary code € can be defined as Ko = {z € F} : Aa+C=C VA€F,}.
We establish the kernel dimension of different ¢-ary 1-perfect codes of length n, using the

Switching construction.

1. Introduction. Let I} be a vector space of dimension n over a Galois Field F, = GF(q).
The Hamming distance between vectors u, v € Fy, denoted d(u, v), is the number of coordinates
in which u and v differ. The support of @ = (21,29, ..., 7,) € F} is supp(r) = {i &z £0).A
q-ary code, C', of length n is simply a subset of . The elements of ' are called codewords and
C is called linear if it is a linear space over F,. The minimum distance of a code is the simallest
distance between a pair of codewords,

A g-ary code C of length n is perfect if for some integer v > 0 every » € Fy is within
distance r from exactly one codeword of €. In [8] it is shown that the only parameters for
nontrivial perfect codes are the two Golay codes and the g-ary l-perfect codes where ¢ is a
m:] ,m =2 and r = 1, They

prime power. The g-ary 1-perfect codes have length n = -
have ¢"~™ codewords and minimum distance 3. The linear 1-perfect codes are unique up to
equivalence, they are the well-known Hamming codes and exist for all m > 2. Nonlinear g-ary
1-perfect codes also exist for ¢ = 2,m > 4 and for ¢ a prime power, ¢ = 3,m > 2 (except for
g =4 and 8 if m = 2) [14], [13], [9].

Two structural properties of nonlinear codes are the rank and kernel.

The rank of a g-ary code C, r(C), is simply the dimension of the subspace spanned by C.
Etzion and Vardy [6] established the existence of binary 1-perfect codes of length n = 2™ — 1,
m > 4, and rank r(C") = n —m+ s for ecach s € {0,1,...,m}. In [12] was established

*Research partially supported by CICYT Grant TIC2000-0739-c04-01.
'Diserete & Statistical Sciences, Auburn University, Auburn, Al 36849-5307
Dep. d'Iuformatica, Universitat Autdnoma de Barcelona, 08193-Bellaterra, Spain
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the g{-,;wralizzwion to the g-ary case, that is, the existence of ¢-ary 1-perfect codes of length

= -1 ,m >4 and rank #(C) =n —m+ s for each s € {0,1,...,m}. This problem still

remain open for m =2 and m =3 if ¢ > 3.

The kernel of a binary code C is defined as K = {z € Fy : x4 C = C}. If the zero
word is in C, then K¢ is a linear subspace of C'. In general, C' can be written as the union of
cosets of K¢ and K¢ is the largest such linear code for which this is true [3]. We will denote
the dimension of the kernel of €' by k(C). Phelps and LeVan [10] established that for each such
m > 4, there exists a nonlinear binary 1-perfect code of length n = 2™ — 1, with a kernel of
dimension k(C)) = k for each k € {1.2,....n—m —2}.

The most intuitive approach to constructing nonlinear 1-perfect codes consists of starting
with the Hamming code H,,, and swilching out one specially selected set of codewords S ¢ H,,
for another set of words S' such that the resulting code €' = (H,,\S) U &' would still be a
1-perfect code. This idea has been developed from different approaches to construct binary
1-perfect codes, see [1], (2], [6] and [11]. In [7], it was used one generalization of this technique
to construct g-ary l-perfect codes. In [12], was generalized the approach developed in [10] to
construct g-ary l-perfect codes with different ranks. In this article, we will use this construction

to construct g-ary 1-perfect codes with kernels of different sizes.

2. Kernel of g-ary codes. First of all, we generalize the definition of the kernel for a
g-ary code C.

Definition 1 The kernel of a gq-ary code C' is
Keg={reF] : \+C=C YA€F,}

It is easy to sec that if the zero word is in C, then K¢ is a linear subspace of C'. As in the
binary case, we will denote the dimension of the kernel of C by k(C).

Proposition 1 Let K¢ be the kernel of a g-ary code C. The code C' is a union of cosets of

Ka, and K¢ is the mavimal lincar subspace of E7 with this property.

3. Switching construction. Let F, = {0,0" «,...,a"?}, where o is a primitive ele-

ment. Let e; denote the vector of length n having all components equal to zero, except the i
component, which contains a one. Let H,, be a g-ary Hamming code of length n = g _]1.
q—

Let T; will denote the subspace spanned by the triples throngh the point, i.

o™

Proposition 2 [12] Given a q-ary Hamming code H,, of length n = !
and x; € H,\T;. Then,

-1
1_.-m23,q23

@i= (Hv.:\(R+Tt})U(Tr +-Ti+0'jei) (1)

is a nonlinear g-ary 1-perfect code, Wi € {1,..., n} and¥j e {0.1,...,q—2}.
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Next, we will see the kernel of the code € given by (1) is K = T;.. Actually, we will prove
two more general results.

"

Proposition 3 Lel H,, be a g-ary Hamming code of length n = g T m=>3.q >3 and lel
e
K be a subspace of H,, such that T; C KX C H,, and dimK <n—m—1. Then

C' = (H (K + 1) U (K +y+ale;)

is a nonlinear q-ary 1-perfect code with kernel K, ¥i € {1,...,n}, Vj € {0,1,...,q— 2} and
Yy € H,\ K.

g -1

Let H,, be a g-ary Hamming code of length n = . The parity check matrix of H,,

consist of n pairwise linearly independent columns ve.(_'tc;'s of length m over F,. From H,, we
can construet a projective space PG(m—1, ¢) of dimension 1 — 1 over F,, where the points are
the columns of the parity check matrix of H,, and three points are in a line if the corresponding
columns are linearly dependent [4]. Then, the elements of the support of a word of weight 3
are points that are in a line in the projective space. We will say that {1,2,... k} is a set
of independent points if the corresponding columns of the parity check matrix are a set of
independent vectors, that is if in the projective space 1o set of three points are colinear.

By Proposition 2, once we have made one switch we have another g-ary 1-perfect code.
Actually, it is proved [12] that for all m > 4, there exist @, 29, . . ., &, such that it is possible
to make a series of switches. In this case, if {1,2,...,m} is a set of independent points of I1,,,,
we can switch Ty + z; with Ty + x, 4+ aley, Th+ xo with Th + 22 + aey, ..., Tin + & with
Ton & & + ey, Vi € {0,...,g— 2} Vi € {1,...,m}, since T; + x; and T} + x; are always
disjoint for all k # i.

i
Proposition 4 Given a g-ary Hamming code H,, of length n = g
(

T m >4, with{1,2,...,m}
as a set of its independent points. Then, the nonlinear g-ary 1-perfect code

£}

= (U,,‘\ U (Ti + 1‘,-)) ulJ (@ + 2 + ote) (2)

j=]

has kernel Kev =N, T, Vs € {1.2,...,m} and Vj; € {0,1,...,q - 2}.

Trom Propositions 3 and 4, we can sce that we can obtain g-ary l-perfect codes € of
m—] : :
length n = 3 T m = 3 and ¢ = 3, with a kernel of dimension &(C) = k for each k €
q—
{dimT....n—m—1} and if m > 4, k € {dim("{_ T}) Vs € {2,...,m}}.

In order to know the exact dimensions of the kernels obtained using the switching construe-

tion, we need to know the dimension of the subspaces T; and the dimension of the intersection
of some of these subspaces.

Proposition 5 [12] Given a g-ary Hamming code II,, of length n, the dimension of T; is
¢ '—1,Vie{1,...,n}.
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Proposition 6 Given a g-ary Hamming code H,, with {1,2,...,m} as a set of ils independent

points, the dimension of N_, T} is (g — 1)*1gm™*. Vs € {2,...,m}.

=]

References

[1] S. V. Avgustinovich, F. 1. Solov'eva, On projections of perfect binary codes, Proc, Seventh
Joint Swedish-Russian Int. Workshop on Inform. Theory, St. Petersburg, Russia (1995),
25-26.

2] S. V. Avgustinovich, F. L Solov'eva, On non-systematic perfect binary codes, Problems of
Information Transmission, 32 (1996), no 3, 258-261.

[3] H. Bauer, B. Ganter, F. Hergert, Algebraic techniques for nonlinear codes. Combinatorica,
3(1983), 21-33.

[4] L F. Blake and R. C. Mullin, The Mathematical Theory of Coding, Academic Press, New
York, 1975

[5] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland, Ams-
terdam, 1997,

[6] T. Etzion, A. Vardy, Perfect binary codes: constructions, properties, and enumeration,
1IEEE Trans. on Information Theory, 40({1994), 754-763.

[7] T. Etzion, Noneguivalent q-ary perfect codes, SIAM J. Discrete Math. 9 (1996), no 3,
413-423.

[8] F.I. MacWilliams and N.J. Sloane, The theory of Error-Correcting codes, North-Tlolland,
New York, 1977.

[9] B. Lindstrém On group and nongroup perfect codes in q symbols, Math. Scand., 25(1969),
149-158.

[10] K. T. Phelps, M. LeVan, Kernels of nonlinear Hamming codes, Designs, Codes and Cryp-
tograply, 6(1995), 247-257.

[11] K. T. Phelps, M. LeVan, Switching equivalence classes of perfect codes, Designs, Codes
and Cryptography, 16(1999), 179-184.

[12] K. T. Phelps, M. Villanueva, Ranks of g-ary I-perfect codes, to appear in Designs, Codes
and Cryptography, 2001.
[13] J. Schonheim, On linear and nonlinear single-error-correcting g-nary perfect codes, Info.

and Control, 12 (1968) 23-26.

[14] J. L. Vasil'ev, On nongroup close-packed codes, Problemy Kibernetiki, 8 (1963), 337-339.



224 ACCT-VIII

TWO APPROACHES TO BLOCK CIPHER ANALYSIS

Rostovtsev A. G. and Makhovenko E. B.
St. Petersburg State Polytechnic University
rostovisev(@ssl.stu.neva.ru

1. Block cipher analysis

Block ciphers are the main instrument for providing information
confidentiality. Security of block ciphers is based on the difficulty of key
computation when plaintexts and corresponding ciphertexts are known. The
complexity of this problem is confirmed by the difficulty of determination
computable metric, showing the distance between the solution and the tested
key, because small key variations induce random ciphertext variations.

For providing security the number of encryption rounds is usually
accepted large enough. But nobody has proved yet that cipher strength wouldn’t
decrease under increasing of number of rounds; this is cryptographic “folklore”.

The universal cryptanalysis methods can be classified as statistical and
algebraic. The statistical methods (differential [2], linear [5], key schedule [4],
slide [3] use metric “on the average” and hence require large number of
(plaintext/ciphertext) pairs. To counteract these methods one can periodically
change a key, so obtaining of required number of texts becomes impossible.

Algebraic methods (Andelman — Reeds cryptanalysis [1], lattice
cryptanalysis [8]) often use Polia’s “generalization/reduction” method [6], so
key changing doesn’t strengthen a cipher in relation to these methods. Algebraic
cryptanalysis needs to determine goal Boolean function, which is true only when
tested key equals the solution, and to embed the underlying algebraic structure
from F, into an ordered set. Cryptanalysis technique implies searching of
maximum of goal function [9] or rejecting of key set during single test [8].
Cryptanalysis problem is reduced to the problem of Boolean formula
minimization. Note that method, suggested in [1], where extended goal function
maximum is computed, provides exponential growth of complexity as a function
of number of rounds; this lack can be eliminated [9].

2. Cryptanalysis methods
Let G, =F,[x,, ..., Ar,,],v’(_vr,2 @x,..., .xf ® x, ), where @ is addition in F5, be
a ring of Zhegalkin polynomials. Each polynomial in G, divides zero, but this
ring possesses the property of unique factorization (irreducible polynomials
have degree n), 1 is a unique invertible element in G,. Boolean function can be
uniquely represented as polynomial in G,. The map G,— F,, computing
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polynomial value by giving binary meanings to its variables, is ring
homomorphism.

Binary operations in G, can be extended into ordered sets Q (rationals)
and Z; (2-adic integers):

a®b—la-bl, ab(mod2)— ab. (@8]

First operation is not associative, hence ordered set is not a ring, but has
“characteristic” 2. Really computation in Q needs to use approximate numbers
(small digits are eliminated). Analogous approximation in Z, leads to quotient-
ring Z/2"Z for some integer m under 2-adic valuation (the smallest valuation is
—m, the largest one is 0).

Assume that one (plaintext/ciphertext) pair uniquely determines an n-bit
key (in average 1.36 n bit texts are needed [7]) and cipher has no equivalent
keys. Encryption and decryption process can be written as a composition of
polynomial sets in G,, depending on key bits, if plaintext and ciphertext bits are
known. Let u; be the i-th bit of intermediate text, produced from plaintext
encryption on the first half of rounds, and v; be the i-th bit of intermediate text,

produced from ciphertext decryption on the second half of rounds. Let goal
Ofn)

function be H = H{'u,. @ v, @1). It is obvious that / = | if and only if the tested
i=l
key equals the solution.
Suggested cryptanalysis methods are based on finding of (local)
maximum of goal functions He, H,_ , embedded into Q and Z, correspondingly.

If H =1, then Hyo=1 and val[sz )=0, where for Hy =2 (b is odd)
vaI(HL )= =a
Searching of Hy maximum is auxiliary iterative procedure, which allows
to determine key bit estimations for some initial key approximation. For Hy, the
initial approximation Kk~ has almost all key digits equal to 0.5. Algorithm is as
follows:
1. Let H = H(k') be extended goal function and {H,} = @.
2, For i = | to n compute extended goal functions H;', H, for i-th key digit
equal to 0 and 1 correspondingly. If H<H <H,, then H,=H]; if
H! <H <H), then H =H.
a. If {H;} # 3, then set H,,,x = max H, and find positiorjj and meaning
K; of corresponding key digit. Change j-th digit of k to K and go to
step 1.
b. If {H;} =D, then return {K;}.

If set of initial approximations {k*} is sufficiently large, then frequency
ratio for estimated key bits can be found.
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Chosen plaintext cryptanalysis method contains the following main
stages.

Precomputation stage 1, where for arbitrary keys k*, chosen plaintext x
and corresponding ciphertext y matrix (p;) is computed for all key bits. Here pj;
(i, j € F,) is frequency ratio of obtaining key bit estimation i if real key bit is /.
Matrix (p;) can be considered as the simple function of key with respect to
encryption algorithm.

Stage 2 for unknown key, chosen plaintext and known ciphertext produces
vector P = (Py, P;) for all key bit, where P; is frequency ratio for estimation of
key bit to be i.

Stage 3 includes solving of equation P = (p;)®m for each key bit to find
vector T = (T, ), where T, is probability for key bit to be i.

Stage 4 consists of key set ordering in accordance with their probabilities
and testing ordered keys.

This method does not allow to speed-up key computation if € = (0.5, 0.5),
but sometimes allows to reject a subset of keys. This is possible when matrix
(p;) as function of key allows to get information about %t under assumption that
unknown key belongs to the key subset.

The method of 2-adic extension is similar to the described one. It differs
in few positions: initial approximation is such that almost all key digits are equal
to 2; binary key estimation digits are to be chosen so that goal function has
(local) maximum of val(4#, ); 2-adic valuations of corresponding functions

instead of H, H* are used.

These methods are based on the following assumption: if estimation is
close to known key, it is close to unknown key too. This assumption looks fair
because estimation computation doesn’t require key knowledge. Some ciphers
have positive bias defined as difference between probability of estimated bit be
equal to the true key bit and 0.5. It allows to increment the complexity of key
computation in comparison with enumeration. Described methods can be
implemented for hash-function inversion too.

These methods are based on rational and 2-adic quasi-linearization:
influence of key digits in small-degree monomials sometimes is greater than
influence of key-digits in large-degree ones, because the signs of high-degree
monomials are almost random.

3. Experiment outcomes

The offered methods were tested experimentally for 64-bit and 16-round
substitution-permutation cipher. Each round consists of text and key XOR-
addition, permutation x; — X3imedes), €Xtreme 4-bit substitution (0, 13, 11, 8, 3,
6,4, 1, 15, 2, 5, 14, 10, 12, 9, 7) and 25 bit rotation (in some experiments
rotation was round-dependent: 25r for round r). The substitution has
differentials with probability less or equal to 0.25 and no possible differentials
with weight 2. Absolute value of linear sums bias is less or equal to 0.25;

A. Rostovtsev , E. Makhovenko (Russia) 227

absolute value of linear sums bias of weight 2 is less or equal to 0.125. This
cipher seems to be strong in relation to differential and linear cryptanalysis.
There are no known attacks, allowing to speed-up its cryptanalysis in
comparison with enumeration under few known plaintexts.

Non-associativity of (1) causes errors in key bit estimations. To reduce
this lack the output substitution bit polynomials were presented in specific form
with reduced number of additions modulo 2.

Experiment, including stage 1 for rational and 2-adic extensions, shows
that the consequence of key bit estimations is unbalanced: it contains more
zeroes than units and looks like random one. The number of obtained
estimations of key bits must be at least O(e™”) for bias €. Frequency ratio of the
event that found key bit estimation is valid, exceeds 0.5 in average. Vector of
key bit frequency ratio was not estimated. Experiment shows that frequency
ratio dependence on the number of encryption rounds is not monotone. The
experimental bias is about 6% and is almost the same both for constant and
round-dependent rotations. Rational and 2-adic extensions have approximately
equal average biases.

This allows concluding that the key can be computed faster than by
enumeration for single chosen plaintext.
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Abstract

In this paper, we give a relationship between the generalized Hamming weights for
linear codes over finite fields and the rank functions of matroids. We also consider a
construction of g-th MDS codes from m-paving matroids.

1 Introduction

The closed connection between matroid theory and coding theory has been discussed
by many researchers. For instance, Greene ([2]) gave a proof of the MacWilliams identity
([4]) for the Hamming weight enumerator of a linear code by using the Tutte polynomial
of the corresponding matroid. Barg ([1]) studied the relation between the support weight
enumerator of a linear code and the Tutte polynomial of the matroid. In addition, he showed
the MacWilliams equation of the support weight enumerator in a simple form. In [7], Rajpal
studied paving matroids and the corresponding linear codes.

The generalized Hamming weights of a linear code were introduced by Wei ([10]). The
weights are natural extensions of the concept of minimum Hamming weights of linear codes.
Many applications of the generalized Hamming weights are well-known. They are useful in
cryptography (cf. [10]), in trellis coding (cf. [3]), ete. The generalized Hamming weights
have been determined for binary Hamming codes, MDS codes, Golay codes, Reed-Muller
codes and their duals ([10]).

The g-th maximum distance separable (MDS) code was defined by Wei ([10]) as a linear
code which meets the generalized Singleton bound on the g-th generalized Hamming weight.
In [9], Tsfasman and V1adut gave a construction of the codes [rom algebraic-geometric codes.

In this paper, we consider the generalized Hamming weights for the m-paving codes. We
also look for a construction of the codes from matroid theory. Then we give some examples
of the codes.
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2 GHW and m-Paving Matroids

We begin by introducing matroids, as in [6]. A matroid is an ordered pair M = (E,T)
consisting of a finite set F and a collection T of subsets of E satisfying the following three
conditions:

(I1) DeT.
(I2) f T €T and I' C T, then I' € 1.

(I3) If I; and I, are in T and || < |I3|, then there is an element e of I, — I} such thai

The members of T are the independent sels of M, and a subset of E that is not in T is
called dependent. A minimal dependent set in M is called a cireuit of M, and a maximal
independent set in M is called a base of M. For a subset X of E, we defline the rank of X
as follows:

y

r(X) ;= max{ YIEX, YeTl

Throughont this paper, let F, be a finite field of ¢ elements. For an m x n matrix A
over Fy, if I is the set of column labels of A and Z is the set of subsets X of E for which
the multiset of columms labelled by X is linearly independent in the vector space Fi', then
M[A] := (E,I) is a matroid and is called vector matroid of A (cf. [6]).

For a vector € = (z1,...,%,) € Fy and a subset D C Fy, we define the supports of @
and D respectively as follows:

supp(z) := {i|x; # 0},

Supp(D) = |J supp(z).
TeDh

Let C be an [n, k] code over F,. For each g, 1 < g < k, the g-th generalized Hamming weight
(GHW) dy(C) is defined by Wei ([10]) as follows:

do(C) := min{|Supp(D)| : D is an [n, g] subcode of C'}.
For any g, the following bound is well-known as the generalized Singleton bound ([10]):
d{C)<n—k+g.

Now, we introduce the connection between the generalized Hamming weights of a linear
code and matroid theory. It is usnal, for studying the relationship between linear codes and
matroids, to deal with the matroid of a generator matrix of a linear code ([1], [7], etc.). In
this paper, however, we shall study the rank n — k matroid M[H] of a parity-check matrix
H of an [n. k] code € to focus on the generalized Hamming weights of €. Since it finds
that M[H] is determined by C (not the chosen parity-check matrix H), we shall represent
M[H] = M. However, a linear code C' has more information than the matroid M. Indeed,
a matroid is the vector matroid of several linear codes. It is also clear that the dual matroid
(Mg)* corresponds to the matroid Mg of the dual code C.
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Theorem 2.1 Let M = M[H] be the vector matroid of a parity-check matric 0 for an
[n, k] code C over F,. Then d,(C) =6 for e g, 1 < g < k, if and only if the following lwo
conditions hold:

(1) for any (0 — 1)-subset X of E(M¢), r(X) >4 —g;

(2) there exists a d-subset Y of E(M¢) with r(Y) =6 — g.

Example 2.2 Let M¢ be a uniform matroid U, _ ,, that is, a matroid on an n-element set
E, any (n— k)-element subsei of F of which is a base. For any (n—k+g—1)-element subset
X, it [ollows that 7(X) = n—k [or every g, 1 < g < k. There exists an (n — k + g)-element
subset Y such that r(Y) = n — k for every g. Therefore we have that d(C) = n — k + g lor
every g. Consequently it follows that C is an MDS code.

An m-paving matroid was introduced by Rajpal ([8]) and the matroid is a generalization
of a paving matroid, that is, a rank r matroid whose circuits have cardinality r or r + 1.

Definition 2.3 A rank r matroid M is m-paving for m < r if all circnits of M have
cardinality exceeding r — m.

It is not difficult to show that any uniform matroid U, is O-paving, and any paving
matroid is 1-paving. These are the only 0-paving and 1-paving matroids. In [8], Rajpal
showed that if G is a generator matrix of a first-order Reed-Muller code R(1,m), then the
matroid M[G] is a maximal binary (m — 2)-paving matroid.

For m < n — k, we define an m-paving code as an [n, k| code C' over F, such that the
matroid Mg is an m-paving. Irom the above argument, it is clear that the dual code
R{m — 2,m) of a Reed-Muller code R(1,m) is an (m — 2)-paving code.

On the generalized Hamming weights of an m-paving code, we shall prove a bound.

Theorem 2.4 If an [n, k] code C over F, is an m-paving code, then
ty(C)>n—k+g—m (1)
forany g, 1 <g<k.
We consider a special class of linear codes defined as follows:

Definition 2.5 ([10]) Let C be an [n, k] code over F,. For g, C is called a g-th MDS code
ifd(C)=n—-k+g.

[t is well-known that an MDS code is also a g-MDS code for any g and a g-MDS code is
always a g’-th MDS code for any ¢', ¢' > g¢.
The following proposition is due to Tsfasman and V1idut (Corollary 4.1 in [9]).

Proposition 2.6 If C s an [n, k,d] code and r = n +2 — k —d, then the dual code C+ is
an v-th MDS code.

Now we give a construction of g-th MDS codes from sn-paving matroids. That also
indicates a duality for g-th MDS codes. From Theorem 2.1, it is not difficult to prove the
following lemma.
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Lemma 2.7 Let C be an [n, k] code. Then C is a g-th MDS code if and only if r(X) = n—k
Jor any (n—k + g — 1)-element subset X C E(Mg).

By using the lemma, we have the following theorem which is a generalizaton of the above
proposition.

Theorem 2.8 Let C' be an [n, k] code over F,. If C is a g-paving code for 1 < g <
min{n — k,k — 1}, then C* is a (g + 1)-th MDS eode.
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On McWilliams-type identities for orbit
codes

A. Yu. Serebryakov, V. M. Sidelnikov

It is well known that McWilliams identities have numerous application in the coding
theory. Sidelnikov (2] proposed an extension of McWilliams identities to a certain class
of orbit group codes. Our aim is to generalize this results to a larger class of group.

Let G be a finite group, p : G — GL(V) — its finite dimensional unitary representa-
tion. Denote gv = p(g)v where g € G, v € V. Denote a space X as an orbit of a certain
vector a € V: X = Ga. Let H be a subgroup of G. Then the orbit code C in the space
X is defined as the orbit of a under the group action of H, i.e. ' = Ha.

We consider the case when G is the n-wise direct product, i.e. G = Gy x ... x Gy,
po @ Gy — GL(V}) is a finite dimensional representation of the group Gy and p is a
representation of the group G in the space V = V5@ ... ® Vo, plgrs - s G )01, 1) =
(polgi)vry oo polge)vn) (g; € Gy, v; € V). The problem of deriving McWilliams-type
identities for the orbit code C' is reducible [3] to the problem of finding a monomial
basis in the space of polynomials over the set Xy = Gyuy (vg € Vy), namely a basis
fl.: 2l ,fr & C[.;Y(]], such that

1). 9fi = xil9) fitaays Xi(g) € C for any g € G;

2). the basis is a multiplicative group, i.e.

fi - Ji = Fetigy-

It is known that this way McWilliams-type identities could be derived for Abelean
groups as well as for two-dimensional irreducible representation of the quaternion group
Qs.

We consider left regular representations of groups Gy = Sy, Qs, D, (dihedral group).
We prove for these representation that the monomial basis exists and its elements can
be expressed explicitely as linear combinations of matrix entries of irreducible represen-
tations. In all the cases being considered we construct monomial bases which allows us
to deive Mewilliams-type identities for the considered matrix groups.

An Abelean group defined by elements of a monomial basis with multiplication as a
group operation, can be considered as dual to the priginal group Gy, its order is just
|Gl For left regular representations of the grops Sy, Qg, Dy, we obtain this way Abelean
groups Zg, Lo @ Ls b Lo, Ty & Z,,, correspondingly, which are dual to the original ones.
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Example. For Gy = S3 we have that its left regular representation is the sum of 4
irreducible representations. The matrix elements of these representations form the basis
of space C[Gp]. We can describe these functions as vectors of its values:

mu = (1,-1/2,-1/2,-1,1/2,1/2);

myy = (0,—v/3/2,v/3/2,0,3/2, —V/3/2);

Mg = (0- \/;_?.,’2, —\/5/2'0‘ \/5/2 —\/5/2):

mog = (1,—1/2,-1/2,1,~1/2, —1/2):

Yo=(1,1,1;1,1,1);

=11 1,~1 =1 =1},

We define fy = o, f1 = mur + imtga, fo = imay + ma, f3 = x1. fai = —imay + mas,
fs = my — tmya. Then fo. fi,..., fs is monomial basis. In particular, f;- f; = fizjs.
With the help of this basis we can derive McWilliams-type identities for the group G =
Sa b SR S;;.

It is easy to show that in the space of finite dimensional representation of finite nilpo-
tent. group over the field C there exists a basis fi,..., f. such that for any g € G and any
i€ {l,...,r} there exists j € {1,...,r} for which holds g i = x:(g)/;. This is implicit by
the fact that any irreducible representation of finite nilpotent group G is induced by some
one-dimensional representation of subgroup H € G [3]. The following problem remains
open: whether it is always possible to choose basis in the space C[Xj] of functions on
the orhit X, of a given finite nilpotent group Gy in such a way that its elements form
a group with multiplication as a group operation (elements are multiplied as functions).
This suppresedly leads to McWilliams-type group for any nilpotent group.

This work was supported by RFBR, project N 02-01-00687 and INTAS, N 00-738.
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Abstract

Minihypers in finite projective spaces are used to oblain results on linear codes
meeting the Griesmer bound. Minihypers are particular classes of i-fold (n — k)-
blocking sets in finite projective spaces. Our goal is to use characterization results

on [-fold (n — k)-blocking sets to obtain characterization results on minihypers.

1 Introduction

In coding theory, the Griesmer bound states that if there exists an [n, k. d;g] code for
given values k. d and g, then n > ¥ [%] = gy(k,d), where [r] denotes the smallest
integer greater than or equal to x.

The question arises whether there exists a linear [n, k, d; ] code with length n equal
to the lower bound g,(k,d). This coding-theoretical problem can be translated into a
problem on minihypers in projective spaces. Let PG(L,q) be the (~dimensional projective

space over the finite field of order g¢.

Definition 1 Let F be a set of f points in PG(t,q), wheret > 2 and f > 1. If|[FNH| >
m for every hyperplane I in PG(t,q) and |F 0 H| = m for some hyperplane of PG(t,q),
then F is called an {f, m;t, q}-minihyper.

Hamada showed that for d = ¢! — E‘:-‘zl g™, there is a correspondence between
linear [n, k, d; g] codes meeting the Griesmer bound and {3 Uaiy S vk — 1,9}
minihypers; where v, = (¢ — 1)/(qg — 1), for any integer [ > 0. Let G = (g1---g.) be

a generator matrix for a linear [n, k, d; ¢] code, d < ¢*~!, meeting the Griesmer bound.
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Then the set PG(k —1,¢)\ {g1....,9a} is the minihyper linked to the code meeting the
Griesmer bound.
Strong results for general values of n, k, d and g were obtained by Hamada, Helleseth

and Mackawa, and by Ferret and Storme.

Theorem 2 (a) (Hamada, Helleseth, Maekawa [4, 5]) 4 {X va 1, 50 00k — 1,¢)-
minthyper, with h < /g, is the disjoint union of a Ap-,... Ay-dimensional subspace of
PGk —1,q)-

(b) (Ferret and Storme [1]) Let F be a {37, €01, ig €055 L. g} -minihyper, where
Y06 <24, g > qy. Then F consists of the disjoint union of either:
(1) €, spaces PG(s,q), €51 spaces PG(s — 1,q), ..., e points,
(2) one subgeomnetry PG(21 + 1,./q), for some integer | with 1 < 1 < s, ¢, spaces
PG(s,q),.-. €141 spaces PG(l + 1,q),¢, — /g — 1 spaces PG(l.q), ey spaces PG(l —
1,q),...,€ poinis,
(3) one subgecometry PG(2L,,/q), for some integer | with 1 <1 < s, ¢, PG(5,q),...,¢14
PG(l+1,q).¢—1 PG(l,q). €11 — Vi PG(l—1.q),6 2 PG(1—2.q), ..., & points.

2 Multiple blocking sets in finite projective spaces

Definition 3 A #-fold (n — k)-blocking set in PG(n,q) is a set B of points of PG(n,q)
intersecting every k-dimensional subspace in at least t points. A t-fold (n—k)-blocking set
B of PG(n,q) is called minimal when no proper subsel of B is still a (-fold (n—k)-blocking
sel.

A 1-fold (n — k)-blocking set of PG(n,q) is also simply called an (n — k)-blocking set
of PG(n,q).

Minihypers in finite projective spaces are particular examples of t-fold (n— k)-blocking

sets in projective spaces.

Theorem 4 (Hamada [4, Theorem 2.5]) Let k be any integer, 1 < k < n. If F is a
{Z;‘__;u e,—r.:,-H'Z:f‘:lf,-_v“-;n., qt-minthyper, with 0 < & < q—1, i = 0,...,k, then every

(n — k)-dimensional subspace of PG(n,q) inlersecis F' in al leasl e¢ poinls.

Recently, the following result on (n — k)-blocking sets was obtained.
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Theorem 5 (Szonyi and Weiner [6]) Let B be a minimal (n—k)-blocking set in PG(n, q),
g =p" p > 2 prime, h > 1, of size less than 3(¢"* + 1)/2. Then every subspace that

intersects B in at least one point, intersects B in 1 (mod p) points.

This 1 (mod p) result gives important information which can be used to obtain char-

aclerization results of minimal (n — k)-blocking sets.

3 New results on t-fold (n — k)-blocking sets
The results of Theorem 5 have been extended to the following theorem.

Theorem 6 (Ferret, Storme, Sziklai and Weiner [2]) Lel B be a minimal (-fold (n — k)-
blocking set in PG(n,q), ¢ = p", p > 2 prime, h > 1, of size less than (1 +3/2)(q" % +1).
Then every k-dimensional subspace intersects B int (mod p) peints, and any subspace

of dimension less than k intersects B in 0,1,...,t (mod p) points.

The preceding result presently has been used to characterize 2-fold 2-blocking sets B

in PG(4,q), g square.

Theorem 7 (Ferret, Storme, Sziklai and Weiner [2]) A mainimal 2-fold 2-blocking set B
in PG(4,q), g square, of size al most 2(¢* + /g +q+ /g + 1), is either

(1) the disjoint union of two Baer cones with point vertez r; and with base a Baer subplane
in a plane not passing through ry, i = 1,2,

(2) the disjoint union of a subgeometry PG(4,.\/q) and a Baer cone with point vertez vy
and with base a Baer subplane in a plane not passing through ry,

(3) the disjoint union of two subgeometries PG(4, \/q).

The goal of theorems of this type on t-fold (n — k)-blocking sets in PG(n.q) is to
obtain improvements to the known results (Theorem 2) on minihypers in finite projective

spaces.
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Abstract

We consider the field F,. Let f : F, — F, for which we only know a [raction of
input and output. We suppose that ¢ is large. We would like to give an answer to
the following question: does there exist a polynomial of degree d which is very closed
to the function f, and we would like to give an approximation of this distance, or
equivalently, if we consider the smallest linear code of block length ¢ — 1 containing
both ev(f) and every codeword of the Reed-Solomon code [¢ — 1,d + 1], we would
like to give an approximation of the minimal distance between (his last code and the

Reed-Solomon code [g — 1,d + 1],,.

1 Introduction, The Basic Univariate Test

We want to test whether f is a polynomial of total degree d. M. Kiwi [2] describe equivalent
tests that achieve this goal. Let P denote the set of polynomials from F, to F, of total
degree d, and C'y(d) the smallest linear code of block length ¢ — 1 containing both ev(f) and
every codeword of the Reed-Solomon code C'(d) = [¢—1,d + 1], C(d) “f {pev(f)+8g| g €

C and ¢,0 € F,}. Here is these equivalent tests.

e Basic Univariate Test [3]: Randomly pick d+2 distinet points @y, ..., 24, in IF,. Then,
accept if there exists a polynomial in P that agrees with f on @y, ..., 24, and reject
otherwise,
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e Basic Univariate Test: let C(d) be the code whose elements are of the form (p(z) : z €
F,) where p ranges over Py. Randomly choose a dual codeword A € C(d)* of weight
d+ 2. Then, accept if A € Cy(d)L, and reject otherwise.

Recall that the minimal distance of a code €' is the minimum weight of the codewords
in C, and is denoted wi(C'). We denote pwi(C) the relative minimum distance of a code €'
as the minimal distance of a code €' divided by its block length. So if we denote A(f, )
the normalized distance, we see that A(f, Py) = pwt(Cy(d) \ C(d)).

Theorem 1 [3] Given a posilive inleger d, a finile field F, of size al least d + 2 and o
function f :F, — F,, if [ satisfies

Pr [El_r; € ]Fg.l.) [x] such that g(x;) = f(x;) Vie {0,....,d+ 1}] >1-6,

where the probability is taken over the uniform distribution over all d+2-tuples {zq, ..., x4}

of distinet elements from ¥, then A(f, Py) < & thus pwt(C(d) \ C(d)) < 6.

The testers above establish that univariate testing can be done in polynomial time (in
d}, and probes f in only O(d) places [3], but from the point of view of testing it is not very

useful, since it is not very “different” from interpolation.

2 Test based on evenly spaced points over prime field
We now describe a tester which only works for fields of the form F, for a prime p [3].

Definition 1 We say that a set of points {rq,...,x,} is evenly spaced if 3h such that

ry=1Iy+i#*h

Lemma 1 Given a positive inleger d and a prime p > d + 2. The poinls {(x;, )i €
{0,...,d4+1}; 2 = a+ixh; z;, y;: € F,} lie on a degree d polynomial if and only th:Hul oy =
0, where q; = (—1)0+Y ('“T ]).

Theorem 2 Given a positive integer d, a prime p > d + 2 and a function f : F, — F, such

that
1

dt1
e [E o - fz) = 0] >1—6 where § < 2+ 2

rhEFon

then A(f, Py) < 26, or equivalently pwt(Cy(d) \ C(d)) < 26.
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In particular, the bound above implies that the tester resulting from this theorem would
need to probe f in O(d*). We get the following Evenly-Spaced-Test:

Repeat O(d? log(1/4)) times

Pick x,h € F, x F, and verify that Zfin' a;- fle+ixh)=0

Reject if any of the test fails.

Theorem 3 If the output of a program can be expressed by a low-degree polynomial correctly
on all its inputs from F,, then it is passed by Evenly-Spaced-Test. If the output of the program
is not O(d—'.;)—ct'ose to a univariate polynomial, then with probability 1 — 3, it is rejected by

Fuenly-Spaced-Test.

3 Evenly-Spaced-Test for Extension of Prime Fields

We now extend the last results to the field F, = Fn. w denote a primitive element of ..

Definition 2 We say that a set of distinet points {xy,...,z,} is regularly spaced if there

exist @, hyw € Fyn x By X Fya, such thal 1o = v et 3y = v+ w' ' xh pouri € {1,...,d+1}.

Theorem 4 Let d an integer such that p* > d + 1 and a function f : Fpn — Fpa. Let
{0, ., 2441} a regularly-spaced sel with v = x and 2; =2+ h-w*'. Lel y; = f(2)), i €
{0,....d + 1}. The set of (w;,1;) lie on a degree al most d polynomial if and only if

f:ul ai{w,d) - y; = 0 where a; ave given by the following recurrence B) = B} = 1,
BY = BY, futt2, Bi = BIZ} /(' — o) and Bt = BIM/ALL — BL /AL, where At =

wt —wttt e {0, i), then oy(w,d) = BY,,.

Proof: By linearity we can cousider that we test the polynomial X4, Forj e {1,...,d}ets €

{1,...,d—j+2}, we define the function f0)(z,—_r,...,z0 1, 1) = 2 ""’“"""’;_”,‘ﬂj{(_j l”"'-’-"""“""’
with fO(z;) = f(z;) =24 i€ {0,...,d+ 1}. We show this theorem by recurrence: If
j =1 we see that f¥)(z, ,,,) is the sum of all monomial in z, |, z, of degree d — 1, we

suppose that f (j]{:,;!_h vy Tyj—1) i8 the sum of all monomial of degree n — j. Now at rank

Jj+1, for any monomial x~{ay ... 2577} of fO(z,_y,...,25;.1) we have the monomial

b= iy ki ] santie 3 — 250

TGy .. a2 of Y9 (x, e Targel ) WHEH Sy o+ i i=n— g, and

=14y e s, P ) ST M S e T fri—1 PR

Ty T xS = (g1 1_.,.+J}-Ms_]?3+j T2 ox 7 where M,_,‘HJ- is
: . s S G

the sum of all monomials of degree ¢, —1 inz,_, .z, so we see that Mj_]’_., M 3:3_:‘; E
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is a sum of monomial of degree n — j — 1 in z,,...,2,,; ;. We gel that 0+ is the set
of all monomials of degree n — j — 1. Thus if f is a polynomial of degree at most d then
S (@ .. 241) = 0 The construction of fU) immediately gives the proof of the converse
and states that there exists o;(w, d) which never depends of h since @; —2; = I+ (W' —wi™1)
and such that Zf:n] a;(w,d)-y; = 0.

Theorem 5 Given a positive integer o, a integer n such that p" > d + 2 and a function

f i Fpn — Fpu such that

il
1
z.hgrp.‘ ;ae(wsd)'f(mi}ZU >1-6 ou §Em¢

then A(f, Py) < 26, or equivalently pwi(Ci(d) \ C(d)) < 26.

4 Extending the tester to multivariate polynomials

Theorem 6 Given a finite ficld ¥,, such thai ¢ > md and a function f : F' — F, such that

d-+1
1
R gfmw,d)ﬂmﬂ 21-6 where 85 ooy

then A(f, P}) < 26, or equivalently pwt(Cy(d) \ C(d)) < 26. Here C(d) denote the Reed-
Muller code R[d, m],.

In conclusion we can say that the theorems 3 is true for these last cases and the proof is
similar to Sudan’s proof. Unfortunately These tests above are usefull only if the probability

& is very clothed to 0.
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Upper bounds on the size of insertion/deletion correcting codes
Ludo Tolhuizen, Philips Research Laboratories, Eindhoven, The Netherlands
May 28, 2002

1 Introduction

Let O be a set with ¢ elements. The Levenshtein distance ¢, (x, y) of two finite strings x and y of
elements from @ is the minimum number of deletions plus insertions of symbols that is required
lo transform x into y. In this paper, we will give upper bounds on M (n, 5), the maximum size (or
cardinality) of a code C < Q" for which any two distinct codewords have Levenshtein distance
exceeding 2s. We will use the following notation and results that can be found in [1] {(where also
references are given to the first publications of these results).

The size of a set 4 will be denoted by | A4|. The number of runs of equal symbols in the vector
x will be denoted by r(x). So, for example, r (001200000) = 4. It is well-known that

=
|IXEQ"fr(XJ=r'lI=(:_l)q(q—l)’"‘- (n

For cach xe Q" and cach te{0, 1,....n — 1}, D,(x) denotes the set of all vectors in Q" that
can be obtained by deleting ¢ symbols from x. The size of D,(x) depends on x. As an example,
Dy(0) consists of the all-zero vector only, while £,(0101...01) has as many as » clements. It is
known that [2]

f
foreachn € Nand eachx € 0", |D,(x)| > Z (r{xi‘ f), 2)
=0

One can prove (2) by induction, using that D,(x) contains all vectors with no deletion from the
first run and ¢ deletions from the » — 1 subsequent runs, and all vectors with a single deletion from
the first run, no deletion in the second run, and ¢ — | deletions from the » — 2 subsequent runs. The
bound in (2) is sharp in the sense that for each z and » > 1, there exists an integer n and a vector
xe@" such that r(x) = r and | D,(x)| satisfies (2) with equality.

For each xe Q" and ¢ > 0, [,(x) denotes the set of all veclors in Q" (hat can be obtained
from x by insertion of ¢ symbols. Surprisingly, |7, (x)]| does not depend on x, and in fact [1]

; : t ;
forallx e Q" andeachr = 0, |/, (x)| = Z (”—"_ )[q — ). (3)
e
Equation 3 can be proved by induction. In the induction step, it is used that /, (x|, xa, . .. e
Ueser, (¥ | ¥ € I i(xy, ... . v )JULIZ | 2 € Li(xa, ... x,)}, whichimplies that [/, (x|, ..., x,)| =

(=) T Ger e v, 2| o | i o )
The following proposition will be used in the derivation of the upper bounds.

Proposition 1 [f'd;(x,y) > 25, then 1,(x) N I,(y) = D,(x) N D, (y) =40

Indeed, suppose there is a vector z in 7;(x) M /;(y). Then x can be transformed with s insertions
to z, and z can be transformed with s deletions to y, and so d;(x,y) < 2s. The statement about
Dy(x) and D,(y) is proved similarly.
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2 The upper bounds

Theorem 1 If'1 <5 <n, then My(n,s) < ¢"*/ Y 1o (") (g — )'.

Proof. Let C C 0" have minimum Levenshtein distance exceeding 2s. Then we have that

: =y 1+ ;
4" > | Usee L0 = Y 1L =1C1 Y (” : "")(q -1y,
0

xeC i=

The first equality holds because [;(x) N I, (y) = ¥ for any two distinct words x and y from C. The
second equality follows from (3). O

The following upper bound is due to Levenshtein [3]:
Theorem 2 If1 <s <r +1 <n, then

: g r=1 (” ' 1) :
M (n,5) < ———— - —1).
e i il
Proof. The first term in the right-hand side is an upper bound to the number of code words
with at least » 4 1 runs of equal symbols. It is obtained by combining (2) and the fact that
Dy(x) N Dy(y) = @ for any two distinct words x and y in a code with minimum Levenshtein
distance exceeding 2s. The second term equals the number of words in Q" with at mosl » runs,
which clearly is an upper bound the number of words in C with at most 7 runs. O

We will modify Theorem 2 by giving another upper bound to the number of code words with
al most » runs. To this end, we observe that insertion of a single symbol in a vector x results in
a vector with at most r(x) + 2 runs (equality occurs if and only if between two equal symbols a
different symbol is inserted). From this observation, it readily follows (formally by induetion on
5) that insertion of s symbols in x results in a vector with at most r(x) + 2s runs.

Now, let C be a g-ary code with minimum Levenshtein distance exceeding 2s with the additional
property that r(¢) =< r for all codewords ¢. For each x € C, each element from 7,(x) has at most
25 + r runs of equal symbols. As 7(x) N I, (y) = @ for all distinct X,y in C, it follows that

iy (” f“')rq — 1) = Y1) = | Usec LM < Iz € Q" | (@) < 25 +r)| =
=0 /

xeC

r+2x=1 = J )
=4 Z: (M 5 ‘ ])(q — 1), where the final equality follows from (1).
i
i=0
As a consequence, we have the [ollowing modification ol Theorem 2:

Theorem 3 If1 <s <r <41 < n, then
= r4+2s—1 m4s=1 i
n—¥ g ; i
My(n.s) € e + qz'z_i’ (. L ,_ :
Lieol i ) Zi’:[l( Pla—-1)

Theorems 2 and 3 contain a parameter r over which we minimize. For later use, we remark that in
both theorems, the first term is decreasing in r, while the second term is increasing in .
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3 Asymptotic behaviour of the upper bounds

In this section, we consider the asymptotic versions of the upper bounds from Theorems 1.2 and
3. We denote the g-ary entropy [unction by ki, (x). that is,

hy(x) = —xlog, (x) — (1 —x) log, (1 —x) +xlog, (g — 1).

Moreover, we write h;(x) =hy (min(x. 1 — %)) . As is well known, for each & € (0, 1) we have

‘ 1 n 7 > "
Jlim ;mbq (Zﬂ: (j)(q 1 ) =h3(A) )
For each ¢ € (0, 1), we deline

; 1
Lalg)= hmsup{;lugq(M,‘,(n. lon])) | n e NJ.

Leto € (0, 1). The following inequalities readily follow from combination of (4) with Theorem 1,
2 and 3, respectively, where we take » = pn in the latter two theorems.

T
ty(0) < uy(o) = (1 +c)(1 —hq{m})- (5)
For each p € (o, 1], we have
(o) < max (a, (o, p_].i'i':;(ﬂ)}. where a,(0. p) = 1 —a —log,(2) - (p — a)hgtp%}. (6)

For each p € (o, 1], we have

1y(0) < max (ay (o, p), by(a. p)) . where by(o, p) = (1+a) [h;(ﬁl —:_?: ) — J':;{] ia}] J
(7)
The right-hand sides of (6) and (7) can be optimized over p. It follows [rom the remark at the
end of Section 2 that for each fixed o, a4(a. p) in non-increasing in p, while hy(p) and by(o. p)
both are non-decreasing in p. These facts makes determination of the optimal value of p relatively
easy, as can be seen in the following theorems.

Theorem 4 If | — o < hy(o), then inf{max(a, (o, p), hi(p) | p€l(o, D) =ho).
Ifl—a > h,(a), then the minimum of the finction max(a,(c. p). hy(p)) is attained for p =
0, (a), where p (o) is the element in (o, 1 — $) that satisfies a, (o, p,(o)) = h;(p,,{a)}.

Proof. Combination of the monotonicity of a, (e, p) and Iy (p), the fact that a, (o, p) = | — o if

p | o, and the obvious inequality a, (o, 1 — El) <l=hy(l- &]A |

For describing the value of p that minimizes (7), we define a‘;‘ = ql{_q — 1l —(g + a). As

%‘1 > %' ifand only if p > o/, we have that b, (o, p) = u,(¢) if and only if p > o,
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Theorem 5 [fo = fq—:_-'T oray(o, oq') > uy (o), then for all p € (o, 1), we have
max(a, (o, p), by(a, p)) = ug(o).

Ifa,(a, Gf;) < uy(o)and 1—o > b, (o, ), then the minimum of the function max(a, (o, p), b, (o, p))

is attained for p = y,(0), where y, (o) is the element in (o, 1) satisfving a, (0. y, (o)) = b, (0. y,(c)).

If a,(o, O'J‘] < uy(o) and | —a < by(o, o), then inf{max(a,(a. p). by(a, p)) | p € (0,1)] =
b,(e.0).

Proof. Ifo > 5‘{‘;—'1 then o > a7, and s0 by (0, p) = u,(c) foreach p = a.

Next, assume that o < —2‘{;—']. If p = o, then by(o. p) = uy(o). If a,(o. 6;) = uy(0), then
the monotonicity of a, implies that a, (o, p) > u,(e) forall p € (o, ;). Hence, in this case,
max(a, (o, p), b,(o. p)) = u,(o) forall p > o.

The final two claims follow from monotonicity, and the facts that @, (o, p) — 1 — o il p | o, and
by(0,0,) =u,(c). O

3.1 More results for the binary case

In this section, we concentrate on the binary case (g = 2). We give some analytical results and
plot the graphs of the upper bounds from (5), (6) and (7), the latter two optimized over p.

Let o, be the solution to the equation 1 — 3x = h2(3x). As stated in [3], for each p and o for
which p = o = 7;, we have

max(ax(a, p)), h3(p)) = ha(303). (8)

Indeed, if p = 303, then (8) trivially holds. If p < 3ay,then p < 3o andsoas(o, p) =1 —p =
| — 305 = h3(303). Numerically, we [ind that > = 0.07570. For each ¢ > o> we have

t2(0) < ua(oa) = 0.68058 < 0.77291 = ha(303). / (9)

Combining (8) and (9), we see that for each o = a3, (5) yields a sharper upper bound than (6).

Let oy be the solution of the equation a3 (0. 0;) = ax(o, %(l — 30)) = us(o). Numerically,
we find that oy & 0.079642, and that a,(o, %(1 —30)) = wa(o) for all 0 = oy. Combining this
with Theorem 5, and the fact that oy = a3, we conclude the following.

Theorem 6 Forg = 2 and o = oy = 0.079642, for no value of p the bounds from (6) or (7) are
sharper than (5).

Numerical results suggest that in the binary case, (7) yields a sharper upper bound than (6) for all
T < op.

Figure | shows the graphs of the upper bounds from (5), (6) and (7) as function of o € (0, 0.1).
(For o > 0.1, the bound (o) from (5) is the sharpest of all). The graph labelled was "MRRW"
was obtained as follows. For any two vectors x and y of equal length, d; (x, ¥) is at most twice the
Hamming distance between x and y. Therefore, any upper bound on the size of a g-ary code of
length n with Hamming distance exceeding s is an upper bound on M, (n, s). The graph labelled
with MRRW corresponds to the best known asymptotic upper bound on the rate of a binary code
with relative Hamming distance o, due to [4]. It is seen to be less sharp than the three bounds
above for small values of ¢, but it is sharper for larger values of ¢. In particular, the MRRW
bound implies that y15(o) = 0 for each o > 0.5. This fact cannot be proved with the other bounds
(note that #2(0.5) = 0.122556).
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Figure 1: Upper bounds on jt2(o)
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On STS(21) of Wilson type

Svetlana Topalova *, Rossen Zlatarsky
Institute of Mathematics and Informatics, BAS. Bulgaria,

svetlana@moi.math.bas.bg. rossen@moi.math.bas.bg

Abstract

Steiner triple systems of Wilson type and with automorphisms of order 3 with
3 fixed points and 4 fixed blocks are constructed and classified with respect to
antomorphism group order and resolvability. The results lead to an improvement
of Wilson's lower bound on the number of nonisomorphic STS(21).

1 Introduction

A Steiner triple system of order v ( denoted STS(v) ) is a 2-(¢,3,1) design (see for
instance [1]). Tts resolutions (if such exist) are called Kirkman triple systems of order v
( KTS(v) ). Each KTS(v) corresponds to an optimal equidistant (Y%, v, *5* — 1)code
over Z7. A 2-(v,k,\) design is doubly-resolvable if it has two distinet resolutions such that
each pair of parallel classes, one of the first, and the other of the second resolution, have
al most one common block.

Wilson showed in 1974 that the nonisomorphic 2-(21,3,1) designs are at least 2160980
[8]. Classifications of several other smaller classes of STS(21) have been done by several
authors, i.e. Mathon, Phelps and Rosa [3], [4], Tonchev [5], [6], Kapralov and Topalova [2],
Topalova and Zlatarski [7]. The aim of such classifications was to examine the properties
of designs with nontrivial groups, and in particular the resolvable ones.

The classification of Wilson type designs is interesting from two points of view — on the
one hand it is still not known if a doubly-resolvable KT'S(21) exists or not, on the other
hand, knowing the number of STS(21) with certain antomorphisms improves Wilson's
lower bound on the number of the nonisomorphic STS(21).

*This work was partially supported by the Bulgarian National Science Fund under Contract No
1-803,/1998.
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Figure 1: The start matrix
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2 Construction and Results

Wilson type [8] STS(21) have three subsystems STS(7). We suppose an automorphism
a of order 3 with three fixed peints and four fixed blocks, and acting on the points as

(1,2,3)(4.,5,6)...(16,17,18)(19)(20)(21),

and on the blocks as

(1.2.3)...(19,20,21)(22)(23)(24)(25) (26,27,28)...(68,69,70).

To construct the designs we start from the matrix in Fig.l. where for the sake of
better readability dots stand instead of zeros. The blank rectangles are what we fill in, in
all acceptable ways. The two authors used different approaches to generate the designs.
The first one constructed ten possible tactical configurations, and then extended them to
designs, while the second one just used the specifics of the Wilson picture we start from.
We obtained the same result - 485 nonisomorphic designs.

A classification of the nonisomorphic designs with respect to the automorphism group
order is presented in Table 1. A classification of the resolvable designs is presented in Table
2, where Des is the number of designs with Res nonisomorphic resolutions and order
of the automorphism group Aut. The row denoted K'TS contains the whole mumber
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of nonisomorphic KTS5(21) due to these Des designs. None of the designs is doubly
resolvable.

Table 1: Order of the automorphism group of Wilson type designs with an automorphism
of order 3 with 3 fixed points and 4 fixed blocks

Aut| 3 6 9 12 18 21 24 42 48 72 126 144 294 882 1008 | All
2 e IR e T BT a1 T S [ | 1 934

Table 2: Kirkman Triple Systems of order 21 with an antomorphism of order 3 with 3
fixed points and 4 fixed blocks

Aut |3 33333666 6 1818 21 24 24 42 42 42 72 126 294 882 1008| All
Res |1 223569128101 91 1 21 2 311 4 2 4 18
TEELH v S o e o U [ Gl s O (S S O (i s S s (R | 538
KTS|23 1495609388101 & 11 272 2 311 4 2 4 18| 137

Wilson finds out [8] that the whole number of designs resulting from his construction
(including the isomorphic ones) should be 30°7!6!16942080. A design with no automor-
phisms has 3!(7!}3 isomorphic ones among them, so that there are at least

303716116942080

ST~ 2160980

/
nonisomorphic STS(21).

Knowing something about the nimber of Wilson type STS(21) with nontrivial auto-
morphisms, we can use the more precise formula

I 173 .
b f’Tm = 30°716!16942080.

aut

Mere N, denotes the number of designs with a full automorphism group of order aut.
The results from the classifications of Wilson type designs (this work and [7]) show that
there are at least 1448 nonisomorphic ones with antomorphism groups as shown in Table
3. Using this data and the above formula we can calculate that there are at least 2 161
908 STS(21) of Wilson type.
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On the Automorphism Group of Projective
Planes of Prime Order

Svetlana Topalova
Institute of Mathematics and Informatics
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Abstract

Tt is proved that up to isomorphisin there is only one projective plane of a prime
order p which possesses an automorphism of order p fixing one point.

1 Introduction

There is an old conjecture that projective planes of prime orders are unique. One such
plane is known for each prime p, namely the Desarguesean plane which has a very rich
group of automorphisms [2]. It was proved in [3] that if a projective plane of prime order
has a doubly transitive group of automorphisms, it is Desarguesean. It is obvious that
the existence of certain automorphisms determines the Desarguesean nature of the plane.
It is proved in this paper that the existence of a smaller subgroup of antomorphisms of
order p also leads to uniqueness of the plane.

A projective plane of order p corresponds to a 2-(p* +p+ 1,p + 1,1) design. For the
basic concepts and notations concerning the theory of combinatorial designs refer, for
instance, to [1] or [4].

2 A useful presentation of a projective plane

Without loss of generality, we can consider an incidence matrix of any projective plane of
the form:

*This work was partially supported by the Bulgarian National Science Fund  under Contract No
1-803,/1998.
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Figure 1.
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where a;;, 7,7 =1,2,..p are p % p matrices which have exactly one 1 and p — 1 zeros
in each row and column, [ is the all-one vector of dimension p, L = I, 0 is the all-zero
vector of dimension p, and O = o'.

Let us denote by A the submatrix

a1 12 413 e G1p-9 a1,p—1 ayp /
azq Qg2 azz . Gap-2 2, p—1 a2y

A =
Op-31 (p-22 (p-23
Gp-11 Op-12 Op—13

p92p-2 fp-2p-1 Op-9p
Aol p=2 Gp-ip-1 Op-ip
g () Gl e e (e o 9

Without loss of generality we can assume that ay; = a;; = I,i = 1.2,...,p, where [ is
the identity matrix of order p.

3 Construction of a projective plane of prime order
p with an automorphism of order p with one fixed
point

Consider the incidence matrix of a projective plane as in Fig.1. Assume that there is
an automorphism o of order p fixing point 0 and block 0 and transforming via a nontrivial
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permutation g, of order p the points within each group np + Lnp+2,...np+p, n=
0535 208 i

Let us denote by by, the set of blocks np+1, np+2, ...,np+p, n= 12,3, ..., p. As points
1,2,...p are transformed into one another, the sets b, should also be transformed into one
another. On the other hand points p + 1,p + 2, ...2p are transformed into one another,
and therefore the blocks within each set b, (n = 0,1,2,3,...,p— 1) should be transformed
into one another too. Thus we can consider o as the product ol two automorphisms o
fixing points 0,1,2,...,p and a fixing points 0,p + 1,p + 2,..., 2p. Both a; and aq fix
blocks 0,1, ..., p.

We can assume that oy acts on the points and blocks as

(0){1)(2)...(p)p+ L,p+2,....2p)(2p+ 1,2p + 2, s B0) P F 1,07+ 2, )

That is why all the elements of A are circulant matrices. Without loss of generality we
can set ai; = ;1 = Lag; = tip = Liyi = 1,2,....p, where 1, is the identity matrix of
order p shifted i — 1 times to the right.

We can assume that the automorphism oy transforms the first points as (0)(1,2, ..., p)
and thus it should shift each row of circulants in such a way that each column of circulants
is transformed into the next one. As we already know the first two columns of A, we know
the permutations, i.e. as acts on the points as

0)(1,2,....p)(p+ D)(p+ 2)...(2p)(m}, my, ..., m, M B e
1 2 T ¥

where m! = G+p+1+s, s =0, & = +7(modp), i=1,2,...,p,5 =1,2,..,p—L
So we can construct all the columns of A in a unique way.

Theorem 3.1 There is only one projective plane of order p possessing an automorphism
of order p with one fired point.

Proof. Follows from the construction above. As an illustration the matrix obtained for
p = 11 is presented below. There the integer i denotes a circulant matrix of order 11 with
first row containing 1 in the i-th position, i = 1,2, ..., 1L

(0 O RN T P R L8 B P Ry B
T2 A S EE RS S Gl O Sl
i A N RS L L
Tomil ¢ 70 0 Hlee 24 Y $8nldu 3 UG i
TRl o O TR = BBy b e
A=l 81 b 0 Dl Boni b1 20
TS R e )
10 8 s I 7E E L eies 2 9k h
. 9 6 B a1l & & 2 v @ 4
I, s M e Bl i Salie b el e S
ONFTIANIEON S0 RIS i Mg S g SRais e
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Abstract

We present algorithms based on lattice point enumeration for the efficient computation of
the weight distribution and the minimum distance of linear binary or ternary codes.

1 Introduction

Throughout this article let C' be a linear code of length n and dimension k over the finite field &,
where F is equal to GF(2) or GF(3), with minimum distance d. Let H = He be a (n— k) x n
parity cheek matrir of the code C over F, i. e. C' = {y € F* | H -y = 0}. The Hamming weighl
of a codeword x € C is denoted by w(x). Tt is well known that in general the computation of the
minimun distance of a linear code is a difficult task: in [1] it is shown that the problem

Weight Distribution: Given a (n — k) x n matrix H over F and an integer s > 0, is
there a vector x € ¥ with w(x) = s such that x - H' =07

is NP-complete. In [11] the problem

Minimum Distance: Given a (n — k) X n matrix I over F and an integer s > 0. Is
there a nonzero vector & € F" with w{zx) < s such that x- HT =07

is proved to be NP-complete.

There are several algorithmms known which address the weight distribution problem or the
minimum distance problem. A deferministic algorithm based on an idea of Brouwer is in [2, p. 31].
Further, there are several probabilistic algorithm, see for example Canteaut and Chabaud [4] and
Leon [8]. In [11] Vardy mentions the connection of the minimum distance problem to the problem
of finding the nearest vector in a laltice.

Here, we compute the weight distribution of linear codes over GF(2) by transforming the
problem into a shortest vector problem in a lattice. Then, the shortest vector problem is solved
by lattice basis reduction followed by lattice point enumeration.

Lattice point emuneration was already successfully applied by the author in the construction
of combinatorial designs [3, 12] and the solving of the market split problem [13].

Of course, any algorithm for the weight distribution problem can also be used to compute
the minimum distance ol a binary linear code. However, a modification of the lattice point
enmumneration algorithin computes the minimum distance of a linear code directly. Moreover, this
algorithm works for binary and ternary linear codes. A preliminary version of the algorithm was
previously published in German [2].

A . Wassermann (Germany) 255

2 Lattice point enumeration

Let B™ be the n-dimensional R-vector space with the ordinary inner product (.,.). A discrete,
additive subgroup L € R" is called a lattice. Ewvery lattice L is generated by a set of linearly
independent. vectors bi,...,by, € L, the basis of L = L(by,...,b,) = {ziby + -+ + @by |
T1y... T € Z}. The celebrated lattice basis reduction algorithm [7] (called LLL algorithm)
computes in polynomial time a new basis of the lattice L which consists of short vectors. Given a
reduced basis of a lattice there are algorithms to enumerate all lattice vectors (alos called points)
with norm below a given bound, see [5, 6, 9, 10, 12, 13]. In [13] there is a detailed description how
to solve linear Diophantine systems with lattice point enumeration.

3 Computing the weight distribution

Let & be an integer with s > 0. Let C be defined by a generator matrix G C GF(2)"**. We
will formulate the weight distribution problem, i. e. “Does a codeword & € € exist such that
w(x) = s7", as a shortest lattice vector problem.

Any solution of the weight distribution problem is also a solution of the [ollowing linear Dio-
phantine system:

1 0|2 0 1
b : T = (1)
0 1|0 2 1
0 - 01 10 0 n—s

andr; e {01} for1<i<n+k, meZiorn+hk<i<qn+k.

The system (1) has n + 1 rows and 2n + k unknowns. It is easy to see that solutions of (1)
are codewords of C' with weight equal to s: The left part of the matrix (1) are the columns of
the generator matrix. The colwmns of the right part are needed because we have to work over
GE(2), i. e. we have to compute all integer linear combinations of G modnlo 2. The middle part.
of the matrix (1) corresponds fo slack variables. A column of thig part is multiplied by 1 if in the
corresponding row the codeword contains a 0. It is multiplied by 0 if in the corresponding row the
codeword contains a 1. With the last row of the system (1) it is ensured that exactly n — s slack
variables attain the value 1. That is, exactly s entries in the codeword contain the entry 1.

The size of the system (1) can be slightly reduced if we use the generator matrix in standard
form. With Gaussian elimination over GF(2) we can always bring (he matrix  into the form

G= ——%—-) where [ is the matrix of unity in GF{2)"*F and A is a (n — k) x k matrix over
GF(2). Then we can avoid some columns in the system (1), because it is sufficient to solve
1 0 1
i 1
I Vi 0 0
0 1
1 0]2 0 T = (2)
A 0
110 2 1
A 1= T 7 [ [ T B ey TR

anda; € (0,1} for1<i<k+n, x;€Zfork+n<i<n.

The right part of the matrix in (2) contains the (n — k) % (n — k) diagonal matrix with all entries
equal to 2. Together, the matrix in (2) has k+n + (n — k) = 2n columns.
The systems (1) or (2) can now be solved by lattice point enumeration as described in [13].
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If the linear code € is eyclic, than we can improve the efficiency of the algorithm by introducing
further equations: if we write the codewords of €' as binary strings, then any codeword = in the
binary code C of length n with w(x) = s contains a substring of length [£] which has the form
100...0, i. e, the letter one followed by [2] — 1 zeroes. If the binary code C'is known to be eyelic
and = is a codeword in C then there exists a permutation o in the group of automorphisins of
¢ such that the codeword o(z) starts with the above substring. Therefore, x; =1 and x; =0
for 1 <i < [2] —1. We can introduce these restrictions in the system (2) by removing the first
column of the matrix corresponding to slack variables and by setting in the right hand side vector

n

the coefficients at the positions 2, 3,... [2] — 1 equal to zero.

4 Computing the minimum distance

Let € be a binary or ternary linear code. With a variation of the lattice point emumeration
algorithmn in [13] we can compute the minimum distance of C.

For this we note that in the case of a binary code we have —1 =1 (mod 2) and in the case of
a ternary case —1 =2 (mod 3). Thus, codewords of binary or ternary codes can be represented
by vectors with entries in {0,1,—1}.

Let F be equal to GF(2) or GF(3), and p be equal to 2 or 3, respectively. We define the lattice
spanned by the columns of the (n + k) x (k+ n) matrix

_ (.G |l ;
L('—( jk 0 ) 1 {3J

where (! is a n x k generator matrix of the code C'. Any lattice vector v € Lo with v; € {0,1,—1}
for L < i < n corresponds to a codeword ve € C and w(ve) equals the number of nonzero entries
in the first n coefficients of v. Now, the minimmm distance problem can now be solved by finding
a nonzero lattice vector with the least number (> 0) of nonzero entries in the first n rows.

For the lattice basis reduction we multiply the upper part of (3) by a large constant N:

N-G|N-pl,
( Iy 0 ) (4)

If the lattice (4) is reduced with the original LLL algorithm [7], we can choose N > (2)n 02
and the reduced lattice basis will have the form

(HEE), )

with a n x & matrix consisting of zeroes only in the upper left part of (5) and irrelevant entries in
the lower k rows. Since we only want to enumerate nonzero codewords we can delete the first k
columns in (5). We are not interested in the lower k rows and can remove them, too. Therefore,
we have to find the lattice vectors v in the lattice L' € Z" of rank n with ||vfl. = 1 which contain
the minimal number of nonzero entries. If w(ve ) = s then we also know that llwl3 = s.

We can compute the minimum distance of €' by setting initially the upper bound F of the
lattice point enumeration algorithm to an upper bound for the minimum distance of €. This can
be the weight of the shortest vector 2 0 (mod p) in the reduced basis consisting of L' or some
theoretical upper bound on the minimum distance of C.

Then the backtracking of the lattice point enumeration algorithm as described in [13] is started.
If a lattice vector v € L with [|u]|oe = 1 and |[v]f € F is found during the enumeration then it is
printed and F is set to F = |[u]z — 1 and the backtracking is continued. If it is known that the
iminimum distance of € is a multiple of some integer g, then we even can set £ := |[vf|2 — ¢ in this
situation.

Further improvements can be attained by a variation of the lattice point enumeration in [13].
For an integer () < £ < n and a vector v € R" we define max,(v) to be the sum of the f largest
entries of v in absolite values. Let F' be an upper bound on the minimum distance of the code
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€ and B, 53 . b be a basis of the lattice L'. Theorem 2 in [13] can be adapted fo the
minimum distance problem in the following way, where we take the notation from [13].

Theorem 1 Let 1 <t < n. If for fired uy, U415 ... Uy, € L there exist coefficients uy us, ... U1 €
Z with

n n
1Y ude <1 and |3 ub? < F.
i=1

=1

then for all yiiyrp1yoo i € R

n
}zy,-nmm"a

i=t

<1 AL .
< m;p((z ') (6)

i=t

Proof: We have (u!!, wm)_= (i ) = ¢ for 1 <1 < i < m. If there exist uy,1g,... 1, €EZ
with [l = | %, 0] < 1 and simultaneously [liw]]; < F, then for an arbitrary vector
v € R" |{w') v)| € maxp(v). It follows

il n n " L
55 ] = 33000, = [ e )] = ), 3] < (3 ).
i=3 i=t i=t i=t i=j
o

Therefore, we can add in the enumeration algorithm of [13] the test (6). Experiments show that
with Theorem 1 the minimum distance of quadratic residue codes can easily be determined for
values of n at least up to 100. Also, the backtracking parl of the enumeration ean be done in
parallel.
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Abstract

A sharp lower bound is derived for the cyclic list distance between two code-
words, having Hamming distance m, in the standard N-ary Gray code of length
n, for 1 < m < n and for even values of N. The bound generalizes the binary
separability function.

1 Introduction

A binary Gray code of length n is an ordered sequence (list) of all 2" n-bits strings (codewords)
such that successive codewords differ in exactly one bit position. The best known example of such
an ordered code is the binary reflected Gray code (cf. e.g.[4], [6] and also Section 2}, sometimes
called standard binary Gray code. A question of theoretical as well as of practical relevance is
the following. If two codewords in a Gray code, or in any ordered code, differ in m positions, how
far are they separated from each other in the list of codewords? The larger this list distance of
the code, the smaller the number of bit errors will be when transmitting codewords by means of
analog signals (cf.[6]). Stated more precisely, when we index the codewords in the list from 0 until
2" — 1, and if two codewords g; and g; have Hamming distance dg(gi, g;) = m, can we find a
bounding function b such that the list distance dp(gi, g;) = b(m), for 1 < m < n? Of course, the
most interesting bounding function is a function giving sharp lower bounds for all values of m, i.e.
such that for every m-value there exists at least one pair of codewords with list distance b(m).
The question of finding this uniquely determined function is called the separability problem (cf.
(5], [6]). We shall use the term separability function for a function b - occasionally denoted as
b(m) - yielding sharp lower bounds for 1 <m < n. In [5] Yuen solves the separability problem for
the binary standard Gray code. The separability function in this case appears to be [%] The
derivation of this expression is accomplished by making use of the index system of the standard
Gray code, i.e. the relationship between a codeword g; and its indexd, 0 <i < 2n—1 (ef. e.g.[4]).
Along similar lines, Cavior in [1] derives a sharp upper bound for the list distance in this code,
being 2" — [4-], 1 < m < n. In both papers the list of codewords is interpreted as a linear
(non-cyclic) list, which implies that dp(g;, g;) is defined as |i — j|. Now, it is well known that the
standard Gray code is a cyelic Gray code, i.e. also the last codeword differs form the first one in

*On leave of absence from Dept. of Mathematics of IKIP Negeri Singaraja, Bali- Indonesia
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precisely one bit position. Therefore it is natural to introduce the cyclic list distance defined as
Dy (gig;) = min {|i —j], 2" — i — jl}, (1)

(ef. also [3]). With respect to this notation the results of Yuen and Cavior can be combined in the
following implication
2!'!1
dr(gi,g;) = m—Dy(gi.g;) > [T] . (2)

‘We call this implication the separability property of the standard binary Gray code.

In the next we shall derive a property generalizing (2), which holds for the standard N-ary
Gray code when N is even. Although an index system for this code is known (ef.[2]), it will appear
that such a system is not needed to prove the result. Throughout the text, the terms list and Gray
code (which is represented by the list) are interchangeable. The columns of this list are numbered
from right to left by 1, 2, ..., n.

2 Standard N-ary Gray code

An N-ary Gray code, N > 0, of length N is an ordered list of all N" codewords of length n over
the sef, of integers § = {0,1,..., N — 1}, such that each codeword differs from the previous one in
exactly one position. If also the last codeword differs from the first word of the list in one position,
one speaks of a cyclic N-ary Gray eode. More in particular, one can require the minimal change
condition, i.e. that if g; and gy, differ in in the _)"”‘1 position, one either has g1 ;= g;; 4+ 1 or
git1,= 8i; — 1 mod N, for all values of i with 0 <i < N", where we identify the codewords with
index N™ and with index 0.

A well known minimal change N-ary Gray code of length n, n € Z%, is the code G(n, N)
which is recursively defined as

0 G{n—1,N) 0
1 G(ra—],N]R 1

GnN)=| 2 C0-LN | eum=| 2 |, (3)
N-1 Gln—1,N) N-1

where G(n — L, N)# denotes the list G(n — 1, N) in reversed order, and where # stands for R, only
when N is even whereas + can be omitted when N is odd. This code is called the standard N-ary
Gray code. It is obvious that G(n,N) is a cyclic Gray code only if N is even. It will also be
obvious that G(n, N) generalizes the standard binary Gray code. From now on we only consider
even values of N,

3 Equivalence and contraction of ordered codes

Let V, n denote the set of all cyclic minimal-change N-ary Gray codes of length n. We define the
following transformations which map V,, v onto itself:

(i) if p is a permutation of the integers 1, 2, ..., n, then pG is the code obtained by per-
muting the columns of G € V;, v according to p;

(ii) if e is the cyelic permutation (0, 1, 2, ..., N — 1), then ¢;G is the code obtained by
permuting the integers in the i® column of G according to e, 1 < i < n;
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(iif) if b is the permutation (0, N — 1)(1, N —2) ... (¥ — 1, ¥), then b;G is the code
obtained by permuting the integers in the i column of G according to b, 1 < i < n.

These transformations define a group of order n!(2N)". Codes which can be transformed
into each other by applying one or more of the transformations (i)_(iii) are called equivalent codes.

Let G be some code in Vy, y. Take two k-strings a := ayay...ap € Sk, and i:=iyéz... 15,
with 1 < iy < iy < -+ < ix < n, for some k-value, 1 < k < n. We call a a bit pattern and 1 a
position vector. We now consider the sublist of G consisting of all codewords which have a; on
position i; for 1 < j < k. Omitting the common bit pattern a from these words yields an ordered
code with word length n — k. We shall call this code the contraction of G with respect to the
pair (a,i), and we denote this code by G(n, N; a,i). With respect to these notions we have the
following properties.

Proposition 3.1. Equivalent codes satisfy the same separability property.

Proposition 3.2. Let G(n, N) be the standard N-ary Gray code and let N' be even. Then for any
pair (a,1) the contraction G(n, N; a,i) is a cyclic Gray code equivalent to the standard Gray code
G(n — k,N).

The proofs of these propositions are elementary and are omilled here.

4 Separability function for G(n, N)
We are ready now to prove our main result.

Theorem 4.1. Let G(n, N) be the standard N-ary Gray code of length n, and let N be even. If the
Hamming distance between two codewords g and h satisfies dp (g, h) = m, then the list distance

between g and h satisfies Dy (g, h) > 2N '_" . Moreover, this lower bound is sharp for all m-
NI
values with 1 < m < n.

Proof. We prove the Theorem in two steps.

A. First we take m = n. For n = 1 and n = 2 the statement is trivial. Assume the statement
is true for all values less than n > 2. Let g and h be two codewords with dy(g,h) = n, and
let furthermore the list distance Dy (g, h) be as small as possible. If we write g = gngn—1v and
h = hyhy 1w, it follows that d(v,w) = n—2. Hence, considered as codewords of G(n—2,N) the
list distance Dy, (v, w) of v and w is at least [-i-"-!_—ﬂ , by induction assumption. Now, in particular,
since Dy (g, h) was taken as small as possible, it follows either that g € Gngn-1G(n — 2, N),
h € huha(G(n —2,N) or that g € gagn-1G{n — 2, N)*, h € h,ha1G(n - 2, N)# whereas
Dy(v,w) is equal to (%g] Therefore, we may conclude that

F Nn—z N7
_ arn-2 ) = d /
AL [N2—1] [N"—l]

By the principle of mathematical induction the Theorem has been proved now for the case m = n.

B. If m < n, then g and h are equal in k := n—m positions, indicated by some position vector 1=
(i1,2,..-,ik). The corresponding values of the coordinates will be given by a = (a1,a2,...,a8).
Now, we consider the contraction G(n,N; a,i). Let v and w be the codewords in this contrac-
tion which correspond to g and h respectively. So, we have dg(v,w) = m. By Proposition 3.1
G(n, N: a,i) is equivalent to G(m.N). By Proposition 3.2 and part A of this proof, we have

that Dp(v,w) > {—,\-,"}—J in this contracted code. Hence, we have a fortiori the same inequality

}
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for Dp(g,h), since in G(n, N) the codewords corresponding to codewords of G(n, N; a,i) will,
in general, be interlaced by codewords which have no counterpart in G(n, N; a.i). Finally, by
selecting codewords g and h which differ in positions 1, 2, ..., m, we obtain an example showing
that the lower bound is sharp for all relevant m-values. O

Corollary 4.1. (Yuen, Cavior) The separability function of the standard binary Gray code is equal

to [5].
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Abstract— New constructions of Steiner systems, majority logic decodable codes, and constant
weight codes are presented. Comparisons with known results as well as examples are also given.

1. Introduction

Error control coding is one of the efficient methods to combat errors in data transmission and data
storage systems([1,2]. It is well known that there exists close relationship between coding theory and
combinatorial theory[3]. The results in combinatorial theory have been used to construct good error
control codes, and the results in coding theory have also been used to give new combinatorial
designs. For example, the majority logic decodable difference set cyelic codes, Euclidean and
Projective geometry codes are constructed from the block designs on the geometries.

In this paper, some new constructions of Steiner systems are presented, and new majority logic
decodable codes and constant weight codes based on Latin squares and block designs are
constructed. Comparisons with known results are made and some examples are also given.

2. Combinatorial Designs
Let X be a set of v objects (or points, varieties). A t-design is a collection of distinct k-subsels
called blocks of X such that any f-subset of X is contained in exactly A blocks. Such a r-design is
written as a (v, k A) design. A Steiner system is a r-design with A= 1, and a r-(v. & 1) design is
usually called an S(1, k, v).
An incomplete block design is an arrangement of v distinct objects into b blocks such that each
block contains exactly k different objects, each object oceurs in exactly r different blocks.
Furthermore, if each pair of distinct objects occurs together in exactly A blocks, the block design is
called balanced incomplete block design, or BIBD. Such a block design is written as BIBD(v. b, r.
k, A). There are two elementary relations on the [ive parameters

vrr = bk (2.1

rtk-1) = A(v-1) (22)
A design is said to be resolvable if b blocks can be partitioned into r sets of m = b/r blocks such
that cach set contains every object exactly once. Fora resolvable BIBD,

veb-r+l (2.3)
If equation (2.3) holds with equality, the design is said to be affine resolvable, and it is written as
ARBIBD(v, b, 1, k, 4).

A BIBD is called symmetric if v = b (or, equivalently, r = k). It can be written as SBIBD(», k. A),
or (v, k A)-design. A BIBD(v, b, r, k, A) with A= 1 is a Steiner system with ¢ =2, and is usually
called an S(2, k. v). A block design is called partially balanced incomplete block design (PBIBD) il
pairs of distinct objects may occur together in different numbers of blocks.

A block design can be described by its incidence matrix A = (@), 1=1,2, ..., V, i) U S v
X1, X2, ..., Xy be objects, and By, B,, .... By blocks. Then a=1 il x; € Bj, and 0 otherwise. So each

e — — ——
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row of the incidence matrix has » 1's, each column has k 1's, and each pair of distinct rows has 4
common 1's.

3. Majority Logic Decodable Codes from Latin Squares

An mxm array (matrix) is a Latin square of order m, if each of the numbers /, 2. ..., m occurs
exactly once in each row and column. Two Latin squares A = (a;) and B = (by) of order m arc
orthogonal if for every pair (a, b) € {(1,1), (1,2), ..., (m, m)} there exists unique indices i and such
that (a, b) = (ay, by). A set of Latin squares is mutually orthogonal if any two of them are
orthogonal[4,5].

!_et N(m) denote the maximum number of mutually orthogonal Latin squares (MOLS) of order . It
is known that Nfm) <m - 1, and for prime powers, this upper bound is attained.

Given a set of MPLS of order m. Let V be the set of objects, V= {1, 2. ..., mxm}. A PBIBD, with
parameters v = wr°, b = (t+2)m, r = t+2, k = m, and A= 0 and A;= 1, can be constructed from the
set of t MOLS as follows:(i) Write thesc objeets in an mm matrix; (ii) Each row of the matrix
forms a block; (iii) Each column of the matrix forms a block; (iv) For each Latin square L in the set
of t MOLS, i=1, 2, .... t, superimpose it on the matrix of objects, and take the objects from the
matrix having the same symbol in L; as blocks. The following example shows the construction.

Example 3.1, m = 4 and N(4) = 3. There are 3 mutually orthogonal Latin squares of order 4:

1234 1234 1234
2143 3412 4321
g e T e S | 2143
g Vi s it 1 58 3412
L L, Ly
The 4x4 = 16 objects are arranged in the follow matrix:
| PR S ¢
8 0 o Tl
9 10 11 12
13 14 15 16

So the total (3 + 2) x 4 or 20 blocks are constructed: {1,2,3,4}, {5,6,7.8}, {9,10,11,12}, {13,14,
15,16} from rows; {1,5.9,13},[2,6,10,14},[3,7.11,15},{4.8.12,16'} from columns; {1,6,11,16},
(2,5,12,15},{3,8.9,14},{4,7,10,13} from Ly; {1,7,12,14}, {2,8,11.13}, {3,5,10,16},{4,6,9,15} from
Loy {1,8,10,15},{2,7.9,16},{3,6,12,13},{4,5, 11,14}from L;. In fact, this block design is an
ARBIBD(IQ. 20, 5, 4, 1). If m is a prime power, there is a set of m - I MOLS of order m and an
ARBIBD(m’, m* + m, m+1, m, I) can always be constructed as shown above. [[a setof 1<m - |
MOLS is used to construct the design, then it is a PBIBD with parameters v = me, h=(t+2mr=
t+2 k=m, A;=0and A:=1.

Latin squares can bevused to construct various types of codes. Hsiao, Bossen, and Chien'® presented
a construction of majority logic decodable codes based on MOLS. To construct a code of minimum
fjnst_ance d and' with m* information digits, take a set of d - 3 MOLS of order m. Let A be the
incidence matrix for the PBIBD derived from these - 3 MOLS as above. Then following parity
check matrix defines a majority logic decodable [m’ + (d -1)m, m” ] code, which is:
H=[A" 1] (3.1

For example, for m = 4, N(4) = 3. So majority logic decodable [24, 16, 3], [28, 16, 4], [32, 16. 5],
and [36, 16, 6] codes can be constructed with a set of 0, 1, 2, 3 MOLS of order 4, respectively.

From the parity check r{mtrix in (3.1), we know that m parity check equations from the same set do
not have any common information digit. Therefore, d — 1 new information digits can be added to
form an [m~ + Fd‘-l)m + d -1, m* + d-1] code, where m* information digits have a distance of d, and
d -1 extended information digits have a distance of m +1. For example, m = 4. We have majority
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logic decodable [26, 18, 3], [31, 19, 4], [36, 20, 5], and [41, 21, (5,6)] codes, where 2, 3, 4, and 5
information digits have a distance of 5, respectively. When d is small, then the extended
information digits have relatively large distance and thus are protected against more errors than m
original information digits. They can be used for important information digits.

4. New Constructions of Steiner systems and Constant Weight Codes

A constant weight code is a block code whose codewords all have the same Hamming weight. Let
A(n, d, w) be the maximum number of codewords in a binary code of block length », constant
weight w, and minimum distance of at least . Good constant weight codes can be constructed from
combinatorial designs. The followings are two upper bounds on constant weight codes[1].

A{n.u’,w}S{i A(ri—l.ﬂ‘,w—l)J (4.1)
W

Constant weight codes are closely related to combinatorial designs. For example, it is well known
that
nn=1)...0—w+0)

Anaswye M 42
g ww=1)..0 2

and equality holds if and only if a Steiner system S(w-&+1, w, n) exits.
Next, we discuss some new constructions of Steiner systems and constant weight codes derived
from MOLS and known block designs.

Let us start with a simple example to show the idea of our constructions. Consider m = 4. With a
pair of MOLS of order 4, we can construct a PBIBD as we did in Example 3.1. We know that there
is no common object in any pair of blocks from the same set and there is exactly one common
object in any pair of blocks from different sets. So we can add one new object to each block in the
same set and get:

Rows: {1,2,3,4,17},(5,6,7.8, 17},{9,10,11,12,17},{13,14,15,16,17};

Columns: {1,5.9,13,18},{2.6,10,14,18},{3,7,11,15,18},{4,8,12,16,18};

L: 11,6,11,16,19},12,5,12,15,19},{3,8,9,14,19},{4.7,10,13,19};

La: {1,7,12,14,20},{2,8,11,13,20}.{3.5,10,16,20} {4,6,9,15.20};

It is obvious that it turns to be a BIBD(16, 20, 5, 4, 1) if we interchange the blocks and objects.

Theorem 4.1. I there exists a set of k-2 MOLS of order m and an S(2. k, m), there exists an S(2, k,
mk).

Corollary 4.2 Any S(2, g, ) can be constructed recursively by MOLS for integer t > | and prime
power q.

Theorem 4.3 If there exists a set of k-2 MOLS of order m and an S(2, k, m + 1), there exists an S(2,
k, mk +1).

Corollary 4.4 There exists an S(2, ¢ + I, ¢* + ¢’ + 1) for any prime power g.

Theorem 4.5 I there exists a set of k-2 MOLS of order m and an S(2, k, m + k), there exists an S(2,
k, mk + k).

Corollary 4.6 There exist following Steiner systems:

(1)S(2, 7, 7*" -6) and S(2,7, 7" -42) for integer t > 1.

(2)S(2, 8, 8" -7) and S(2, 8, 8" -56) for integer L > 1.

(3)S(2, 9, 9"*' -8) and S(2, 9, 9" -72) for integer t > 1.

Example 4.1. It is known Hyperbolic system S(2, 2", 27" _ 2" exists for integer n > 1. So there
exists an S(2, 8, 120). Choosing m = 112, 119 and 120, and by Theorems 4.1, 4.3. and 4.5, we get
Steiner systems S(2, 8, 804), S(2, 8, 953) and S(2, 8, 960).
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The Steiner systems constructed above can be used to obtain optimal constant weight codes, if we

takf: blocks as codewords. Further, the basic idea used above can be used to construct good constant
weight codes.

Theorem 4.7 If there exists a set of k-2 MOLS of order m and an S(2, k. m + 1), 1 <t <k, then

(mbett) okt 1y | [hk—D—i—1)
bt k=2
Amiett, ) k=D }—[ 5 } (43)

For examples, it is known that there exists S(2, 6, 31). Let m = 27, t = 4. From Theorem 4.7, we
have A(166, 10, 6) = 910. The upper bound is A(166,10, 6) < 913 and equality holds if and only if
S8(2, 6, 166) exists. Let m = 17, t = 4. From Theorem 4.7 and Steiner system S(2, 5, 21), we have
A(B9, 8, 5) 2390, The upper bound is A(89, 10, 6) < 391.

Smith et al [8] have presented comparison results on constant weight codes with n <63 and w < 8.
Table 4.1 only lists some examples constructed using the method discussed above. In the table, UB
denotes the upper bound, Previous Best gives the best known results prior to the results presented
here as "New Result". They are very close to the upper bounds.

Table 4.1 New Constant Weight Codes

N |D W |_]}{gw Result | Previous Result [8] | UB
a2 |10 e [0 55 49 56
48 |10 |6 | 70 56 72
s4 (10 |6 87 65 90
] o i 71 57 72
630 gl | agg 60 90

5. Conclusion

Combinatorial designs can be used to construct good codes. Better majority logic decodable codes
and good constant weight codes have been constructed based on mutually orthogonal Latin squares
and Steiner systems, The same idea has also led to new constructions of several families of Steiner
systems. Comparisons with known results are made to show the improvements and many examples
are also given to demonstrate the constructions.
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Abstract

We enumerate the binary extended nonlinear perfect codes of length 16, obtained by
the generalized concatenated (shortly GC) construction. There are 15 different types
of such codes, delined by the pairs of MDS codes A; @ (4,2,64)4. For every pair, we
evaluate the number of the non-equivalent codes of this type. Overall there are 285

non-equivalent such GC codes.

1 Introduction

One of the interesting open problem of the algebraic coding theory is the classification of
nonlinear binary perfect codes with Hamming parameters. Even for the smallest nontriv
length n = 15 or n = 16 (for the extended codes) this problem is very far from the :
solution. Hergert [1] has found all the non-equivalent Vasiliev’s codes of length 15: th
are 19 such non-equivalent codes (including the linear code). Malugin (2] showed that

number of non-equivalent extended Vasiliev's codes of length 16 is equal to 13 (ineluding

linear code). Phelps [3] enumerated all perfect codes of length 15, obtained by the doubl
construction due to Solov’eva and Phelps: there are 963 of such codes, including the lin

code. Tn [4] all additive perfect binary codes have been classified (3 codes for n = 15) and
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[5] all Z;-linear extended binary perfect codes have been found (2 codes for n = 16). Maluy
[6] enumerated all the different (not non-equivalent) nonlinear perfect codes of length
obtained from Hamming code by the simultaneous translate ol non-overlapping compone:

of different directions: there are 131224432 such codes.

2 Enumeration of binary perfect GC codes
The binary extended perfect GC codes [7-9] of length 16 are based on two quaternary MI
codes A : (4,2,64);. Let E = {0,1} and E, = {0,1,2,3}. Define
b(0,0) = (1000), b(0,1) = (0111), b(1,0) = (0100), b(1,1) = (1011),
b(2,0) = (0010), b(2,1) = (1101), b(3.0) = (0001), b(3,1) = (1110).
For a given A : (4,2,64), defline the odd half-code C(A) as:
C(A) = {(bla,e1)|blag, e2) | blas, ea) | blay, eq)) : (a1, a2, a5,a1) € A, (e1,¢2,e3,¢4) € E

Let we have two arbitrary MDS codes 4 : (4,2,64), and A’ : (4,2,64); over I, = {0,1,2,.
The resulting binary extended perfect GC code C = C : (16,4,2048) is the union of 1
odd half-code Chyy = C(A) and the even half-code C.pe, = C(A') + s where the vee
s = (1000]1000[{1000|1000) is fixed. We denote C' = (C'(A), C'(4') +s).

Let S, be the full group of permutations of n elements. We need two groups: Gy
Sy (S4)* and G = Sig % (52)'%. Using the map (E,)" — E' described above, it is easy

see that Gy is a subgroup of Syg, and, therefore the action of Gy on E'% is defined.

Definition 1 For any subgroup G of G we say, that codes C,C" € E'® are G-equivalent
C =g for somege G.

The next result (which has been obtained also by V. N. Potapov; unpublished; [10]) s:
us that there are 15 types of cascade codes C : (16,4, 2').
Lemma 1 There exist 5 non-equivalent MDS codes A : (4,2,64)y, denoted Ay,...,As.
Decfine the canonical half-codes C; = C(A;), i =1,...,5. Fori € {1,2,3.4,5} define:
Py = Stabe,(Ai), Qi = Stabg,(C}), @ = Stabg,(Ci+s)-

For any 7,j € {1,2,3,4,5}, we have the following double coset decomposition:

Gy = |J@iaPqQ;, where k =1, ..., mi(i.j),
k
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rny (i, 4) is the number of (@3- @Q;)-double cosets of Gy and {df:]'} = I\G4/Q; is the fiz
set of their representatives.

Let C (respectively Cy) be the set of all cascade codes € : (16,4, 2048) (respectively, w
the zero word). If a code C € € does not have a zero word then C+xely (zel) does.

We say that h = (hy | hy|hy | hy), h;) € E* is even (odd) if all weights wtlh;), i =1,2,{
are respectively even (odd). We consider only those shifts h € H;s under whose actic
C is closed. 1t implies that h is either an odd or even. The subsct of even shifts Hig
a subgroup of Hig. Any odd shift can be presented in the form h + s, where h € HeE 8
s = (1000[1000|1000}1000). By construction, we see that a shift by vector h = (h;|h|hy|]
where wt(h,) € {0,4} for all i = 1,2,3,4 does not change the code. We denote the subgre
of such vectors by H0. Set H® = H{y /1Y% (a factor-group of 256 elements). Then
action of group H{{ on C is the same as that of H® and the action of Hy; is the same
H = H* x {0,s}, where 0 € FE'6 ig the zero vector. Thus, we can consider the grc
H* instead of H, assuming that H* is made of elements {h = (h | hy |hs | hy)) € HY
where h; € {(0000), (1100}, (1010), (1001)}, i = 1,2,3.4. Fori € {1,2,3.4,5} define the
H; = {h € H: there exist a=ap € (1 such that &; +s+ h = ay, (C; + s).

Proposition 1 For any wvector h € H® there exists a permutation ¢lh) € G, such ih

C. + h = o¢(h)C, for any canonical half-code C; = C(A;) (i = 1,2.3,4, 5).

Proposition 2 (the action of shifts). For any (Ci+s, g C;) we have: (i) (Ci+s, gCj)+E
an (C; + 5.g'C;), for any h € H;, where g' = an 'g¢(l) and hy = g-(h). ()(C
s, gC;) +s=g(C;+s, g '¢(h)Ci) +h, whereh = s+ g(s) € H, and C; +h = ¢(h)C

Our goal is to find all the G we-non-equivalent cascade codes C : (16,4,2048). For =
subgroup G € Gy and any C' € C define the G-orbit of €' in C: Orbg(C) = {9C: ge(

Clearly any Gyg-orbit of C has representatives from Co.

Lemma 2 Any (G4 x H )-orbit of C has one representative C, g“’, where i,j € {1;...,8}, 4 ¢
b ! (k)
and € = 1,...,ma(i, j), where my(i,j) is the number of (Gy % H )-orbits and C;" are th

representatives.
Lemma 3 (computational results). The number ma(i, j) = my(j, i) s equal to:

ma(1,1) =10, ma(2,1) =16, mg(3,1) =16, ma(4,1) =8, malb, 1) = 6,

ma(1,2) = 16, ma(2,2) = 31, ms(3,2) = 40, ma(4,2) = 18, ma(5, 2) = 13,
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ma(1,3) = 16, ma(2,3) =40, ma(3,3) =66, mz(4,3) = 16, my(5,3) = 25,
mao(l,4) =8, mg(2,4) =18, ma(3,4) = 16, ma(4,4) =11, ma(5,4) =T,

my(1,5) =6, ma(2,5) =13, ma(3,5) =25, ma(4,5) =7, ma(5,5)=13.

Proposition 3 (erceptional cases). There are 24 exceptional codes, partilioned into 13 di
ferent orbits. The codes from the same orbit are equivalent to each other under action of sow

permutation from Sy /Gy.

Theorem 1 There are 285 non-equivalent binary extended perfect codes C = (16,4,2'"), o
tained by the generalized concatenated construction. The number of non-equivalent such cod

of the type (i, j) is not more than ma(i, 7), where ma(1, j) is given in Lemma 3.
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