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Preface

The Fifth International Workshop on Algebraic and Combinatorial
Coding Theory (ACCT °96 ) is organized by the Institute of Mathematics
and Informatics of the Bulgarian Academy of Sciences and the Institute for
Problems of Information Transmission of the Russian Academy of Sciences.

This workshop is arranged with the assistance of the Shoumen Univer-
sity "Konstantin Preslavsky" (Bulgaria).

The previous workshops were held in Varna, Bulgaria (1988),
St.Petersburg, Russia (1990), Voneshta voda, Bulgaria (1992), and
Novgorod, Russia (1994).

It is held in Bulgaria, in the beautiful seaside resort of Sozopol.
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Construction of Perfect Binary
Codes by the Sequential
Translations of the :-Components

S.V.Avgustinovich, F.I.Solov’eva
Sobolev Institute of Mathematics
Siberian Division of Russian Academy of Sciences
: Novosibirsk, Russia
avgust@math.nsk.su, sol@math.nsk.su

_ Abstract

The construction of the perfect binary codes by the successive
translations of the special components of the Hamming code has
been presented. The construction allows the best lower bound
of the number of nonequivalent perfect codes to be established.
Some known constructions of the perfect codes are particular cases
of this construction.

In this paper we continue the investigations that were carried out in
[1, 2]. We describe the construction of the perfect binary codes by the
successive translations of the i-components of the Hamming code (the
necessary definitions are given below). These codes are characterized
by a variety of combinatorial-geometric structures in n-cube E" (the
vector space of the dimension n over GF(2)), n = 2¥ — 1, k > 2. This
construction allows one to obtain the following new lower bound of the
number of different perfect codes of length n:

22_3-__1“(“+1) g (1 - o(1)),

n= 90 1R S0
This bound is better than the other known lower bounds [1, 3, 4, 5, 6, 7].
Previously the best lower bound of the number of different perfect codes
1: 231‘%‘—‘-1os(n+1)

n—3
was due to Vasil’ev [ 2277 Its unessential improvement



was given by Mollard’s construction [8]. The class of these codes contains
strictly the class of the Vasil’ev codes [7]. The construction described
in the paper contains the construction of the Vasil’ev codes [3] and the
Mollard codes [8] as particular cases.

This paper is only devoted to the perfect binary codes with distance 3
and we shall call them briefly perfect codes. Let C be a perfect code in
E™ and M be a subset in C. Having inverted every vertex of the set
M by the ’th coordinate we obtain a'new set. We shall denote it by
M@ (i). If ¢’ = (C\ M)U (M & (i) is a perfect code, we shall call
the set M the i-component of the code C and say that C' is obtained
from C by the translation of the i-component M. The definition of the
translation see in [9].

Proposition 1. Let M; be the i-component of a perfect code C and for
some perfect code C' it is true that M; C C'. Then M; is the i-component
of the code C'.

Given a perfect code C of the length n. Let M}, ..., M} be mutually
disjoint subsets of the code C such that M is the i;-component C where
i1,...,1 € {1,...,n} are not all necessarily different.

Proposition 2. The set s’ = ENr s, ME NUUEZ (M* & (i,))) is a
perfecl binary code of length n.

The i-component is minimalif it is not subdivided into some i-components
of smaller efficiency. The definition of the i-component see in [1]. It is
known [3, 5, 10] that the exact upper and lower bounds of the num-
ber of minimal i-components of an arbitrary perfect code of length
n,n=27—1, are

2< m< 2% /(n+1), (1)

where m is the number of minimal i-components. The cardinality of the
minimal i-components can vary from 2(*~1)/2 to 27~!/(n 4 1). There-
fore choosing successively some of n coordinates and inverting some of
the existing components we can obtain a great variety of perfect codes.
Denote the set of all perfect codes obtained from the Hamming code in
such a way by H*. It is interesting to clarify whether any perfect code
can be obtained from the Hamming code in such a way. There are some
reasons to believe that every known perfect code belongs to the set H*.
It is true for the Vasil’ev codes and the Mollard codes.

To set forth the construction we need the Hamming code representation
in terms of the Mollard’s construction [8], see also [7]. Consider now this
construction.
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Let C* and C™ be two perfect codes of lengths k and m respectively.
et vector

T=(’-"11,T12,---,T1m,f21,---,T2m,-<-;fk1:---,1‘km)

be a vector in E*™. Define the following functions pi(7) = (=1, z2,. .-,
i) € E* and po(r) = (2}, 25,...,24,) € E™, where &, =) ., 7; and
T; = Z:;l 7i;. Let f be a vector function from C* to E™. The set F"
defined as

F* = {(,6 ® p1(7),0 @ pa(7) ® f(6)) : 7 € E¥™, 6 € C*,0 € C™}

is a perfect code of length n = km + k 4+ m.

All arguments given below are true for any perfect code F™ but for the
sake of simplicity we restrict ourselves to the case when n = 4k 43 that
is k= (n—3)/4 and m = 3. Let

T = (e, 8,7) € B3,

where a = (a1,-..,akx), 8=(B1,..-,0), ¥=(",-..,7) are any
vectors in E*. Then the functions p; and p, are equal to pi(e,8,7) =
a®8dy, p2o58,7) = (lal,|8],|y]) and f is a vector function from
=314 to E3 and C™ = H3 is the Hamming code in E3. Therefore
we obtain the code F?* that is equivalent to the particular case of the
code Fn: Le. F{l = {(ﬂ’aﬁ}’h pl(an@:7) @ 5} Pz(aaﬁa'}’) ©od f(tS))
a,B,v € E®-D1 §eclhv-1DI4 o c H3Y. If CIF-34 = gF?n—3)/4 gnd
f =0 then FP is the Hamming code H".

The Hamming code H™ presented exactly in this form will be regarded
below. We shall denote the subspace generated by the set of vertices of
the weight 3 with the unit ¢’th coordinate in the Hamming code H™ by
RY (see proposition 1 in [9]). Denote the subspace spanned over R{ and
R} by R?J- (in [9] the set R{; was defined as the sum of the subspaces
R} and RY) and the subspace spanned over R, R}, R} by Rijx, where
(i, 7, k) belongs to the Steiner triple system ST.S(H™). The definition of
the STS(H™) see in [9, 11]).

Proposition 3. It is true that R?j =0 R?k = R?jk, where (i,7,k) €
STS(H™).

Proposition 4. I is true that R = {(a,2,7,7,(la],|a|,|7]) @ o) :
o,y E E(n‘a)‘q, oe Ha}.

11



Let R§ = R @ (£,009/4,0(n=3)/4 ¢, |¢],0,0), where £ € B~9/*,

Proposition 5. [t is irue that RS 5, 1, = R = {(a®
R EEE(n=3)/4

£,a,7, 7®E, (lal+ €], lal, W) ®0): a,7,6 € E®-, o€ H3}.
Let Rfl—2,n—1,n = R?i—2,n-1,n ® (33{11—3)]4,6’ 0): where § € H("_a”‘!'

Proposition 6. For any 8, §' e Hn=34 § £ §' and any v,v' such that
v E Rf,_g,,,_l,,,, v € RY_,, 1, the distance between vertices v, v’
shortened along the last tree coordinates is noi less than 3.

Let  A(,£) be a function from H("-3)/4 x E=3)/4 {0 the set
{(0,0,0),(0,0,1)}. Denote the set

Rﬁ—?,n—l,n @ (93(“_3)’4: 6: '\(6! 5))

by P}, where § € H(-3)/4_ 1t should be noted that the set P} is
obtained from Rj_;,_;, by the translation of the n-components R
contained in R,_, ,_; , according to the function A. Denote

R) 31,0 ® (03" /%,5,0(5,€) ® £(6))
by P}, where f(6) is the function defined above and é € H (n=3){4,
Proposition 7. For any v,v' € Pf,a: v # o', it is true that p(v,v') > 3.

Proposition 8. For any 6,6’ € H®=3/4, § £ &, it is true that p(P},,
Pfa) 2 3.

We shall divide the vector of length n into seven subsets where the first
four subsets contain k = (n—3)/4 coordinates and the last three subsets
contain 1 coordinate. We shall associate the number i with the ’th
subset. Let the permutations x} and =5 be =} = (123)(4)(567) and
wh = (132)(4)(576). Let the permutation ; of length n the elements
of which are divided into the subsets mentioned above respond to the
permutation 7}. Let 7} () = j then the k’th element of the i’th subset
passes on to the k’th element of the j’th subset in the permutation
w1, where k=1,...,(n—3)/4, fi<4 and k=1, if 4<
i < 7. Analogously associate the permutation w3 of length n with the
permutation 7%. Let g be the identity permutation of length n.

12

’voposition 9. The permutaiions w1, mo are automorphisms of the set
iy such that m(R2) = R2 ra(ReY= Ry -

n—-2n-1n =11
Let v be a function from H®~3)/4 to0 {0,1,2}.

Theorem 1. The set K}, , = U WV(GJ(P_?,A) is e perfect binary
FEH(n—3)/4
code of length n.

Consequence 1. If A(6,€) =(0,0,0) and v(6) = 0 then R}, , = FT.

It is obvious that we can substitute the code H("~)/4 by a perfect code
5(n=3)/4 of length (n—3)/4 in Theorem 1. Then Vasil’ev’s and Mollard’s
constructions are particular cases of the construction described above.
We shall denote the class of the codes of length n constructed above by
{3EaM

Theorem 2. The number of different perfect codes of length n in the
class K* is not less than

g2 st 252 - (1= 0(1))

The construction described allows the partitions of n-cube E" into mu-
tually nonequivalent perfect codes of length n for sufficiently large n to
he obtained.
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Existence of Nonsystematic Perfect
Binary Codes

S.V.Avgustinovich, F.I.Solov’eva
Sobolev Institute of Mathematics
of the Siberian Division of Russian Academy of Sciences
Novosibirsk, Russia
avgust@math.nsk.su, sol@math.nsk.su

Abstract

The existence of nonsystematic perfect binary codes of the length
n for every n =25 — 1, k > 8, has been proved.

In this paper we prove the existence of nonsystematic perfect binary
codes of the length n for every n = 28 —1, k > 8. This result is obtained
by developing the investigation of the properties of the binary Hamming
code started in [1]. In [2] the following question was put forward: are
there any nonsystematic perfect binary codes? In [2, 3, 4, 5] it is proved
that all known perfect binary codes of the length 15 are systematic.
The necessary definitions see in [6, 8]. The codes under consideration
in this paper are exclusively perfect binary single-error correcting codes
with the distance 3 and we will briefly call them perfect codes. The
perfect binary codes exist if the length of code words is equal to n =
2% — 1, k > 2. In this paper the dimension of the vector space E™ over
GF(2) will be equal to n = 2¥ — 1, k > 2. Well-known Hamming codes
are unique linear perfect codes (a linear subspace in the space E"), [6].
A perfect code C of the length n is systematic if there are n —log(n + 1)
coordinates (called information symbols) such that the code C deleted
along the remaining log(n + 1) coordinates (called redundancy or check
symbols) coincides with Em~los(n+1),

According to [7] let us represent the Hamming code of the length n, n >
7, as

H* = {(a,a® B, |a)) : @ € E@-V? ge gin-1/2} (1)

15



where |a| = a1 B -+ @ &(n-1)/2 for the vector & = (1, -, @(n-1y/2)
and the symbol @ defines summation modulo 2 both for vectors and for
coordinates.
Define the set

R} = {(e,0,|ol) : @ € BN,

This set is obviously the subspace of the code H™. Let us denote the
set v@® RE by R}, where v € H™ (the coset of H" along RY with the

representative 7). From this and from (1) we obtain H® = |J R,
eI

where T" = {(9(“_1)"(2,;8,0) : B e H»=1)/2} @(n=1)/2 i5 the vector of
the length (n — 1)/2 that consists of only zero coordinates.

From the cyclic presentation of the Hamming code [6] it follows readily
that forany ¢,j € {1,2,...,n} there is an automorphism of the Hamming
code translating the coordinate with the number 7 into j. Therefore there
is an analogous automorphism for the Hamming code H™ presented in
(1). Let A;; denote this automorphism. Let R} is the result of the
action of the automorphism Ap; on the subspace R2. It is obvious that
R? is also the subspace in H™. Further, consider the set RY = ¢ @ R
where o is a vertex from H". The set R? is called the i-component.
The definition of the i-component for a perfect binary code see in [8]).
Evidently, R? is the coset of R? into H™ with the representative o.
The weight of a vertex @ = (ay,...,a,) is simply the total number of
a;’th which are units. Any vertex a = (aq, ...,a,) of the weight 3 or
4 in E™ corresponds to the unordered triple or quadruple respectively
of the indices of «;’th which are units. It is well known that triples
corresponding to the vertices of the weight three of the perfect binary
code C™ form a Steiner triple system of order n. We shall denote this
system by ST'S(C™).

By definition R? we obtain the following proposition.

Proposition 1. The sef of vertices of weight three with the 1’th coordi-
nate equaled I in the Hamming code H™ forms the base of the subspace
RO,

Proposition 2. Let (i,j,k) be the triple of the STS(H™). The set of
the triples from STS(H™)\(i, j, k), containing the element i is divided in-
to (n—3)/4 pairs of the triples (i, a,b), (i,c,d) such that (j,a,c),(J,b,d) €
STS(H"™).

Consequence. Given the condilions of the proposition 2. We have

(}“':a:d): (k)b:c) € B

16

for the element k.

Proposition 3. For any v,6 € H™ and any ¢,j € {1,2,...,n},1 # j,
there are either |[R] N Rfl =0 or|R] N R} = 2n1)fd,

Consequence. RN R? =Rin R? N R) where (i,j,k) € STS(H").
Let us say that the vertices y and 8 from H™ are (i, §)-remoteif d( R, Rf)
> 5. We shall denote the sum of the subspace R} and R} by R;. Let
Ry =a® R?j. Having surrounded every vertex of the set R; by the
solid space of the radius 4 we obtain the hull of the radius 4 of the set
It We shall denote this hull by M.

Proposition 4. The verter o is (i,7)-remote from all vertices of the
Hamming code H™ so that these vertices do not belong to M.

4
Proposition 5. [M| < glan-ayE. ok
k=0

Proposition 6. Let n = 2% —1, k> 8,. There are vertices y',...,7" €
H™ such that the vertices v* and 4? are (1, j)-remote for i # j.

Lety e H™, 1 €{1,2,...,n}. Weshall call the result of the replacement
of all vertices of R} by the vertices with the inverted ¢’th coordinate the
{ranslation of the i-component R]. We shall denote the set obtained
from H™ by the translation of the i-component R by H™(*).

The set H™(y™) is a perfect code [7]). This and the existence of the
automorphism A,;, 1 € {1,2,...,n}, lead to the following proposition.

Proposition 7. The setf H”('yi] is a perfect code.

Let v',...,9" satisfy the proposition 6. We shall denote the code
obtained from H™ by the sequential translation of the i-components

1 i
T OO i i L A
Proposition 8. The set H™(y!,...,9") is a perfect code.
Let the set C be a perfect code and v € €. We shall denote the set of

triples (i, 7, k) by ST(v), such that v @& 8 € C, where the triple (¢, 7, k)
responds to the vertex #. The system ST(y) is the system of triples

Lo e U4 206
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of the vertex . Notice that the set ST(y) is STS(y ® C). Define the
system of the triple of the code C as follows: ;

sT(C)= | )52t

veC

We say that the system of the triples is compleie if it contains all triples
of coordinates.

Proposition 9. The perfect code H"(y',...,9") kas a complete sys-
tem of triples.

Theorem. The perfect code H™(v',...,9") is nonsystematic.
Remark. It should be noticed that there are some partial intersections
in the auxiliary propositions of this paper with the results.in [11].
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Abstract

The exact values of the least covering radii of all ternary linear
[n,n—1],[n,n—2] and [n, n— 3] codes for an arbitrary n, [r,n—4],
[n,n — 5] and [r,n — 6] codes (with 4 exceptions) for n < 111 and
[n,n — 7] codes for 18 < n < 32 are determined and a table of
values of ¢[r, k] for n < 27 is presented.

1 Introduction

Let C be a linear [n, k] code over F; = GF(q) with a covering radius R.
A lower bound for R is the sphere-covering bound ([4]):

(1) SEolg— 1) > g"*.

The function ¢[n, k] is the least value of R when C runs over the class
of all linear [n, k] codes over GF(q) for a given ¢. The following bounds
for t[n, k] are obtained by the direct-sum construction ([4]):

(2) t[nl + mna, ki + kz] < 'E[nl,kl] =+ i[ﬂz, kz]

(3) tn+1,k] < t[n, k] + 1.

(4) tln+ 1,k + 1] < t[n, k].

(5) t[n, k] < t[n+ 1, k].

Using this bounds, some known [1] covering radii of ternary cyclic codes
and the exact values of t[n, k] ([2],(3]), the upper and lower bounds or
the exact values of t[n, k] for codes of length n < 27 were found, and are
presented in the Table.

*This work was partially supported by the BNSF Contract No. MM-502/1995.
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2 Least covering radius of linear codes over
GF(3) with length up to 27

Proposition 1

{fn,n—1]=1.
Proof: From bound (1) R > 1 for every linear [n,n — 1] code and =
tn,n—1]> 1.

R < n — k for every linear [n, k] code (Proposition 2,[4]) = R < 1 for
every linear [n,n — 1] code and = t[n,n — 1] < 1.

Therefore t[n,n — 1] = 1 for every linear [n,n — 1] code.

Proposition 2

tln,n—2]=1forn > 4.

Proof: From bound (1) R > 1 for every linear [n,n — 2] code and =
{[n,n—2]>1.

It is known (Proposition 1,[2]) that [4,2] = 1 and by bound (4) =
tfln,n—2] < 1forn >4.

Therefore t[n,n — 2] = 1 for n > 4.

Proposition 3

([ n—3]:{ 2 for 4<n<12

L 1 for m>13

Proof: From bound (1) R > 2 for an [n,n — 3] code with 4 <n < 12 and
= tn,n—3] >2for4<n <12

It is known that ¢[4, 1] = 2 and by bound (4) = ¢[n,n —3] < 2.

From bound (1) R > 1 for every linear [n,n — 3] code with n > 13 and
= i[n,n—3] > 1for n> 13.

[t is known ([1]) that the cyclic [13, 10] code attains the sphere-covering
bound and has a covering radius R = 1 and by bound (4) = t[n,n-3] <1
for n > 13.

Therefore t[n,n—3] =2for4 <n <12 and t[n,n - 3] =1 for n > 13.
Proposition 4

{fn,n—4]=2for8 <n <111

Proof: From bound (1) R > 2 for an [n,n — 4] code with 8 < n < 111
and = f[n,n—4] > 2 for 8 <n < 111.

It is known (Proposition 1,[2]) that ¢[4, 2] = 1 and by bound (2) #[8,4] < 2
i.e. {[8,4] = 2. Consequently by bound (4) t[n,n —4] < 2 for n > 8.
Therefore tfr,n —4] =2 for 8 <n < 111.

Proposition 5

tfn,n—>5]=2for 11 <n <111.

t[9,4] = t[10, 5] = 3.

Proof: From bound (1) R > 2 for an [n,n — 5] code with 11 < n < 111
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and = t[n,n—5]> 2 for 11 < n < 111.
It is known ([1]) that the cyclic [11,6] code attains the sphere-covering
bound and has a covering radius R = 2. By bound (4) = t[n,n—5] < 2
for n > 11.
Therefore ¢[n,n— 5] =2 for 11 < n < 111.
From bound (1) R > 3 for every [9,4] and [10, 5] code and = £[9,4] > 3
and £[10,5] > 3.
By bound (3) ¢[9,4] < #[8,4] +1 and = #[9,4] < 3. It is known ([1]) that
the cyclic [10,5] code has a covering radius R = 3 => #[10, 5] < 3.
Therefore t[9,4] = [10,5] = 3.
Proposition 6

[ 3 for 12&n<19
ﬂ”’““ﬁ]‘{ 8 for 39<mnzill
Proof: From bound (1) R > 3 for an [n,n — 6] code with 10 < n < 19
and = t[n,n—6] >3 for 10 < n < 19.
By Proposition 5 £[11, 6] = 2 and by bound (3) #[12,6] < 3 i.e. {[12,6] =
3. Consequently by bound (4) t[n,n — 6] < 3 for n > 12.
From bound (1) R > 2 for an [n,n — 6] code with 20 < n < 111 and =
tfn,n—6] > 2for 20 <n < 111.
The cyclic [22,16] code has a covering radius R = 2 and by bound (4)
= t[n,n—6] < 2 for n > 22.
Therefore tfn,n — 6] = 3 for 12 < n < 19 and i[p,n — 6] = 2 for
22 < n < 111.
Proposition 7
tfn,n—T =3 for18 < n < 32.
Proof: From bound (1) R > 3 for an [n,n — 7] code with 13 < n < 32
and = t[n,n— 7] >3 for 13 < n < 32.
By Proposition 5 #[11, 6] = 2, by Propositon 2 ¢[7,5] = 1 and by bound
(2) t[18,11] < 3 i.e. t[18,11] = 3. Consequently by bound (4) {[n,n—7] <
3 for n > 18.
Therefore t[n,n — 7] = 3 for 18 < n < 32.
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k\n 3 4'5 B 7 & 9 10 11 12 13 14

1 2 23 % 40 B B 7 8 8 9

2 1 1 2 3 4 4 5 6 6 7 8 8

3 1 1 2 3 3 4 5 5 6 7 7

4 1 1 2 2 3 34 45 45 56 56

5 L a2 213 3-4 45 4-5 56

6 L & 202 2 3 3-4 45

7 1 32 4 2 3 3-4

8 13- 2 2 2 3

9 1 % 2 2 2

10 1 1 1 2

1 1 1 1

12 1 1

13 1
Bn 16 16 17 18 19 20 21 22 23
1 Lo+ 10 1Y 1 IR 13 14 14 15
2 9 T QT Tl 12 13 14 14
3 8 9 9 10 11 11 12 13 13
4 6-7 68 7-8 79 8&I10 810 9-11 10-12 10-12
5 -6 6-7 68 7-8 79 810 810 9-11  9-12
6 4-5 56 57 67 68 79 79 89 8-10
T 4-5 45 56 56 6-7 68 78 T8 8-9
8 34 4! 45 56 56 57 67 6-8 7-8
9 3 34 4 45 45 56 57 6-T 6-8
10 2 3 34 34 45 45 56 BT 6-7
11 2 2 3 3 34 45 45 56 8-7
12 1 2 2 3 3 3-4 4 4¢ 8¢
13 1 i 2 2 3 3 34 4 4
14 1 1 1 2 2 2-3 3 3-4 4
15 i 1 1 1 2 2 2-3 3 3-4
16 1 1 1 2 2 2 3
17 1 1 1 2 2 2
18 1 1 1 2 2
19 1 1 1 2
20 1 1 1
21 1 1
22 1

23



k\n 24 25 26 27 k\n 24 25 26 27
1 16 16 17 18 14 4 4-5 5% b6
2 15 16 16 17 15 4 4 45 5

3 14 15 15 16 16 3-4 4 4 4-5
4 11-13 11-14 12-15 12-15 |17 3 34 34 4

5 10-12 10-13 11-14 11-14 |18 2 3 3-4 34
6 9-11 9-12 10-13 10-14 |19 2 2 3 3-4
7 810 911 912 10-12 |20 2 2 2 3

8 7-9 8-10 811 9-12 | 21 1 2 2 2

9 7-8 7-9 8-10 8-11 | 22 1 1 2 2
10  6-8 7-8 7-9 7-10 | 23 1 1 1 2
11 6-7 6-8 6-8 7-9 24 1 1 1
12 5-6 5-7 6-8 6-8 25 1 1
13 4-5 5-6 5-6 6-7 26 1

Key to Table:

Lower bounds are bounds (1).

Upper bounds are bounds (2), (3), (4) and (5).

¢ - cyclic codes. 1-1[16,8] < t[8,4]+1[8, 4]. 2 - £[26,14] < t[22, 12]+£[4, 2]
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Constant Weight Codes Detecting
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The problem on codes correcting usual errors and that on codes de-
lecting them are equivalent, since a code detects twice as many errors
ns it corrects. However, the codes’ potentialities to detect localized er-
rors turned out to be considerably better. Indeed, the asymptotical-
ly optimal rate of a binary length-n code correcting 7n localized er-
rors (0 < 7 < 1/2) equals 1 — h(7r) (see [1]) and detecting Tn errors
(0 < 7 < 1), equals 1 — 7 (see [2]; this answer is valid for an arbitrary
ilphabet). Here we prove that last rate can be achieved with a constant
weight code by the appropriate choice of a weight; moreover the code
¢an be chosen so that any error increases the weight of the transmitted
codeword; the detecting of errors is trivial in this case. Recall that the
only difference between such codes and usual ones is that a codeword
depends not only on the message itself, but also on the set of positions
in which transmission errors can occur.

Let M be a set of messages, |[M|= M. Let & = {E C {1,2,...,n},
|E] = t} be the set of all possible ¢-tuples of positions, [M¢| = (7). Let
X= U U x(m,E) be a code, and let X,,, = |J x(m, E) be the

meM EEE, Egg,
code set for a message m. When a codeword x(m, E) is transmitted,
errors can occur in the positions of E only; therefore, at the channel
output one can receive any codeword x(m, £') @ e, where e € V(E) and
V(E) is the set of length-n sequences over g-ary alphabet which are equal
to zero outside E (here |V (E)| = ¢*, @ denotes addition modulo g).

*This work was supported by INTAS Grant 94-469.
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We say that a code X detects ¢ localized errors if the following con-
dition holds:

(1) for any m,m' € M, E,E' €&, ec€V(E), ifm#m,
then x(m, E) @ e # x(m', E').

Denote by R,(w,7) the maximal rate of a length-n g-ary constant
weight code of the weight wn, detecting 7n localized errors.

Theorem. Letw < (1 —71)(1—g~1). Then
Ry(w, ) = wlog, (¢ — 1) + Hy(w/(1 - 7)),

where  Hy(z) = —zlog, z — (1 — z)log,(1 — z).

The proof. It is obviously that the rate does not exceed the right
value, because it suffices to consider the case when errors occur in the first
Tn positions. And such rate can be achieved by the standard random-
choice proof: it suffices to choose randomly a message m € M with the
probability M~ for every word of the weight wn (|[M| = gf«(»7)"). It is
easy to show that there exists the choice such that x(m, E) equals zero
in the positions from E for every m € M and every E € £.

Corollary. If we put w = (1 — 7)(1 — ¢7!) then Ry(w,7) =1—7.
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Permutation groups of some affine-invariant
codes over extension fields

Thierry P. Berger * Pascale Charpinf

1 Introduction

In a recent paper we gave a classification of permutation groups of affine-
invariant codes. We developed several tools designed to the effective
characterization of these groups and gave some examples, mainly on
codes defined on a prime field. We want to give more examples, partic-
ularly when the code is defined on an extension field.

2  Affine-invariant codes

Let K =T, be an extension field of IF, of degree r, i.e. ¢ = p". Let G
be an extension field of K: G =T 0 = Fym, m = rm’. Let n = p™ — 1.
Let A= K[(G,+)] be the group ajgebra of the additive group of G over
the field K. An element of A is a formal sum: }° cc 2z, X9, 1z, € K.
'The operations are usual.

We consider a linear code C of length p™ over K as a subspace of A.
We simply index the coordinates of a codeword by the elements of the
finite field G. A permutation o of the field G acts on A as follows:

o(z) = 32, X0

gEG

FFor any divisor e of m, we can consider G as a vector space of dimension
m/e over the subfield IF .

e The linear group GL(m/e,p®) is then the group of permutations of G
that are IFpe-linear.

e The affine group AGL(m/e, p®) is the group generated by GL(m/e, p*)

*UFR des Sciences de Limoges, 123 av. A. Thomas, 87060 Limoges CEDEX,
FRANCE

TINRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex,
FRANCE

27



and the translations of G.

e the semi-affine group AI'L(m/e, p°) is the group generated by the affine
group AGL(m/e,p°®) and the Froboenius map Yp 1 g — g,

Deﬁnition 1 An affine-invariant code is a proper subspace of A that is
tnvariant under the affine group

AGL(1,p™) = {0 € Sym(G) 'o(g) =ag+b,/ a € G~, b€ G}
Let s € S, S = [0, n]. We consider the K-linear map of A into G-
$:(D_ 2, X9) =z’
geG 9EG

Let T' be a subset of [0, n], containing 0 and invariant under multiplica-
tion by ¢ (mod n). -

The extended cyclic code C' with defining set T is as follows defined:
C={z€Alg(z)=0,Vse€T}.

Affine-invariant codes are primitive extended cyclic codes. Such a code
can be defined by means of a combinatorial property of its defining-set,
as we recall now (see [7, 5]).
Define the poset (S, <) with

Vs,t€S, st & 5 <t,i€0,m—-1],
where s = 570" 5;p' is the p-ary expansion of s € S.
Theorem 1 An estended cyclic code C of A wilh defining set T is
affine-invariant if and only of Vi€eT, s<t=>seT

3  Effective determination of permutation groups

In [2], we classified the permutation groups of affine-invariant codes:

Theorem 2 Let C be a non trivial affine-invariant code ofA. Then
there exist a divisor ¢ of m and a divisor £ of e such that the permutation
group Per(C) of C is generated by AGL(m/e,p®) and Ypt 1 g — g

We consider now the following problem: for a given affine-invariant code
C' with defining set 7', how to compute its permutation group? From
Theorem 2, it is sufficient to found £ and e,
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Proposition 1 The inleger = is the suiallest integer such that the defin-
ing set T is invariant by multiplication by p* (modulo n). In particular,
if g = p", then € divides r.

l'or some particular values of m or £, the determination of e is easy: if
m is a prime, it is sufficient to verify that the code is not a p-ary Reed-
Muller code. If £ = m, the only possibility is e = m and the permutation
group is AGL(1, p™). For the general case, the determination of e is more
difficult. In 3, Delsarte gave a criterion for the determination of e. In
[2], we obtained another criterion. We will recall briefly these results.

e The Delsarte’s condition
I'or each divisor e of m we can define a partial order on S:

Vs, t €5, 5 Kot wpe(phs) < wpe(pht), VE € [0, — 1].
where w, (5) = 3, 8; is the v-weight of s (s = }_; siv", 0 < s < v).

Theorem 3 An eztended cyclic code C' of A with defining set T' is in-
variant under AGL(m/e,p%) if and only if Vi€ T, s<.t=>seT.

e An equivalent condition

I'rom results on the classification of permutation groups containing the
affine group and some tools on the polynomial representation of permu-
tations of finite field, we proved the foollowig theorem (cf. [2]).

Theorem 4 Let C be an affine-invariant code with defining sel T'. Let
e be o divisor of m. The code C is invariant under AGL(m/e,p°®) if and
only if WteT, j<t=>t+jp*—1)eT.

4  Permutation groups of some infinite classes of
codes over an extension field

As an example of application of Theorem 4, we will study some classes

of codes defined over an extension field IF, ¢ = p".

4.1 Codes with few zeros on their defining set

Let @ € [1,m'] and C, be the code of length p™ — 1 over IF; whose

defining set 1s
Te = {0} Uclg(1) Ucly(1 + ¢%)

(el () is the orbit of § under the multiplication by ¢). Since Tini—g = Ta,
we get a in [1,m'/2].
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By the same way, let C, 3 = C, N C} be the code of defining set
Tap = {0} Ucly(1) Uely(1 4 ¢%) Uel,(1+¢%)
These codes are clearly affine-invariant.

Proposition 2 Assume a < m'[/2. The permutation group of Cy is the
group generated by v, and AGL(1,p™), except for the following cases:

1. ¢=2, m' =m even and a = m/2. The permutation group is
ATL(2,2™/2).

2.¢g=2,m =m, m=0mod3 and a = m/3. The permutation
group is ATL(3,2™/3).

3 m=0 m0d4, and a = m' /4. The permutation group is
< AGL(2,q™ /%), 7, >.

Proposition 3 Assume 0 < a < b < m’/2. the permutation group of

Cap s
< AGL(1,q™),v, >, excepl for the following cases:

1. ¢ =2, m' = 5a, b = 2a. Permutation group: < AGL(5,2%),7, >.
2. ¢=2, m' =4a, b =2a. Permutation group: < AGL(4,2%),7, >.

3. For all ¢, m' = 6a, b = 3a. Permutation group:
< AGL(3,¢%%), 74 >.

4. Forallq, m' even, e=m'[2, a+b=m'/2 and a < b.
o Ifm' = 8a and b = 3a. Permutation group: < AGL(4, ¢*%),v, >.
e FElse, the permutation group is: < AGL(?,qm’fz),-yq 5.

4.2 Extended primitive BCH codes over an extension field

Definition 2 Let K = F,, ¢ = p". The extended primitive BCH code

of length p™ and designed distance d over K is the code By(d) of A with
defining set
d-1

Ty = | ey (5).

j=0
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In [2], we determined all the permutation groups of primitive BCH codes
over a prime field K = IF,. As an example, we will study here the BCH
codes over an extension field, that is r > 2.

Definition 3 Let K =F,, ¢ =p". For1 < p < m'(¢—1), the GRM-
code of length p™ over K and of indice p is the code GRMy(p) of A with
defining set

T(p) = {t € Slw,(t) < pu}.

Where wq(t) is the qg-weight of t.
The integer v = m'(qg — 1) — p is the order of the GRM.

In [1], we proved that the permutation group of GRM,(u) is AGL(m', q)
for 1 < pp< m’(q w5 1).

The following results are easy to check on the defining sets:

o By(1) = GRM,(1), Bq(qmr —1) = GRM,(m/ (g — 1)). These codes are
trivial affine-invariant codes, their permutation group is the full symetric
group Sym(G).

o B,(2) = GRM(2), Per(B,(2) = AGL(m/,q).

o By(g™ — g™ ~171) = GRM,(m' (g —1)—1), Per(B,(d) = AGL(m', q).
o For g even (i.e. ¢ = 27) and m' =2, By(¢®> —1—2q) = GRM,(29 —4),
Per(By(d)) = AGL(m', q).

Now, look at the particular case d = 3. We obtain T3 = {0} U el (1) U
el (2).

® if'q = 4, then ¢ly(1) = cla(1) Ucls(2). For this case, B4(3) = GRM»(2)
and Per(Ba4(3)) = AGL(m,?2).

o1fp=2andr > 2(i.e. ¢ > 8 even), the value of £ is always r. Moreover,
applying Theorem 4, we prove that Per(By(3)) = AGL(m’,q). Notice
that Bg(3) is not a GRM code.

o If p is odd, By(3) is not an exception.

So we strongly conjecture that there is no more exception, that is in
the remaining cases, the permutation group is < AGL(1,p™), 7, >. As
corollary of Theorem 4, we can prove that the p-ary expansion of the
designed distance can be used efficiently for the determination of the
group. Actually we are just proving our conjecture by this way.

5  Conclusion

If we choose randomly an affine-invariant code defined over K, its permu-
tation group will probab'ly be the group generated by v, and AGL(1, p™).
The exceptions given in Propositions 2 and 3 are very particular because
their defining sets are very small (2 or 3 cyclotomic classes). Another
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familly of codes with larger permutation group is the class of GRM codes.
Exceptionnal BCH codes are essentialy GRM codes.

Hovewer, there exist a lot of affine-invariant codes with larger permuta-
tion group. For example, for each s € S and each divisor e of m, using
either Theorem 3 or Theorem 4, we can construct the smallest code con-
taining s in its defining set and invariant under AGL(m/e, p°). Generaly
the codes obtained by this way are not GRM codes.
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Abstract

We discuss here construction that describe the wide class of quasi-
cyclic codes including quasi-cyclic Goppa codes.

1 Introduction

It is well known that quasi-cyclic code is a linear (N,K)- code with
generator matrix G:

Gi G .. G}
G= G} G} .. G?
oy G . GF
where Gj ((=1,.,1;7=1,.,m) - generator matrix for cyclic code

C! with length n a,nd number of information symbols k. Here generator
matrix G7 (j = 1,..,m)

¢=[6 6 . o]

is generator matrix of so-called 1-generator quasi-cyclic code CJ (7 =
Lyssey 100

Length of quasi-cyclic code is equal N = n - I , number of information
symbols is K = m - k. It is necessary to note that in general case cyclic
codes C’" may have different lengths - n; , recently such constructions was
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described by G.E.Seguin [1]. The main problem in construction of the
pood quasi-cyclic codes is to choose appropriate matrixes GJ (F=1,..,1)
in each 1-generator quasi-cyclic code [2].

[lore we would like to discuss one construction of the linear quasi- cyclic
codes which solves this problem in some cases.

2 Code construction

(Juasi-cyclic code with length N = n -1, number of information symbols

I{ = ¥ k; have the generator matrix G :
i=1
el
2
G=| €

Gm
where GI(j =1, .., m)— is generator matrix of generalized 1-generator
quasi-cyclic code €7( j = 1,..,m). .It is more convenient to set these
codes by their check matrixes H7.

H, Hy .. H
R 0 .. 0
HI = P
8 0 . B

where [hf]- the same as in [1] check matrix of binary cyclic code Q;
with length n and generator polynomial g/ (z) = (2" — 1)/m;(z), m;(z)
- irreducible polynomial, such that m;(z) | (z™ — 1).

and [H;] (i = 1,..,1) - different check matrixes of trivial binary cyclic
(n,1,n)—code.

In this paper we would like to show as an example of such codes in
the most simple case (n = 7) the family of the best known [3] codes
[(63,10,27); (56, 10,24); (49, 10, 20); (42,10, 16); (35,9, 14)} with m, (=)
=241, my(z) =23+ 2+ 1, ko = 6 and ky = K — ks; and the code
(56,16,20) with m;(z) = z+1; mo(e) = 2®+ z+ 1;ma(z) = 2 + 22 +1
and ky = 4,ky = 6,k3 = 6).

All Goppa codes from subclass which have been discussed before in [4]
can be described as quasi-cyclic codes with this construction and so it is
very easy to determine the dimension of these codes.
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In the report we will also presented some more complicated codes (for
n=9;n =15 and n = 17) and code (23,11,8) that can be described by
using this construction more easy than it have been described in [1].
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Quasi-cyclic binary Goppa codes

Francis Blanchet * Grégoire Bommier T

Abstract

We show some properties of quasi-cyclic binary Goppa codes.
First we characteristize such codes in terms of support set and
polynomial. We then fix the support, with a specific order. Un-
der the condition of maximality, the quasi-cyclicity of the code
is then equivalent of a certain form for the defining polynomi-
al. We then point out that we can even build known dimension
quasi-cyclic 'Goppa codes.

1 Introduction

I seems that the automorphism group of a Goppa code is ”often” re-
(uced to identity. We know that BCH codes are the only cyclic Goppa
codes when the locator set is itself cyclic ([1]) and a sufficient (non nec-
essary) condition so that the extension of a Goppa code was cyclic ([5]).
We give here a necessary and sufficient condition so that a binary Goppa
codes was quasi-cyclic (theorem 2), a sufficient condition easier to con-
trol, two important cases where it is sufficient (theorem 4, corollary 5),
and some polynomial forms for specific Goppa codes (theorems 6 & 7).
We will only deal here with binary Goppa codes, although some results
ure easy to generalize for codes on Fpm without using divisibility which
requires characteristic 2.

*Lycée Montaigne, Paris, & projet copgs, Inria-Rocquencourt, Domaine de
Voluceau, BP 105, 78153 Le Chesnay Cedex.

! projet copEes, Inria-Rocquencourt. e-mail: Gregoire.Bommier@inria.fr. URL:
lttp://www.mathp6. jussien.fr/ bommier/.
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2 Definition of Goppa codes

Throughout this paragraph, m and n are non zero integers such that
n < 2™. We note K the field Fym . £ = {0, ...,an_1} where the o;
are distinct elements of K, g is a polynomial with leading coefficient 1,
belonging to K[z]\ K with no zero in £. In fact, we choose a a primitive
root of unity in Fam and £ is a subset of K = {0,1,q, ..., a?" =2},

DEFINITION.— We call Goppa code related to the pair (£,9), and we

note I'(£,g), the set of words ¢ = (cq, . .., €n-1) belonging to F'an and
such that:

n—1

E = =0 mod g(z)

. r—
1=0 t

NOTATION.— For any polynomial g in K[2], we note § the squared
polynomial with lowest degree divisible by g, and g the squarefree poly-
nomial with highest degree dividing g. i

If g has single roots in an extension of K, I'(L,g) is said to be separa- -

ble and § = g% 1If g is irreducible, I'(L,g) is said to be irreducible
(if I'is irreducible, then it is separable). Let ¢ € (F3)" and £ =
{ag,...,an_1} C Fam, we note Ec = {ai | ei # 0}, we associate to
the pair (c,£) the polynomial of K[z]:

fe(z) = H (ZFa)r= H (z 4+ a;)
a;el a;EE¢

E¢ is named support of ¢ , the polynomial f¢ is named locator polynomial
of ¢ . If there is any ambiguity, it will be necessary to specify ‘related
to LY

Proposition 1 Let I‘(E,g) be a Goppa code, ¢ a word from (IF3)".
Then c belongs to T if and only if§ divides Fe
REMARK .—

1. If T is non trivial, its minimum distance is at least r +1L;ifI'is
irreducible, it is at least 2r + 1 .

2. When the locator £, and one word ¢ of a Goppa code, T'(L,g) are
known, we deduce f¢ and f¢, search all the polynomials belonging
to Iym[z] without any root in £, dividing f%; we find then all the
possible polynomials for g.
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3 Characterization of quasi-cyclic binary
Goppa codes

Let ¢ = (¢g,y...,¢n-1) € (F3)", we note:
o(e) = (en=1,¢0,-.-,6n—2)

DEFINITION.— Let €' be a linear code; if ¢ € Autp, C is said to be
eyclic. If o' € Aute (where ¢ is an positive integer), C is said quasi-
cyelic; if t = min{t’ | o' € Autc} then t|n, and ¢ is named the period of
the code (we then talk about a note t-gc code).
I'hen, I' is t-¢c if and only if

(Ye= (o, ;Cn-1) €T > (Cs; Cig15:-~iLign=1) ET)
(subseripts mod n).
I'rom now on ['(£,g) is a Goppa code on K, £ has n elements, is a subset
of K* = {1,q,...,a®""1}; if £ = o*(L), we say that £ is o*-invariant,
we suppose ap = a® and ¢ is an integer dividing n.

Theorem 2 Let T'(L,g) a Goppa code, L being o' -invariant, H the poly-
nomial defined by Hy(z) = g(a'z), let the Goppa code T °(L,H;). T is
(-qc if and only if T =T".

In order to prove this theorem, let’s just notice that, for any ¢ € F,",
i(e) being its Hamming weight,

fe(z) = Qtw(c}fc(a—:z) f:ﬂ(c)(z) 2 atw(c)f‘f_-(a_tz)
Corollary 3 Let I'(£,9) e« Goppa code, t an integer < n, L being o'-

invariant. If there ezists some X € K so that g(z) = Ag(a'z), then the
code I' 1s t-qe.

Theorem 4 Let I'(L,q), a Goppa code, L being o -invariant and P o=
ped{fe, ¢ € T} such that Pp = §. Then T is t-qc if and only if
a'g(z) = g(atz).

Corollary 5 LetT'(L,g9) a Goppa code L being o*-invariant and reaching
ils theoretical lower bound 2r + 1. T is t-qc if and only if for any z,
n(afz) = a'mg(z).

Now the matter is to find an "easy” condition characterizing Goppa
codes such that Pp = g, that’s to say Goppa codes such any zero § of a
J¢. (c €T ), is also a zero of G. It is easy to prove that Pp has as many
veroes in £ as a generator matrix of I' has columns with zerces. But we
don’t know what happens when P differs from 7 and has zeroes ¢ L.
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4 Some specific subclass of quasi-cyclic
Goppa codes.

We now consider Goppa codes with ‘optimal’ and ‘naturally ordered’
support set: £ = K \ (Z(g) |J{0}) and L is ordered by

a; = af, a; =a; o < aj = e <egj.
Thus we write I'(L,g) as I'(g) since the support is well-known. If g is
irreducible, then the optimal codes has a primitive length.
4.1 If g splits into K.

We note ju; the multiplicative group generated by p. The following
theorem is a corollary to theorem 4:

Theorem 6 Let’s suppose that g splits into K: (L, Z(g) \ {0},{0}) is a
partition of K, and L is naturally ordered.

[(g)ist—qc <= 3T £|N, i e i HCEIZE&CE, (QCr)
t = % —#1I
where I 1s a subset of K with specification:
VEC L C#L = {<df 3 [tFaat 5=,
We have [{ = n.
EXAMPLE .— Let m = 2u, g(2) = 22" ~! + 1; then I'(g) is 2%-ge.

4.2 If g is irreducible over K*.

Theorem 7 We now suppose g is irreducible over K and T'(g) is opti-
mal.

£ e NENNY,
I'(g)ist—qc <= 3IT£>1, 9(z) = H(efze_cé’ (ecr)

;A —

hiz

where I is a subset of S(g) with specification:

Y, C'EL (£ = (<a'> ﬂC'(a’):V.
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[iXAMPLE .— Let N' = 2* —1, m =10, £ = 3. If o a primitive element

of K = Faio. v = a>! is a primitive element of F'y2 .

let’s choose #£I = T, thus » = 21. Let £ a primitive element of S(g),
b > 3

and ¢ = g1586908316098  Thyg if 4 is £°5, we obtain the following

polynomial

6 Iy
3‘,*(2')_-?2 Hz3__c3-41=z22+219+T2z16+213+zlﬂ+27+z4+72
j=0

penerating a [1024, 814, 43<d<60] irreducible Goppa code. With these
parameters there are 16382 other irreducible polynomials generating a
M1-ge Goppa code.

REMARK .— If r is prime and g is irreducible over K*, then I'(g) cannot
he quasi-cyclic.

1.3 A generalization

e If ¢ neither splits into K nor is irreducible, but I'(£,g) is maximal,
then the splitted part of the square free part g of g must check
the (QCgr) form, and every irreducible factor of ¢ with degree > 1
must check the (QCy) form. We then obtain the_(QC) polynomial
form for maximal Goppa codes.

o If T'(L,g) is not optimal, there exists an optimal Goppa subcode,
which is t-gc too, which corresponds to a multiple h of g. Thus A
must check (QC) form.

4.4 About the dimension.

We know from [4] and [2] that if the degree of g is small enough and
¢ has no zero in K then the true dimension of I'(g) is known. Since
there should exists a factor of N smaller than the bound, we are always
able to build a t-g¢ code with known dimension. If g is irreducible and
neparable deg(g) should be smaller then g,
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Estimation of the spectrum of
random linear code

Volodia Blinovsky
Institute for Information Transmission Problems
Russian Academy of Sciences
blinov@ippi.ac.msk.su

Abstract
We obtain an upper bound for the spectrum of random linear
code.

Let F3 be the Hamming space of binary sequences of length n with
Ilamming metrics d(:,-); then d(0,z) is the Hamming weight of vector
©. Denote by Anr C F the linear code of cardinality |A,;| = 2% Let
Cnla,r) = erpgl d(z,a)=r * be the sphere of radius r with center in a,
then |Cn(a, r)| = C},. Denote by A7, = |A7, [Cn(0,r)| the number of
codewords of weight r. The set {A2,,... A" } is called the spectrum of
the code Ani. The well known trivial statement is the following:

Statement 1 There exists linear code A,y such, that for all r > 0 the
Jollowing estimations are valid: A], < I e L

T'he main result of this paper we formulate in the following lemma.

Lemma 1 For arbitrary n,k > 0 and some constant C > 0 there exist
linear code Apy C F3', such that for all v > 0 the following estimations
are valid: AT, < C(v/nlnn+ 1)Cr28—n,

We prove this lemma using random coding arguments. We consider the
decomposition of the spectrum of the code-into six parts

AO = {Agk} = {0}) AI — {A}lk:"':A:llk};

A = {ApM,.ARY As={43Y,.. A0

Av = (AL ATET ) As= (AN AR,

were s1, 5y are chosen such that s; — s, & v/nlnn, and then estimate
fhe elements of the spectrum from every part in its own way.
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Exponent of the Probability of
Error Under List Decoding in
Asymmetric Binary Channel

Volodia Blinovsky
Institute for Information Transmission Problems
Russian Academy of Sciences,
blinov@ippi.ac.msk.su

Abstract

We obtain the upper bound on the exponent of the probability
of error under list decoding for asymmetric binary channel. This
bound is tight for zero rate.

Shannon, Gallager and Berlecamp in their work [1] obtained the lower
and upper bounds on the exponent of the probability of list-of-Z, decoding

error. However work [1] does not cover one interesting case: the upper |

bound on the exponent of list-of-I decoding error for low rates, and
especially the important particular case of zero rate. Here using some
original methods we construct the upper bound for this exponent for
zero rate. Case of zero rate is important because as it was shown in [1]
if we know the exponent of list-of-1 decoding error at zero rate we can
obtain the upper bound on this exponent for low nonzero rates also.

Here we consider the binary case, but as we suppose the same meth-
ods can be used in g-ary case also. Let’s F3- space of binary sequences
of length n and p1g, po1— probabilities of invertions of binary symbols
1—0;0— 1 corresspondingly. Denote

ZIe: log P , PO1,
EL(0) = lim limsup max _log Pa(p1o. poy L),
R—0 peo ACFZ: log|A|>Rn n

where
[A]

Pa(pro, po1, L) = ﬁ E Py (er|i)—
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i the average probability of list-of-L decoding error of the code A. Here.
Pk(er|i) is the probability of list-of-L decoding error when message i
was transmitted over the channel. .

The main result of this work contains in the statement of the following
(heorem.

T'heorem 1 The following tnegquality is valid:

L+1 ; ;
Er(0) < — min Y Cj 0 (1 - )1 x (1)

9€[0,1] =7

X log (p‘;‘f;(L‘i‘l)(l — po )LL) | -t EHY pm)"’(’:’*”) _
In symmetric case (p1o = po1) this theorem was proved in [2] Proof
ol this bound use the Ramsey’s theorem for hypergraph, Plotkin - type
eslimation and some other combinatorial considerations. Because the rhs
of ( 1) coinside with lower expurgation bound for EL(D) the bound ( 1)
i tight: Er(0) is the exponent of the probability of list-of-L decoding
error at zero rate.
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Optimal Codes over an Alphabet of
4 Elements

Galina Bogdanova *

Institute of Mathematics, Bulgarian Academy of Sciences,
P.0.Box 323, 5000 V. Tarnovo, Bulgaria

Abstract

We consider the problem of finding the values of A4(n,d) - the
maximum size of a code of length n over an alphabet of 4 el-
ements, having minimum distance d. New optimal codes have
been constructed. A table for A4(n,d) is given.

1. Introduction

Let ¢, n € N with ¢ > 2. Let Z; denote the set {0,1,...,¢—1}, and Z7
the set of all n-tuples over Z;. We call a code C C Z7 a g-ary (n, M, d)-
code, if C' has minimum Hamming distance d and size |C| = M. A
code has minimum distance d, if d is the smallest number of positions
in which two distinct codewords differ. The 'main coding problem’ is to
optimize one of the parameters »n,M and d for given values of the other
two. The usual version of the problem is to find the largest code of given
length and given minimum distance. We denote by A,(n, d) the largest
value of M such that there exists a g-ary (n, M, d) code . We call an
(n, M, d)-code optimal if M = A,(n,d).
The tables of bounds on Aj(n, d) for binary codes ha@@been given by
Brouwer at al. [2] (n < 28) . The problem of finding Aa(n, d) for ternary
codes with length n < 16 has been investigated by Vaessens, Aarts and
van Lint [7]. Earlier table of bounds on A4(n,d) has been given by
Bogdanova [1] . A table of linear quaternary codes can be found in
Kschisjiang and Pasupathy [8] . For finding lower bounds Vaessens et
al. [7] have used a genetic algorithm, which is a class of algorithms,
that are generally applicable on combinatorial optimization problems.

*This work was partially supported by the Bulgarian National Science Fund under
Grant 1-407/94.
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I'he principle of another combinatorial optimization method (the noising
method) has been described in [3] . We present a version of the noising
{or finding lower bounds on Ay(n,d) [1].

2. Bounds for Ay(n,d).

Theorem 1. [5]
(1) Ag(n,1)=¢"
(i) Ag(n,2) = g~
(ii) Agn,m) =g

Theorem 2.

Ag(n—1,d—1) > Ay(n,d)
Proof: By puncturing once an (n, M, d)-code we obtain an (n—1, M,d—
| )-code.

Theorem 3.

Ag(n,d) > qAy(n—1,d)
Proof: By shortening once an (n, M, d)-code we obtain an (n—1, M', d)-
tode where M’ > ~"—§‘r—

Theorem 4. [5] (The-Singleton bound)
Aq(ﬂ,d) S qﬂ‘—-‘d+1
Theorem 5. [6] (the Plotkin bound) If d > gq—_g—l)ﬂ, then

qd

e e i

We define equidistant code to be a code which satisfies Theorem 5 with
oquality.

Corollary 5.1. The simplex code, attaining the Griesmer bound, at-
{nins the Plotkin bound.

Theorem 6. If an optimal (n, M,d) code attaining the Plotkin bound
oxists, then there exists a (An, M, Ad)-code which also satisfies the Plotkin
hound with equality (X is integer).

Proof: By repeating A times an (n, M, d)-code we obtain a (An, M, Ad)-
code. The new code satisfies the Plotkin bound with equality (Theorem
h).
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We suppose C'is an (n, M, d) code. We make a list of words of C and.
consider a column in this list. Let the jth symbol of Z,(0<j<q-1)
occurs m; times in the column. The contribution of this column to the.
sum of the distances between all ordered pairs of distinct codewords is.
Zj;é m;(M — m;). Since Zf;é m; = M we have equality

g—1 g=1
D mi(M —mj) = M=y m?
j =0 i=0

Since our list has n columns and since there are M(M —1) ordered pairs.
of codewords, we have the following theorem: |

Theorem 7. If M is the largest of all possible values of M such that
g=1
M(M ~1)d < (M* =) " mi)n
j=0

then A,(n,d) < M.

Corollary 7.1. Let M be the largest value of M which satisfies The
Theorem 7 inequality. If an optimal (n, M, d)-code exists then there ex-
ists an optimal (An, M, Ad)-code,too.

Proof: By repeating A times an optimal (n, M, d)-code we obtain an op-
timal (An, M, Ad)-code.

Lemma 1. We suppose that C, and C, are (n;, My, d1)- and (nz, M3, dy)
codes over an alphabet of ¢ elements respectively and suppose that
M; < M,. Then there exists an (n; + ny, My, dy + dy) code over an
alphabet of ¢ elements.

3. The method for finding lower bounds on A,(n, d)

Let S is the set of all g-ary codes of a given length n and given size M.
Let € C Z7 be a code with M words. Let us define

Ay =M M (z,y) e,y € C, d(z,y) = i}
Algorithm for finding lower bounds on Ay(n,d):
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Clonst
RateMaz, RateMin, Numblier, NumbSycl
Var
cursl, bstsl:solution;
varcycl,variter, siep,rate,bstevl evl: integer;
Begin
NumbDesc:=Numblter* NumbSycl
Step:= (RateMax-RateMin)/(NumbDesc-1);
Rate:=RateMax; ‘
cursl:=Initial(); { Initial random solution or input from InpFile }
bstsl:=cursi;
bstevl:=f(bstsl)
For varcycl:=1 to NumbCycl do
Begin { cycles }
For variter:=1 to Numblter do
Begin { iterations }
AddNoise(Rate);
cursl:=descent(cursl, f);
cursl:=descent(cursl,f);
evl:=f(cursl);
If evl < bstevl then

Begin
bstevl:=enl;
bstsl:=cursl;

End;

Rate:=Rate-Step;
End; { iterations }
cursl:=bstsl;
End; { cycles }
Print(bsisl);
lind.

The sequence Ag, A;..., A, 13 called the distance distribution of C. We
lefine function f:
f(C)=Ag+ A1+ ...+ Ag—1

I'he aim is to find such a code C that f(C) = 0. In this case, A¢(n,d) >
[(!|. We begin from a random initial solution C, and then we make an
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elementary transformation by changing only one position of one code-
word. In this way we generate a new solution C’. We give to each vector
v € Z¢ avalue k(v) € [1—r,14r] to add noise . The value k is uniformly
distributed and r is the rate of the additional noise. We define a noised
function f:

d—-1
FO=532 ¥ (k) +k)

i=1z,y€C,d(z,y)=i
When the rate r is equal to 0, then k(v)=1forallv e Z7, and f and
f coincide. If we find such a code C that F(C) = 0, we start again the
whole process with a cardinality increased by one.
We begin with r = 1 and decrease r arithmetically by Step. Add noise
to the data in order to change the values taken by function f using
AddNoise. We apply a descent to the current solution for the noised
data. We apply a descent to the current solution for the non-noised data.
At each iteration the amount of the added noise decreases until it reaches
0 at the last iteration. The final solution is the best solution computed
during the process. Using the method we construct new nonlinear codes.
and we attain the new lower bounds for quaternary codes(Table 1)

4. A table for Ay(n,d).

We present a table 1 for A4(n,d)for3<d<n < 17. If only one number
occurs in a position of this table, then this number is the exact value of
Aa(n, d) for the corresponding n and d values. If two numbers are given,
the upper one denotes the best known upper bound for A4(n, d) and the
lower one the best known lower bound.
Key to Table 1.
Upper bound:
p - Plotkin bound;
1 - Linear Programming bound;
#N - the corresponding theorem # N,
Lower bound:
1 - linear code;
n - code obtained by the new method;
r - code obtained by repeating a code;
¢ - code obtained by the concatenation the codes (Lemmal);
#N - code obtained by using the corresponding theorem #N;
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The values for d = 1,2 and n are fully determined by Theorem 1.

T'he values for A4(4,3), A4(5, 3), A4(5,4), A4(6,4), A4(1Q, 8), A4(15, 1.2),
A4(16,12), A4(17,12) and A4(10,8) are exactly determined from exis-
lenee linear codes with these parameters [8] and Theorem 4 and 5.

T'he values for A4(5X,4X) , A4(TA, 61), A4(11A,92), A4(13X, 11X), A4(17A, 15))

mnd A4(20A, 17A) = 8 are exactly determined by Theorem 6.

T'he values for A4(6X,5X), Aa(8A, TX), As(9A,81), A4(10A,9X), A4(11X,104),
Aa(12X,11X), A4(13X,11X), A4(13X,12X), Aa(14X,13X), Ag(154,13X),
Aa(154, 14X), Aa(16A,13X), As(16A,154), A4(17A,14X), A4(17X, 15X)
ond A4(18X, 17A) are exactly determined by Corollory 7.1

'I'he quaternary (6, 9, 5), (7, 8,6), (10,5, 9), (11, 12,9), (15, f‘i, 13), (17,9,14)
nnd (17,5,15) codes obtained by the new method are optimal because
[hey attain the upper bounds.

The existence of (16,12, 13) code is result from Lemma 1.

The quaternary (6, 117,3), (7, 346, 3), (8,1156, 3), (7, 80,4), (7,22,5),
(8,19,6), (10,33,T), (11,27,8) and (12,22,9) codes are obtained by the
new method.

(7,8,6) (6,9,5) (17,9,14) (11,12,9)
1212002 912112 00000011133333333 00011122233
0300312 333202 00110133311010110 01202301123
1133330 030010 00330300000101001 02132110302
0031021 302021 11111122200232302 11321202300
3201133 223320 11221200011323213 12203123010
3022210 011301 22112111122121221 13030220121
2120101 121032 22222233333202032 20103231201
2313223 003133 33003000022212122 21022013031
110223 33333322233020230 23110302012
30221030112
32310011220
33333333333
(15,6,13) (10,5,9) (17,5,15)
212303200020221 2000332312 00233310311133030
330212002013333 3222101333 12310230021321103
020123133221132 1033010123 31100013113222222
121312121302210 3111320001 22031103200000200
002230311103101 0331233230 23121321032211331
333021310330012
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Table 1. Ay(n,d) for3< d <n < 17.

n/d 3 4 5 6 o 8 9 10 | 1

3 4

4 16# 4

4 P

5 64; 16! 4
179"

6 132, 64} 977 4
e,

614" 179! 367

7 S0 A 2y 8k 4
346, 8, 22, i
2340 614' 1447 32!

8 105 oy 527 4
1156, 256, 64; ﬁi,, v,

9362 2340 576 128 207

9 SP70 [ 4

4096; 1024, 256, 64; 16;
30427 93627 21457 5127 80°
7

10 1l 162 | 52 4
16334, 4096, 1024 256; 43,

109226' 30427 6241" 2048 3207 64"

11 AP I LI 7 B
65536, 16384, 4096; | 1024, 64, 57 §
41943047 | 109226" | 208527 | 6241' | 12807 | 242" | 48

12 9?7 | 42

i r
262144, 65536, 4096; | 4096, | 256; 64 ﬁs,,
n/d 11 12 13 14 15 | 16
13 3z 47 4
21P7
14 8! 4 4
16,
3477
15 167 | 62" | 4 4
64,
308
16 (- E R 8 G2 (. L ST
256,
1026' 48"
17 2567 9T | 522 | 4
256; 16;
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On the number of points on an
algebraic set

M. Boguslavsky *
Institute for Information Transmission Problems, Moscow

Abstract

The problem of computing weight hierarchy of algebraic-geo-
metric codes (AG-codes) can be reduced to the problem of com-
puting the maximum possible number of Fg -points on algebraic
sets of certain classes. We prove a new bound on the number of
F, -points on an arbitrary algebraic set of codimension 2. This
bound is necessary for the computing of the second generalized
weight for g-ary projective Reed-Muller code.

Let P™ denote the m-dimensional projective space over a finite field

: i mt1_ . t
¥, . This space contains p,, = 5—;:1—1 points, which are cosets of
points (zo, 1,...,&m) € F:‘“ modulo linear equivalence. For iy +

i1 + ...+ i = d denote the homogenous coordinates in j JES R by
(igiy...i,m ),and let zo, ..., 2z, be the homogenous coordinates in P™ . A
Veronese embedding of degree d is a map Vy : P™ — P(dtm)'l, given
bY gy i = 2023 .. 2im,
The image of P™ under this map is called a Veronese variety. An AG-
code, corresponding to this set of ¥y -points is called a projective Reed-
Muller code. For d < ¢ this is a linear [py, (dj;m) — 1,d;]4-code, where
the minimum distance dy = pp, — dg™~! — p,,_3 was computed in [6].
If Cis an AG [n,m + 1,d,;],-code corresponding to a projective system
X CP™ then
di =pm— max |XNHY,
HiclP™

where the maximum is taken over all hyperplanes H' ¢ P™ and |Y|
denotes the number of points in ¥ ¢ P™.

*This work was supported in part by the International Science Foundation under
grants MPN0O0OO and MPN300
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I'lie r-th generalized Hamming weight of C' can be defined by

di = pm — max |XNH™|
HncP™

where the maximum is taken over all linear subspaces of P™ of codi-
fnension r.

We can give a definition of generalized weights of an arbitrary linear
tode € using the notion of the support of a code.

Definition. The support x(D) of a code D is defined as

x(D)={i: IHxy,m2,,.., %) € D1 it; # 0}

'I'he r-th generalized Hamming weight of a linear code C' is the minimal
nipport size of a r-dimensional subcode of C:

d.(C) = min{|x(D)| : D Cc C,dim D = r}.

(ieneralized Hamming weights were first introduced by Wei [10]. For a
linear [n, k, d];-code they are a monotone set of integers d; = d < dy <
. < dy-1 < dp = n. The set of all generalized weights {d;,ds, ..., dx} is
tolled the weight hierarchy of a code. Several applications of weight hier-
inrchy are described in [11]. More information about generalized weights
ind the bibliography can be found in the survey paper by Tsfasman and
Viadut[8]. Hirschfeld, Tsfasman and V1adut[2] presented a geometric
Interpretation of generalized weights. It is well known [7] that the study
ol linear [n, k];-codes can be reduced to the study of projective systems,
(hint is of n-point subsets of a (k — 1)-dimensional projective space over
K, .
(ieneralized weights for codes on several classes of algebraic varieties have
heen computed, namely for Hermitian varieties [2], multidimensional
(quadrics [4] and [9], Grassmann varieties [5] and Del Pezzo surfaces [1].
In his paper [10], V.Wei computed the weight hierachy for binary (affine)
l{eed-Muller codes. He implemented a strong result from the extremal
et theory, namely the Kruskal-Katona theorem.
Any hyperplane section of a Veronese variety is a 1-1 image of a hy-
persurface, which can be reducible, of degree d in P™ . Therefore any
nection of a Veronese variety by a plane of codimension r is a 1-1 image
ol an intersection of r linearly independent hypersurfaces of degree d in
M
'I'o compute the weight hierarchy we need to know the maximum possible
number of pdints in algebraic sets, that are intersections of r hypesurfaces
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of degree d in P™ . We propose two following theorems which give
bounds on the number of points on the intersection of two hypersurfaces.

Theorem 1 Let Fi(zo : @1 : ... : ap) and Faf#p & £1% oo il W) b8
homogeneous polynomials in m + 1 variables of degree d. Suppose they
are linearly independent and d < q—1; then the mazimal possible number
of their common zerces in P™ (F, ) equals (d—1)¢™ ' 4 pp_g +q™ 2.

From this theorem easily follows that

dy = Pm — (d = l)qm_] + Prn—2 + qm—2

Theorem 2 Let X be an algebraic set of any degree & and codimension
2 P” . Then | X| < 8pm_s.

This theorem can be extended to the case d < m(q — 1). Theorem 1
1s a corollary of theorem 2, which was proved for small values of q by
Lachaud in [3]. Theorem 2 can be also considered as a bound for the
number of solutions of system of two polynomial equations

{ Fi(zo, - .

syl = 0
Fy(zo, .. 0.

.,..":m) =

when F and F, are supposed to have no common divisors.

Proof of Theorem 2.

The proof is by induction on m. For m = 2 we have dim X = 0, therefore,
|X| < deg X = 6.

For each m > 2 we first consider the case (1) when X is irreducible and
not contained in a hyperplane. Secondly we consider the case (11) when
X is contained in a hyperplane. Finally (111), we deduce from (1) and
(11) the bound for an arbitrary X.

(1) Suppose X is irreducible and X is not contained in any hyperplane.
Thus, X N H is an algebraic set of codimension 2 and degree 6 in H ~
P™~1 for any hyperplane H. By the induction hypothesis, | X N H| <
5pm—3-

Consider the set {#, P} C (P™)" xP™ consisting of pairs (¥, -hyperplane:
H, F; -point P € H N X). We compute the number of F, -points in
this set by two different ways.

We have |X| ways of selecting a point P € X and for each P we have
Pm-1 ways of selecting H. On the other hand, we can first select one of
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i hyperplanes in P™ and then select one of points on the intersection
Il N X. So,
| X|pm-1= _ |HNX{ (1)
H

(lombining this with.
|H nXl S 6pm—3:

we pet
| X |Pm—-1 £ Prmbpm—3.
T'hus,
m . gPm-=1t1 Pm—3 s
1X] € 22bpp-z = e 1 g

e Rt &)

hg—=
= 5pm—29+i_1__.1. < Opm—2.

Pm—3
(11) Suppose X is contained in a hyperplane H. Since X has codimension
Jin P™ | XN H is an algebraic set of codimension 1 in H ~ P™~! and
ol degree §. By theorem 1.14 from [6],

|X] < 6¢™ %+ pm-3 < 6pm_2. (3)

(111) Let X be an arbitrary algebraic set of codimension 2. X can be
ilecomposed into the sum of irreducible components X = X; + Xo +

|- X of degrees 61,62 ... 6;; ZLI 6; = 6. If X; is not contained in
i hyperplane then | X;| < é;pm—2 by inequality (2). If X; is contained in
i hyperplane the same is true by inequality (3). Thus,

& k
X <D0 IXil < O 6)pm-2 = 6pm—z.  ©
i=1 i=1

We can propose also a conjecture about other weights.

Conjecture 1 The weight hierarchy of a projective q-ary Reed-Muller
vode of order d < q s given by

dp = Pm — Z:T;i L,‘.qm—:' + Pm_3s lf v > 0.:
dy = pm — Z:’;E Vi('pm-—i . Pm—a’—?) +Pm-4 tf 11 =0,1n>0,
dy = P = 3oie; VilPm—i = Pm—i=j) + Pm—2jif 11 = 0,02 = 0,.,5; > 0,

(.’,-:pm—b‘m t'fb‘lzl'/g:...zum._l:o,
v _ : . .
where v; are such that z*z3? .. .x, "Y' is the r-th (in lezicographical

order) monomial of degree d in m + 1 variables.
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his constant attention to this work.
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On the Milnimal Words of the
Primitive BCH Codes

Y. Borissov, N. L. Manev
Institute of Mathemaftics,
Bulgarian Academy of Sciences,

8 G.Bonchev str., Sofia 1113, Bulgaria
sectmoi@bgearn.acad.bg *

Abstract

The number of minimal codewords of weight 10 and 11 in the
primitive double-error-correcting BCH [2™ — 1, 2™ — 2m = 1: ‘5]
code and one of weight 12 in the extended code are determined in
the case m odd.

| Introduction

[‘or the first time the sets of minimal codewords of linear codes were
uludied in connection with a decoding algorithm by Tai-Yang Hwang
[2]. Additional interest to them was generated by J. Massey [3] who
iined them to specify the access structure of a secret-sharing scheme. For
efinitions of a secret-sharing scheme and access structure determined by
lincar code we refer to [3, 1]. For completeness in Section 3 we describe
i variant of constructing secret-sharing schemes with access structure
determned by te set of minimal codewords of a binary code. .
Definition.[3] Let C be a binary code. A codeword ¢ € C is called
minimal if its support does not contain the support of other codeword
i Lrue subset.

[lere are some of the basic properties of the minimal codewords:
I'roposition 1 [2] Let C be a linear [n, k, d] code. Then

*This research was partially supported by the Bulgarian NSF under Contract
| |'|H“r1"95.
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- If ¢ is a codeword of weight wi(c) satisfying inequality d < wi(c) <
2d — 1, then c is minimal.

- If ¢ is minimal, then wi(c) < n—k+ 1.
Proposition 2 [3] Every non-minimal codeword is a linear combination
of those minimal codewords that are covered by it.

The cardinalities of the complete sef of minimal codewords for g—ary
Hamming code and for RM (2, m) are obtained in [1]. Herein we consider
the primitive BCH [2™ —1, 2™ —2m—1, 5] code C correcting two errors,
its extended C and their duals codes. In C first weight for which there
exist both minimal and non-minimal words is 10 and in C is 12. For m
odd we determine the cardinalities of the sets of minimal (non-minimal)
codewords of weights 10, 11 and 12, which are all possible weights of
minimal codewords in the case m = 5.

To calculate the aforesaid cardma]lhes we need some weight distribu-
tions. Let {B; ]~2 71 and {B }2_, be the weight distribution of C* and

C"', respectively. Their values can be found (for example) in Chapter

15.4 of [4]:
In the case m odd:
1, for ¢ =0,
(@™ - 1)(Z2427F), for i=2m1 9% _
B;={ (2™ -1)(2™ 1+ 1), for §=9m-1 (1)
(2™ — 1)(2™-2 - ZMT—a), for 1=
0, otherwise
and
iy for vi =10, and. $#=2M
Jeh ] gmetfom gy o ifEn =gl o ol
Bi=¢ @™ =1@™ +2), for i=gF1 (2)
R for i =
0, otherwise

Using a form of the MacWiliams’ identities [4, page 131] we can calculate I

the weight distribution {Aj}fza'l and {2_, }fzﬂ_l of the double error-
correcting BCH code C and its extended C, respectively. The number
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Ay and Eﬁ of codewords of minimal Weig__hts 5 and 6 are _

S A, = (1= 225N 4 (P @m - (el )
b @R Sy om -y em 42

m—1 4
o e e Lo e

3)

2m‘.l

22m=34s = (1-22"-5(7)+ (¥ @™ - 1E@™+2)+

_1) (2 .-:;2 )+(2 -2 )

1 Zm—l(zm >

2 The main results

Theorem 1. Let C be the double-error-correcting BCH 2™ — 1, 2™ —
Y —1, 5] code. If m is odd, then the number of minimal codewords is
Ay — Pig, where
gEm=d 7 9™ 163

Pio = As | As. R )(2’”‘1—1)_3 3 (5)
und As is determined by (3).
I'voof: The support of every non-minimal codeword of weght 10 can
e uniquely split into two subset which are the supports of codwords
ol weight 5, i.e. can be uniquely split into sum of two codewords of
minimum weght with disjoint supports. Really, the assumption of the
contrary implies the existence of v, v € C of weight 5 whose intersection
lins weight wt(u*v) > 3. But it is impossible since the minimum distance
i 6 (wi(u + v) = wt(u) + wi(v) — 2wit(u * v)).
(On the other hand, since the dual code C* has only three nonzero weght-
i by (1), Assmus-Mattson theorem gives that the supports of the code-
words of weight 5 form a 2— (27 —1, 5, A) design with number of blocks
b = Ag. ( For the notion, the basic properties and definition conserning
ilesigns and Assmus-Mettson theorem we refer to [5, 4]. ) The simpliest
properties of designs gives that any point belongs to exactly A; blocks
(.. exactly Ay codewords of weight 5 have 1 in any fixed coordinate)
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and any pair of points is contained in the same number A = X3 of blocks,

where
5As 20As5

M= A= onEr oY)

The number of non-minimal codewords of weight 10 coincides with the

number Np of the pairs disjoint blocks and can be calculated by the
priciple of inclusion and exclusion. Let N be the number of all pair of
different blocks and V; be the number of pairs of blocks with at least i
common points (non-zero positions). Then

- (%)

g XY BHs(5A5 T4 1)
il _1)(2)“ a@er=1) = °

= (2m2— 1) (3) _ 5A5_2UA(52;(_2”;)E22(_2”;)—2);

N3=N4:f\’75:0.

Therefore, replacing in Pjg = Ng = N — N; + N, after some transfor-

mations we get (5).
°

Ezample. In the case mm = 5, i.e. block length of the code 31, there are
210.31 non-minimal and 1132.31 minimal codwords of weight 10.

Theorem 2. The number of the non-minimal codewords of weight 12

in the extended BCH [2™, 2™ — 2m — 1, 6] code C with m odd is

b 1 = A e
Pry = 24 [—(23"“"2 — 39272 4. 140.2™ — 843) — 10(’\ 3 l) + 15] ,

20
- (®)

where ) = 20.;1}/ (23 )

Proof: By (2) and the Assmus-Mattson theorem the supports of all
codewords of weight 6 form a 3 — (27, 6, A) design with b = Ag blocks.
As usual A; denote the number of blocks through i, i < 3, points and
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. 2 _ 30Ag
2= 4 Qm(%m _ 1) ?
o Bie 120.A¢

2m(2m — 1)(2m - 2)°

l.el ¢ be a non-minimal codeword of weight 12. Since the minimum
listance is 6, ¢ can be split into sum only of two codewords of weight 6
covered by it. If this representation is not unique, the support of ¢ can
lie uniquely partition into 4 triples such that any two of them form the
nipport of a codeword (covered by ¢) of weight 6. All these 6 codewords
{opether with ¢ and all-zero word form a 3-dimensional linear space.
Now let X denote the number of non-minimal codewords of weight 12
which can be uniquely split into sum of codewords (of weight 6) with
digjoint supports and Y denote the number of ones with more than one
partitions. Hence, we should determine X + Y.

Obviously, X 4+ 3Y = Ng— the number of disjoint blocks. To calculate
Ny we again use the inclusion-exclusion principle. In this case

e xzis : b )ll AL 626
N_(2>, M_v(g)_mﬁ\gmq)

2™\ [ Ag 2™\ (A
= " N3 = .
w=(3) () %= (3)G)
N4:N5:N5=O.
leplacing them in Ng = N — Ny + Ny — N3 we get

~ [ A
No= %AG {56(23“‘"2 —30.2°™~2 4 140.2™ — 843) + 5]

[t count Y. Any fixed triple (i1, 73, 13) occurs in A3 = A blocks. There-
fore, the union of every three blocks containing (i1,is,43), that can
he chosen by (3) ways, form the support of non-minimal codeword of
weight 12 consists of 4 disjoint triples. There are (2;) possible choices of
(i1,i2,i3) but every codeword is counted 4 times ( one per triple). Hence

=10 -3
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Then from X +Y = Ny — 2Y we obtain (6). 5

Ezample. In the case m = 5, i.e. block length of the code 32, there are
3776.31 non-minimal and 7360.31 minimal codwords of weight 12.

Lemma If the extended BCH code C : [2™, k, d + 1] has Sy; non-
minimal codewords of weight 27, then the BCH code C': [2™ — 1, k, d]
has s3;_; and s3; non-minimal codewords of weights 2 — 1 and 2j,
respectively, where
; = :

2—‘?823-; 595 > 2—#52;‘. (7)
Proof: Let ¢ = (¢|cs), ¢ € C be a non-minimal codeword of weight 2j
of the extended BCH code C. Then ¢ will has weight 2j when ¢oq = 0
and 2§ — 1 when co = 1. Qbviously € is also non-minimal. Since C has
transitive group of automorphisms (the affine group) we can proceed
analogously to Theorem 14 of [4, Ch.8]. Consider the Sp; x 2™ matrix
of all non-minimal codewords of weight 2j in C. There are the same
number [ of I’s in each column of the matrix. After deleting any column
we obtain [ non-minimal codewords of weight 25 — 1 and Sy; — I such
codewords of weight 2j. Since 2™.1 = S9;.27, then

Conversely, let ¢ € C' be a non-minimal word, i.e. its support be an
union of the disjoint supports of two codewords a,b € C. Then the
support of ¢ = (¢less) will be an union of the supports of @ = (a|aeo)

and b = (blbes) except for the case cog = 0, @oo = bss = 1. Therefore

8251 = [, but 525 > Szj — I, which implies (7) 5

Theorem 3. The number of minimal codewords of weight 11 in the

double-error correcting primitive BCH [2™ — 1, 2™ — 2m — 1, 5] code C
with m odd is 4

3 gm—2

An

Proof: It follows from the Lemma. o

Ezample. In the case m = 5, i.e. block length of the code 31, there are
1416.31 non-minimal and 1344.31 minimal codwords of weight 11.
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Dual codes of BCH codes. For every m > 4 Proposition 1 describes the
uet of minimal words. In the case m = 4, i.e. in the case of block length
Ih and 16, can be counted directly.

3 Construction of secrete-sharing schemes.

Now we shall describe a method of constucting secrete-sharing scheme by
hinary codes. Let C be a binary linear [n, k] code, whose first coordinate
i not always 0. Let the secret s be a binary vector of length I. To any
coordinate s; of 5,0 < 7 < !, we add selected at random k — 1 bits, which
logether with s; (as a first coordinate) we use as a set of information bits
[ compute the coresponding codeword of the code €. Thus we obtain [
todewords that form an ! x n matrix, whose first column is the secret s.
'I'he others are the n — 1 shares in the secret-sharing scheme. The access
ntructure of this scheme is characterized by the set of minimal words
with 1 as a first coordinate in the code Ct.
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Let F;‘ be the n-dimensional vector space over the Galois field Fy. Thel
Hamming distance between two vectors of F is defined to be the number

of coordinates in which they differ. A g-ary linear [n, k,d; g]-code is a
k-dimensional linear subspace of F' ¢ With minimum distance d.

Let ng(k,d) denote the smallest value of n for which there exists an
[n, k,d; g]-code.

For ¢ = 2, na(k,d) is known for k < 8 for all d except for 15 values of d

(2] [1].
Lemma 1. [2] ny(8, 78)=159 or 160; n2(8,80) = 162 or 163.
Theorem 1.

(1) Every [162,8, 80; 2] code has weight distribution
Ao = 1, Ago — 23‘1., Ags = 21

*This work was supported partially by the Bulgarian National Science Fund un-
der Contract No. MM - 502/1995, and partially by the Norwegian Research Founda-
tion (NFR) under contract numbers 107542/410 and 107623/420.
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(11) There exists a [162, 8, §0; 2] code.

'roof:

I'he proof of part (1) will be presented in a forthcoming paper.

(1) It 13 straightforward to check that the 8x162 matrix obtained from
20 circulants with rows

(0101101, 00000011,01010111, 00001111, 00000101, 00011101, 01101111,
00000111, 00000001,00101111, 00110111, 00101011, 00010011, 00010011,
(0111101, 00010101, 01111111, 01011011, 00011001, 00100111

and two columns (11111111)* generates a [162, 8, 80; 2] code.

Since the dual of the code constructed in Theorem 1 has vectors of weight
I there exists a [159,8,78;2] code. Hence by Lemma 1 we get

Corollary. n,(8,78) = 159.
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A Program for Obtaining Linear
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Abstract
We describe a program for obtaining new linear programming up-

per bounds (LPB) on the cardinality of spherical codes. The pos-
sibilities of our program are presented with some examples.

1 Introduction

The upper bounds on the cardinality of spherical codes are interesting
both in the geometry and the coding theory (cf., for example, [4, 6]).
Boyvalenkov [1, 2] proposes a method for obtaining new LPB on the
cardinality of spherical codes. The best known LPB due to Levenshtein
[b, 6] were investigated for possible improvements. It turns out that this
method works in many cases. Boyvalenkov-Bumova-Danev [3] obtain
necessary and sufficient conditions for the existence of new bounds. In
this note we present a computer program which checks if the Levenshtein
bound can be improved. If ”yes” and the parameters are "reasonable”,
it calculates a new bound.

2 Test for improving

Let the dimension n snd the maximal cosine s € (0,1) be fixed. Our
program firstly computes the Levenshtein bound and, in particular, its
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ftidex m, i.e. we have A(n,s) < Lgn(n,s). Then we calculate the test
lunections Q;(n, s) [3, Section 3] for m+1 < j <m+ 6.

Il (2j(n,s) <0 for some j € {m+1,...,m+ 6} then we conclude that
(lit Levenshtein bound can be improved by a polynomial of degree j [3,
['icorem 3.1] (sometimes better results can be obtained by a polynomial
of degree j+1). We conjecture that if Qmy3(n,s) > 0 and Qmya(n,s) >
0 then Q;(n,s) > 0 for all . Thus we improve A(n,s) < Ly, (n,s) using
piulynomials of degrees m + 3 and m + 4.

3 Obtaining new bounds

Il (he test’s answer is positive, we apply the method from [1, 2] in order
[ compute new bound by a polynomial of degree m + 3 or m + 4.
Hometimes the best choice can be reached after checking two or three
possibilities, but usually we have only one possibility for the form of the
(tproving polynomial.

Iii [3], we present an algorithm for upperbounding D(n, M) — the maxi-
innl possible minimum distance of a code on §"~! with M points. This
npproach requires several consecutive implementations of our program.

1 Some examples

\Ve shall present the graphs of the Levenshtein bound and our bound in
iome dimensions n > 3. For n = 3, improvements are possible for all
I > 59 = 0.026451... [3, Table III]. We have computed the new bounds
it many points from [sq,0.8] (3 < m < 9). We expect that the graphs
ol our bound is very close to the true new bound. Many other examles
nre avialable by the authors.
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Abstract

We propose a general approach for studying the possibilities for
improvements of the known linear programming bounds (LPB)
on the cardinality in a polynomial metric space M (finite or infi-
nite}. Functions P;(M,s) are introduced with the property that
P;(M,s) < 0 for some j if and only if the universal LPB (sece (1)
below) can be further improved by linear programming.

1 Introduction

For the notion and the basic properties of the polynomial metric s-
paces (PMS) we refer to [5, 7, 8, 10, 13, 15]. Bach PMS is associated
with the so-called zonal spherical functions. They are real polynomials
(1) = E:.“:D akit', k= 0,1,..., which are orthogonal with respect to a
corresponding measure v(t). The properties of this system imply many
important results in PMS.

An (M, M, s) code is a finite subset W C M of cardinality |W| = M for
which ¢(d(z,y)) < tm(d) forall 2,y € W, & # y, where d = min{d(z, y) :
v,y € W, z # y} is the minimum distance of W and a(d) is the
standard substitution of M. The maximal cardinality of an (M, M, s)
code is denoted by A(M,s). For investigations of the quantity A(M, s)
in different M see, for example, [4, 5, 6, 8, 12, 15] and references therein.
The best known universal upper bound on A(M,s) can be stated in
ferms of the zonal spherical functions and their adjacent systems as
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follows [10]:

Lgk_l(M,s)z(l— Qk£5 )Zn for tk ]§s<tk /
AM,5) <

for P < e

(1)
where ti'l and t:’g are the greatest zeros of the adjacent polynomials
Q‘}'l(t) and Q;"°(t) respectively, r; are integers.

The bound (1) was obtained by the linear programming method in [9, 10].
Some improvements in particular cases can be found in [1, 2, 3, 14].

In this note we announce some results on the possibilities for improving
the bounds (1). Let a PMS M, a pDSlLl\-’e integer m > 3 and s €
[tk b %] for m = 2k — 1, s € [ty°,t}"] for m = 2k be given. Then
functions Pj(M, s) are introduced vuth the property that Pj(M,s) <0
for some j > m if and only if the bound A(M,s) < Lm(M,s) can
be improved by a polynomial of degree at least m + 1. A formula for
P;(M, 5) depending on the zonal spherical functions (corresponding to
M) and s is given. We present some applications in the binary Hamming
space H(n,2).

Lak(M,s) = (1 - ES;) Z’"i

2 The functions P;(M, s)

According to [10], the bound A(M, s) < Lag_1(M, s) for t}}; < s < tk
is obtained by the polynomial

P, (0) = (=) (K0, (1,9))” = (t—0)?(t—0n)? . (t—ap—2) (t—cx-1),

where —1 < ap < a; < -+ < ap_g < ap_1 = s and the bound
A(M, s) < Log(M, 5) for ti’o <s< t}c‘l is obtained by the polynomial

£20) = @1 (t=s) (KR (2, 9)" = =Bo)(t—F1)? ... (t=Br-1)*(t—Br),

where —1 = By < f1 < -+ < fr-1 < B = s and ti‘u & Ba ti’l.
Furthermore, there exist positive weights p;, ¢ = 0,1,...,k (%, & =
0,1,...,k+ 1) such that for any real polynomial f(t) of degree at most
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2 — 1 (2k) the equality

k+1

fo= [ 0 dv(r)—zp, Faa) (fo = f Fdv() = DA (6)

(2)
holds. We set ap = fr4r = 1 and Sm = Sh_g pia?® (5 %:87).
Lemma 2.1 [10] The numbers p; and oy, ¢ = 0,1,...,k (v and 5y,
=0, 1, ... k + 1) satisfy the system of 2k (2k + 1) equations Sy, =
by _f t"‘dv(t for0<m<2k—10<m<2k)

Lemma 2.2 For any integer m > 0 we have Zmn G, ib; = 0.
We introduce the following functions depending in the zonal spherical
[unctions and s

k
ZﬂéQ;‘(m) for il <egin?

Pi(M,s) = { 3 (3)
ZYin(ﬁg) for 6 <a<ii?

i=0

[t follows by Lemmas 2.1 and 2.2 that P;(M,s) =0for 1 < j<2k—1
bnd 10, < Ll d.ncl for 1 < j < 2k and £;'° < s < ' So we
nssume j > 2k when tk j S8 tk % and 7 > 2k+1 when ti’o <8< ti’l
l.evenshtein’s results [10, Section 4] show that the functions P;(M, s)
are continuous in s. In the finite PMS we assume j <diam(M).
Theorem 2.3 The bound L, (M,s) can be itmproved by a polynomial
from Apm,s of degree at least m + 1 if and only if P;(M,s) < 0 for
some j > m+ 1. Moreover, if Pj(M,s) < 0 for some j > m+ 1, then
Lin(M, s) can be improved by a polynomial from Aa s of degree j.

By the next theorem we give a formula for P;(M,s) in terms of the
power sums S; and the zonal spherical functions.

Theorem 2.4 We have

J
2(5}' — bi)aj for f;lc’_11 <s< t;lc’[), J>2k;

PiiMyg =0t

> (Si—baj; for tp° <s<tp', j>2%+1
i=2k+1

. (4)
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A system of zonal spherical functions {Q;(t)}7Z, is called symmetric if
@Q:(t) = (-1y 'Qi(—t) for all i and . A PMS with a symmetric system
of zonal spherical functions is called antipodal. The Euclidean spheres
and the binary Hamming spaces are examples of antipodal spaces. For
symmetric systems of zonal spherical functions the equality b; = 0 for
i odd follows since ap, i = 0 for m + ¢ odd. This implies the following
simpler formula for Pyj43(M, s).

Lemma 2.5 a) For an aniipodal PMS we have

Sak+1 [‘12}:—{—3 2k+3(1 + Cvo D A ak—1) + ﬂzk+3,2k+1']
; fortk1<3<tk, _
| Sak+1(a2r4s, 2k+3(1 + BE+ -+ BL) + azk 43,2k +1]
fort <s< ti'l.

P3k+3(M1 3) =

: ..Pr‘oof We give a proof for f,t— 1 <8< tk ; By Theorem 2.4 we obtain

 Piya(M,s) = S2k+1"32k+3 2641 +.S2k43azk43,2643 (because baryy =

_:_b2k+3-.='a2k+3 2;,_,_2 = a3k+3 o = 0) We consider two linear systems
"w:t'.h the equations Sppj; = }:f_ﬂ pia?*t! and Spys = Z;—o pialtt?

as (k'+ 1)-th equations together with the k “odd” equations (wn:h ze-

roth right-hand side) from Lemma 2.1. Applying the Cramer rule with
" respect to py in these 'two systems and equating the results we obtain

.5'2k+3 = (a2 + % + -+ 4 1)S2;41 that completes the proof. The case"

tk <s<tylis con31dered analogously.

3 An application in the binary Hamming '

space H(n,2)
We consider the binary Hamming space H(n, 2) with the usual Hamming

metric. The zonal spherical functions are the Krawtchouk polynomials
defined by

Q) = 1,0{"() =t,(n— HQF ) = ntQV(t) - kL, (1)
for 1 < k < n—1, and the adjacent polynomials are given by [9, p. 81]

1u(n) Q{n 1)(nt+l Q1,1,(n) Q(n 2)( nt ) 5)

The standard substitution is linear #(d) = 1 — 2d/n. We have b; = 0 for
i odd (i.e. the spaces H(n,2) are antipodal).
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etailed description of the linear programming bounds (1) in the Ham-
ming spaces H(n, r) and their consequences can be found in the recent
l.evenshtein’s paper [11]. In the coding theory A(M,s) is denoted by
An,d), d = t_l(s) =n(l —s)/2.

We compute the functions Pogya(H(n, 2), s) (assuming 2k + 3 < n) for
hoth bounds Lyg_1(H(n,2),s) and Lax(H(n,2), s).

(159 n—k ap k-2 1 (k)
Lemma 3.1 a : = , [9,p. B0]. b : = —(2 —
) QE1, k41 n [ 2 } ) Ak k ﬂ"’( 3
(A.- )
1 A
)

'T'o apply Lemma 2.5 we use the fact that the numbers ap, ay,...,ap_1 =
8 (P, Bay -+, Br = s) are all roots (see Section 2 or [10, Section 4]) of the

oquation (t—s)K "%, (t) = 0 which is equivalent to Q' 0y )Qi'o’(“}[ )—
QL0 ™(s )Q‘1 & (“}(t) = 0 [10, Equation 4.7] (the equation (t—s) K}, (t) =
0 which is equivalent to Q5™ (1)@ ™ (s) — Q¥ ™ ()@l M) =0
[10, Equation 4.18]). Then we use Viéte formulae, (5) and Lemma 3.1a).
k? + 8k + 1+ /(%2 + 4k + 5)(k? —4k-3)

l'or & > b we set k) =

4

Theorem 3.2 a) If 2k+3 < n < k?4+4k+2 then the bound sz(H(On 2), 5)
can be improved in the whole (open) interval of iis oplimality tk <s<
1,1

ly

I: [fk > b and (k,n) # (5,13), (6,15) then for 2k +3 < n < k; the
hound Log_ I(H(n 2), s) can be improved in the whole (open) interval of
iy optimality tJh <8<ty v
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Abstract

We give two new characterizations of spherical designs with small
cardinalities. This implies some restrictions on the structure of
such designs.

| Introduction

A spherical code W C S"~! is called a spherical 7-design if and on-
ly if ) ew f(z) = 0 holds for all homogeneous harmonic polynomials
[(z) = f(z1,22,...,z,) of degree 1,2,..., 7 (as usually, (z,y) denotes
(he standard scalar product in R?). The spherical designs were intro-
duced in 1977 by Delsarte-Goethals-Seidel [4].

We use the following equivalent definition. A code W C S"! is a
upherical T-design if and only if

Y H(=y) = Wlfo (1)

zEW

where y € 8"~ is an arbitrary point, f(t) is a real polynomial of degree
ol most 7, and fp is the first coefficient in the expansion of f(t) =

3 5 f,-Pg.(")(t) in terms of the Gegenbauer polynomials [1, Chapter 22].

fotf=

T



In fact, we use (1) in the special case when y belongs to the design. Then
(1) becomes

Y. [y =Wif - £(1). 2)
zeW\{y}
We shall need some notations and results from [2, 6]. The numbers
ag < @1...< a1 =5 (—1 < ag and s < 1) are all different zeros of
certain polynomial fg;)_l(t). The positive weights p; ,i = 0,1,...,k have
been defined in [6, Theorem 4.1] (ax=1). Then for any real polynomial
J(t) of degree at most 2k — 1 one has

fo:ZPif(as)- (3)

i=0

Correspondingly, the numbers —1 = 8y < 81 ... < fr = s (s < 1) are all
different zeros of certain polynomial f$3() and 7;, i = 0,1,...,k+1 are

positive weights. We have fp = Z:":ul 7 f(B;) for any real polynomial

f(t) of degree at most 2k (8x41 = 1) [6, Theorem 4.2].

Let A(n,s) denote the maximum cardinality of spherical codes on §*~1

with maximal cosine s. Let the numbers £y and 7 are the greatest zeros
n—1 n—1 n—1 n—3

of the Jacobi polynomials P;ET’T}(t) and P;ET'T)(t) respectively.

Then the Levenshtein bound on A(n, s) states [6, 7]

Lop_1(n,8) =1/px forép_1 <s<my
A(n,s) < : L 4
(m8) < {sz(”:-‘?) =1/7k41 for m < 5 <& )

In [2], test functions @Q;(n,s) are introduced for checking if the bound
(4) can be improved by linear programming. We have

YropiPMN o) for €1 <5< m,

5
i Tipj(n)(ﬁi) for m < s <& )

Qj(n,s) = {

2 Two new characterizations of spherical
designs

We give two new characterizations of spherical designs with relatively

small cardinalities in terms of this function. In fact, we consider designs

which would come after the tight spherical designs. Hardin-Sloane [5]
have conjectured that such designs are very rare (see also [8]).
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We consider in detail the odd strength 2& — 1 only.

I'heorem 2.1 Let n > 3 and 5 € (€x—1, M) are fized and W C S™~! is
i spherical (2k — 1)-design with cardinality |W| = Logx_1(n,s). Then

(1) WIQj(n,s) = 1+ X cw\(yy f((z,y)) holds for any j > 2k, any
polynomial f(t) of degree at most 2k — 1 such that f(a;) = Pj{a;) for
{=0,1,...,k—1, and any point y € W.

(1) Y sewr(yy F((2,9)) = 0 holds for any polynomial f(t) of degree at
most 2k — 1 such that f(a;) = 0 fori = 0,1,...,k — 1 and any point
e w.

I'roof. We consider polynomials g(t) = f(t) — P{™(t) where deg(f) <
2k —1 and f(a;) = Pj(e;) for i =0,1,...,k — 1. Then by (3) we have

go=fo= Y pif(c:) = prg(l) + Qj(n, ). (6)

i=0

(i) Let W is a (2k — 1)-design. Then by (2) and (6) we have

(W(Qj(n,5) = folW|—g(1) = fIW|-(F()-1) =1+ > f((=,9)).

ceW\{y}

(il) By (3) we have fo|W| = f(1) and then (2) gives

Y. Sz =0

seW\{y}

Corollary 2.3 Let n > 3 and s € (&x_1,m) arc fized and W C S™!
i a spherical (2k — 1)-design with cardinality |W| = Loy_1(n,s). Then
Jor any point y € W and any i € {—1,0,1,... . k =1} fa_, = =1 ther
crists poinl © € W such that (z,y) € [ai, aiy1]. If for somey € W and
i there exists no point x € W such thal (z,y) € (i, ;1) then W is a
marimal spherical code.

Proof. For 0 < i < k — 2, we apply Theorem 2.1 (iii) with

k-1
F(t) = (1/(t — )t — alphaiy1)) [T — e)”.
j=0
l'or i = —1 we take f(t) = ({ — alphag) Hf;ll(t —o;)?, and fori=4k—1

we take f(t) = f(t) = (t — alphar_1) [TEZ0(t — ay)? = F53) (D).
We formulate the corresponding assertions for the even strength 2k.
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Theorem 2.3 Let n > 3 and s € (nx, &) are fized and W C S isa
spherical (2k)-design with cardinality |W| = Lyr(n,s). Then

() (WIQi(n,5) = 1+ Soewriyy F((@,9)) holds for any j > 2% + 1,
any polynomial f(t) of degree at most 2k such that f(5;) = P;(8;) for
i=0,1,...,k, and any point y € W.

(1) X sewr(y} f((=,¥)) = 0 holds for any polynomial f(t) of degree al
most 2k such that f(f;) =0 fori=0,1,...,k and any point y € W.
Corollary 2.4 Letn > 3 and s € (i, &) are fivred and W C 8"~ ! is
a spherical (2k)-design with cardinality |W| = Lar(n,s). Then for any
point y € W and any i € {0,1,...,k} there exists poinl ¢ € W \ {y}
such that (m,y] c (ﬁg,,@g.;_l).
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Abstract
We give some general results for binary self-dual codes with an
automorphism of order 2 without fixed points. The main theorem
is for constructing such codes using self-orthogonal codes with

a twice smaller length. Applying this theorem we obtain new
extremal codes of length 64,

Theorem 1. Let C be a binary self-dual [n,k = %] code and o =
(1,2)(3,4)... (n—1,n) be an automorphism of C. Lel ¢ : C — F¥ be the
map defined by ¢(v) = (a1+ay, ..., aq_1+ay,) forv=(ay,...,a,) € C.
Then ¢ ts a homomorphism, C' = Imé s a self-orthogonal [k,s] code
and C" = w(Kerg) = (C')V*, where 7 : Kerg — F¥ is the map defined
by m(v) = (a1,...,a) forv= (a1, 1,...,ak ;) € Kerg.

l'roof: To prove this theorem we use the theory of finitely generat-
¢ modules. We can consider € as a Fy[z]-module using o by set-
ling f*v = vf(o) for all f € Fz] and all v € C. Then C is
o linitely generated torsion module. For v € C we set Ann(v) =
{[ € Fylz],f*xv = 0}. Obviously Ann(v) is an ideal of Fy[z] gen-
erated by (22 — 1) or (z — 1) for any v € C. So there exist vectors
Ui, ...,u n C such that C = C; & Cy & ... & C), where C; is a cyclic
submodule of C, generated by v;. Let Ann(v,) = Ann(vy) = ... =

*This work was partially supported by the Bulgarian National Science Fund un-
der Contract No. MM - 503/1995.
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Ann(v;) = (z? — 1), and Ann(vs41) = ... = Ann(v) = (z — 1).
Then C; = {0,v;,v;0,v; + v;e} fori = 1,...,s, and C; = {0,v;} for
t=s+1,...,1. The vectors vy, vi0,vg,v30,..., 0,00, V541, ..., v for-
m a basis of the code C and so | + s = k. Let F(C) = {v € C :
(z — 1) * v = 0}.Obviously F(C) consists of all vectors v € C with
ve = v. F(C) is a linear subspace of C' with dimension ! and the vectors
V14010, ..., Vs+V50, Us41, - . ., vy form a basis of F(C). For w € F(C)) we
obviously have w = (al,al, g, @9, ..., o, ag). This allows us to define
the map 7 : F(C) — F§ by m(w) = (a1, a2,...,a). The ”contracted”
code C" = w(F(C)) has length k and dimension {.

Now it is easy to prove that the map ¢ defined above is a homomorphis-

m, Ker¢ = F(C), C' = Imé is a self-orthogonal [k, s] code with a basis’

qf)(vl ..., ¢(v,s) and C" is its dual code.

Theorem 2. Let C' be a self-orthogonal [k, s, d'] code and C" be its dual
code. Lety: C" — F2k be the map defined by Y(v) = (@1, 00, ..., ap, ag)
for v = (Cl.'l,{l‘g,.. or;c) S C and 7 : C' — F2F be the map defined
by 7(v) = (a},ey,...,0k4ay) for v = (a'l,ﬂig, ..,ag) € C', where
(a:!a:f) v (Cl‘,, ) fO?“ i > 2r and (ab ]!a;z—llaézla;s) farz' < 2r 18
given in lable 1. Then C = 7(C') + ¢(C ) is a self- dml! [2k, k, d] code.
Ifd' > 2d" then the minimal distance C is equal 10 2d .

(323'_]_,0’2;') (aaé—laa;’i—laaaisa;{)
0,0) (0,0,0,0)
Table 1: | (1,0) (1,0,1,1)
(0.1) (1.1.1.0)
(1,1) (0,1,0,1)

Proof: Slnce T and 3 are monomorphisms the dimensions of codes (C")
and (C") are s and k — s respectively. Obviously 7(C")($(C") = {0}
and therefore the dimension of C is s + k — s = k. It is easy to prove
that all vectors in C' are orthogonal to each other and thus C'is a self-
dual code. If v = (ay,as,...,a;) € C’, and w = (ﬁl,ﬂg,...,ﬁk) e CHY
we have wt((v)) > wt(v) > d', wi(y(w)) = 2wt(w ) > 2d", wi(r(v) +
Y(w)) = k1+ ko +2ks+ wt(r(v4) +9(wa)) +2(8, + - - -+ By, + Bk, 41+

Bori4s + -+ + Bog,yor,—1) = k1 + ka2 + 2ks + Wf("(”«l)) T wt(&( Nk

QWt(T(U4)*¢(w4))+2(}92+ +62k1+132k1+1+)32k1+3+ +ﬁzkl+gk2__ ) =
k14k2+2k3+wi(vg)+2wi(wq) — 2wi(varwy) +2(B5+- A+ G5, 05, 11t
|82h+3+ +Bop, yok,—1) = wi(v) > d' ,where (ag, 1, a9) = (1,0)fori =
1,..., 1, ((l'g, 1,(12;) (0 1) fOI‘E—-A,1+1 Jl.l—l-k‘g, (0.’23 1,&2;)—
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( || |} !.OT-' g == kl —+ k? + ]-1 sy k’] OE kﬁ + ka: V4 = (ak1+k3+k3+1: i ‘?ak)
md = (5 + 1) mod 2. Hence the minimal distance of C'is 2d .

Wo apply this theorem for codes with length 64. Extremal doubly-even
mll-dual [64,32,12] codes are obtained by Pasquier [6], Kapralov ang
lunchev [4], Yorgov [9], Gulliver and Harada [3, 2]. The possible weight
anumerators for the singly-even [64,32,12] codes are given by Conway
i Sloane [1]:

(1) W(y) = 1+ (13124 168)y"? + (22016 — 648)y**
el
(4) Wi(y) = 14 (13124 163)y'? + (23040 — 648)y** + - - -

A code with weight enumerator (2) for 8 = 32 [1, 2] and codes with
weight enumerator (1) with G = 18 [7] and 8 = 64 [2] are known.

Lomma 1. There exists a self-orthogonal [32,11,12] code with minimg]
istance 6 of ils dual code.

'roof: We will obtain such a code via an automorphism of order 5 with
(| independent 5-cycles. Let A = (1,2,3,4,5)...(26,27,28,29,30) be ap
nutomorphism of the self-orthogonal code C’ of length 32. Denote the
tycles of A by Qi,...,Qg, and the fixed points by 27, Qs. Let F)\(C") =
(v € C": vA = v} and Ey(C') = {v € C" : wi(v|) = 0(mod 2),i =
., 8}, where v|€2; is the restriction of v on ;. Then the code C” s
0 direct sum of the subcodes F3(C’) and E\(C’). Clearly v € F)(C")
il v € C" and v is constant on each cycle. Let 7 : F,(C') — P
lie the projection map where if v € Fy(C"), (vr); = v; for some j ¢
;i = 1,2,...,8. Denote by E,(C’)* the code E)(C’) with the lagt
! coordinates deleted. For v in E)(C')* we let v|€ = (v, vy, .. )
correspond to a polynomial vg +v1z + ...+ vgz? from P, where P is the
st of even-weight polynomials in Fg[:c]/(;': + 1). Thus we obtain the
map ¢ : Ex(C')* — P®. P is a field with 16 elements. The identity of
I is the polynomial e = & + &2 + &3 + 2%, and @ = 1 4 = generates the
vyclic group P*.
I''om theorem 2 in [8] the code C” is a self-orthogonal iff 7(Fx(C")) is a
uelf-orthogonal binary code and ¢(Ey(C")*) is a self-orthogonal code of
length 6 over the field P under the inner product (u,v) = Z?:] uvi.
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Let #(EA(C")*) be the sell-orthogonal code over P with a generator
trix
‘o eleea®al®
Deeaea®
and 7(F5(C")) be the binary self-orthogonal [8,3,4] code with a generator
matl‘iX
11001010
11000101
11110000

From these two codes we obtain a self-orthogonal [32,11,12] code. Its
dual code is a [32,21,6] code.

Theorem 3. There exists an extremal doubly-cven self-dual code of
length 64 with an eutomorphism of order 2 without fized points.

Proof: By applying theorem 2 for r = 0 to the code C" from lemma 1
we obtain a doubly-even self-dual [64,32,12] code.

Theorem 4. There exisis a singly-even self-dual [64,32,12] code with
welght enumerator (1) with § = 44.

Proof: Using theorem 2 for r = 1 and the self-orthogonal code from lem-
ma 1 we construct a self-dual [64,32,12] code with weight enumerator (1)
for 8 = 44.

Theorem 5. There exisis a singly-even self-dual [64,32,12] code with
weight enumerator (2) with 3 = 40.

proof: Using theorem 2 for + = 8 and the self-orthogonal code from lem-
ma 1 we construct a self-dual [64,32,12] code with weight enumerator (2)

for @ = 40.
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Abstract

A recent paper by Carlet introduces a general class of binary bent
functions on (GF(2))" (n even) whose elements are expressed by
means of characteristic functions (indicators) of Z-dimensional
vector-subspaces of (GF(2))". An extended version of this class
is introduced in the same paper; it is conjectured that this version
is equal to the whole class of bent functions. In the present paper,
we prove that this conjecture is true.

1 Introduction

Let n = 2p be a positive even integer. Let V;, be the set of all binary
words of length n. V¥, is a n-dimensional vector-space over the field
GF(2).

In this paper, we are interested in bent functions over V). These func-
tions refer to both algebraic and combinatorial problems. They can be
defined as the functions that reach the maximum Hamming distance to
the set of affine functions defined on V.

Some algebraic properties of bent functions are well known. For instance,
the degree of such a function cannot exceed p (see [9]).

Another definition of bent functions is based on combinatorial properties
of their support: a function is bent if and only if its support is a differ-
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inee set, i.e. aset B with the property that for any non-zero element a
in V,, the equation z — y = « (that is # + y = a, since the characteristic
ol the field is 2) with unknown 2 and y ranging in £ has always the same
nimber of solutions (see [3, 4]).

[ this paper, we give a proof of a conjecture stated in [2] which leads
Lo a characterization in terms of linear combinations modulo 2¢ of char-
ncleristic functions of p-dimensional vector-subspaces of V. This refers
{0 both combinatorial and algebraic properties of V.

I the next section, we introduce the necessary background on Mébius
function over V, that will be needed for the proofs, and which is not
¢lassical in this context.

2 Preliminaries

We will denote by 0 and 1 the vectors (0,...,0) and (1,...,1).
'I'here exists on the vector-space Vj, a natural dot product, denoted by
" and defined by

Vi = (D1 00y Un)y YOS (0150005 0) B U= W01+ ¢+ Unln,

(he addition being computed in GF(2).

['or any vector-subspace E of V,,, we shall denote by ¢z the characteristic
function (i.e. the indicator) of £ in V,, and by E1 the orthogonal of E:
I ={yeV,|Ve € E, z-y=0}.

|/, is a lattice. The partial order relation is the direct product n times
ol the order relation defined over {0,1} by 1 > 0:

12 (e sl 2R S Gy e L ool e,

A Mobius function (cf. [8], [10]) relative to this lattice structure can be
defined as follows:

for any elements u and v of V;, let u¥(u,v) denote the number of paths
of even length from u to v in this lattice and p~ (u,v) the number of
odd length paths (recall that a k-length path from u to v is a sequence
W, Uy, - -, tg such that wg = u, up = v and for any %, u; > w41 ).
Mobius function g is equal to:

(e, v) = u (u,0) = u (4,0), w0 € Voo

'['his definition is a general one. In the particular framework which is
ours, we have:
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p(u,v) = (—1)2@+) §f y > v and 0 otherwise

where w(u + v) denotes the Hamming weight of the word u + ».
It is well known that p satisfies the following orthogonality relation:

1 ifu=w
Z pltu)= { 0 otherwise.
u>tz>y

This relation leads to an inversion formula: for any function g from V,
to Q, let ¢° be the function expressed on V,, as:

=3 plz,u)o(z) (1)

eV,

then g can be recovered from g¢° by the relation:

g(2) = ¢°(u). (2)

uzr

This means that function g can be expressed as a sum in Q (in Z if
g takes its values in Z) of characteristic functions of subspaces of V.
Indeed, according to equality (2), we have:

9(@2) = 3 ¢* (W, () (3)

uEV,

where F), denotes the subspace of ¥, that is equal to the set {z € V,|e <
u}.

Moreover, this decomposition is unique according to relation (1) (that
gives its coefficients).

Note that the dimension of 7, is w(u). The function ¢° is the so called
Mébius transform of g.

3 A new characterization of bent functions

We are now able to prove the conjecture on bent functions stated in [2].
Let us first recall what is this conjecture.

A Boolean function f on V,, is bent if its distance to the Reed-Muller code
of order 1 is maximum. Translated in terms of Walsh transform, this
condition is equivalent to the fact that the values of the Walsh transform
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of the real-valued function f, = (—1)/ are all equal to £27.
40, a function f is called bent if, lor any element s of V,,, we have (cf.
[}, 6, 9]):
Feg)= Y (—1)fedtes = dop,
eV,
II' f is a bent function, then there exists a Boolean function, that we
nhall denote by f, such that, for any s in V;:

Fuls) = (-1
or equivalently: _
fx=2fx.
'I'his Tunction }?is bent too. We will call it the dual of f (Dillon calls it
fhe ” Fourier” transform of f in [3]). Its dual is f itself (cf. [3, 9]).

In the next theorem, éy denotes the Dirac symbol on V;, (6p() equals 1
i # = 0, the all-zero word, and 0 otherwise).

Note that &g 1s also equal to the function qb{o} = q.‘JFOA

We shall also use the following well-known property: let E be any d-
(limensional vector-subspace of V,,. Then the characteristic function ¢
ol I7 in V,, satisfies the following relation:

¢ =2%¢p.. (4)

What is conjectured in [2] is stated in the following theorem, whose proof
It Lhe purpose of the present paper:

Theorem 1 Let f be a Boolean function on V. Then f is bent if and
unly if there erist p-dimensional subspaces E1,..., Ey of V, and integers
my,...,my (positive or negative) such thai for any element x of Vj,:

me&(z) = 2P=165(z) + f(z) [ mod 27]. (5)

"I'he fact that condition (5) implies that f is bent has been already proved
i [2]. To prove that any bent function f satisfies condition (5), we need
i [ew lemmas.

Lemma 1 If f ois a bent function and f° is its Mobius transform, then

[or every non-zero word u of weight smaller than p, f°(u) is divisible by
R kvl
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Lemma 2 Let F' be any d-dimensional subspace of V,, d > p. There
exist p-dimensional subspaces Ey,---, Ey of V, and integers my,-- -, mg
such that for any element x of V,:

k
op(z) = Zm;qﬁg‘. (z) [ mod 27].

Lemma 3 Let F' be any d-dimensional subspace of V;,, d < p. There ex-
ist p-dimensional subspaces Ey, -, Ey of V, and integers m,my, -, my
such that for any element z of Vy:

k
®ldpp(z) =m+S mipp,(z)[ mod 27].
=1

Proof of theorem I

Consider the decomposition of f given by relation (3) applied to f:

f@) =Y F(wér.(z).

ueV,

According to lemma 1, the terms of this sum where 0 < w(u) < p have
coefficients all divisible by 2°~%(%*)  So, we can apply lemma 3 to all
these terms. We deduce:

f(2) = FP0)bo(@) +m+ Y midp(@) + Y. fo(w)ér,(z)[ mod 27].

i=1 w(w)2p

Constant m 1s equal to m qb,w-l. We apply now lemma 2 to those terms

of the sum where w(u) > p (including mqépl). We deduce:

5
f(z) = £°(0)bo(z) + > _ midp,(z) [ mod 2°].

s=1

The last thing that we must check is that the coeflicient of §q is congruent
to 27~ modulo 27. Note that:

£20) = 3 fl=)(-1)*@) = f(1)

:;20
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since, modulo 2, w(z) = 1 - .

[(1) is equal to (1) = L, (1) = 277 160(1) — 17, (1) = £2P~1 (f being
bent).

‘I'his completes the proof. o
Note: According to the proof of the theorem, we have also a converse
ol lemma 1: let f be a Boolean function and f° its Mobius transform.
Il f°(0) = 277! [ mod 2P] and if, for every non-zero word u of weight
smaller than p, f°(w) is divisible by 27~%(¥) then f is bent.

Conclusion

We have proved that the extended version of Generalized Partial Spreads
class GPS (cf. [2]) is equal to the whole set of binary bent functions (in
even dimension).

I'he question is now: does this new way to look at bent functions can
lend to a classification?

In any case, 1t would be interesting to characterize the elements of class
GPS itself.
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On Binary Cyclic Codes with
Minimum Distance Three

Pascale Charpin * Aimo Tietavainen®
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Abstract

We characterize several classes of cyclic codes of length 2™ — 1
which have minimum distance three. We are mainly interested
in codes with generator m;(z)m;(z), but we also treat a more
general class.

Keywords: cyclic code, trinomials

1 Introduction

Denote the finite field of order ¢ by £y, Let v be a primitive element of
Iy and my(z) the minimal polynomial of 4* over Fy. We assume that
i and j are not in the same 2-cyclotomic coset modulo n := 2™ — 1 and
denote the binary cyclic code of length n with generator m;(z)m;(z) by
(; ;. The minimum distance of Cj ; is denoted by d; ;.

Van Lint and Wilson [3,4] studied the minimum distance of some codes
(; ;- In [3] they proved that in general d; ; cannot be more than five. Ob-
serving that the case (¢, §) = (1, 3) corresponds to the 2-error-correcting
BCH code whose minimum distance is five, they were interested in the
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! Department of Mathematics, University of Turku, FIN-20014, Turku, FINLAND

! Institute for Problems of Information Transmission of the Russian Academy of
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existence of other pairs (i,7) defining other codes with minimum dis-
tance five. We have here a different point of view. We are interested in
the codes C; ; whose minimum distance is (at most) three.

As usual, we identify the vector @ = (o, ..., @p—1) € F3' and the polyno-

mial
n=1

a(z) =Y az' € Pale]/(a" +1) .

1=0
A vector g is an element of Cy; if and only if
a(7") = a(x) = 0. &

Thus d; ; < 3 if there is a trinomial a(x) = 1+29 +2°, 1 <g<b<m,
such that the equations (1) are valid. :

We begin with a simple example. Let m be even. Then 3 divides 2™ — 1.
Denote (2™ — 1)/3 by u. Then 7" is a primitive element of Fy and

therefore its minimal polynomial is 1 4+ = + 2. If we choose a(z) =
14 2%+ 22¥, we see that the equations (1) are valid for all ¢ and j which-

are not divisible by 3. Thus we have proved the following result.

Theorem 1 If m (> 2) is even and ged(i,3) = ged(j,3) = 1 then the

code C;; of length 2™ — 1 has the minimum distance d; ; < 3.

In the sequel we generalize this theorem in order to characterize other

infinite classes of codes with minimum distance (at most) three.

2 General results

First we characterize the codes C;; with minimum distance two.

Lemma 1 A code C; ; of length n =2™ — 1 has the minimum distance

di j = 2 if and only if ged(n,i,j) > 1.

Proof: Since ¥ is a primitive nth root of unity, d;; = 2 if and only if
there are k and {, 0 < I < k < n, such that

or equivalently,
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(k—=Di=(k—0j=0 (mod n).
Because these congruences are valid if and only if n/ged(n, i, j) divides
k —1, we see that these k and [ exist if and only if ged(n, i, j) > 1.

Denote by K;(r) the 2-cyclotomic coset of r modulo 2! — 1: i.e.,
Kifr) ={ r2* (mod 2 =1): b=0,1, ..., d=1}

Theorem 2 Assume thal p is a prime factor of m and r is an infeger
(0 <r < 2P —1) such that ged(r, 2 — 1) = 1. Let Cy be a binary cyclic
vode of length 2™ — 1 generaled by a polynomial of the form

ng(:c)
icl

where I is a set of representatives of some 2-cyclotomic cosets modulo
2" =1 and assume that all the elements of I are in the cosel Kp(r)
modulo 27 — 1. Then the minimum disiance of C; is at most three.

Proof: If w = (2™ —1)/(2° — 1) then § := 4* is a primitive element of
I'y». Let b be such an integer in the interval [1, 27 — 2] that

L+6+6"=0.

Define !
a@)= 1 4 8D 4 /)

Where .the quotients 1/r and b/r are calculated modulo 2? — 1 and are
in the interval [1,2?7 — 2]. If ¢ € I then there are non-negative integers k
ond ! such that

i=1(2 — 1)+ 2%r.

Thus

Q
—
-Ha..
]

Il

1 4 Ui/ 4 quits]r)
1 4+ g 4 giein)
A

1+ 8+ BH* =o0.

Il
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So we have proved that a(z) is in C; and therefore the minimum distance
of C; is at most three.

Choosing I = {i,} and using Lemma 1 we obtain the following corollary
of Theorem 2.

Theorem 3 If p (< m) is a prime factor of m, an integer r (0 <
p < 2 —1) is such that ged(r,2? — 1) = 1 and arbitrary integers 1 and j
(0 < i, < 2™—1) are in K,(r) modulo 27 —1 then the minimum distance
of the code C;; of length n = 2™ — 1 is not more than 3: di; < 3. If,
further, ged(i, 7,2™ — 1) = 1 then d; ; = 3.

Note that Theorem 1 is the special case p = 2 of the first statement of
Theorem 3. Let I, be the set of integers i in the range [1,n — 1] such’
that i (mod 2° — 1) is in K,(r). As I, is a union of cyclotomic cosets

modulo n, let us denote by J, a set of representatives of these cosets.
Let C. be the binary eyclic code of length n generated by

g:(X) = [ mi(X) .
i€,
The next staternent, which we give without proof, follows directly from
Theorem 2.

Theorem 4 Notation and hypothesis are that of Theorem 2. Let C
be a code generated by a product of some my(X), i € J,. Sel B =
(2™ — 1)(2P — 2)/6. Then the number of codewords of weight three in O
is ai least B. For the code C, this number is ezactly B.

3 Examples

To illustrate the results of the previous section, we now consider some
binary cyclic codes C;; of length n = 2™ — 1 when ¢ and j are represen-
tatives of distinet 2-cyclotomic cosets modulo n and 0 <@ < j < n.

Example 1. Let n = 15. The inequivalent codes are Cs5 and those
C1,; where j € {3,5,7}. Theorem 3 with p = 2 shows that dy5 =3 and
dy,7 = 3. On the other hand, it is well known that dy 3 =5 ([2], p. 204),

and dz 5 = 4 ([2], p. 206, Problems (24)).

Example 2. Let m be equal to 6 (and so n = 63). Theorem 3 with p =2
shows that dy ; = 3 except possibly in the cases j = 3,9, 15,21, 27 and
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(he same theorem with p = 3 excludes the values 9 and 15. Furthermore,
it is known that d; 3 = 5 and dy 37 = 4. Thus the only case, were
'I'neorem 3 is unable to give the result dy ; = 3, is the case j = 21.

(Jonsider then the cases where ged(z,63) and ged(j, 63) are both greater
than 1. Thus ¢ and j are in the set {3, 7, 9, 15, 21, 27} and 7 < j.
(‘hoosing p = 3 we obtain the results d3 27 = 2 and dg,;5 = 2. Unfor-
[unately, in the other case Theorem 3 doesn’t work. The computations
whowed that d3‘7 = d7,g = d?’,ls = d7,27 =2

There is an interesting special case, namely (2, ) = (3,5), which we give
without proof.

Theorem 5 . The code Cs5 of length n = 2™ — 1 has the minimum
distance d3 5 = 3 if and only if 3 divides m. When 3 does not divide m,
the distance ds 5 1s at least 4.
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Monomial Extensions of Isometries between Codes
over Zny,

Ioana Constantinescu, Werner Heise, and Thomas Honold

ABSTRACT. Let m and n be positive integers. A map 7: Zm 2 R
is called a homogeneous weight, if there is a constant I' # 0 such
that for every nonzero ideal of Zy, the average weight of its ele-
ments is equal to T'. Generalizing a well-known theorem on the
extendability of isometries with respect to the HAMMING metric
between linear codes over finite fields [6, p. 297] we prove that
any map between Z-submodules of Z7, which preserves the ho-
mogeneous weight can be represented as a monomial n. X n-matrix
over Lm.

1. Introduction

Let m,n be positive integers. The ring Zm of integers modulo m will be
identified with the subset {0,1,...,m — 1} C Z. For z € Z,, \ {0} we
denote by dg := ged(m, z) the minimal generator of the ideal zZ,. By a
linear code of blocklength n over Z,, we mean a Z-submodule (additive

subgroup) of Z%,. A real valued map v on Zy, is called a homogeneous -

weight on Z, if it satisfies the following conditions:

(H1) 7(0)=0;
(H2) There exists ' € R\ {0} such that for any nonzero ideal I C Zm

S (@) =T |1|. &)

zel

1991 Mathematics Subject Classification. Primary 94B05.

98

Condition (H2) simply means that there is a constant’ I' such that for
gvery nonzero ideal in Z, the average weight of its elements is equal
to I'; in the coding theoretical language: On the average all nontrivial
positions of a linear code over Z, transport the same weight.

The function 7 is transferred in the usual way to the ambient space
Zn, ioe y(@) = y(z1) + -+ Yzn) for & = (21,...,2n) € Z7,.
[for an arbitrary subset S C Z" we shall use the abbreviation ¥(S) :=
Y acs 1(@).

The map p : ZymXZm = R, (z,¥) = v(z—y) is translation-invariant.
Not only does p not necessarily fulfil the triangle inequality, it may even
happen that an arbitrary homogeneous weight is neither symmetric nor
definite.

EXAMPLE 1. Any function v : Z, — R satisfying v(0) = 0 and
y(z) > 0 for z € Z,\ {0} is a homogeneous weight on the field Z.
Note in particular that the classical HAMMING weight wHam On Zy, is a
homogeneous weight according to our definition precisely when m = p is
prime. In this case I' = (p — 1)/p.

EXAMPLE 2. The LEE weight wiee on Zy, defined by wree(z) :=
min{z,m — z} is a homogeneous weight if and only if either m = p is
an odd prime (then I' = (p? — 1)/4p) or m = 2* for some k > 1 (then
['=0F2)

EXAMPLE 3. The function wpsk : Zm — R, z +» |€2™®/™ — 1| used
in phase-shift keying (cf. [3, p. 13]) is a homogeneous weight only if
m = p is prime.

ExAMPLE 4. For any positive integer m the function wWhom: Zm —
Ny, defined by

= olen)» 1 Bn/0a)
Whom(2) = () - (1 o dz)) forz € Zm\ {0} (2)
(cf. 3, p. 37), [4, Th. 1]) is a homogeneous weight on Zmp; here ™ de-
notes the squarefree part of m, and p, ¢ denote the MOBIUS and EULER
function, respectively, of elementary number theory. For whom we have
I' = (). Note that whem in addition to (H1), (H2) is constant® on
the classes of associated elements of Z,:

lconstant is not Friulein Doktor Ioana Lotus Cowstantinescu’s login name on
{he Fatman Server at the Blasted University of Laputa at Lagado, cf. her URL
http://fatman.mathematik.tu-muenchen.de/ heis e/dokus/icana.html .

2constant is Friaulein Doktor Ioana Constantinescu’s login name on the Fatman
Server, ¢f. her URL http://fatman.mathematilk.tu-muenchen.de/"constant .
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(H3) Whom(@Z) = Whom(z) (any = € Zy,) whenever a is unit in
L.
The weight wyom is uniquely determined by (H1), (HZ), and (H3).
It has been shown in [3] (see [4, Th. 2]) that wnom satisfies the
triangle inequality Whom(% + ¥) < Whom (%) + Whom(y) for z,y € Zm if
and only if m #Z 0 (mod 6).

2. Isometries between linear codes over Z,,

In the sequel if not otherwise stated - denotes an arbitrary homogeneous
weight on Zy,.

DEFINITION 1. Let C be a linear code over Z,,. A homomorphism
é: C = 2 of Z-modules is called an isometry if v(¢(x)) = 7(x) for
every x € C.

LEMMA 2. Let C be a linear code of length n over L, and ¢: C —

7" an isometry. Then ¢ preserves the average weight, i. e., for D :=
#(C) we have

-7(C) = = - 7(D). (3)

1

| | 1Dl

PROOF. An easy computation using |C| = |D| - | ker¢| yields the
result. 0O

Fori € {1,...,n} let m;: Z}% — Z,, denote the projection from Z7, onto
the i-th coordinate.

LEMMA 3. For any linear code C C Z7, we have

ﬁ-q{(C) =T-|{i | m(C) #0}|. (4)

PROOF. Using a similar argument as in the proof of (3) we have

S (@)

2eC i=1

|—1"T DILED)

xzeC

I | -(C) =

|ﬂ.(1c')| A(m(C)).

1l
M:s i M;s §|

i=1

Since C is linear, 7;{(C) is an ideal in Z,, and the claim follows. O
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PROPOSITION 4 (“Nullspalten-Lemma”). If ¢ : C — D is an isom-
elry from C onto D then

[{i | 7:(C) # 0} = [{i | mi(D) # 0}]. %)

ProOF. This follows immediately from lemma 2 and lemma 3 O

COROLLARY 5. Let ¢ : C — ZD, be an isometry. Then ¢ preserves
the HAMMING weight. In particular, ¢ is one-to-one.

PROOF. Let « be any codeword of C, and y = ¢(zx). Since ¢ induces
an isometry from the subcode Zx generated by x onto Zy, we conclude
[rom the Nullspalten-Lemma

wiam(€) = {7 | 7:(Zx) # 0} = [{i | 7:(2y) # O}| = wram(y).  (6)
O

It is now time to introduce the term code matriz of a linear code C C Z7,.
I'his is any |C| x n-matrix the rows of which are formed by the codewords
of C. Tt will be denoted by M (C), and its columns by m;(C) (1 <1i < n).
We do not require a particular ordering of the codewords of C, but when
dealing with an isometry ¢: C — D from C onto D we shall always
assume that the |C| = |D| rows of M (D) are arranged with ¢(x) having
(he same row number as .

3. Monomial Extensions of Isometries

A Z-automorphism of Z", which preserves the HAMMING weight is called
n monomial transformation. It is easy to see that for a monomial trans-
[ormation ® there exist units a1, ...,a, € Z and a permutation o € S,
guch that &(z) = (0.15':,—1(1), ey ,anx,—l(n}] for x = (x1,...,2,) € zy.
A monomial transformation clearly preserves wyom, but not necessarily
arbitrary homogeneous weights,

It is well-known [2, 5, 7] that for a linear code C of length n over Z,,
any HAMMING weight preserving linear map ¢: C' — Z} can be extended
to a monomial transformation of Z3. (An analogous result holds for
linear codes over arbitrary finite fields.®) Thus it follows from corollary 5
that any isometry between linear codes (of the same length) over Z,
with respect to an arbitrary homogeneous weight admits a monomial
extension to Zj. This is in fact true for general moduli as will be shown
below. The proof depends on the validity of the Nullspalten-Lemma for
the HAMMING weight in the non-homogeneous case.

30One may consider this as an analog to WiTT's theorem of quadratic form the-
ory (1, Th. 3.9, p. 121].
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PRropOSITION 6 (Nullspalten-Lemma for wyam). Let ¢: C = D be
a Z -homomorphism from the linear code C' onto D, which preserves the
HAMMING weight. Then M(C) and M (D) have the same number of zero

columns.

PrOOF. For d | m let aq == |{i | |m:i(C)| = d}|, and similarly b :=
I{i | |m:(D)| = d}|. We must show a, = b;. By counting the number of
zero entries of M{C) in two ways we get

Z n— wHam(m} ‘T Zad - "l"i'_l (7)

eeC dim

Since ¢ preserves wyam, and since |C] = |D|, we get
pa-5
dm d|m
Since ¢(tC) = tD for ¢ € Z, and since [¢mi(C)| = df/ g_cd(t, d) with
d = |x;(C)| equation (8) applied to the codes tC and tD yields

aq - ged(t,d) by - ged(t, d) 9
Z d =] Z d (9)
dlm d|m

for every divisor t of m. Now we define two functions F:Z,— Qand

f:Zm %X Lm— Q by

Vi ,U‘(S) ad * ng(sa d) (10)
F(t) v szlt: s dlzm d 1
£ty = 3 B ged(s,a). (1)
alt
From (9) we deduce
Y% fd=FO =Y % f(td (12)
d|m djm

for any ¢t | m. The function f which is multiplicative in the first argument
¢ can be evaluated explicitly. If ¢ = p® is a prime power we have

a Cd(pad)_
Flpe, dy =1 - B0 s _{o e
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1-1/p ifptd, (13)

With ¢ = J]._, p§’ being the prime factorization of an arbitrary divisor
{ of m, the multiplicativity of f yields

T w o Je@®)/t if ged(t,d) =1,
f(tsd)_gf(pi :d)—{o ifgcd{t,d))l. (14)

Therefore, if we put ¢ = m in (12), we get ajp(m)/m = F(m) =
byip(m)/m, and the proof is complete. O

We are now ready to prove our main result

“MONOMIALSATZ". Let v be a homogeneous weight on Z,,, C a
linear code of length n over Z,, and ¢ : C = L7 an isometry. Then ¢
can be extended to a monomial transformation of Z7,.

ProoF. Let D := ¢(C). We construct a one-to-one correspondence
0 € Sy, between the columns of M(C) and M (D) such that my(;)(D) =
a;mi(C) for some unit a; € ZY. By corollary 5 the map ¢ preserves
Witam- Hence by proposition 6 the code matrices of C' and D := ¢(C)
have the same number of zero columns. We may assume by induction
(hat there are no zero columns. We choose a column m;(C) with a
minimal number of nonzero entries, and define C; = {z € C | z; =
()} = kerm; N C. Again by proposition 6 there is an index j such that
M (¢(C;)) has a zero column in position j. We must have D; := {y €
D | y; = 0} = ¢(C}), because otherwise M (¢~ (D;) would not have any
zero column, while m;(D;) is a zero column of M (D;). This implies

€| _ 1D
|‘JT‘(C)| ]Ctl ID:!ll |?TJ (D)l 1

I e. m(C) =m;(D). In view of

7(C) = C/C: 2 D/D; = m,(D)

the map ¢ gives rise to an automorphism of the ideal m;(C) = dZ,,.
More precisely, if £ and y are codewords of C and D respectively with
#; = y; = d, then there is a unit @ € Z such that ¢(tz +C;) = aty+ D;
for every t € Z. We conclude 7;(¢(c)) = am;(c) for every ¢ € C, as
desired. We put o(2) := j and a; := a. We now delete the columns m;(C)
und m; (D). Should the situation arise, we also delete repeated rows. We
are left with the code matrices M (C'), M(D') of the projections C' of
(' and D' of D respectively onto the remaining coordinates. The map ¢
induces a HAMMING weight preserving isomorphism between C' and D’.
We proceed by induction on the code length n. O
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Abstract

New constructions of nonbinary linear covering codes are given.
Using starting code of covering radius R = 2 these constructions
form an infinite family of codes with £ = 2. A number of new
infinite families of codes with R = 2 are constructed with the help
of the new and known constructions. The parameters of many
obtained codes are better than ones of known codes.

| Introduction. Constructions of Codes

Nonbinary linear codes with covering radius R = 2 are considered, e.g.,
in [1]-[5], see also references in [1]-[5]. In given work we use and develop
(he approach considered in the paper [3]. The constructions of [3] can
he called “g™—concatenating constructions”.

Liet an [n,n —r] R code be a g—ary linear code of length n, codimension
r, and covering radius R. An [n,n — r(C)], R code C provides a densily
of a covering py(n, R, C) of the space of n—dimensional vectors over the
(inlois field GF(g). Here

iln, 7, C) = i(q =1y (?)/qr(c) >,

i=0

*This work was supported in part by Grant no. UAU300 from the International
lelence Foundation and by Grant no. 95-01-01331a from the Russian Basic Research
l'oundation
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Let U be an infinite family consisting of [n,n — r(Un)]gR codes Un of
covering radius R. For the family U we consider the asymptotic value
B, (R, U) = 1&5&9}%("; Ll
The length function I(r, R; q) [2] is the smallest length of a g—ary linear
code with codimension r and covering radius R.

Below all matrices are g—ary. An element h of GF(¢™) written in a
q—ary matrix denotes a column m—dimensional vector that is a g—ary
representation of h. Let m be a parameter. We define 2m - g™ matrices
Bpm(b) with b € GF(¢™) U {}.

€3 €9 eqm . =
il el

B )= [0 il ¢

€1 €z ... Egm

] if b= 4

where ¢; € GF(¢™), j = T,q7; {e1,e3,...,em} = GF(q™), ie., & =8
e; ifi # j, 1,j € {I,¢™}. The element b is called an indicator of a
matrix B (b).
We use definitions from [3, Section 6] for the AL2-code, the AL2=
partition, and the parameter h(®,AL2) of a matrix ®. Using ideas
of constructions with complete set of indicators (CSI) [3, Conditions C,
p.2074] we develop Construction AL2 [3, Theorem 6.1].

Theorem 1: We introduce complete construction ALZ (Construction:
AL2C). Let a starting code Vo be a g—ary [Y,Y — S]42 AL2-code of
length Y, codimension S, covering radius 2, with a parity check matrix
® = [f1...fy] where f, is an S—dimensional g—ary column, u = 1,78
Let Ky be an AL2-partition of the column set of the matrix @ into hg
subsets such that there exists m with Y > ¢™ + 1> ho. Let a new code
V be an [n,n — r]gR code with n = Y¢™, r = 5 + 2m, and a parity
check matrix of the form

_N-Ps) P(fy)
fog= [ B(b1) ... Bm(by) ] ’
UL, {b:} = GE(g™)U{x}, Y 2q™+12ho,

where P(fu) = [fu..-fu] is an S - ¢ matrix of equal columns fy, u =
1,7, the assignment of indicators b; depends on the partition Ko as fol=
lows: if numbers i, j belong to distinct subsets of Ko then the inequality
b; # bj should be true, if numbers u, ¢ belong to the same subset of Ky
then we are free to assign the equality by = by or the inequality by # by
Then the new code V is an AL2-code with R = 2, h(Hpc,AL2) £
2q™ + 2. °

@)
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Now we introduce a new Sufficient Condition C5 for construction of [3
I'heorem 3.1]. }
(h: R=2, U {b:} = GF(q™) U {*}, Y > ¢™ + 1> ho, lo =0,
p=1,g=(0), 122

nnd if in the matrix H" of [3, formula (14)] we have b, = * then the
relations hold

Pu = CuPi(u) + duPr(u), bitu b , u,i(u), k(u 7
r,“dueG(F")(q), (u)s bicu) 7 br(uy, u,i(w), k(u) € {1, Y},

\-\:‘a use a definition from [3, Section 2, p. 2073] for the parameter h(H,0)
ol a matrix H. ,
Theorem 2: We introduce Construction C52; (cf. [3, Notation 6.1
.2078]). Assume that in construction of [3, Theorem 3.1, p.2074] Wé;
use a [Y,Y — 5],2 starting code ¥, and Sufficient Condition C5 holds.
Then the new code V of [3, Theorem 3.1] is an [n,n — r], R code with
=2 n=Yq¢"+(¢™-1)/(g—1), r = 54+2m, h(H",0) <2¢™+2. ©
Theorem 3: We introduce Construction CP1 (“codimensio_n plus one”).
lLet a starting code Vg be a [Y,¥ — S],2 code with a parity check matrix
[fi...fy] where f, is an S—dimensional g—ary column, u = 1,¥. Let
1'(q,1) be a g—ary vector of length t(g,7), ¢ = 1,2, let w € {I’Tf} be
n parameter, and let a new code V be an [n,n — r],;R code with n =

;.r'r‘.(r,:r 1)+ (Y —w)(q,2), r = §+ 1, and a parity check matrix of the
Orm

P(fw)  P(fus1)

P(fy)
T(g,1) T(q,2)

[ P(R)
& T(g,2) | ©

= T, 1)

where P(fy) = [fu ... fu] is an §-t(g, ) matrix of equal columns f,, u =
]| ] T’l, t=11u<w i=2ifu>w+1l Let the following conditions
101k

b ¢=3, w=Y, T(3,1) =[01], {(3,1) =2;

!n] 7= 4, w=1, T(4,1) = [01], t(4,1) = 2, T(4,2) = [01a], 1(4,2) =
J, @ is a primitive element of GF(4);

Blg =5, w=7Y, T(5 1)=[012], 45,1) = §.

I'hen the new code V has R = 2 and parameters

Blae=3 n=2Y: bleg=4, n=3Y—1; c)lg=5,n=3%
(lonstruction CP1 is close to the construction of the paper [4].
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2 Families of Codes with Covering Radius

H=2

Using results of the paper [3] and new constructions we obtained the
Table 1 and a number of infinite families A; of [n,n — r], R codes with

the following parameters.

Family A;: R=2 ¢=3, r=2-1, [2 A)~ 1.1779,

n=2324.3"6_1 i t=7.8
H="398.5:3-%_08 if ¢=09,12,13,14,
n =323 .36 if ¢=6,10,11, and t > 15.
Family A,: R=2, ¢=3, r=2t, [3(2, As) ~ 1.4467,
n=621-3"6_-1 if =8
n=620.5-31"6—-05 if t=9,12,13,14,
w==020-3""° if ¢=6,10,11, and ¢ > 15.
Table 1:
Upper Bounds on the Length Function I(r, 2;¢) for ¢ = 3,4,5
rol(r, 2;3)(r, 2;4)(r,2;5) r i(r,2;3) i(r,2;4) i(r,2;5)
< < < < < £
17 323.5.3% — 0.57 21 - 45 6-57
2 29 22 2% 18 620.5-3% — 0.5 3748 287 - 5°
3 4t 5 6* 19 323 .3¢ (410 —1)/3 6-58 4 781
4 44 4° 94  11f 20 620 -3* (7-4° —1)/3 287 - 5%
5 119 2 30 21 323 .3° (4*' —1)/3 6-5% + 3906
6 Hiwg © 8w 60 22 620 -3° (7-41° —1)/3 28757
7 44f 90 156 23 323.5.3% —o0.5f 21 - 49 6510
8 76f 154f 287 24 6205-3%5 —05 37.49 287. 58
9 130f 2336 750 25 323.5-37 —0.5f 21 . 410 6511
10 220f 592 1500 26 620.5-37 —0.5 37410 287 . 59
11 323f 1365 3781 27 323.5.-3% —0.57 21 - 411 6512
12 620 2389 7175 28 620.5-3% —0.5 37 4t 287. 510
13 971/ 5461 18906 29 323 .3° 21412 6512
14 1862 9557 35875 30 620 3% 37. 412 287 511
15 2915f 21504 93750 31 323 .30 21412 6. 514
16 5588 37888 187500 32 620 310 37 418 287 - 512

Key to Table: Unmarked bounds are obtained in this work, “trivial,
®MDS code, °the direct sum of the Hamming codes, ¢[2], f[3], 9the

Golay code

Family A3: R=2, g¢=4, r=2t—1, (2, As3) ~ 1.9380,
n=(4"-1)/3 if =2 6 1051,

n=21w 49 il ¢+=23,5,8,9, and ¢t > 12.
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Pamily Ay : R=2, q=4, r=2t, 1,02, As) ~ 1.5040,
n=(7-4-1-1)/ if t=2,6,7,10,11,
=374t if ¢£=23,5,8,9, andt > 12.

Family A5 : R=2,q=5,r=2t — 1, w(t) = [t/2],7s(2, A5) = 2.3040,
n=06-5"2+ fumsift =4,6,7,10,11; fao =(¢" —1)/(g 1),
B=06:-5"H =2,3,5809 andt>12.

Family A4¢: R=2, ¢=5, r=2t, us(2,As)~1.6870,
pi= 1252 if ¢t=3,5,8,
n=|287 -5 if t=2,4,6,7 andt>0.

Family Az: R=2, ¢=17, r=2t-17G,(2, A7) ~ 2.0869,
n=2164-7t-5 if t+=5,7,8,11,12,
n=|309.71| if t=2,3,4,6,9,10and ¢t > 13.

Family Ag: R=2 ¢>8 r=2t-1,

Ji,(2,As) =~ (¢ +6+9¢71 —4¢2 —16¢7%)/8 if ¢ even,

Ji(2,As) & (¢ +4+6¢71 —11¢7%)/8 if ¢ odd,

is(2, As) ~ 1.8786, To(2, As) ~ 17065, ,,(2, As) ~ 1.9422,
n=(g+4)/2]¢" "2 +2¢" 3+ ¢ +¢%ift =5,7,8,11,12,
n=|l(g+4)/2]¢""2+2¢' 2+ ¢ ift=2,3,4,6,9,10 and ¢ > 13.

Family A43: R=2, ¢>7, r=2,

7 (2, As) 2 —2¢71 +05¢72 - 272 +¢7*, (2, Ap) & 1.7101,
Tig(2, Ag) ~ 1.7542, Tig(2, Ag) ~ 1.7814, Ti;(2, Ag) ~ 1.8209,
n=|2¢""1 g2+ ¢ 3 + AR) if t>2

Ad)=¢+2, A6)=¢’+g+1,A{R)=¢*+¢3ift=7,10,11,
A)=0ift=2,8,58,9, and t > 12.

References

[1] T. Baitcheva, “Covering radius of ternary cyclic codes with length
up to 20,” Proc. 4th Int. Workshop “Algebraic and Combinatorial
Coding Theory”, ACCT4 ’94, Novgorod, Russia, Sept. 1994, pp.
12-17.

(2] R.A.Brualdi, V.S.Pless, and R.M.Wilson, “Short codes with a given
covering radius,” IEEE Trans. Inform. Theory, vol. 35, pp. 99-109,
Jan. 1989.

[3] A.A.Davydov, “Constructions and families of covering codes and
saturated sets of points in projective geometry,” [EEE Trans. In-
form. Theory, vol. 41, pp. 2071-2080, Nov. 1995.

108



[4] 1.5.Honkala, “On lengthening of covering codes,” Discrete Math.,

vol. 106-107, pp. 291-295, 1992.

[5] E. Velikova, “The covering radius of two-dimensional codes over
GF(4),” Proc. 4th Int. Workshop “Algebraic and Combinatorial
Coding Theory”, ACCT4 ’94, Novgorod, Russia, Sept. 1994, pp.

190-193.

110

The non-existence of ternary linear
[158,6,104] and [203,6,134] codes *

R. N. Daskalov
Department of Mathematics
Technical University
5300 Gabrovo, Bulgaria
rndas@tugab.acad.bg

Abstract

Let dg(n, k) be the maximum possible minimum Hamming dis-
tance of a ternary linear [n,k,d;3]-code for given values of n
and k. The nonexistence of [158,6,104;3] and {203,6,134;3] codes is
proved. This implies that da(158,6) = 103 and 132 < da(203,6) <
133.

1 Introduction

Let GF(q) denote the Galois field of ¢ elements, and let V(n, ¢) denote
(lie vector space of all ordered n-tuples over GF'(g). A linear code C
of length n and dimension & over GF(q) is a k-dimensional subspace of
V(n,q). Such a code is called [n, k, d; ¢]- code if its minimum Hamming
ilistance is d.

A central problem in coding theory is that of optimizing one of the
parameters n,k and d for given values of the other two. Two versions are:

I'roblem 1: Find dy(n, k), the largest value of d for which there exist an
[, k,d; q]-code.

Problem 2: Find ng(k, d), the smallest value of n for which there exist
un [n, k, d; g)-code.

*This work was partially supported by National Science Fund in Bulgaria under
Crant 1-407/94.
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The problem of finding na(k, d) has been solved by Hill and Newton
[12] for k < 4 for all d, and values of n3(5, d) determined for all but 30
values of d. By the recent results of Bogdanova and Boukliev [1], var
Eupen [4], [5], van Eupen and Hill 7], Hamada, Helleseth and Ytrehus
[9], Hamada and Watamori [11] and Landgev [13] these 30 cases has
also been solved and all optimal ternary linear codes in dimension five
are known. A table of the bounds for n3(6,d) was given by Hamada [8]

and Daskalov [2]. An update table for the function na(6,d), including
exhaustive survey of the results of recent work, can be found in [10].

2 Preliminary results

The well-known lower bound for n,(k, d) is the Griesmer bound
E=1
ny(k,d) 2 gq(k,d) = ;‘)f;l
J:

( [x] denotes the smallest integer >X )

Lemma 1: (the MacWilliams’ identities )
Let C be an [n,k,d;3]-code and A4; and B; denote the number of
codewords of weight i in the code C and in its dual code C respec-
tively. Then

Ki(i)A; = 3¥By,  for 0<t<n,
=0

T

K,() = g(_l)j G__;) (;) it

are the Krawtchouk polynomials.

where

Lemma 2: [12] For an [n, k,d;3}-code B; = 0 for each value of i
(where 1 < ¢ < k) such that there does not exist [n—i, k—i+1,d; 3]-code.

Lemma 3: [3] Let C be an [n, k, d;3]-code and ¢ € C, wi(z) =w

and w < d + [%]. Then Res(C, w) has parameters [n — w, k—1,d%,
where d° > d —w+ [§].
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Lemma 4: [12] Let C be an [n, k,d; 3]-code with £ > 2. Then:
a) A; =0or 2 for i > (3n — 2d)/2
b) If A; =2, then A4; =0for j+1i>3n—2d and 7 # j.

. Lemma 5: [12] Let C' be a [g3(k,d), k,d;3]-code. Then: By =0
foralld and B; =0if 1 < i<k + 1 and if d < 35-7+1,
Corollary 5.1: 1fk = 6, then By = 0 for all d and Bs = 0for d < 243.

Lemma 6: [5] Let C be an [n,k, d;3]-code. If d =2 (mod 3) and
no codeword of C' is of weight 1 meod 3, then C can be extended to
a self-orthogonal [n + 1, &k, d + 1;3]-code.

Let S; denote the number of codewords in an [n,k,d;3]-code of
weight 1 mod 3.

) Le{:;nma 7: Let C be an [n,k,d;3]-code with d mod 3 #1 and
3, =0.Let also A; =01if imod3=1andi <3 i =
Then §,=0. T

Proof: It can be easily derived from Theorem 2 in [6].

3 The new results
By [10] 103 < ds(158, 6) < 104.

Theorem 1: ds(158,6) = 103.
Proof: Suppose there exists a [g3(6, 104)=158,6,104;3]-code C'. By Corol-
lary 5.1, By = By = 0. By Lemma 3 it follows that all A; different from

Atoa, Avos, A111, Ar20, A129, A13s, A1a7, Ai1se, Ars7 and Ajsg are equal
lo zero.

The first three MacWilliams identities are:

€o: Aj§§+A105+A111+A120 + Ao+ Aras+ Argr+ Arse+ Arsr+ Arss =
7

eyt ‘1-{1104 + Ajos — 17.A111 —44. A190 — T1. A120 — 98. 4135 — 125. 4147
“102..4153 i 155.A157 = 158.A153 = —316

(i -—15?_../4104 — 158. Ajgs — B.4111 + 832. 4190 + 2398.A199 + 4693. 4133
+771f.z-’l]47 + 11470A156 + 11932.1‘1157 -+ 12403.A153 = —49612
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Calculating the next linear combinations (299.eq + 17.e1 + 2.62)/9,
(—124.¢9—7.e; —l.e3)/9 and (160.e0— 2.1+ 1.e2)/9 we get respectively

a:T.Avpa+ 135.A190 + 432.A199 + 891.A133 + 1512. 4147 + 2295.A156
42392. A57 + 2491.4,55 = 12564

b: 3<A105 == 72.A120 = 22544.129 = 459.14133 = 7?4‘A147 =5 11?0.A1_55
—1219.A157 — 1269. 4153 = —4272

¢:21.A111 4+ 120.A120 4+ 300.A129 + 561. 4138 + 903.A147 + 1326.A1356
+1378.A1s7 + 1431. A58 = 7500

It follows by Lemma 4 that A; € {0,2} for ¢ = 138,147,156, 157,158.
If Ajss = 2 then by Lemma 4 Ay = Ao = Ao = Aqzz = Ayar =
Aiss = A1s7 = 0 and equation ¢ gives a contradiction. Thus A;55 = 0.
Similarly Ajs7 = A1s6 = 0. It follows from equation ¢ that Ajz < 62
and Ajag < 24. With the aid of computer program we check that there
is no solution of the MacWilliams identities in non-negative integer mul-
tiples of 2.

Theorem 2: There do not exist [204,6,135;3]-codes.

Proof: Suppose there exists a [g3(6, 135) +1 = 204, 6, 135; 3]-code C. By
[10] a [203,6,135;3]-code does not exist and by Lemma 2 By = 0. By
Lemma 3 it follows that all A; different from Ajas, Ai4s, Aiso, A2o0,
Ago1, Asga, Agos and Agps are equal to zero.

The first two MacWilliams identities are:
eo : Ass + Aras + Arso + Azoo + Azo1 + Azoz + A203 + Az0a = 728
€y : Ayzs — 13. 4140 — 14.A15g — 64. Asgg — 65. 4201 — 66.A902
—67.Aggz — 68.4504 = —136

Calculating the linear combinations 13.eq + €1 and ey —e; we get
respectively

a:14.A135— A1s0—51.A200—52. A201 —53. Ag02—54.A203—55. Ag04 = 9328
b:14.Ara9+15.A150+65. Asgo+66.A501 +67. Azgz +68. Aoz +69.Ag04 =
864

It is easy to see by Lemma 4 and equation b that Azgo, Az01, Asga,
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Azpgs and Aggy are equal to zero. There is no teasible solution of the
MacWilliams identities. ( The Linear Programming Bound give us also
that a [204,6,135;3]-code does not exist.)
Theorem 3: ds(203,6) < 133.

Proof: Suppose there exists a [g3(6,134) + 1 = 203, 6, 134; 3]-code C.
By [10] a [202,6,134;3]-code does not exist and it follows by Lemma 2
that Bj = 0. For code C 3n+d— 3d+ =% = 140.83, By Lem-
ma 3 Res(C,136) =[67,5,44;3]-code, Res(C, 139) =[64,5,42;3]-code. By
[2] (Table I) these codes do not exist and it follows by Lemma 7 that
51 = 0. Then by Lemma 6 a [203,6,134;3]-code can be extended to
a sell-orthogonal [204,6,135;3]-code, which contradicts Theorem 2. So
[203,6,134;3])-codes do not exist. j

Remark: The non-existence of [203,6,134;3]-codes also follows from
Theorem 2 and Theorem 2 in [6].
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Abstract
The performance of linear block codes over a finite field is inves-
tigated when they are used for pure error detection. Sufficient

conditions for a code to be good or proper for error detection are
derived.

1 Introduction

This paper deals with the performance of linear block codes when they
are used for pure error detection. A linear [n, k, d; q] code with symbols
from a finite field of ¢ elements GF(q), is a k-dimensional subspace of
the n-dimensional vector space over GF(g), with minimum Hamming
distance d.

We shall consider the following probabilistic model. The [n, k, d; ¢] code
(' is used for error detection on a discrete memoryless channel with ¢
inputs and g outputs. Any transmitted codeword has a probability 1 —¢
of being received correctly and a probability gil of being transformed
into each of the ¢ — 1 other symbols. We assume that 0 < e < 9%1-

117



Denote by P,4(C,€) the probability that the decoder fails to detect the
existence of a transmission error, called also the probability of undetected
error for C. This probability can be expressed in terms of the weight
distribution of C, {4; : 0 < i < n}, where A; is the number of codewords
of weight i, in the way

£
q—1

Pu(Cye) = 3 Ai(—=) (1 - ey~ (1)

i=1

(see, for example, [1], p.66).

To compute the exact value of Pya(C,€) by use of (1) is equivalent to
find the weight distribution of C. This is done only for few classes of
codes and it is known to be a hard computational problem for large code
parameters (see [2], Ch.5). An easier problem is to find good bounds on
P,4(C,€). Note that even when P,4(C,¢€) is known a criterion is needed
to decide if the code is suitable for error detection. One reasonable ideais
to compare P,a(C,€) with the average probability Poa(¢) of undetected
error for the ensemble of all linear g-nary [n,k] codes ([1], p.78). It is

known that
Pua(e) = ¢ H[1 - (1 — )]

(see [3] and for the case g = 2, also [4] and [5]).
The following natural criteria were introduced in [6], [7], and [8].
If

g
Pua(C,€) < Pua(? - )= g8 g

for all € € [0, %L], then C' is good for error detection. If P,a(C,e) is an

increasing function in ¢ € [0, 5‘;—1], the code is proper for error detection.
Note that :
q“‘(ﬂ—k} N q—n — Pud(C, g.q_)’

that is, the proper code is a good code that possesses some regularity:
the smaller the symbol error-probability € is, the better it performs in
detecting errors.

The paper is organized as follows. In Section 2 we derive an unified
representation of the function Pyq(C,¢), 0 <e < 9—;—1 in (1) as a function
of z,0 < z < 1, and discuss the functions involved in this representation.
In Section 3 we obtain a sufficient condition for a linear [n, k, d; ¢] code to
be good for error detection. This condition easily implies some previously
known results ([7], [8], and [9]), as shown in two corollaries. In Section 4
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we give a sufficient condition for a linear code to be proper, which also
lurns out to easily imply known results. As an application we show that
all g-nary [n, k] codes with minimum distance d > 4=272 are proper. In
particular, MacDonald codes [14, 15] are proper. |

Ior all notions and results from Coding Theory which are not defined

here we refe.r to [1], [2], [10], and [11]. A nice reference to the theory of
error detecting codes is the recent monograph [12].

2 Unified representation of P,4(C,¢)

l'or z € [0, 1] introduce the functions

Ri(z) = (?)z‘-(l—z)”'i,i=1,2,u.,n (2)
and
L(2) =) Rj(2), €=1,2,..,m, (3)
=t '

0<i< i i ili i
<1< n}. We will express its probability of undetected error (1) in
lerms of the functions (2) and (3).

l'or brevity, denote

Let C be a linear [n, k, d; q] block code with weight distribution {A- :

oy T (4)

where mgy =m(m—1)...(m— i+ 1).

Lemma 1 The following representation of Py4(C,€) takes place:

Pu B 5 £q 2
d(cy ) P(C:z): Z—q_la (D)
with

P(C, 2) =Y 1=a 8 AL Ri(2) (6)

= q'dA;}Ld(z)
+ 3 i g H(A; - gA;_1)Le(2). (7)

Lemma 2 The functions Ly(z), £=1,2,... ; ) 1
eyt (z) »2,...,n, are strictly increasing
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Proof. Let X1, Xa,..., Xn be independent random variables, uniformly
distributed in [0, 1], and Xay, X2y, -+ X(n) be the corresponding order
statistics. Then for every £ = 1,2,...,n, (see [13], p.283)

PI‘{X(,E) < z} = Lg[z), z € [0,1],

that is, Ls(z) are nondecreasing functions in [0, 1]. Since they are poly-
nomials they must be strictly increasing in this interval. ¢

3 Good error detection codes

Let C be an [n, k,d;g] code with weight distribution {4; : 0 <7 < n}.
We give a set of conditions sufficient for C' to be good for error detection.

THEOREM 1 Ifforé=d,d+1,...,n

) .
k) _gmn > -ez ()A (8)

< n(i)
then C 1is good.
The theorem implies some known results.
Corollary 1 ([7]) All MDS codes are good for error delection.
Corollary 2 ([8], [9]) If C is an NMDS g-nary [n, k] code with

Ap-r < (1=q7F) (:)

then C' is good.

4 Proper error detection codes

Again, let C be an [n, k,d;g] code with weight distribution {A;,0<i<
n}.
THEOREM 2 Ifforf:d+ o

i=d n[: =d 'ﬂ( )

then C s proper.
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T'he theorem implies some known results.
Corollary 3 ([7]) All MDS codes are proper.

Corollary 4 ([9]) If C is an NMDS q-nary [n, k] code with

Ak <(1-¢7Y) (:) (10)

then C' is proper.

'I'he last corollary delineates a large class of proper codes. Note that
MacDonald codes [14, 15] are included there.

Corollary 5 If C is an [n, k,d;q] code with

> ——n (11)

then C' is proper.
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Abstract

This paper considers the minimum distance decoding (MD-
decoding) of a g-nary linear code (¢ is a prime) with ¢* codewords
of length N, 1 < k < N, for the constant-weight noisy channel
(CWN-channel) in which the additive {mod ¢) noise is uniformly
distributed on the g-nary N-dimentional Hamming sphere of a
radius ¢, 1 < t < N. We give some general upper bound of
error probability for the linear code with a known distribution of
codeword weights. For N = g—1 and the Reed-Solomon code (RS-
code) [1] the asymptotics (N — oo) of this bound is studied. If t
is less (but asymptotically equivalent) than the RS-code distance
D =N —k+1, then the upper bound tends to zero. At ¢ =2 we
use the general upper bound in finding the random coding bound
[2] of linear codes for the binary CWN-channel.

I An upper bound of error probability

Let t,0 <t g_N, and k, 0 < k < N, be integers; ¢ > 2 — a prime; F, =
{0;1;...; g—1} — the g-nary alphabet (field); e € (F;) — an arbitrary

*This work was supported by Russian Fundamental R i
b ental Research Foundation under
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word of length N; D(x,y) — the Hamming distance, i.e. the number of
coordinates in which x € (F,)V, y € (F,)" differ; |e| = D{0,e) — the
Hamming weight of e;

ok = { T if0< k<t
: 0, otherwise.

The g-nary channel x @ e = y (mod ¢) (x — the channel input, y —
the channel output, e — the channel noise) is called the constant-weight
noisy channel (or CWN-channel) if the probability

-1

_J ©Chla-157, for |e| = ¢,
Fle)= { 0 otherwise, 1 <t < N.

Denote by the symbol X = {x}, x € (F)N, a g-nary linear code
with ¢* codewords of length N, 1 < k < N, and rate B = —“T“‘-’ [2]. Let

P;(X) be the error probability of X for CWN-channel and MD-decoding.

Define for fixed x € X, |x| # 0, the set
H(t;x) = {e:|e] =t, D(e;x) <t}

and let H(t;|x|) be the cardinal number of H(¢;x). It is easy to under-
stand that the following Lemma 1 is true.
Lemma 1. Let |x| =s,1 < s < N. Then

Y. Cicizion @2 (a1, ifl1Ls<
H(t8) =4 itizs
0, if s > 2t.
(1)

and the probabilily of error

XeX

PUX) < (g - D'CE) ™ D HE ). )

Denote by the symbol 4, = A4;(X), 1 < s < N, the cardinal number
of codewords x € X of weight |x| = s. Lemma 1 shows that the error
probability

PUX) < ((g - DICK) T Y A.H(t; 9). (3)
s>21
At ¢ = 2 the value '
Hilgd =13 GO, (4)
i>af2

and inequality (3) was used [3] to obtain the upper bound of P(X) for
the binary Reed-Muller code X.
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2 RS-codes for CWN-channel

let ¢ > 3 and ¢ < s < 2t. Upper bounding the right-hand side of (1) we
linve

t

H(ts) < (g—1) 3

i=s—1

i
(g1}

Y el ¢
1 > 5 =1
= 1 (5)

C;’c{f——s'_
< (g1} v
: i:g—t (g —1)
Ifi>s—t,then Ch’, < j\r—::-—s' Hence, (5) gives
. (g~ 1):0}3\{“
H(t;s) < _—(q Y (6)

Let g — 1> s. Since C; = ONZ} < C% and Ci < s'/il < (¢ — )i/
(hen (5) means
i
1
x ot
H(t;s) < (¢—1) ONs;tﬁj

ilg—12>s. Hence, at s <g—1

€

H(t;s)S(q—l)‘Cf\r(s_t)!, (7)

where we used the evident upper bound on the remainder term (in the
lagrange form) of the Taylor formula for the function e® at 2 = 1.

Consider the RS-code X of length ¥ = ¢ — 1 and code distance
D =N —k+ 1. The values A, (see (3)), 1 < s < N, for this code are
defined by the formula [1]

=D

g (=Y
4, = YN 4 1p-2 3 G
j=0

Wity > Dsesh (8

and 4;, =0,1<s< D—1. From (8) follows that for any s > D
. 1 s=D
A SCHN(N +1)P = G a*-P¥ (1 + w) (9)

By substituting (6) and (9) in (3) we obtain
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Theorem 1. Let X be RS-code of length N = g—1 and code distanse

D =N —k+1>t. Then the probability of error

N.CJ?V h min{ N ;2t) . 1 s~
PUX) < s L O (1+ﬁ) |

Theorem 1 gives

Corollary 1. Let 0 < p < d < 1 be fized, N — oo, D ~ dN,
k ~ (1—=d)N,t ~ pN. Then the error probability of RS-code Py(X)
tends to zero.

The inequalities (3), (7) and (9) yield

Theorem 2. Let X be RS-code of length N = ¢—1 and code distance
D=N-k+1>1> —J,_\,r Then the probability of error

N L IR | R 4
CLuN 1P A )
'p*(X)SNesZ_D G=1) “M’Zz D—t+n)

From Theorem 2 follows

Corollary 2. Let k = const, N — 00, t =D — In N. Then the error

probability of RS-code Py(X) tends lo zero.

3 The random coding bound
Let an arbitrary p > 1 be fixed. From (2) follows

PX)? < (g - D'CY) 0D AH(E:)!7, g
s>1

where A,, 1 < s < N, is the cardinal number of codewords x € X of

weight |x| = s. Consider the ensemble of g-nary systematic linear codes
[2]. Denote by A the expectation of A, over this ensemble. Using (10)
and the standart arguments of the random coding method [2], we obtain

Lemma 2. For any fized p > 1 there exists the g-nary systemalic

Linear code X with

PUXY < (lo— 1O {Z&H(t;s)”p} , (11)

521

where H(t;s) is defined by (1) and

i e 5 & q_ls 8
A, :%V—_%(CN - CN_k) S(_QN‘_T)CN-
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The right-hand side of (11) is called the random coding bound for the
('WN-channel.
‘ Let q :.2 am’i 0<p< %, R > 0 be arbitrary fixed numbers. Our
Iuther alm is to investigate the logarithmic asymptotics of the random
coding bound for the binary CWN-channel under conditiors

N
In2’ (12)

I?.cnote by h(u) = —ulnu—(1—u)In(l —wu) the binary entropy function.
FMixp, 0 <p< %, and define the function

N — oo, t ~ pN, k

f(p;d) = ph(d) + dln2 4+ (1 — d)h (M

( ) 2(1—d)
of parameters p > 1 and d, 0 < d < 2p. At ¢ = 2 the value H(t;s) i
defined by (4). Hence, from Lemma 2 follows e

. Theorem 3. If conditions (12) are fulfilled, then there exisis the
binary systematic linear code X with

Pi(X) < exp{=N[E(p; R) + o(1)]},
E(p; R) = sup{~pR + 9(p, p)},
p>
p.p)=nh In2 - ;
(o) Bpl+oind= max flpid).
Fixp, 0<p< %, and introduce the numbers
do = 2p(1 — p), Ry =1n2 — h{dyp), C=1In2-hip),
d = 2p, if0<p<1/4,
o /2, if1/4<p<1/2,

Notetha§0<p<dg<dm5%,05fﬁm < Ry < C and C is the
nsymptotic capacity of binary CWN-channel under conditions N — oo
.‘I ~ pN. The analytical properties of the error exponent E(p; R) (as,
function of R, 0 < R < C,) are described by :

. Theorem 4. 1) If 0 <p < %, 0 < R < Reo, then E(p; R) = +o0. 2)
U 0 <p< % 15 fized, then the following properties are true: 2a) E(p; R)
b positive, convex, strictly decreasing funclion of R, R < R < Rg, and
i addition E(p; R) is presented in the parametric form Bl

Roo =In2 — h(dy).

E(p;R)=h(p)—dIn2 — (1 —d)h (2“2319—:%) ,
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R=1n2- h(d), do € d < dy;

2b) at B = Ry the function E(p; R), Ros < R < Ry, touchs the straight
line C — R. 3) If0<p<-é, Ry < R< C, then E(p;R)=C — R.

We omit the detailed proof of Theorem 4, only notice that stat.emegts
1)-3) are established by the standart methods of mathematical analysis.
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Performance Analysis of the Binary
Wiretap Channel

Roland Eriksson
Division of Data Transmission
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Abstract

We investigate the use of coset coding on a binary wiretap channel
with error-free main chanuei. The decoding problem for the wire-
tapper is examined and we give the maximum likelihood decoding
rule. Expressions and bounds on the block error probability for
this decoder are given.

1 Introduction

In 1975 Wyner introduced the wiretap channel [1]. The problem is to
code messages in such a way that the information about the message
gained by an eavesdropper observing the codeword through a noisy chan-
nel is close to zero. Wyner suggested a coding method to achieve this
information theoretical goal. We investigate the effect of that coding
method on the decoding rule and error probability of the wiretapper.
Other investigations of this coding method include [2] and [3].

A sender wishes to transmit a r-bit message m € IFY, to a legal receiv-
cr over an error-free binary channel. To combat eavesdroppers they use
block coding and send a codeword z € IF}. A wiretapper observe this in-
directly as the output y from a binary symmetric channel with crossover
probability e,
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2 Coding

The main idea is to associate each message with a coset of a linear code
and use a probabilistic encoder that sends a random vector from the
coset indicated by the message.

We use a binary linear code C of length n and dimension k. Let H be
a r x n parity check matrix for this code (r =n—k). The encoder is
described by the conditional probability function

(e]m) = o=b Wt =i
Px|MAZIT) = 0 otherwise

i.e. the encoder outputs a codeword uniformly chosen from the coset
with syndrome m. We will denote this coset with Cr,

Cm = {z | HeT =m}.

In particular, the code itself corresponds to the zero message, Co = C.

3 Decoding

The legal receiver has access to an error-free version of the codeword z,
hence may calculate m = Hz” directly.

The wiretapper receives a vector y generated by letting the sent vector
z pass through a binary symmetric channel, which adds an error vector
e = y — z. This induces the following probability distributions, where

w(+) denotes Hamming weight.
prix(ylz) = 21— "V EE), Vol

prin(ylm) = D pxyium(z,ylm) = > pyrix(lz)pxm(zlm)

IEIF‘: J:EIF;
=27F Z py|x(ylz) = g=* Z e2=2)(1 — e
2ECm EEC T

As z ranges over the coset Cm in the last sum, y — x ranges over some
other coset C, corresponding to the syndrome v = Hy—z)T = HyT —m.

pri(ylm) = 275 3 (1= * () =27 Pr(e € Cy)
eeCy
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A rqajor difference between this decoding situation and ordinary d d
ing is that for any message m there are several error events tiate::a}-r

cause the reception of the vector
. y. To do true maxim ikelj
decoding we must take all these events into account e

‘l he Sll‘lll ma € eX[}IESSe 1n terms o t € Welg tl lStIlblltl(}ll ()1 I][e
(.f]Set. FOI‘ aIly Set S C Eﬂ; we use the IlOtatiOIl

Ai(S) =z e S |w() =i}, A(S 2)= Y Ai(S)7
With this notation we can also write e

Pr(e € C,) = Z;A,-(cv)fiu =" = (1~ 4(C,, ).

As ¢ ranges over [0, 0.5], €/(1—¢) ran
‘ ,0.5], — ges over [0, 1]. We are thus i
in the values of A(C,, z) for z between zero a.nd] one forediﬂl“zéﬁte;esmd

Lemma 1 Forallz:0<z<1 and all v
A(Cy, 2) < A(C, 2)
Proof: For any v # 0 the set D = C i i
P . = CUC, is a linea
['he dual Dt of this code is thus a linear subcode of]': é}ipegc?rie“?]g'%
; ic

follows 4;(DL) < A;(CL) fori =0
<4 =0,...,n. Consequently, for positi
we have A(D+,z) < A(Ct,z). We then use the Mac\Villia:rnspi(:iS;nlt‘ir{:yz,

A(Cyyz) = A(D,z)~A(c,z)=(1—+—z)_"A(Dl,1‘z

[D] 133~ AC2)
< (1+z)nA(C'L 1—2
S e T 1) ~AGE) = 24(6,2) - 4(6,)
= A(C,z2)

<

A stronger version of this lemma was proved in [4]

lalion is enough for deciding on a decoding rule. - However this formu-

I'heorem 1 A maezimum likelihood estimate for the wiretapper is



Proof: From above, the conditional probabilities for the received vector

are
€
pylM(ylm) = Q_kPT(B = Cv) = 2""(1 - E)“A(Cu, ~1—_—E)

where v = HyT — m. The previous lemma tells us that the right-hand
side is maximized for all € by v = 0. Thus the choice of m that maximizes
the probability of the received vector must be m = HyT . &
We conclude that the simple decoding rule of calculating the syndrome
of the received vector is indeed maximum likelihood, so the wiretapper
may decode in the same manner as the legal receiver.

4 Error probability

In the previous section we presented a maximum likelihood decoder for
the wiretapper. We will now examine the block error probabilities for
this decoder.

Theorem 2 The block error probability with magzimum likelihood decod-
ing 1s

Pe:l_Pef_'Pud
where Py is the probability of error-free transmission and Pyg is the
probability of undetected error when the code is used for error detection.

Proof: The message is m = HzT and the wiretappers estimate is m =
HyT. These are equal iff Hy?' —HzT = HeT =0, i.e. iff the error vector
is a codeword. Hence, since Pygq is the probability that the error vector
is a nonzero codeword, we may express the block error probability as

PE=lvPr(eEC):l—Pr(e=0)—-Pr(eeC,e¢0):"-1—Pef—Pud'

<

We notice that codes maximizing the error probability for the wiretap-
per, are the same that minimize the probability of undetected error. To
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|'Valuate Lhe biock error pr:)babilit\« W In e “«‘eig[]! (I‘SL]‘[I)]I on (}I
1 QCd tlh =} : i
|-|l(:‘- COde ar ltS dllal :

P,=1-Prle€C)=1-(1—e€)"A(C, IL)

—€
I'rom the MacWilliams identity and the fact that z = ¢/(1 —¢€) translates
to(1—2z)/(1+2z)=1—2eand 1+ z=(1—¢€)"! we alternatively have

(1+2)"
|C+]
= 1-2"TA(CH 1~ 2).

1 1—=z

Pe = 1—(1-o" T
Z

A(C )

z=¢ef(l—¢)

We give two simple estimates by comparing with the case when all nonze-

1o codewords in have minimum weight, first 1 :
: , first in th
in the dual. g e code itself and then

Theorem 3 The block error probability is lower bounded by
P, >1—(1l-6"—(2"—-1)#(1 — )4

P> (1-27")(1—(1-20)"")

I’roof: We upper-bound the sum b i
: ' _ v separating out the z
using that €' (1 — €)™* decreases with 1. ‘ L

P,

fre Z&(C}e"(l i

= 1-(1—-¢"— zn:A‘-(C)E"(]_ = 6)”":

(;k T R

" 2
I'he same reasoning for the dual expression:

b 1—(1-—6)“_

P

Il

1—g5r ZA;(CL)(l =3¢}

> 1-27"—277(2 = 1)(1 - 26" = (1-27")(1 - (1-2¢)%").

We may notice‘that one of the bounds is tight when the code is a repe
(ition code, a simplex code or their duals. e
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Codes of Maximum Minimum
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A, Faldum and W. Willems
Fakultat fir Mathematik
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1 Introduction

et C be an [n,k,d]-code over GF(g) with k > 2. If s=n—k+1—d
denotes the defect of C, then by the Griesmer bound, d < (s + 1)q (see
[4]). Now, for obvious reasons, we are interested in codes over GF(q) for
which the minimum distance is maximal. Thus the problem is to classify

ull codes over GF'(g) with parameters [k + (s 4+ 1)g+ s — 1, k,(s+ 1)q]
and & > 2.

2 Results

A Code C over GF(q) is called an ovoid code if it has a generator matrix
whose columns form an ovoid in the projective space PG(3,q). One
casily sees that an ovoid code has parameters [¢% + 1,4,¢% — ¢]. Note
that in even characteristic there are ovoids (Tits ovoids, see [1], page
112) different from projective elliptic quadrics. However, the associated
codes are all formally equivalent. The main result we have is

Theorem. Let C be an [n,k, d]-code over GF(q) of defect s > 1 and
minimum distance d = (s + 1)g. If £ > 4 and q¢ > 4, then k=4 and C
15 an ovoid code.

Remark 1. Suppose that ¢ = 3 in the assumptions of the Theorem
above. Then C' is one of the following codes.
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e the [12,6,6] extended Golay code [2] A.BARLOTTI, Un estensione del teorema di Segre-Kustaanheimo

Boll. Un. Mat. Ital. 10 (1955 -
e the [11,5,6] dual Golay code e e

e the [10,4,6] ovoid code, which comes from an elliptic quadric in

(3] M.DE BoER, Almost MDS Cod
PG(3,3) (see for instance [2]). = g

To appear in Designs, Codes and Cryptography.

Remark 2. Suppose that k = 3 in the assumptions of the Theorem
above. Then we have the following. Either C is a [¢* + ¢ + 1,3.4%
simplex code or C has parameters [(p° — 1)q + p'. 3, (p' — 1)g] where
1 # p'lq. For p* = g, C is the shortend [¢?, 3,¢% — ¢] ovoid code.

[4] A.FALDUM_ AND W.WILLEMS, Codes of Small Defect.
To appear in Designs, Codes and Cryptography.

The crucial point in proving the Theorem above is to show that the defect
s of C has to be ¢ — 2. This mainly relies on the fact that applying our
results on the defect of codes [4], we can completely determine the weight
distribution of C. The restriction on the dimension of C then depends
on de Boer’s investigations of almost MDS-codés [3].

Finally, we would like to mention that the Theorem has the following
characterization of ovoids as a consequence.

Proposition. Let k > 4,9 > 4 and let O C PG(k — 1,q). Suppose
that there exists a natural number s such that for each hyperspace H in
PG(k — 1, ¢) the following two conditions hold.

(a) F|ONH|>k—2, then [ONH|=k+s—1.
(b) [O\ H| = (s + L)g-
Then @ is an ovoid in PG(3,q).

In the forthcoming thesis of the first author some of the results given
here will be generalized for codes which have minimum distance close to
the maximum one.
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An Anti-Jamming System for Slow
Frequency Hopping

Suzanne Hjelm, Dept. of Electrical Engineering,
Linképing University, S-581 83 Linkoping, Sweden.
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Abstract

We study a channel for radio communication. On this channel
the main interference is generated by an intelligent jammer. The
jammer has complete knowledge about the system, including the
codes utilized, but he does not know the key. We analyze a sys-
tem for slow frequency hopping in terms of the codeword erasure
probability. The system i8 compared to an uncoded system us-
ing M-ary frequency shift keying. In many cases a considerable
improvement of the performance is achieved using the system we
study. The only cost is the number of keys.

1 Introduction

In some communication environments there is a threat that a hostile
jammer will destroy the communication links by transmitting a signal
intended to interfere with the legal signal. One obvious such situation
is military communication. Another example can be found within the
world of crime.
Both the legal user and the jammer are subject to energy constraints.
For the jammer to best utilize his available power he can try to gain.
knowledge about the system. The more the jammer knows about the
system the more damage he can cause. We consider a jammer to be
more or less intelligent depending on his level of knowledge.
The jammer is supposed to have an energy advantage. This kind of
assumption makes usual coding useless if the channel is symmetric since
the jammer simply can transmit false messages. For the legal user to have
possibilities to communicate despite the jammer’s destructive activities
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also the legal user has to be intelligent. One way out of the problems
is to hide some information from the jammer. Such information can
not be built into the system since the jammer then would have the
possibility to find out the secret. Instead the legal user has to use the
secret information as an input to the system. We say that the legal user
has a secret key. The key is supposed to be known to both the encoder
a.nd the decoder but appear as truly random from the jammer’s point of
view.

Since a key has to be kept secret there is always a certain cost associated
with each key. We determine the key-rate required for each system, i.e.
the number of keys divided by the length of the code utilized. We want
the performance measures to be as good as possible at as low key-rate
as possible.

One kind of systems utilizing a key are systems for frequency hopping.
Usually such systems are combined with interleaving. Also interleaving
has to be regarded as a key since the interleaving pattern has to be kept
secret to achieve independent symbol errors. If the symbol errors are
i.ndependent the jammer has not been able to disturb in a way different
from complete randomness and the analysis can be made in accordance
with unintentional noise. A jammer will optimize Lis jamming strategy
subject to his knowledge about the system. The more he knows the
more intelligently he can act. Each code has a special structure which
the jammer can utilize to be more effective if interleaving is not used. We
consider a system for slow frequency hopping where a complete codeword
is transmitted before changing the key. The system under study does not
utilize interleaving. As a consequence symbol erasures occur in bursts
c':hosen intelligently by the jammer. The only constraint we put on the
jammer is an energy restriction. We assume that the jammer selects
the best strategy possible under given energy constraints. The jammer
utilizes the structure of the code. As the measure of performance we
consider the erasure probability in the worst possible case.

We assume that the jammer is not able to intercept the signal and follow
it before the legal user is changing the key and we assume non-coherently
orthogpnal signal spacing. As a consequence faster codeword transmis-
sion can be achieved at the cost of larger bandwidth, We assume that
the noise can be neglected in comparison with the jamming signal and
therefore the noise is not included in the mathematical madel.
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2 System model

The legal signal is represented as a binary matrix z = {zi;} where each
position represents a time-frequency slot in the physical model. Each
component in the matrix describes one of two possible signal alterna-
tives in the corresponding chip: absence of signal, which is denoted by
z;; = 0, and presence of signal, which is denoted by zi; = 1. The
non-coherent receiver determines the active chips (presence of signal) by
measuring the energy in each frequency-time slot and compares the level
to a given threshold value. There are three different signals which are.
all represented as matrices according to the above principle. The signal’
« is the legal signal. The other two signals are the jamming signal s and
the received signal y. All three of them are represented as N X n binary
matrices, where N is the number of frequencies and n is the number of
time slots.

We assume that a transmitted signal can always be detected. This means:
that we are neglecting the possibility that the sum of the transmitted
signal and the jamming signal is less than the threshold value. The
channel can be described as an or-channel. Let the sets X, S and Y all
be binary. If the encoder transmits x € A Nxn and the jammer transmits
s € SN*%n then the channel output is y € YN*n_ where each component,
is formed as yi; = xi; V 8;; where 1 < i < Nand1 < j<n We
consider the following energy constraints: let the Hamming weight of s
be restricted according to wyr(s) < E and the Hamming weight of each
transmitted codeword ¢ to wi(c) < n. The given weight constraints,
correspond to average energy constraints.
We study a system for independent frequency hopping. Let Iy be the
set of integers from 1 to N. The key set M, is the set of all pairs of
distinct integers from Iy, i.e. M, 2 {z = (20,21) €I} : 20 # 21} We.
assume that the key is selected uniformly over M.. The transmitted:
signal z is a matrix z = {=i;} where each column 29 is in the image
of amap fo : Fa x M, = ]Ff"l. The system under study utiliz ""1
binary frequency shift keying. In the matrix = each column depends on
the binary message ¢; according to z'%) 2 fo(c; 2) = (%15, T2j, - - ENGN
where 1 < j < n where for each j the quantity zi; is defined as y

s 1 1:=20+(Zl—20)-cj
i/ 0 i;ézg+(z1—z(})-c_,-

where 1 < i < N. The output from the outer encoder f; : M = C 18
givenbye:fl(m)=(c1,c;,...,c,,)GC. I
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Figure 1: An anti-jemming system using concatenated anti-jomming
codes.

The decoder consists of one inner and one outer decoder. Let y de-
note the received signal given by the matrix y = {yi;}. The inner de-
coder is cperating only on the inner key positions. The irner decoder
pp s TFYX™ x M, — {IF2 U {}}}" makes a decision ¢; as follows. Let
(] 2 1 (Y205 +Tzr;) where 1 < j <nand where a bar denotes the binary
complement and let &(c,s;) = (é1,...,6x). Symbol erasures are repre-
sented by % and no errors can occur. An erased codeword is announced
by the outer decoder ; if two or more codewords are compatible with
the received vector &(c,s;), i.e. an erasure is declared as soon as code-
word ambiguity occurs. The total system is given in figure 1.

3 Code construction

[et P(M;) denote the set of all key distributions P over M,. We
assume that the legal user chooses P € P(M.) such that all pairs from
M, are chosen equally probable, a distribution which we denote Fy.
(liven the uniform distribution Py each row in the jamming matrix s has
equal probability to be one of the two key rows. As a consequence both
rows determined by the key, sz, and sz, , are stochastic variables. The
jammer selects a jamming matrix s which thus is deterministic but where
the rows of s determine the set of possible outcomes of the stochastic
variables sz, and sz,. Let P(SN*") represent the set of all jamming
distributions Q, where the matrix s has weight less than or equal to E.
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Let C be a code and let ¢ be a codeword in C. We define P.2(Q) as

Pu(@5) & kl:_l %P r (52 # 0% A sz, # 0% A (Ee,s:)) =€ | Qo Po) .-

We define P.1(Qs) as

Pgl(QG) = ]_éT %PT (SZo =0"A §Zy # 0" Ay (E‘(C, 32)) =& 1 QMPU) G

it 3

+1_CT ZPT (sz, = 0" A sz, #0" Ap1(Elc,8:)) =€ 18 Fo)
cel

We suggest the following code construction: let C be any coset of a linear |

code such that the criterion Pe1(Q,) = 0 is fulfilled, i.e. let the code be

chosen so that whenever the jammer disturbs either zg or z; the erasure

probability is identically zero independently of the jamming strategy. '

Lemma 1 The requirement Pey(Q) = 0 is equivalent to the f'eqm'remenﬁ
that no codeword in the code is allowed to cover any other codeword.

Since P.;(Q,) is identically zero the resulting erasure probability P.(C)'
is given by P:(C) = max P (Qs)- '

Q,ESN"“

4 The erasure probability

Let sz = (s%,...,s™) such that s* = (s, s_{ik}) where Zp = jand Z; = j§
and1<k<n,1<i<N,1<j<N. The Hamming weight of each row &
and 7 is w; £ wg(s;) and w; £ wy(s;). We define the erased codewords
in C given the jamming vector s; as £.(s) £ {c € C: p1(élc,82)) = £}
Let v,(s) denote the size of this set, i.e. vs(s) £| €:(s) |. Assuming thaty
the codewords occur with equal probability the probability of erasure
given z and s is ml-;v, (s). With the key selected uniformly over the
key-set M, we obtain the following erasure probability for the matrix s=

N N

: > D vils): (1)
#

P(s) = v -1,

{=1 i=1
Jki

The jammer obviously wants to maximize this quantity. More precisely,
he would like to choose s such that P.(s) is maximized subject to the
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piven :::tl)nstrajnt on s. The erasure probability depends additively on the
quantities v (s) and we can therefore maximize each v, (s) separately. We
define the maximum number of erased codewords in € from a ja.ni;:nin
vector s, with the weight w = w; +w; where 1 <w; <nand1 <w; < 'rgz
.'I,(S]nqﬁé“w,: ;—(wjgil Since the jamming pairs can not a_lways be gpti;nglly
combined (each row is included i i ili
i e wiol ed in several pairs) the erasure probability

1 N N
P.(C) < _ i
=
where the maximum is taken over W = (wi,...,wyv_1)) under the

) ; N
constraint 3% w; < Eand Y w; < B,
Theorem 1 Let C be a coset of a linear code such that no codeword in
the cod!e covers any other codeword. Furthermore, let d be the minimum
Ifammzng distance of C, E the weight of the jamming matriz and N the
available number of frequencies. The erasure probability is constrained
according to .
E(E-d+1)

dN(N -1) °

The erasure probability is elso constrained according to

)
d-N’

P.(C) <

P(C) <

[;.emza:rk:NTl;e first bound is stronger than the second bound when E —
d+2 < ut the second bound is stronger than th
A g an the first bound when

5 Comparisons

We intend to compare the system under study to a conventional MFSK
gystem. We use five parameters as primary parameters. These are the
mformation-rate R, the number of keys for each message M., the jam-
ming to signal ratio J, the time-bandwidth product B during,each ho

and finally the erasure probability P.(C). We want to compare the sy;3
!.em under study to an MFSK system using the same information rate
in both cases. This is possible to achieve by comparing the system to
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F(C)
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Figure 2: A comparison between the upper bound on the erasure proba-
bility for the system under study with a coset of a [15,4,8] code (lower
curve) and an MFSK-system (upper curve). The erasure probability s
given as a function of the signal to jamming ratio 1 /J and N = 16384.
The information rate for both systems is By = 163;4.15 -log 16 and the
time-bandwidth product is B = 16384 - 15. The number of keys for the
system under study is 268419072 and for the MFSK-system 15360.

an uncoded MFSK-system with N - n available frequencies thereby also
getting the same time on each hop in both cases and the same required
bandwidth. The erasure probability for the MFSK system is given by

Pr(erasure) = (ﬁ%) (Mg - 1)

which can be compared to the upper bounds on the erasure probability
for the system under study. In figure 2 we have compared the system
with a coset of the dual Hamming code [15, 4, 8] against an MFSK-system
when N = 16384 and M, = 16. The gain for the system under study
compared to the MFSK-system gets larger when N increases. The gain
compared to an MFSK-system also gets larger when the number of mes-
sages M, for a given codeword length increases.
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For complete proofs see [1].

6 Conclusions

We have found that the system under study is certainly better than an
MFSK-system if the number of messages is large enough compared to
the outer codeword length. If the number of messages and the code-
word length are fixed the system is better than the MFSK-system if the
number of available frequencies is big encugh compared to the jammer’s
energy. In fact a lower erasure probability is always achieved if, for a
F,wen out(.er information rate, the outer codeword length is large er,lough
['he cost is the number of keys. We conclude that one way for the legai
user to obtain a lower erasure probability is simply to use more keys.
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Abstract

Structural properties of cascaded convolutional codes are investi-
gated. It is found that the constraint length of the cascaded con-
volutional encoding matrix is less or equal to the sum of constrain
lengths for the outer and inner basic encoding matrices. Simi-
larly, the memory of the cascaded convolutional encoding matrix
can be derived as the sum of memory of the outer and inner basic
encoding matrices, divided by rate-dependent constants.

1 Introduction

A cascaded convolutional code is a concatenation of two convolutional
codes, one outer and one inner, without any interleaving. Usually when
codes are concatenated we use some interleaving between them, but to
get a better understanding of what is happening we have in this work
concentrated on the case without interleaving. We have been interested
in expressing the constraint length and memory for the cascaded encod-
ing matrix in terms of the outer and inner encoding matrices.

*This research was supported in part by the Royal Swedish Academy of Sciences
in liaison with the Russian Academy of Sciences, and in part by the Swedish Research
Council for Engineering Sciences under Grant 94-83.
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2 Cascading of convolutional codes

Let u = ugujusg... be a se &1 i
- quence of information symbols, where u; €
GF(2), and G be a semi infinite encoding matrix of a convolutional co‘de
with parameters (b, ¢, m, v), :
Gg Gy ... Gm

rwhere G; are binary sub matrices with size b x ¢ and m is the memory
I'he encoded sequence is then .

v=vgvyvy...=uG, (2)

and the encoding rate is R = bfc. If equation (2) is written in the
D-transform representation the encoding matrix becomes

and the encoded sequence
v(D) = u(D)G(D), (4)
where
“(D)=(UO---ub_l)+(ub...u2b_1)1)+... (5)

is the transform of the information sequence, and

v(D)=(vp..-ve-1) +(vc...voe_1)D +--- (6)

is the transform of the encoded sequence. The overall constraint length
1

v, is equal to the number of delay elements in a realizati
A t
il e alization on controller

A cascaded comfolutiona,l code is defined by two convolutional codes
one outer encoding matrix G, with (bo, ¢o,mo,v), and one inneli

encoding matrix (_;I: with (b, c;,m;,v;). The encoded sequence of a
cascaded convolutional encoder is

voe = uGoGr. (7)

In oth}ar words the encoding matrix of the cascaded convolutional en-
coder 1is

Gee = GGy (8)
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To calculate the memory and the constraint length for the cascaded con-
volutional encoding matrix we first restrict to the case when co = by, 1.6,
the code symbols from the outer encoder serves directly as information
symbols to the inner encoder. This restriction will be removed later.

2.1 Properties when matrix product is defined

In this part we will consider encoding matrices with the restriction that
b = ¢o. We will also assume that the encoding matrices G(D) and
G (D) are basic [2]. When b, = co the encoding matrix for the cas-
caded convolutional code is, in D-transform representation

Gcg(D) = Go(D)G1(D) (9)
with size bo X ¢;, and consequently with rate
bo
Roni= o (10)

Let G%ng)(D) be a minimal-basic [3] encoding matrix equivalent to
Ggc (D), and denote by m{") and {2 jts memory and constrain-
t length, respectively. An obvious realization of Gog(D) is to first
realize Gg(D) on controller canonical form, and then realize Gy(D)
on controller canonical form. This is a realization with vo + v; delays
elements. Since a realization of a minimal-basic encoding matrix on con=
troller canonical form will have a minimum number of delay-elements;

the constraint length of G{gié‘)(D) must be less or equal to this number.:

Theorem 1 Let G(gic“)(D) be @ minimal-basic encoding matriz equivas
lent to the encoding matriz Gce(D) defined by the product of the two.
basic matrices Gg(D) and Gy(D), where co = b;, then

Vggin) < Vo + Vi (11)

To state a similar theorem for the memory of the cascaded encoding
matrix we first need the following lemma.

Lemma 2 If Gg(D) and Gp(D) are two basic encoding matrices, th
corresponding cascaded encoding matriz, Gcoc(D), will also be basic.

148

It f:an_ be shovf'n, by_ example, that the product of two minimal-basic
en'(,odmg matrices will not necessarily generate a minimal-basic result
We can now continue with the next theorem. .

(min) o .
Theorem 3 Lei Geo (D) be a minimal-basic encoding matriz equiva-

lent to the encoding matriz, G
- i , Go(D), defined by the product
basic mairices Go(D) and Gg(D), where co = g” t};i’no i

mg:;m) < Mo +m;. (12)

2.2 Properties when matrix product is not defined

We will now remove the restriction that &, = ¢,. This means that we
can no longer multiply Gg(D) by Gy(D) since they does not agree in
size. We can, however, still multiply the semi infinite matrices G and
Gy to get the cascaded encoding matrix G as in equation 8 “% will
start by .taking a closer look at the rate of this encoding matri;( There
are by bits in each information block into the encoder, and ¢ .bits in
each code block. We get ¢, code blocks from &, inform,a.tion biooks If
b, and ¢, have a common factor d, ¢, /d code blocks will be genera.ted
from b;/d information blocks. This can be generalized into a lemma

Lemma 4 The rate of a cascaded di i
S encoding mairiz defined by Gog =

(13)
b

where bg = b J— c
5ed(br, ea) S Tedlhy e0)

In the previous _section by = ¢4 = 1 since b; = ¢, and the rate is
Rew=bsier, as in equation 10. From lemma 4 it is clear that the matrix
Geoe(D) ha:s size bobg % cgc;. This matrix can be found by enlargin

the su'b matrlc?s in Gg and Gy by a factor by and ¢4, respectively gThi
resulting matrices Gpg(D) and Ggy(D) then can be multip]iec-i To
r-nlz'u'ge a matrix, G(D), look at be x ce sub matrices when G (D) i

:lerlv.ed from the semi infinite matrix G, equation 3, instead of bﬁi( e lg
Iu‘la..tnces‘ The resulting matrix will be a be x ce en(;oding matrix -

I'his method can be applied to every polynomial matrix. It is cIea;,r that
enlarging a polynomial matrix only give us another polynomial matrix
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Since this is true also for a polynomial inverse of a basic encoding matrix.
lemma 2 is still valid when b; # co. Before we are ready to look into the
constraint length and memory of Geg(D) we need a new lemma.

Lemma 5 If G(D) is an encoding matric with constraint length v and
Gg(D) 15 ils enlarged variant with constraint length vg, then

Vg =V (14)

In the next two theorems we will generalize theorem 1 and 3.

Theorem 6 Let G(gié}([)) be @ minimal-basic encoding matriz equivds
lent to the encoding matrizr Goc (D) defined by the product of the two
enlarged variants of the encoding matrices Gg(D) and Gi(D), as
Gcg(D) = Ggo(D)GEL(D)- Then

vggin) < Vo + V. (15)

Theorem 7 Let Gggj(D) be @ minimal-basic encoding matriz equivd-
lent to the encoding matriz Goc (D) defined by the product of the two
enlarged variants of the encoding matrices Gg(D) and Gy(D), as$
Gcc(D) = Ggo(P)GEN(D)- Then

M & ["—ﬂ + [ﬁ\ . (16).

bg cd
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Abstract

The binary linear [24,7,10] codes are enumerated up to equivalenc
and the Iresult obtained is that there exist exactly 6 inequivaleni
codes with these parameters. Their automorphism groups hav
been studied, and as an additional result it follows that ther .
exactly 29 inequivalent binary linear [23,7,9] codes. i

Introduction

For all basic notions and facts about i
. coding theory which a
introduced here we refer t i Fis
L refer to [6]. All codes to be considered are binary
. f.\n [n, k,.d] code is a binary linear code of length n, dimension &, and
[rﬁlnlmu{ntdzsta[r:cekdéj Let n(k,d) be the smallest value of n for v:rhich
here exists an [n, k, d] code for given values of k
code is called optimal. i
Two codes are e(.:{uivalent if one of them can be obtained from the
f:nther by a perm.utatlon of the coordinates. An automorphism of a code
is any permutatmn of the coordinates that preserves the code as a set of
vectors. The set of all automorphisms forms the automorphism group

*This work was partially s t i i
Ghasts Lt ot v supported by the Bulgarian National Science Fund under



of the code. The fundamental question in coding t.heory.is the existence’
of codes with given parameters. In the case that the existence problem
has already been solved, then the problem for the classification of all

inequivalent codes with these parameters arises. .

It is known [7] that n(7,9)=23, and n(7,10)=24. The ﬁrst.exa.mplle.
of an optimal [23,7,9] code is given in [4]. Six new codes with these
parameters have been constructed in [3]. An example of an optimal
[24,7,10] code is given in [7]. _ . . ‘ ..

In this paper we enumerate up to equivalence all optn'.na,l binary hnea.rl
codes with parameters [14,6,5], [23,7,9] and [24,7,10]. Since no [25.,8,10]
code exists [5],[8] the [24,7,10] codes have the maximum p.0§31ble dlrr}en-
sion among the codes with redundancy r=n—k=17 and minimum weight

d=10.

Preliminary results

Let G be the generator matrix of a code C, and let z be the first
row of G. The code generated by the restriction of G to th.e columns
in which z has zero coordinates is called residual code of C w1.th respech
to the vector  and is denoted by Res(C;z) or by Res(C;w) if only the

weight w of  is important.

Lemma 1: [7] Let C be an [n,k,d] code and z be a codeword of:’
weight w < 2d. Then Res(C;w) has parameters [n—w,k—1,d°], where
d° > d—|w/2)].

Lemma 2: [1],[2] Tﬁere are (up to equivalence) exactly 5 binary
linear [15,6,6] codes.

New results

Theorem 1: There are (up to equivalence) exactly 11 binary linear
[14,6,5] codes. | ! b
Proof: Any [14,6,5] code can be obtained by puncturing a [15.6, ]
code. By Lemma 2 there are 5 equivalence classfes .Of [1‘5‘6,6] codes. We;;
compute for each of these classes the weight dlSt.l‘l]Z?llt.]OIl,. the order‘ of
the automorphism group and the lengths of the orbits under the action

of this group.
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Table 1.

[15,6,6] | Weigth distribution | Automorphism Lengths of
code group order the orbits
1 01 62882 107 19° 12 6,6,3
2 0* 62° 821 107 122 12 6,6,3
3 0t 6187 0% 1T 96 12,2,1
4 0 87780 1 360 1
5 Fre 80 108 127 720 1

The total number of orbits is 11, hence there are (up to equivalence)
exactly 11 binary linear [14,6,5] codes.
It turns out that for every [14,6,5] code the set of minimum weight
codewords generates the code. The following matrices (consisting of rows

of weight 5) are generator matrices of representatives of the equivalence
classes of the [14,6,5] codes:

c;U)

14

00000000011111
10000001100011
(1000010100101
10100010001010
01010101010000
00001100100110

(ﬁ5)

14

00000001111100
10000001100011
01000011000110
0100010010101
00010110001001
00001101010001

G

14
00001011100100
01001010011000
10101001000001
(1101000100010
00011000010101
00000100110011

(ﬂ2)

14

00000001111100
10000001100011
01000011000110
00100010010101
00010110001001
00001101000101

Gi3
01000110001001
10100101010000
00010100011100
10010100000011
01010101100000
00001011011000

(10)
14
00000000011111
10000001100011
11000010000110
00100111100000
00010010101100
10001100010001
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Gy
00000011101001
01000010010101
11000010001010
00100001010011
00010100011100
00001111010000

o
14

0000000001111
10000001100011
01000010100101
10100010010010
01010101000001
00001100101100

(;(11)

14
00000000011111
10000001100011
01000010100101
10100100001010
(1010101010000
01001100000011

Gy
00000000011111
10000001100011
01000010100101
10100010001010
01010101010000
00001100110010

el

14
00000111100100
01000110011000
10100101000001
01100100100010
00010100010101
10001011001000



Theorem 2: There are (up to equivalence) exactly 6 binary linear

24,7,10] codes.
[ Proof: Let Caq be a [24,7,10] code. By Lemma 1 Res(Caa; 10) has

parameters [14,6,5]. .
We look for a generator matrix Ga4 of C24 In the form

00000000000000 | 1111111111

Gog = Gha L

B e (81 o M e G oo [ e

where Gi4 is one of the matrices G(L?, i=1,..,11, and Lisa6x9
binary matrix. Since every row of G(lf has weight 5, the weight of a
row of L should be also 5. We may assume that the columns c:f L are
arranged lexicographically in a strict decreasing order. Thus thegﬁrst rOW.
of I is 111110000. For each of the remaining rows there are (5) = 126
possibilities. . ]

Using a computer we have obtained 1430 different solutions for G-
Investigating the automorphism group orfiers we found that the corre(i
sponding [24,7,10] codes are divided into six classes. Further we c.hecke
by computer that all codes in one and the same F:lass are equwalent..
Therefore there are (up to equivalence) exactly 6 binary linear [24,7,10]

codes.

Table 2.
(24,7,10] Weigth distribution Automorphism Lengths‘ of
code group order the orbits
1 0T 1057 12%0 1413 16'° 18° 2 T |
2 0T 10°0 1279 1427 167 18° 8 8444722
3 0T 105T 12% 1473 161° 18° 12 12,6,3,3
4 0T 10°7 1228 14%% 16° 18° 48 12,12
5 0T 10°0 12%0 1421 16T° 22! 240 12,10,2
6 or 107 12* 1472 16° 18° 384 24
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The following matrices are generator matrices of codes belonging to
ecach of the equivalence classes respectively:

(;(”

24

000000000000001111111111
100000010111001111100000
100000011000111110011000
010000100110101101010100
101011010000001100110010
001000110010011010100110
000101000110011100011010

G5y
000000000000001111111111
100000010111001111100000
100000011000111110011000
010000100110101101010100
101011010000001101010010
001000110010011010100110
000101000110010100101110

cﬁ5)

24

000000000000001111111111
000000000111111111100000
110000001100011110011000
101000010100101101010100
000101010100011011001010
010100100010101010011010
000011001010011000101110

Theorem 3: There are (up to equivalence) exactly 29 binary linear
[23,7,9] codes.

(ﬂz)

24

000000000000001111111111
100000100110101111100000
100000101001011110011000
010000110001101101000110
111000001100001001110100
000011011100001110010100
000101100000111001110010

cﬁ4)

24

000000000000001111111111
100000010111001111100000
100000011000111110011000
010000100110101101010100
101011010000001100001110
001000110010011001101010
000101000110010110110010

Gid
000000000000001111211111
000000000111111111100000
110000001100011110011000
101000010100101101010100
000101010100011011000110
010100100010101010110100
000011001010010111010100

Proof: Any [23,7,9] code can be obtained by puncturing a [24,7,10]
code. It follows from Table 2 that the six inequivalent [24,7,10] codes
produce respectively 13, 6, 4, 2, 3, 1 inequivalent [23,7,9] codes. Hence
there are (up to equivalence) exactly 29 binary linear [23,7,9] codes. The
check shows that they have only 19 different weight distributions.



Remark: The [24,7,10] code presented in [7] is equivalent to t}:.Le:-
code generated by the matrix G(z?. The [23,7,9] code constn(l:)ted in
[4] is equivalent to a punctured [24,7,10] c?de generated by Giy. Theé
six [23,7,9] codes constructed in [3] are equivalent to gunctured [24,7,10]
codes generated by the matrices Ggh), G(zi) and Gg,;). :
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Abstract

The software program GFQ is a realization of mathematical cal-
culations in and over a Galois field. It is a continnation of the
previous version of the program [2,3]. In contrast to the previous
version it is an object-oriented,open system, presenting in an ideal
abstract form the concept of elements,fields and operations over
them. The algorithms are realized after Berlekamp [1] most of
them being modified.

1 Principal conceptions

The program is based on the following principal conceptions:

L. Tt is possible to define Galois fields of every kind GF(p™). The only
restrictions come from the memory available, from the realization of the
functions of the elements from point 2 and from the defined constant
MaxPolLen.

2. There is a possibility to change the program by introducing long
integers if you wish to work with them. The type of Elem::v is long (up
to 23! —1), but you may change it, and rewrite all elementary operations
(:,—|—J T )

3. All algorithms are realized for the current field by being executed
recursively for each of its elements.

4. The interface is separated from the realization . This gives a chance

for using the already realized functions in new program modules under
DOS and WINDOWS.



2 Realization

Realization is established on two basic class elements:
class Elem{
long v;
public:
Elem();
Elem(long p);
...realized function
b
In this version the type is long. You work with digits, but you use the
operations between them, not the digits. Any change in the digit’s size
and the operations will keep the working capacity of the program.
class GFQ

...realized function
public:

void* Data/MazPolLen];

void* GenPol;

BOOLEAN IsLast;

short len;

BOOLEAN Disposeltem;

...realized function

;
Each Galois field is realized by a tree structure. The member Data
points to an element of class GFQ or to an element of class Elem. The

logic variable IsLast points to what exactly is indicated. The variable -

len points to the length of the polynomial and Disposeltem is used for
indicating whether the memory should be disposed. GenPol is a pointer
to the generating polynomial of the corresponding field (which is of type
GFQ or Elem).

The tree structure is a standard decision which allows an easy modelling
of the field we work over(in). As we are using pointers, we have to con-
sider the dynamic allocation and deallocation of memory. It is important
that we do not allow a loss of memory which will lead to a failure of the
system.

The standard way of working with C ++ objects does not allow us to
dispose memory in the destructor, because this will lead to a mistake
when assigning the object. Consequently in each function we have to
take care of the correct disposal of the dynamically allocated memory.
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The w bject i
Oper;:;?-{;) :_]ects are assigned can be seen from the realization of the
void GFQ::operator =(GFQ E
: N
if (Dataf0] != Eq.Dataf0]){
do_dispose();
if (Eq. Disposeltem ){
m?vmem( &Eq , this , sizeof( GFQ ));
Disposeltem = false;
}
else

do_init( &Eq );

}i
L
The function do_dispose() destroys the object‘s content and do_init() cre-

ates a new object. If we have an instructi i
: . ; ction for the object’s dest i
we move its data into the accepting object. : IS

3 Operators and functions

The following operators working with
_ : rith element
are realized in the program: : iy Sk e i

===, 5 S e e e ] e = i

Main functions Eea.ltzii: r o o e
Derivate - calculates the derivative of a polynomial

GGD - finds the greatest common divisor of two po]ynomia.ls

Testlrr - determines if a polynomial is irreducible ,

Makelrr - generates an irreducible polynomial of z; certain degree
Alllrr - generates all irreducible polynomials of a certain de rg J
O1td.— finds the order of an element in the field i
Ml.nu_n.al - calculates the minimal polynomial o’f an element of the field
P'I'll‘nltl\-' - finds a primitive element of the field D
Norm.alBase - generates a normal basis for the ,ﬁeld

AllPrimPol - generates all primitive polynomials of’a certain de
AllNormPol - generates all normal polynomials of a certain d Sk
Calculate - calculations in (over) a Galois field i
Roots - roots of a polynomial, ’

ete.
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4 Interface

A common user interface is used in WINDOWS. The choice of a field is
being made with Field - Size. In menu Field functions for work in a field
are available, in menu Polynom - over a field. For each of them there
is a specific calculator. The program offers possibilities for saving and
loading elements and polynomials. The program is written in Borland
C*+ 3.1 for WINDOWS.

5 Further development

The program development may be based on extending the digits type,
elimination of the restrictions for working with fields - const MaxPolLen,
a specialized module for working with memory, functions for working
with matrices, connection with cryptographic systems.
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Abstract

Consider Reed-Solomon code with generator polynomial g(z) =
.(z —a)(z —a?)...(z —a™%) over GF(2™). If each code symbol
is r‘eplaced by the corresponding m—tuple over GF(2) using a
basis f1, 82, ... 8m we get a linear binary code denoted by BRS;
When a parity check bit is appended to each of the m— tuples‘
the code is denoted by BRS;. We find the weight distribution of
both BRS; and BRSk codes when k < 3. It turns out that the

weight distribution does not depend on the basis.

1 Introduction

Reed-Solcmon codes are one of the most interesting class of codes. Du
to their big minimal distance and nice encoding and decoding algor.ithmz
th'ey are widely used in practise. Usually they are used in combinati
“'flth other codes for concatenation [5]. In this paper we consider a : §
ticular case of voncatenation when the inner code is Reed-Solomon cp dr .
over GF'(2™) and the outer code is the binary [m + 1, m, 2] code Wﬁez
a Reed-Solomon code over GF(2™) (extended or not) with pare;.meters
[n,k,d = n — k + 1] is mapped onto binary code using given basis of
GF(Q"’“] over GF'(2) we obtain a [mn, mk,d, > d] binary code. When
a parity check bit is appended to each of the code symbols we. have a

I 2
This research was partially supported by the Bulgarian NSF under Contract

MM-502/95.
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[(m+ 1, mk,d» > 2d] binary code. In general d; and d depend on t.he
basis. Finding correlation between the basis, used for mapping and th.e
values of d; and dj is a difficult task. However, for some para..meters it
is possible not only to determine d; and d» but to ﬁnd .the weight spec-
trum of the binary codes. The binary weight distnbutlon‘ for extended
Reed-Solomon codes of small dimensions have been found in [1, 3,4]. In
some cases this spectrums do not depend on the basis. Herein we find
the weight distribution of binary codes, obtained frmtn Reed—Sol.omon
codes over GF(2™) of dimension k < 3 (both with parity check bit and
without it). In order to do this we first extend the Reed—So]omon.code
(by adding a parity check symbol to the codewords), then find the binary
weight distribution of some subsets of this exrended code and, finally,
reduce the words by deleting the extra coordinate.

2 Preliminaries

Let B1,B2,...,0m be a basis of GF(2™) over GF(2). If « € GF(2™)
there is a unique m—tuple (@1, @z, ..., &m) over GF(2) such that

o =a1 b+ agfy 40+ &mFm-

Recall that the trace of a € GF(2™) over GF(2) is the element:

g 1

Tr(a)::a+o:2+--'+0£

It is easy to prove that for a, # € GF(2™) the ‘following is true Tr(a?) =
Tr(a) and Tr(e+ 8) = Tr(a) +Tr(f). A basis 51.,52,.. oy B 1508 dEal
to the basis 81,82, ..., Bm T Tr(6:8;) = 0 when i # j and Tr(8:8;) =1
when ¢ = j.
Let w = (ixl,az, ..., @) and assume o; = anPr+aiafet: -+ %imbBm- It
is easy to be seen that Tr(8je;) = aij. Denoting the vector (o1, agj, . -y
@nj) by w; we have the following diagram:
wo=( o g, cay 4 DY
Wi (TT((SlC}:l), T?’(élag),...,Tr(élaﬂ)
Wa (Tr(égal), T‘-‘"((Sga’g), Vi f TT(&Q(}:")

Nt

Win = (T?’((ﬁmﬂ‘l), Tr(émﬂfZ): SR Tr(émaﬂ))

It is obvious that the binary weight of w is the sum of the weights of
binary vectors w;, 1 <i < m.
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Consider Reed-Solomon code over GF(2™) with generator polynomial
g(z) = (z — a)(z — a?)...(x — a" *) where n = 2™ — 1 and & is the
dimension of the code. We denote it by RSy. If every code symbol is
replaced by the corresponding m-tuple using given basis 51, 32, . .. Gm,
we get a binary [mn, mk] code denoted by BRS;. When a parity check
bit is appended to each of the m-tuples we get a binary [(m + 1)n, mk]
code denoted by BRSk.

Using Mattson-Solomon [2] transform it is easy to show that:

RSy = {(f(1), f(a), ..., (@ )If(z) = uo + wrw + - + w1z,

Up, Uy, - .., ug—1 € GF(2™)}, (2)

where o € GF(2™) is a primitive n—th root of unity.

Consider the extended RSi (denote it by ERS;) code ie. we add a
parity check symbol to the codewords of RSy (we write it as first symbol
in the codewords). It follows from (2) and some simple calculations that:

ERS) = {(f([])v f(l)s sssEy f(an_l)) | f(z‘) = u0+-ulx 0 '+uk—1$k_l}r
‘ 3)

where & € GF(2™) is a primitive n—th root of unity. Note that, in fact

the parity check symbol equals f(0) = uq.

Further, combining (1),(2) and (3) we have the following diagram. If

w € ERSy then:

w =( f(0), (1), it oty
wy = (Tr(61£(0)), Tr(61f(1)),...,Tr(81F(a™"1)))
wy = (Tr(82f(0)), Tr(baf(1)),...,Tr(b2f(a™"1)))

............................................. (4)
Wi = (Tr(6m f(0)), Tr(8m F(1)), -, Tr(bm f(e™1)))
To obtain the main result, we need the following lemma:

Lemma 1. If f(z) = fo + fiz + f22%, fo, f1, f» € GF(2™), and
v = (Tr(f(0)), Tr(f(1), Tr(f(a)), ..., Tr(f(a™1))),

where o € GF(2™) is a primitive n—th root of unity,then:

(i) wi(v) =2m L if S+ o #0

(iywt(v) = 2™ Tr(fo) if f{ + f2 = 0.

Proof: Since T'r(z) = Tr(z*) we have Tr(f(z)) = Tr(fo+ fiz+ fox?) =
Tr(fo+ (ff + f2)2?).
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i) Suppose fi + f» # 0. Since z? # y* when z # y it follows that
({J)’n +¥()lef + fo)z?lr € GF(2™)} = GF(Qm);lTherefc:El

wt(v) = wt(Tr(0), Tr(1), Tr(a), .- o Tefat ) =207,

(ii) Suppose f?+ fa = 0. Now wt(v) = wt(Tr(fo), Tr(fo), - - -, Tr(fo)) =
2™ Tr(fo). ©

3 Weight spectrum of BRS; for £ <3

Let B1, B2, - . - Bm be abasis of GF(2™) over GF(2)and 61,02,...,0m - 1t;
dual basis. In what follows we find the weight spectrums of BRSy, k <

1 1 o PBm. It tu
‘Slj:::i T?h;ig’?mé %}iﬁ.;;'cﬁERS:g we find the weight dist.ri.bution of the
codewords from BRSy, BRS; and BRS3\BRS3. Sumarizing the results
gives the distribution of BRSs.
It follows from (3) that:

BRS) = {(f(0), (1), f(), .., f(&"™1) | f(2) = uo} (5)

ERS, = {(f(0), F(1), f(a), .-, F(a™™1) | (@) = o+ w1z}, (6)

ERSs = {(£(0), (1), f(@),. ., f(a" ™)) | f(z) = uo +wz-tuze’}. (7)
Lemma 1 and (4) show that if w € ERSs3 then:

wi(w;) = gn-l 1< j<m if Sjul+uz#0

wt(w;) = 2" Tr(uo) if & ul 4 up = 0. (8)

Denote by Af the number of vectors from BRSy having weight .
Lemma 2. The spectrum of BRS; is given by:

m
= ()

for(]ﬁsﬁmandt:(?m—l)s.
Proof: It follows from (2) that RS1 = {(a, @, ey a)le € GF(Q’")}}I. If
the binary weight of a (i.e. the number of ones in ai, ay, ..., @, Where

a = o101 +aafat. . .omfPn)iss <m (there are such elements) the
weight of the corresponding codeword from BRS) is (2™ —1)s. Therefore

Al = (m) fort = (2™ — 1)s and 0 < s <m.o
s
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Lemma 3. The spectrum of BRS} is given by:

A?:(T)(zm_l)"l‘fitl: for 0<s<m and {t=m2™" ! —g;

A} = A;, when ¢ #m2m 15

Proof: We have from (5) and (6) that the codewords from E RS>\ ERS;
are obtained by polynomials f(z) = ug + uiz where u; # 0. Let w is
a codeword from ERS;\ERS;. Since u; # 0 we have that 67u; # 0.
Now, it is clear from (8) that wi(w;) = 2™~! no matter up and u;.
Therefore, the binary weight of w; is m2™~!. To obtain the weight
of the corresponding word from BRSs\BRS; we have to substract the
weight of f(0) = up. Since the number of elements from GF(2™) having

binary weight s is (T) it follows that A? = (T) 2" -1)for0<s<m
andt=m2m 1 —5 o

Theorem 1.
For any s, 0 < s < m the spectrum of BRSj3 is given by:

B ) t= (2"=1)s, 5 # m/2, (m+1)/2, (m—1)/2;
A3 = (”:) (22™ —m2™ — 1)t = m2™"! — 5, 5 # m/2;
A3 = (”:) (2°™ —m2™)  t=m2™"! — s, m—even s = m/2;
A3 = (’:)gms t=(m+ 12" —s s £ (m+1)/2;
A3 = (’:) (@™s+1) t=(m+1)2"' =5, m—odd s = (m+1)/2;
A3 = (m) 2™ (m — s) t=(m-12m"! g

)

™Y@ m—2ms £ 1)t = (m—1)2""1 =5, m—odd s = (m—1)/2.

Proof: We find first the spectrum of the codewords from BRS3\BRS,
and then use Lemma 3 to obtain the result. Note first that §;uf +up =0
(for given u; and wuy) is possible only for at most one j. Consider all
codewords from ERS3\ERS,. It is clear from (5) and (6) that they are
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obtained by polynomials with u; # 0. Take those codewords obtained
by polynomials having one and the same fixed ug of binary weight s (we
can do this

When §;u? + ug # 0 (there are 2™ — m — 1 such uy) (8) shows that the
weight of the corresponding binary vector is m2™~ 1. Redusing the weight
with the weight of £(0) = uo we obtain a codeword from BRSs\BRS; of
weight m2™~! —s. Therefore, when choosing uz such that b;ul +up #£0

we have (m 2™(2™ — m — 1) codewords of weight R
s

When 6;u} + uz = 0 and T'r(6jug) = 1 (there are s such possibilities for
us) the binary weight of the corresponding binary vector is (m+1)2m-1.
Redusing the weight with the weight of f(0) = uo we will obtain a
codeword from BRSs\BRSy of weight (m + 1)2™~! —s. Therefore,

when 6;u} + uy = 0 and Tr(§juo) = 1 there are T 2™s codewords of
weight (m + 1)2™~! — 5.

When §; u? +uy = 0 and Tr(§; up) = 0 (there are m—s such possibilities
for uy) the binary weight of the corresponding binary vector is (m —

1)2m=1. Reducing the weight with the weight of f(0) = uo we obtain
a codeword from BRSs\BRS; of weight (m — 1)2™~! — s. Therefore,

when §;uf + uz = 0 and Tr(8juo) = 0 there are T 2™s codewords of

weight (m — 1)2™~! — 5.
Therefore, for any s, 0 < s < m the spectrum of BRS3\BRS, is given
by :

for t=m2™"! —s;

o (m)a'“(zm -m-1)

5

B (":) ams

AP - A2 = (’:)zm(m —5)

for t =(m+ 1)2”"1 — 5

for t=(m—1)2""! —s.

Further, combining these results with Lemma 3 we get the assertion of

Theorem 1.0
Note, that the minimum distance of BRS3 (providing m 2 4) is 2™ — L.
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4 Weight spectrum of BRS; for k< 3

The reason to consider BRSy, k < 3 codes is that their length differ from
the length of BRS;, k < 3 by n whereas they have twice bigger minimal
distance. Since BRS) C BRS; C BRSs we find the weight distribution
of the codewords from BRS;, BRS,\ and BRS3\BRS,. Sumarizing the
results gives the distribution of BR.S3. Let

6m-+-1 == z 6:;
i=1

It is easy to see now that the parity check bits added to each simbol
form a row

Wmt1 = (T‘.’"(Em_{_]f(l)), Tr(ﬁm'!'l f(a)): T TT(6m+lf(an_l)))
Denote by A¥ the number of vectors from BES; having weight ¢. Re-

peating the observations from Lemma 2, Lemma 3 and Theorem 1 we
have:

Lemma 4. The spectrum of BRS] is given by:

2s
for 0 < s <[(m+1)/2] and t = (2™ — 1)2s.
Lemma 5. The spectrum of BRS5 is given by:

H

N m+1 M 31
i={ g J@"=1+A,0<s < [(m+1)/2),t = (m+1)2™ " —2s;

A? = A} for t# (m+1)2m1 s

Theorem 2.
For 0 < s < [(m + 1)/2] the spectrum of BRS5 is given by:

1
A = (m;; ) for ¢t = (2" — 1)2s, s # m/4,(m+ 1)/4, (m+ 2)/4;

bl m—+ 1 2m oy
4f = ( 95 )(2 —m2™—1) for t:(m+1)2m_1—23,35£ (m-++1)/4;
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){22”‘ m2™) for t = (m+ 1)2m~1 —2s, m+ 1—divisible
by 4 and s=(m+1)/4;
A2 = (m-]— 1)2m+1m3 for t =(m+ N2 — 25, 5% (m+2)/4
Af’ Y mg—: 1
9_divisible by 4 and s = (m + 2)/4;
A= (m; 1) 2™ (m — 2s) for £ = m2™ ' — 25, when s # m/4;
m+ 1

A3 = ( € )(gmm_2m+1s+1) for t = m2™ ' —2s, m—divisible
5

by 4ancls—m/4o
Note, that the minimum distance of BRS3 (providing m > 4) is 2.(2™
1). Therefore, this code has parameters [(m+1)(2™—1),3m,2.(2™ — )]
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The Geometry of (n,3)-Arcs in the
Projective Plane of Order 5

Ivan N. Landgev *
Institute of Mathematics,
8 Acad. G.Bonchev str.
Sofia 1113, Bulgaria

In this note we classify all (n,3)-arcs in the projective plane of
order 5. The maximal size of such arcs is known to be 11 and thelre
are two nonequivalent (11,3)-arcs [1],[3]. Yet in some problems, -
(n,3)-arcs of smaller size are needed. Throughout this note we -
use essentially the notations from [2] (Chapter 12). Let A be a set
of points in PG(2,5). By m,i = 0,...,6, we denote the number
of lines intersecting A in exactly i points. Given a point P € A

(resp. P ¢ A) p;, (vesp. 0;) i = 0,1,...,6, denotes the number of

i-lines incident with P. We have

6
(1) ) m=31,

(2) im = 6|4,
) z (=g

*This research was partially supported by the Bulgarian NSF under Con-
tract [-506/95
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A. (11,3)-ARCS in PG(2,5)

It is well-known that an (11,3)-arc has at least four external lines,
no three of which are concurrent. Let (Py, P5), (P1, Py, (Ps, P3),
(Ps, Py) be a quadruple of such lines. Set Ps = (P, Po) N {P3, Py),
Ps = (P, Py) N (P, P3), and Q1 = (P2, Pa) N (Ps, Fs), Q2 =
(P1, Ps) N (P5, Ps), Q3 = (P1, P3) N (Py, Py). To get an (11,3)-
arc we have to remove two additional points in such way that any
of the lines (Q;,@;) is incident with at least one of these points.
There are two (up to equivalence) possible choices:

(Al) remove @1 and Qa;

(A2) remove 1 and any point on (@2, Q3), different from Q;, P;.
Note that A2 can be described as the set of all external points to
a fixed oval plus one point from the oval.

Table 1. List of all (11,3)-arcs

No | Points eI v O -l (R

A1| 011012013122 144123 || 4| 4| 7| 16
132 134 143 124 142
A2 100012102013 103113 | 5| 1| 10| 15

131 120 130 111 122

Table 2. Intersection numbers for the (11,3)-arcs

# of points of type
(P01, P2, P3) (70, 71,02 aa)
No || oo2e 0105 | 0231 | 1041 | 1122 | 2013 | 1208
Al 7 4 2 1] 8 6 4
A2 10 1 0 5 5 10 0

B. (10,3)-ARCS IN PG(2,5)
Let A be a (10,3)-arc. Note that no three external lines are con-

current. If 79 > 5 A is incomplete. A complete (10,3)-arc with
7o = 4 can be obtained by removing one point from each of the
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lines {@1,Q2), (Q1,Q3),{Q2,Q3), different from .8 ’I‘h.ere are
eight possible choices for such a triple, but all they are equlvalf'::nt..
Suppose A is a (10,3)-arc with 7o = 3. The three empty lines
form a triangle, say Py P, Ps. Consider the line (P, Pg} An easy
counting gives that at least one of Py, Py is collinear with a 1:]1113.
Hence at least two of the points P;, Pi and Py say, are mc1der§t
with 1-lines. Let these lines be Iy and l3. Then Q =hLNniis
a 0-point, Take Py = (100), P2 = (010), P3 = (001),Q = (111).
There exist six choices for the points R and S with R.E Ill nA,
S € l;n.A. There is exactly one 0-point, say T, which is not

on (P, P;),li or lp. It is the intersection of {Py,5) and (Py,R).
A starightforward check shows that there is exactly one complete

(10,3)-arc with 7o = 3, obtained for R = (122) and S = (141).
All incomplete (10,3)-arcs can be obtained from the 'known l(11,3)~
arcs by removing a point. It turns out that there exist five incom-
plete (10,3)-arcs.

Table 3. List of all (10,3)-arcs

No | Points mlmal = | 7w
B1| 122 141 112 124 143 3 9 6| 13
113 134 142 114 123
B2 | 011 012 014 122 133 4 6 9| 12
124 123 134 132 143
B3| 011 012 013 122 144 4 6 a9l 12
132 134 143 124 142
B4 | 011 012 013 122 144 4 6 9| 12
123 132 134 143 142
B5 | 012 013 122 144 123 4 6 al 12
132 134 143 124 142
B6 | 100 013 102 120 113 5 T I 1 R i |
131 103 130 111 122
B7 | 012 013 102 120 113 6 0] 15| 10

131 103 130 111 122
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Table 4. Intersection numbers for the (10,3)-arcs

# ol points of type
{fo.p1, P2, pa) (eg,01,02,03)
No || ooaa o114 | o240 | 1080 | 03z1 | 1121 | 1212 | osoz | 2022 | 2103
B1 1 8 0 0 3 1 9 3 0 3
B2 4 6 0 0 3 5} 6 0 3 3
B3 4 6 1 0 2 4 8 0 4 i
B4 4 6 1 { 2 4 8 0 4 2
B5 4 6 3 0 0 0 12 0 6 0
B6 T 3 1 1 0 T 2 0 8 2
B7 10 0 0 6 0 0 0 £} 15 0

C. (9,3)-ARCS IN PG(2,5)

Let A be a (9,3)-arc in PG(2,5). If there exist four external
lines, no three of which are concurrent, then the arc is incomplete.
Therefore, every (9,3)-arc with 7y > 5 is incomplete.

Lemma. For eveiry (9,3)-arc in PG(2,5), 7 > 3.

Proof. From (1.1)-(1.3) we get 7o > 1. Suppose 79 = 1. Then
7 = 0 and every point off A is on either three 3-lines and three
0-lines, or on two 3-lines, three 1-lines and one 0-line. Therefore,
every point off A is incident with a D-line, a contradiction.
Suppose 7p = 2. All 0-points are collinear with a 0- or 2-line.
Therefore, #(0 — points) < 11 4+ 3.3 = 20 < 22, (we have 11 0-
points on the O-lines and at most three new 0-points from each
2-line), a contradiction. ¢

For a complete (9,3)-arc A with 79 = 4 , three of the external lines
are concurrent and there is one such arc. If 7y = 3 there exist two
possibilities.

(a) The external lines form a triangle. In this case all (9,3)-arcs
obtained are incomplete.

(b) The external lines are concurrent. There exists one such (9,3)-
arc. It can be obtained by ‘deleting an oval, one of its internal
points, say P, and the points on the external lines through P.

All incomplete (9,3)-arcs can be obtained from (10,3)-arcs by re-
moving a point.
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Table 5. List of all (9,3)-arcs

No | Points | | | T8

Cllotl10ii110 113151 | 3| 12| 6] 10
114 141 122 144

C2 | 122 141 114 134 143 || 3| 12| 6| 10
112 124 113 123

C3 | 011 012013101102 4| 9] 9| ¢
103 112 113 114

Ci| 011012013122 144 || 4] 9f 9| 9
123 134 124 142

s | ol1o014122133 124 || 4 9| 9| ¢
123 132 134 143

Colollolz013122 144 | 4| 9| 9| 9
123 134 143 142

C7 | 141 114134 143 112 || 4| 9| 9| 9
124 142 113 123

Ce | 012013122144 123 || 4| 9| 9| 9
134 143 124 142

Co |l oi1o012014122 133 || 4| 9| 9| 9
124 123 134 143

Cil0 | 100013 102103113 || 5| 6| 12| 8
120 130 111 122

Cii | 1ooo13102 103 113 || 5| 6| 12| 8
131 130 111 122

Clz | o011 o012013122144 || 5| 6] 12| 8
123 132 134 143

C13 | wooi13102113 131 || 5| 6] 12| 8
120 130 111 122

Cia | 011012013122 144 || 5| 6] 12| 8

134 143 124 142

Ci5 | 01z o013 102103 113 || 6| 3| 15| 7
131 120 130 111 |

Ci6 | 100102103113 131 || 6| 3| 15| 7
120 130 111 122 d
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Table 6. Intersection numbers for the (9,3)-arcs

# of points of type

(A0 01, 02, Pa)
23

Log, o1

52, 03)

Nao 0042 01 0204 0330 1140 0411
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2112
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D. (n,3)-ARCS WITH n < 9
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Theorem. An (n,3)-arc A in PG(2,5) with n < 8 is incomplete.
Proof. In the following cases A is incomplete:
(a) there exist three concurrent 0-lizos;

(b) there exist four 0-lines, no three of them concurrent;
(c) there exist two 3-lines intersecting in a 0-point.
From (a) and (b) we get that for an incomplete arc 7o < 3. On the
other hand, each point is on at most three 3-lines, whence 73 < 8
and 79 > 3. Therefore, 9 = 3,7y = 16,75 = 4,73 = 8. An easy
counting shows that there exsit a 0-point P and a pair of 3-lines
l1,{z such that P € /; Nly. This contradicts (c). o
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Reconstructing Binary Sequences
by the Minimum Number of Their

Subsequences or Supersequences of
a Given Length *

Vladimir . Levenshtein
Keldysh Institute for Applied Mathematics, RAS,
Miusskaya Sq.4, 125047, Moscow, Russia

Abstract

The problem of reconstructirg an arbitrary binary sequence of
length n by the minimum number of its subsequences of length
n—t and by the minimum number of its supersequences of length
n + t is considered. For any t the corresponding minimum num-
bess of subsequences or supersequences which are suffici:nt to re-
construct uniquely an unknown sequence are found. Algorithm.s
for reconstructing sequences by these minimum numbers of their
subsequences or supersequences based on majority and threshold
functions are presented. As a preliminary result, for any t the
maximum number of subsequences of length n — t of a binary
sequence of length n is found.

1. Introduction

We consider binary sequences over the alphabet B = {0, 1}, An arbitrary
sequence X = (z1,...,z1) of I (1 =0,1,...) letters of B 1s also called a
word, and the number ! is called a length of X and is denoted bby. I(X)
Together with writing X = (21,..., z1) we will also use the multiplicative
writing X = z;...z;; in particular, r! where z € {0, 1} means .the word
of | letters z. A word V = (&, ..., %i,) where 0 < k<[, 1 <1 < ... <
ix <1, is called a subsequence of a word X = (z1, ..., 21), and the word X

*This research was partially supported by the Russian Foundation for Basic Re-
search under grant 95-01-01103.
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is referred to as a supersequence of V. A subsequence V = (z;,,...,2y,)
of X = (21,...,m) is called a subwordof X if¢; =i +j—1, 5=1,...,k.
Every word X can be uniquely represented as a product of a minimum
number 7(X) of subwords each of which consists of identical symbols 0
or 1. These subwords are called series of the word X and the number
7(X) is referred to as the number of series of X. For example, the word
X = 01101 consists of 7(X) = 4 series. It is clear that 7(X) < [(X) with
equality only for two binary words of any fixed length ! (I > 0). We call
these words by alternations and denote by A} the alternation of length {
which is starting by the letter @ € {0,1}. For example, A2 = 01010 and
Al =10101.

Notice that a subsequence V' = (z;,,...,2;, ) of X = (z1,...,z;) may be
obtained from X by deletions of its I — k letters, and the supersequence
X of V may be obtained from 1V by insertions of { — & letters 0 and
1 between (and also before the first and after the last) the letters of
V. For example, the subsequence (but not a subword) 010 of the word
X = 01101 may be obtained from X by deletions of the second and the
fifth letters, while its supersequence 1001101 may be obtained from X
by insertions of letters 1 and 0 before the first one. Let B" be the set

of all binary words of length n, and let B* = | B". In the author’s

n=>0

paper [1] the metric p(X,Y) on B* was introduced, where p(X,Y) is
the minimum number of deletions and insertions of letters required to
transform X into Y. For example, for X = 01101 and ¥ = 10010,
p(X,Y) =4 and the word Y may be obtained from X by deletions of the
first and third its letters and insertions of letter 0 between the third and
forth of its letters and also after the last one. If we denote by I7(X,Y)
the maximum length of common subsequences of words X and Y and
by IT(X,Y’) the minimum length of common supersequences of words X
and Y, then p(X,Y) = {(X)+I(Y)-2I"(X,Y) = 217 (X, Y)-l(X)-I(Y)
and hence p(X,Y) = IT(X,Y) — 1" (X,Y). In our example i~ (X,Y) =
3,I7(X,Y) = 7, and above mentioned subsequence and supersequence of
X = 01101 are common ones for the words X and Y, and have extreme
sizes among corresponding sequences. This metric and its generalizations
have been widely used in numerous applications (see the survey paper
by Kruskal [2]).

For any binary word X and any nonnegative integer ¢ denote by D,(X)
the set of words each of which may be obtained from X by deletions of
t of its letters (that is, the set of all its subsequences of length {(X) —t)
and by [;(X) the set of words each of which may be obtained from X
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by insertions of ¢ letters of B = {0, 1} (that is, the set of all its binary
supersequences of length I(X)+1). It is known 3, 1] that for any X € B"

and any ¢ :
LX) =3 (“ j t), (1)

(T(X)t—H 1) < 1D(X)] < (T(X)-:z— 1), @)
in particular,
|Di(X)| = 7(X),  [W(X)|=n+2. 3)

The main goal of the paper is to find for any n and ¢ the following values:

N~ (n,t) = XYeEBn X#Y |D:(X) ﬁ Di(Y)l, (4)
Nt(n,t) = L |L(X) () L(Y)]- (5)

These values are of essential interest for the problem of reconstructing
words by their subsequences and supersequences. Indeed, by the defini-
tion of (4) the value N~ (n, t)+1is the minimum number of subsequences
of length n —t of an unknown binary word X of length n which is suffi-
cient to reconstruct the X (under condition that X has a such number of
different subsequences of length n —t). The last condition removes from
the consideration some words with small number of series. In particular,
we shall see (it was also shown in [4]) that N~(n,1)+ 1 =3 and, hence,
3 is the minimum number of subsequences of length n—1 of a word X of
length n which is sufficient to reconstruct the X except 2n words X such
that |D1(X)] = 7(X) < 2 (see (3)). Analogously, by the definition of
(5) the value N*(n,t)+1is the minimum number of supersequences of
length n+t of an unknown binary word X of length n which is sufficient
to reconstruct the X (in this case we shall see that any word X has the
required number of different supersequences of length n+1). To describe
the results we consider for any integers m and ¢ the function

S(m, 1) = 2!: (”:) (6)

i=0
(S(m,t) is assumed to equal 0 when m < 0 or ¢ < 0) and note that

S(m + 1,t) = S(m, t) + S(m,t — 1), (M)
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Sn=t)=22"" f Uzn2t>0, (8)
S(n —1t,t) > S(n —t,t— 1) with equality if and only if 2¢ > nort < 0.
- (9)

The basic results of the paper may be formulated as follows:

max |Dy(X)] = S(n —t,1),

N=(n,t)=28(n—-t—-1,t—1), Nt(n,t)=2S(n+t—1,¢t-1).

2. The maximum number of subsequences of a binary word

Let for any set U of words and any a € {0,1}, U® = {aY :aY € U}. We
know that for any X € B", |I{(X)| does not depend on X and equals
S(n +1,1). Now we verify that the maximum value of |D;(X)| over all
X € B" is equal to S(n—t,t). Throughout in the paper we put b = 1—a.

Lemma 1 B |De(X)| = S(n —t,1),

L |Df(aY)| = S(n—1-1,1), § s |D(aY)| = S(n—t—1,t-1).
(10)

Proof: First we shall prove that
max |Dy(X)] < S(n —1,1) (11)

Toy induction on parameter s = n — {. This holds when s < 0. Using
induction step we have for any Y € B*~! =

IDE(aY)] = [Dy(¥)| < S(n —t = 1,2). (12)

?.V[(.)reover, if |Df(aY)| # 0, then Y = @/~ 1bZ for some j > 1 and hence
using (9) and induction step we have

|DE(aY)| = |DH@b2)| = |D,_j(2)| < S(n—t=1,t—j) < S(n—t=1,t-1).

' ‘ (13)

According to (7), (12), and (13) this completes the proof of (11) since

X = aY for some a € {0,1} and Y € B"~!. Note that at the same

time we have proved the inequalities max |Df(aY)| < S(n —1t— 1,1)
YeBn-1 = ?

and s |Di(aY)| < S(n —t—1,t —1). Now we use alternations to
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prove that these three inequalities are attained. Consider a word a¥
of length n — ¢ and find the minimum length ! of an alternation Af
which is a supersequence of aY. It is clear that this Af is obtained from
aY by insertions k — 1 letters in each its series of length k and hence
| = 2(n —t) — r(aY). Therefore each word a¥ of length n —t is a
subsequence of A% if and only if { < n and hence r{(aY) > n—2t and aY
is a subsequence of A% if and only if | < n —1 and hence 7(X) > n—2t
+1. Since the number of words aY of length n — ¢ with 7 series equals

n—t71), we have
n—i t
i n—t—1 =t
Deas) = 3 (T_1 )zz( ; ):S(n—t—l,t),
r=n-—2t i=0

== S ("7177)= 5 ol B
= Spt=da=T,

Da =i =3 (") = Sta-t.0)

i=0

Remark 1 A word X is referred o as a universal for B! if Dy(X) =
B! for some t. Lemma 1 and (8) imply that the minimum length of a
universal word for B* is equal to 2l and that t =1 for universal words
of the minimum length. It is clear thal there exisl 21 universel words
X = ay...a; for Bt of length 2t where each a; is 01 or 10. From (9) and
the proof of Lemma 1 (j must be equal to 1 in (13)) it follows that other
universal words of the minimum length do not exisi.

3. The maximum number of common subsequences and super-
sequences of two words

Theorem 1 For anyn and t, 1 <t < n, and any a € {0,1},

= X Df
X‘Yérﬂl?"}.{X#Y | D:(X) m D(Y)| X,YEE}‘EJ‘(.X?EY | D¢ ( )n t(Y)

= 28—t ~1#=1).
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Proof: From the proof of Lemma 1 it follows that the set of common
subsequences of length n — 7 of alternations A% and Al consists of all
words X such that n — 2t + 1 < 7(X) < n —t. Therefore, for 1 <t < n,

D) () Di(A2)] = DS (aA%) (| D (ad2)] = 23 ( k= 1)

=0 g
=25(n—1t—-1,1-1).
We shall prove that

xydBax |De(X) [\ De(Y)| < 2S(n —t = 1,£— 1), (14)

xyemax DI [(DiM)| <25 ~t~1,t-1)  (15)
simultaneously by induction on n for all ¢, 1 <t < n. For n = 2 these
statements can be checked directly. Using induction step we consider
two cases X =aX'Y = bY’ and X = aX',Y = aY¥’ for each of the
nequalities. Estimating above the value |Df (aX') () D#(bY")| in the first
case we can assume that ¥’ = b/aY” where j > 0; otherwise this value
equals zero. Then aZ € Df(aX')(| D{(bY"’) implies Z € Dy_;_1(Y")
and hence by Lemma 1 and (9) | D¢ (aX") () DE(bY")] < | Dy_y1 (Y™ <
S(n—t—1,£—1) when X', Y € B""! and |D§‘(a}")ﬂl{)§(bY")l <
S(n —t,t—1) when X', ¥’ € B*. This proves (14) and (15) (without
using induction step) since

1De(X) () De(Y)| = |DHX) () DE(Y)| +1DEX) (N DiY)|  (16)

and

Sn—t,t-1)<25(n—t—1,t-1). (17)

In the second case when X', Y’ € B"~1 we use induction step and have
|Df(aX") () Di(aY")| = |D(X') (\ Di(Y")| < 25(n — t — 2,8 — 1),

|D{(@X") () Di(aY")] = | DE_y(X) (| Dy (Y| < 25(n —t — 2, - 2).

This completes the proof of (14) by virtue of (7) and (16). To prove (15)
one can use the same inequalities for X', Y’ € B™ and (9).

Theorem 2 Nt(n,t)=2S(n+t—1,4-1).
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Proof: As in the proof of Lemma 1 we can see that a word X of length
n 4t is a common supersequence of both alternations A® and A}, if and
only if 2(n+t)— 7(X) £ n—1 and hence when n—2{+1 < (X) < n+t.
This gives

|L(AL) () I(An)] = 2i (" +: N 1) = 25(n+1t—1,t - 1).

i=0

T th e i
o prove that Xy &A%y LX) N L(Y)] < 2S(n+t—1,t—1) we again

use induction by n and consider two cases as in the proof of Theorem 14

In the first case we use (1) as follows:
12(aX") (12 (Y")| < [T (bY')] = S(n 1 = 1,1 = 1).
In the second case we use induction step:
12X I (aY")| = LX) (L) £ 25(n + =2, = 1)

I2(aX") () I (aY")| = ooy (aX") (M Li-1(aY")| < 25(n +1t -2, = 2).

This completes the proof by virtue of (7) and an analog of (16).
Note that by (1) for any t, every word X of length n (n > 1) has more
than 25(n,t — 1) different supersequences of length n + 1.

4. Algorithms for reconstructing sequences

In conclusion we present and ground an algorithm for reconstructing an
arbitrary binary word X = @;...z, by N~ (n,8)+1 = 2S(n—t—1,t=1)+1
its subsequences of length n—t. For any I,I=1,..,n, denote by X the
suffix of X of length [, i.e., X = ¢1...2n_1 X1 . The algorithm consists of
some stages for every of which the length of words under consideration
decreases by 1 or 2. Before a stage with the number j, j = L, 25508
there exist numbers n; and t; for which the following holds: the first
letters z;...2,_pn; of X are already reconstructed and it is known a set
U; € Dy,(X™)) such that |U;| > N~ (n;,t;)+1. In particular, this takes
place before the first stage for ny = n and t; = t. In the case t; = 0 the
set U; consists of the only word Y and the word X is reconstructed by
means X = @1...2n—n;Y. In the case {; > 1 by (10) there exists the only
a € {0,1} such that Uf = {aZ : aZ € U;} contains more than S(nj —tj—
1,t; — 1) elements and hence £n_n;41 = a. If |Uf| > N=(n; —1,4)+1,
then the stage is over and all required conditions before the next stage
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with the number.j + 1 will be fulfilled for n;1; = n; —

j+1 = Nj — 1, t'+1 = f', and
Uppi= {bz :aZ € Uf} . I |UF| < N™(n; — 1,t;) and b 2= a:: then
by (7) [U7| 2 N™(nj,8;) = N™(nj = 1,#;)+ 1= N~(n; — 2,4; — 1) + 1
fj.fld hence zn_n;42 = b. (For £n_pn 41 = Tyn—n;+2 = a by (10), (17), and
Theorem 1 we vyculd have |U?| < S(nj—t;—1,t;—2) < N~ (n;—2,t;—1).)
Again all required conditions before the next stage with the number
j + 1 will be fulfilled f it1 = nj — vl = 1 —
{Z s Uj_b}. ed for njiq nj—2,¢ti41 = t; — 1, and Uj4y =
There exists a similar algorithm for reconstructing an_arbitrary binary
word X = z;..8, by any NT(n,¢) +1 = 25(n+1— 1, — 1) + 1 its
supersequences of length n + ¢.
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Abstract

Tterative decoding methods have gained interest initiated by
the tesults of the so called Turbo codes [3]. The theoretical de-
scription of this decoding, however, seems difficult. In this paper
we present results of iterative soft decision decoding of quadrat-
ic binary residue (QR) codes. Thereby we propose an iterative
decoding algorithm which uses only parity checks of minimum
weight. It can be viewed as approximation of the iterative de-
coding, e.g. given by Battail [2], Hagenauer [8]. To our knowl-
edge we improved all known soft decision decoding results of the
QR(71,35) and QR(73,36) and QR(113,56) code.

Turbo decoding is making use of soft output decoding algorithms like
Bahl et al. [1], Hagenauer [7], Hoeher et al. [9]. This information can
be obtained also with block codes by calculating the symbol-by-symbol
maximum a posteriori (s/s MAP) probability. The interpretation of the
s/s MAP decoding rule with the codewords of the dual code [10] yield-
s with some approximations the works of Gallager’s low density parity
check codes [6] and Massey’s threshold decoding [11] with orthogonal
parity checks respectively. These methods compute for a particular bit,
say position m, a value corresponding to the reliability of this position
with the help of other positions. We call this indirect information ez-
trinsic information &m. For iterative decoding of digit m we combine
£, with the intrinsic information Rp (e.g. soft channel value) of digit
m and we have the following recursion formula
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Ry = R 4 E (1)
intrinsic extrinsic
Let denote ¢ = (c1,¢2,..- ,¢n), ¢ € GF(2)", a codeword of a (n, k) linear

binary block code C and b = (b1,ba,... ,b,), b € GF(2)™ a codeword of
the corresponding dual code C*+. We further assume BPSK modulation
_Of the code bits which maps a codeword ¢ € GF(2)™ into the correspond-
ing codeword x € X™, X = {+1,—-1}. A codeword ¢ is transmitted as
z over a channel with addiiive white Gaussian noise (AWGN). The re-
ceived sequence is denoted by y = (y1,¥2,... ,¥n), ¥i € R.

To achieve optimum extrinsic information for a particular position we
have to compute the s/s MAP probability. Hartmann/Rudolph [10]
fm.md a formula for its calculation in terms of the complete dual code
using finite Fourier transform. In [8] a procedure to be applicable for it-
erative soft decision decoding based on the result of Hartmann/Rudolph
was proposed and they obtained the following formula for computing
extrinsic information

zn—h

1+ ‘22 [1 tanh(%)
5 =2 lelm(b;)

2n—k
1+ ¥ (1% J] tanh(%t)

i=2 IEIm (B;)
where the index 1 = 1 is used for the all-0-codeword and I,,,(b) = =
Li=1...n,l#m}. st
It is clear that (2) i,s.fa.r too complex to be applicable for longer codes.
Another way to obtain extrinsic information is not to use finite Fourier
transform but computing algebraic replicas of the m-th symbol, which

leads to a suboptimum formula compared to the result of Hartmann/Rudolph.}

An alggbraic replica is any linear combination of other code symbols
generating tpe m-th symbol. It can be obtained using any parity check
vector b having the m-th symbol in its support.

Cm = z (@) mod 2 (3)
€1 (b)

1A P = oo
publication containing the derivation of th i is i
e e suboptimum formula is in
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We propose further for calculating extrinsic information for coordinate
m to use the set B, of parity checks of minimum weight having position
m in their support. Taking into account the probability distributions of
the received digits then £, (Br) is a real number, whereas its sign gives

the hard decision,

Em(Bm)= Y, [ tenh(w). 4)

bEBm lelm (b)

If iterations are used for decoding, it is clear that: if the sign of Em of
bit m is correct, the addition to R, will improve the decoding result of

this symbol,

The iterative decoding can be interpreted as a soft step-by-step decoding
method (e.g. [12]), where after each step (iteration) we get closer to a
codeword and if a codeword is reached the iterations can not change this
solution anymore. We can prove that soft step-by—step with an adequate
indicator will decode a. received vector y whenever iterative decoding will

and vice versa.

In [4] decoding of QR codes is investigated. Applying our iterative de-
coding algorithm using (3) we improve all decoding results of [4]. We
further give a lower bound for soft decision maximum likelihood decod-
ing as follows. We transmit the all 1 sequence, z = 1, only? and decode
the received sequence y with our iterative decoding algorithm obtaining
& We say that a soft decision maximum likelihood (SDML) decoder

would decide as follows:

if#=1 — no decoding error occured for SDML decoding,
|

if £ # 1 and dg(&,y) > de(l,y), then a SDML algorithm decodes

£=1 — no decoding error occured,
if # # 1 and dg(&,y) < dg(1,y), then a SDML algorithm decodes
£#1 — adecoding error occured.

In figure (1) the simulation results for the quadratic residue codes QR(17,8)
and QR(71,35) and QR(73,36) are shown. For all these codes the iterat-
ive decoding is at a bit error rate of 10~2 approximately 0.3dB inferior
to the corresponding SDML lower bound. For the QR(113,56) code

2This is no restriction since QR codes are linear codes.

186

the loss compared to the SDML lower bound is approxim

what is exhibited in figure (2). In addition, the deggding r::fii{ I‘?}f (:1]1;
BCH(127,64) code is presented in (2). For this code the loss compared to
the S]?ML lower bound is smaller than for the QR(113,56) code but its
d_ecodlng complexity is much higher since the BCH(127,64) code has four
tlmdes more parity check vectors of minimum weight than the QR(113 56)
code. ’

We presented to our knowledge the best known isi
) soft decision decodin
results for the QR(71,35) and the QR(73,36) and the QR(113,56) cod(f

Iterative Decoding nf QR(17,8)
E=] SDML lower bound for QR(17.8)
: Iterative Decoding of QR(71,35)
107t : ’
=% M‘g i E=3 SDML lower bound for QR(71,35)
N : "'""*s.-;:.ﬁ iy Iterative Decoding of QR(73,38)
;‘ - _. ."'k::ﬂ“-..‘_* E=] SDML lower bound for QR(73,36)
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Figure 1: Decoding results for QR(17,8), QR(71,35), QR(73,36) code
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[¥%] Iterative Decoding of BCH(127,84)
E=] SDML lower bound for BCH(127,64)
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Figure 2: Decoding results for QR(113,56) code and BCH(127,64) code.
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1 Introduction

Representation of vectors over finite fie
binary computer is easy. Computer addition of binary vectors is easy

1d with characteristic 2 in the

too, due to the adequate hardware operation ”addition of bits by modulo

» TFor the other fields a more complicated modelling is necessary. In [1]

two types of algorithms for GF(3) was discussed. The tabular algorithms
use derivatives of the addition table of the fields. The arithmetic-tabular

algorithms use the addition of 1
obtained result. The time comp

ntegers and following translation of the
lexity of the algorithms and the size of

the tables (for addition in the field and for translation) was calculated.
It was shown that arithmetic-tabular implementations are quicker but
the size of tables grow-up with the size of the computer word.

This paper is an attempt to eliminate the above mentioned defects of the
We propose purely arithmetic algorithm
including translation of the result. So the growing tables are not needed
and this algorithm is more effective.

arithmetic-tabular algorithms.

2 Some mathematical reason

Let us denote with N the set of natural numbers, N = {0,1,2,.. .} and
Li={i0<i<n—-1}ie In= {0,.%; ss =) Let p € N, such that

*This work was supported by Bulgarian National Research Foundation under Con-

tract 1-519
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25-1 < p < 2% for some k € N,k > 2. Let ¢, =2F —p

fP(w) =% i—("ﬂ“‘ i+ cp)/2k1>$ & ir2"‘4—;;;
and
Qp(x) = (f(z) + z)(mod 2%), 2 € Ipxyp.

0 0<z<
fo(= z{ =
»(2) ¢cp p<z<24p
Proofilf() =& < then 0 < 2 —p < z+¢, < 2%, [(z+¢,)/2%] = 0 and
fp(2) =0. Else 2¥ < 24 ¢, < 25*1, [(2 +¢,)/25] =1 and fo(z) =
Theorem. For ¢ € Iyxy, A% e

Lemma.

Gty et o TR
pt+z(modp) 2p<z<2¥4p

Proof: Let 0 < z < p. Then z(mod p) = k
< 3 p) = z(mod 2*) = x and =

ISfO Qi(.w:) = (z + 0)(mod 2*) = z(mod 2*) = m(mod)p) e

-p_m<thhenx:p+z(modp)andf(m)-*. i

= ¢y, Inth
o+ fo(2) = p+2{modp) +cp = p+ a(modp) 4 2% — p = a(mod p) + 2.
§otQp(:n)2: (:c(modip) + 2%)(mod 2¥) = z(mod p). ‘
et now 2p < ® < 2% 4+ p. Then & = 2p + z(mod
: p) and fu(z) = c,.

obtain Qp(z) = (2p + z(mod p) + 2¥ — p)(mod 2%) = p + ;Em)odpc)p.owe

3 The algorithm

ll,et now p is a prime number, 28~ < p < 2% Any element of the finit
fneld G F(p) can be represented in k bits. We shell describe the al eor':}i :
in terms of a virtual two address Random Access Machine (RAS[] lwtr;:
length of the word m(k + 1). Thus any vector of the n—dimensiorll |
vector space GF™(p),n < m is represented in a single word with —|—al
bits for any co-ordinate - k bits for the element of G F(p) and one bit f
neutralisation of the ”carry-effect” of addition. In this wav anv elexlneoi
e of the ﬁelcl3 0 < e < ¢p, will have two representation in k bits: e itsI}f
and e + p. First of them is called normal, the second - alterna:t{ve T?l
elements greater then ¢, have unique representation. e
If ‘U('ti‘l,'vg, ..., vn) € GF™(p) is represented in the RAM with word
we will denotf: with z; the representation of the co-ordinate v, y o
.We denote with = + y the addition of unsigned integer word; z and
in the RAM, with zd&y the logical "and” (bit by bit) of words & and .
with x >> ¢ the shift of word z in ¢ position(s) right. i
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Let us first observe the case p = 2% — 1, for example p = 3,7,... In
this case ¢, = 1. For addition of the vectors @ and y, represented as
. mentioned above, the following algorithm is proposed:

[#1%] & = z+y¥y
/%2%/ f = a&c [xc=10..010..0..10..0%/
(34 [ = Sk
Jedaf 2 =N GBS
[*82] o = wkd /*d=01..101..1..01..1 %/

The constant ¢ is formed from m equal part with length k+1 consisting
of (from left to right) one 1 and k 0’s. The constant d is the binary
negation bit by bit of e.

After Step 1 two kind of co-ordinates can be observed. If the additional
bit in the representation of the result is 0 then the corresponding co-
ordinate z; is in normal or legal alternative form. Otherwise the result
has to be reduced by modulo p. Following the Theorem it is necessary to
add ¢, = 1 and to reduce the result by modulo 2. So Step 2 selects all
» carry” bits. Shifting them in k positions right (Step 3) we obtain fp(2:)
for any co-ordinate that has to be reduced. Step 4 calculates z; + fo(ze)
and Step 5 is the reduction by modulo 2.

When p # 2F — 1 the general scheme is the same but ¢, # 1. In this case
forming of f,(z;) is more complex and depends of the number of ones
in the binary representation of ¢,. The following program illustrates the
idea of algorithm for p = 5.

[*1x/ r=x+y

[ 2%/ f=a&e [*c=10..010..0..10..0%/
J* 3%/ g=f>>3 :

[xd*/ =

IESEY r=zx+g

[ *6%/ z=z+f

[*T*/ ¢ =z&d [*d=01.101..1..0L.1%/

In this case it is necessary to perform one shift right of selected ” carry”
bits for any 1 of the binary representation of ¢, and to add obtained
result to z. The shift is in a number of positions equal to the distance
between the ”carry” bit and the corresponding 1 in representation of ¢,
with k& + 1 bits.

In our example ¢, = 3 = 0011(3) and two shifts are necessary - first in
3 an second in 2 positions right. Steps 3 and 4 form fp(@i) and Steps 5
and 6 calculate @; + fp(z:).
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4 Time complexity

It is clear that for vectors represented in one machine word the time
complexity of the algorithm is given by the constant ¢, = 2wi(ep) + 3

where wi(cp) is the number of ones in the binary repre:entation ;f r ,
If n > m then we represent any vector of GF"(p) in [n/m] unsig;é:d
W(?rds. The cycle over all words will take in any step one additional oper-
atlcin for increasing th? index and one conditional jump at the end of the
;))(c e. 5o the complexity of this algorithms is t,(n) = [n/m](2wt(c,) +
For real computers the best results will be obtained when (k+1) divides
the length of machine word. For example any length which is power of
2 is good enough for p = 7 when k + 1 = 4.

Un.fo.rtunately, all complexity measuring in [1] are for one address RAM

so0 1t is necessary to recalculate them for the two address RAM and ther:
to compare precisely with the new algorithm. Any way for p = 3 and
32-bits computer we obtain t3(n) = 6[n/10] which compared with the

corresponding one address estimation 28[n/8] is a i
rom
o [n/8] promise of very good
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A New DC-Free Code and its
Trellis Decoding in Binary Adder
Channel

G.Markarian, B.Honary, P.Benachour
Lancaster Communications Research Centre,
Lancaster University

1 Introduction

An adder channel, is a multiple access (MA) channel where the output
symbol is the arithmetic sum of the input symbol values[1][2]. The orig-
inal model of such a channel was proposed by Kasami and Lin [2] and
represents a uniquely decodable code pair of block length n=2; as it is
shown in Table 1. In this table, User; has the code words Cy = (00, 11)
and Usersy, the code words Cy = (00,01,10). Since all the code words
are distinct, the decoder can unscramble the two messages without am-
biguity. The overall rate of this MA coding scheme is R = 1.292 which
is better than time sharing [1][2].

An adder channel permits potentially efficient transmission by several
users without subdivision in time or frequency. However, practical ap-
plications of this type of MA is restricted due to the poor synchronisation
properties and lack of the efficient soft maximum likelihood trellis decod-
ing techniques [1]. In this correspondence, we propose a new technique
that allows efficient practical application of the MA adder channel in a
local area network environment. The technique is based on the use of
Manchester (MC) and Coded Mark Inversion (CMI) codes [3] and allows
the soft maximum likelihood trellis decoding to utilise the error control
capacity. In the CMI coding sequence, input data 0’s are encoded by
(01). On the other hand, input data 1’s are encoded as (00) and (11)
alternately. In MC, a low-to-high level (01) transformation during the
symbol interval T, indicates a logical zero at the encoder input, while
a high-to-low transformation (10) indicates a logical one. Both codes
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have limited values of digital running sums (RDS), thus there is no de¢
component in their power spectrum [4]. Figure 1 illustrates the encoding
procedure for both CMI and MC codes.

The paper is organised as follows: In the next section, we describe the
proposed code structure and prove that the designed code pair is unique-
ly decodable with no de-component at its power spectrum. In Section
3, we implement the recently introduced concept of the Shannon prod-
uct of trellises for the trellis design of the proposed coding scheme. In
Section 4, we present the application of the proposed technique to the
LAN environment and finally, a conclusion is outlined in Section 5.

2 Code Structure

In order to make the technique applicable to LAN’s environment, we
propose to modify the 2-user scheme introduced by Kasami and Lin [2]
as it is shown in Table 2. As it follows from this table User; has two
code words C; = (01, 10) which represent the MC, and Usery has three
code words C3 = (00,01, 10) which represent the CMI code. Similar to
the parent encoding structure, the overall code has 6 uniquely decod-
able ternary code words of length n=2, and the decoder can decode two
messages without ambiguity.

In order to be applicable to a LAN environment, the designed code
should be dc free ( or should have a limited value of (RDS) ).

Theorem 1 The proposed code has no dc-component in its power spec-
lrum.

Proof

To proove the theorem, we need to show that the proposed code structure
has limited value of RDS [4].

Let (ay,ag, ....) and (b1, by, ....) be two binary sequences with components
ai,bi = 1 or —1, and running digital sums RDS(a) and RDS(b) being
respectively:

Z

RDS(a) = ) " a;andRDS(b) = Z bs (1)

i=1 =l

RDS()=) eci=). W—;Ml = % doaty b= %(RDS(a)+RDS(b))
i=1 F=i: F=1 i=1

(2)
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Since both RDS(a) and RDS(b) are limited, RDS(c) is limited too. m

The power spectrum of the designed code can be calculated using the

technique proposed in [6]:

G(w) = 1.75 — [1.875 x cos(w x T')] + [0.1875 x cos(3xwx T)] (3)

where T = 1/fo is the signal period and w = 2 x 7 X f is the radiant
frequency .

The calculated power apectrum is shown in Figure 2 from which it follows
that the designed code has no dc-component and is suitable for data
transmission for LAN’s environment.

3 Trellis Structure Of The Proposed Code

As it was mentioned above, the lack of efficient trellis decoding algo-
rithms for MA binary adder channels makes their practical applica-
tion ineffectual. Although the non homogeneous trellis codes for quasi-
synchronous MA binary adder channel with two users have been pro-
posed [6], the general solution remains unsolved and represents a com-
plex analytical task.

In this correspondence, we show that the overall trellis diagram of the
designed code can be designed easily as a Shannon product of component
trellises [8]. In order to apply the Shannon product of trellises to the
MA binary access channel with two users, we modify this concept as
follows: Let Ty and T3 be the trellis diagrams of the User; and Usery
respectively.

let

N!= (N}, N}, N3, ..) and N? = (N{, N3, N§, ....)

represent the state profiles, and

B! = (B}, B}, Bj, ....) and B?={(B{ B} Bi ) ‘

represent the branch profiles of these trellises, where Nj,i =1, 2, 1s the
number of states in ji# column of the i trellis, and B;j is the number
of branches in j'* depth of the i** trellis. Let also each branch of the ith
component trellis, i = 1, 2, is labelled by a pair of symbols X; /C_: where

X;: is the j* input information digit and C-:: is a correspondent encoded

symbol for #** component code, repectively.
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The Shannon product of the trellises, 1,4 = 71 x T, in the MA binary
adder channel is defined as a trellis with the following state and branch
profiles:

Ny = N'x N?=(N}!x N2 N!xNZ N} xNand (4)
B B ix B2=(Bix B}, B} x:B%,B. x-Bl)

ancll each branch of this trellis is labelled by a set of 3 symbols
L x2
(Cif;‘%r , where addition is over real numbers. It has been shown in [9]

that both Manchester and CMI codes can be represented as rate R=1/2
convolutional codes with constraint lengths one and two respectively.
The trellis diagrams of these codes are shown in Figure 1. Following the
procedure outlined above, the trellis structure of the proposed code can
be obtained as the Shannon product of component trellises and is shown
in Figure 3. This trellis has 4 states at each column and trellis branches

1 2

are labelled as )—(?Z,—?i , where X} and X f represent information data
for User; and Users , respectively and C; represents the correspondent
encoded symbol in the overall code. Since the trellis structure of the
designed code is known, it seems natural to implement Viterbi decoding
algorithm. The simulation tests were carried out under additive white
Gaussian noise (AWGN) channel conditions with zero mean Gaussian
random variable and variance

o2 = Ny (single sided noise spectral density). The simulation results are
plotted in terms of the probability of bit error (BER) as a function of f,—g ;
where Ej is the energy per information bit. The results presented in this
correspondence have been obtained for the bi-polar signalling scheme,
and for all cases perfect bit and block synchronisation is assumed. Fig-
ure 4 i4 illustrates the performance of the overall coding scheme, while
Figures 5 and 6 illustrate the error performances for each user. As it fol-
lows these figures, the designed trellis allows the achievement of about
4 dB energy gain for the overall coding scheme in comparison with the
conventional hard decision technique. Under similar conditions, an en-
ergy gain for each user is also achieved for Manchester and CMI codes
respectively (since the Manchester code has a larger minimum Hamming
distance, the energy gain is higher in comparison with the CMI code).

197



4 Practical Application

It is apparent yhat since both component codes have information rates
Ry = Ry = 0.5, the overall rate for the designed coding scheme is R=1.
However, despite this obvious drawback, a useful and interesting appli-
cation of the new system would be the Token-Ring network. Figure 7
oshows such a network interconnecting 8 terminal stations, but having
only 4 ring interfaces. Each interface connects 2 stations and enables
simultaneous use of the network without subdivision in time or frequen-
cy. The network will allow the doubling in the number of users without
bandwidth expansion, and will also adapt to increasing data rate transfer
for some users if others are inactive.

5 Conclusion

A practical model for a 2-user MA adder channel is introduced. The
system is bandwidth efficient and allows the doubling in the number of
users in a LAN environment. A new MLD using a trellis structure has
been proposed. The new technique has shown to provide an energy gain
over the conventional symbol-by-symbol hard decision decoder.
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Figure 3: Overall trellis for the proposed code.
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Abstract

The application of i-cyclic codes is suitable for the encoding of
complex valued symbols, especially if these symbols are elements
of a finite field represented as Gaussian Integers modulo a Gaus-
sian prime. The metric which is used in these symbol alphabets
is the so called Mannheim metric [5]. We start with an introduc-
tion in fields of Gaussian Integers, i-cyclic codes and the metrics
used in this paper. Then we consider the automorphism group
of i-cyclic codes, which enables us to reduce the computation ef-
fort to determine all possible weight distributions of i-cyclic codes.
The result of this paper is a list of i-cyclic codes up to the length
n = 18, which have the best minimal Mannheim weight for given
parameters n and k.

1 Introduction

The task of an algebraic decoder is to determine the most probable
error word e(z), belonging to a yet evaluated syndrom s(z). The most
probable () is the one, having the smallest weight. The weight depends
on the metric used and the metric should be suitable for the applied
modulation scheme.

In this paper we consider a 2-dimensional modulation scheme, were the
symbols belong to a finite field represented as Gaussian Integers modulo
a Gaussian prime. A Gaussian Integer w is defined as :

w=u+iv , w,v€Z i=+v-1

204

We denote the infinite Ring Integers by Z and the infinite Ring of Gaus-
sian Integers by G. If p is a prime, then the integers Z modulo p form a
field of order p, denoted by G'F(p). In the same way we denote a finite
field in the ring of Gaussian Integers G, by GI(r), where 7 is a prime in
G. The primes 7 of G belong to one of the 3 following classes :

e (1+41) and its associates.
e p € Z, where p is a prime in Z of the form p = 4n 4 3.

e a + th, where a® + b® = p , which is a prime in Z of the form
p=4n+1

In order to construct finite fields of Gaussian Integers in this paper we
use only primes 7 = a+ib € G, which belong to the last class. The order
of such fields is p, i.e. these fields contain p elements. Each w € G is
congruent to an element g € GI(w), where the homomorphism ¢ : G —
GI() is determined by the modulo operation

g=w-— [wr*]ﬂr, (1)

e

where m = (a + ib) and 7* = (a — ib) is the conjugate complex of .
The elements of GI(r) can be considered as symbols of a 2-dimensional
modulation scheme.

In [5] Huber introduced the Mannheim metric, which is suited for such
modulation schemes. Because of its modular structure the Mannheim
metric can be applied in algebraic decoders. The Mannheim distance
between a pair of symbol elements (r, s) is

dm(r,s) =| Re(y) |+ |Im(y)| for y=(r—s) modwx. (2)

For example in GI(5 + 2¢) the Mannheim distance between the symbols
r=2+2i and b = —2 41 1s evaluated as follows :

7:(4+i)m0d(5—|—2£)=—1-z’ dM:[—1|—I—|—l|:2.

2 i-cyclic codes

The symbol alphémbet of i-cyclic codes can be choosen to be GI(7). We
want to describe these codes by relating them to binary BCH codes. For
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the beginning let us consider a one error correcting primitive BCH code.
The parity check matrix of such a code is [7] :

H.= (ao,al,a2,...,a“‘1). (3)

o is a primitive n -th root of unity.
Assuming that an error of weight 1 has occured the decoder must be
able to distinguish all possible error locations, because if the Hamming
metric is used the only error value of weight 1 is 1. Thus there must
be a bijective relation between the syndromes and the error locations
and because there exist p™ — 1 nonzero syndrom values, where m is the
degree of the field extension, the length n of the primitive BCH code can
be as large as

n=p" -1 (4)

As 2" —1= 0 for all 2 € GF(p™) a cyclic shift of a codeword ¢(z) yields

another codeword in the following manner :

r(co—}—clx-i- ...—l—cn_lz“‘l) mod (2" — 1) 5)
= Cpn—1t+CoZT+... +Cn.-2$n_1-

In general a BCH code can be defined by its generator polynomial g(z),
which has factors, that divide 2™ —1 . These factors are minimal polyno-
mials which are selected in such a manner, that the designed Hamming
weight of the code is maximal, according to the BCH bound.

For one Mannheim error correcting i-cyclic codes the structure of H is
the same as in equation 3. The symbol alphabet of the i-cyclic code is the
complex valued GI(7), which has the 4 unities +1, +i. We have already
mentioned that for i-cyclic codes we can use the Mannheim metric, i.e.

there are 4 different error values #1,+i of Mannheim weight 1. Hence, -

the decoder must be able to distinguish not only the error locations, but
also the different error values of weight 1. There are again p™—1 possible
nonzero syndrome values and so the length n of a primitive i-cyclic code

is m_1
7 ciiea
n=t_—, (6)

and @ is a 4n-th root of unity. As a4® = 1, it is clear that a®® = -1
and o™ = +i. Without loss of generality we restrict the choice of the
primitive elements to the case o™ = i. The i-cyclic code is defined to
have roots 3, which satisfy the relation 8" — i = 0. Thus the roots may
be any elements 8 = a*t¥ | 1 € {0,...,n —1}. As each root satisfies
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the relation ™ — i = 0, an i-cyclic shift of a codeword,

z{coterz++...4cpo12""*) mod (2" — i)
= dep-1+CoT+ ...+ Cponx L (M

yields another codeword of the code. A possible parity check matrix of
an i-cyclic code may be

a? ab b L aln—1)b
a? abt+t a,z(b+4) . a(n—l)(b+4)
H = a® ab+B o 2(b+8) an=-1)(8+8)

, (8)

a0 PHO-21  G2(6+(5-2)4) a(n=1)(b+(5-2)4)

where b is an element of the form 1+ 45 for a fixed j € {0,...,n—1}.

3 Determining the best i-cyclic codes

A not very tight lower bound of the minimal Mannheim distance of an i-
cyelic code is its minimal Hamming distance 6. Theorem 1 : An i-cyclic

code which has as roots § — 1 quasi-consecutive powers of &, i.e.
ela®) = e(a?™) = c(a?®) = ... = e(a?t-D4) = q,

withb=1+4;5, j€{0,...,n— 1}, has minimum Hamming distance of
at least &.

Proof': The parity check matrix of this i-cyclic code is given in equation
(8). Now let 3 = . From the definition of the i-cyclic code a is a
4n — th root of unity and thus # is a n — th root of unity. Then H can
be written as follows :

g g a(n=1)gln—1)i
s a®  Qlgitl a?g2ii+1) ar=1gnr-1)([+1)

a® algité-2 aaﬁz(ﬂa-z) a(n—l)‘g(n:—l){j+é—2)

Si.milar as in. (7], Ch.7,§6, we suppose ¢(x) has Hamming weight w < §—1
yie e #0iffl € {a1,as,...,aw}. Then HeT = 0 implies

ot ﬁﬂlj aﬂaﬁdzi iy ﬂ,awﬁawj

. 3 ca
a%1 gor(i+1) ' a2 gei+l) ... gowgeu(i+l) Ca:

! : ] = 0.
aulﬁa1(j+w—l) aagﬂﬂg(i’+w—l) aawﬁaw(j-i—w—l) Cf;w
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The determinant of the matrix on the left is

1 1 1
Jgdl 502 ﬁﬁw

det | A¥e)  pHed . gAew) | (arkaatten)(diH),
foDa geo-Da ... gu-Da

But as this is a Vandermonde matrix [7], the determinant of the matrix
in the equation HeT = 0 is non-zero and thus yields to a contradiction.
Therefore any § — 1 columns of H are linearly independent and the
minimal Hamming weight is §. 2

If m = 1, then g(z) splits into linear factors. This n — k linear fact(?rs
can be selected in such a manner that g(z) has n — k quasi consecutive

roots and thus 6 = n — k+ 1.

However an i-cyclic code should have maximal Mannheim distance, and
the code of maximum Mannheim distance generally does not coincide
with the code of the largest designed Hamming distance. To illustrate
this behaviour, let us consider the following example:

An i-cyclic code of symbol alphabet GI(5+ 2i) has the primitive ler}gth
n =T7. For k = 2 the generator polynomial of the Code C; with maximal

designed Hamming distance 6; = 6 is :
01(2) = (= — a)(z — o)z — a%)(x — &%)z — ).
This code has the Mannheim weight distribution

A1(z) = 14427+ 56213 4+ 36214 + 2821% + 1122 4 5627 + 84418
4168219 4 112220 + 64221 4 84222 4 28223

and the minimal Mannheim weight dyy = 7 . However, the code Cp
generated by

g2(z) = (z — a)(z — a®)(z — &°)(z — o'®)(x — &),

has a minimal Mannheim weight of dyy = 12, the Mannheim weight
distribution is

As(z) = 14562'2 45621+ 112216+ 28217 + 1£§z18 +16821?
4168220 4 56221 + 28222 4 28222 4 282

but its designed Hamming distance is only é; = 5.
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As in the example we focus our further investigation to codes over ground
fields, i.e. m = 1. In this case the generator polynomial splits into linear
factors.

Unfortunately, so far no general method is known to construct the code of
best minimal Mannheim weight for given parameters n and k. Therefore
one has to compute the weight distribution of all possibilities. As there
are n different linear factors, the number of different generator polyne-
mials is Ny = (7). Furthermore this number will increase if we also alloy
different. primitive elements « to construct the generator polynomial In

the sequel we will show, that the number of i-cyclic codes of different
weight distributions is much smaller, because all equivalent codes, ie.
codles that belong to the same automorphism group [7], have the same
weight distribution. So let us consider which combinations of the fac.
tors of the generator polynomial correspond to the same automorphism
group of a code. We consider the set B = {1,z,2%,...,2"" !} to be the
basis of the codewords.

Theorem 2 : The mapping o, : &/ — 27# of the basis elements of
an i-cyclic code C yields an equivalent code of C, iff u = 1 + 4u,u ¢
{0,1,....n 1} and u prime to p™ — 1.

Proof : The exponents of the roots of an i-cyclic code must be of the
form e =144j,j € {0,1,...,n—1}. We first show that o, maps admig-
sible roots to admissible roots : By applying the map o, the exponent
of the root o!*4 permutes as follows :

(1+4j)p mod (p™ —1) (1 +45)(1 + 4u) mod (p™ — 1)
= 1+4(+u+4ju) mod4n = 1+44[(j + u+4ju) mod n]
= 1+4i

and thus is an admissible root. The mapping of the roots is an automor.
phism because y is prime to p™ — 1 [4]. o, is also an automorphism of
the basis B and thus a permutation of the code coordinates if y is prime
to n. This condition is satisfied, as p is prime to p™ — 1 and hence prime
to % =ins 2

Referring to the example above the exponents of the roots of g2(2) are
{1,5,9,13,21}. Equivalent to Cy are the codes that have roots according

.\
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to the following exponents:

5 25 17 9 21
9 17 25 5 21
13 8 5 1 21
1r 1. 13 25 21
25, 1% .1 1% 21

I

TETER B
Il

B o= = 2 O

o o=] 2

Theorem 3 : The weight distibution of a cyclic code € does not depend
on the choice of the primitive element a.

proof: Let o be a primitive element of a field of order p™ — 1. Then
any element o”, where v is prime to p™ — 1, is also a primitive element
in this field [3]. Replacing a by a” is equal to the map o) : PR L
and this map is an automorphism as v is prime to p™ — 1 and thus yields
an equivalent code. 2

Hence the number of different weight distributions, which must be com-
puted to determine the best Mannheim weight code for given parameters
n and k can be reduced considerable. In the table below we present the
roots of the best Mannheim metric codes of moderate codelength. For
codes of rate R = 7"; = —; the weight distribution has been determined by
applying the MacWilliams - Theorem for 2-dimensional modulo metrics

6] -

1This table does not contain all i-cyclic codes of high - rate. The complete table
will be available at the conference in June
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P 3 o n E3 g Iixponents ol the Aoots of the code
is | 3+ 1+ 3 i & )
2 3 B
17 44+t 11 4 1 & 159
2 4 15
3 3 1
20 54 21 a4 21 T 1 15 158 131721
2 12 15913121
3 in 1592125
4 T b B g
5 4 15
] 3 1
3T 30 | 144 g 33 a7 1591317 21 25 33
2 18 15913 17 21 29
3 16 159132125
@ 12 15891333
5 =} 151321
B 3 1
41 5441 —1 = 31 10 1 30 1591317 21 25 2933
2. 23 159131721 2533
3 18 15513 17 33 a7
4 14 159131721
5 11 1591317
9 3 1
53 T4 2 2.4 2 13 i 47 1591317 21 25 29 33 3T 41 45
2 ar 91317 21 25 29 33 41 49
3 an 15913172529 41 45 48
4 24 15913 1721 35 29 av
12 3 3
Gl &4 5 2 15 1 A5 1591317 21 25 24 33 37 41 45 49 &7
2 43 59 1317 21 25 0933 37 41 45 53
3 36 159 1317 21 25 33 a7 41 45 49
4 a0 1501317 21 25 2937 41 45
14 a 1:
T &4 31 -3 =31 1s E § TE 159 1317 21 25 25 33 37 41 45 49 53 57 61 69
2 62 1591317 21 25 29 33 37 41 45 49 61 65 69
3 sl 1591317 21 25 29 33 37 45 49 53 65 689
4 44 1591317 71 25 25 41 45 49 53 57 69
17 3 1
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7,-Linearity, Two Approaches *

Nechaev A.A., Kuzmin A.S.
Center of New Informational Technologies
Moscow State University, 119899, Russia

nechaev@cnit.chem.msu.su

There are known [1]-[6] two approaches to the proof of 4-linearity of some
nonlinear binary codes. They have the following common description.
Let R=4, P=GF(2),d € and let

¢:R— P¢ (1)

be some map. For any k € it induces o : R¥ — P*¢ (coordinatewise).
We say that C' C P*? is (R, 0)-linear (or R-linear) code if C = a* (IC)
for some linear code K < rR¥. A code (' is called (R, o)-dual to C if
¢! = o* (K1), where K+ < rRF is code dual to K.

Qur variants of o are connected with the 2-adic decomposition of a €
R: a = 70(a) + 271(a), 70(a),71(a) € 0,1. First variant is ¢ = 71
(d = 1). It was used in [1, 2], where s-linearity of Kerdock code was
proved and cyclic 2-reduced Kerdock code was built, and in [3]-[5], where
some generalisations of this construction was obtained and in particular
Kerdock code over GF(2') was built. Second variant of o in (1) is Grey
map o = 0g, where ag(a) = (11(a), 71(a)®70(a)) (d = 2). It was used in
[6], where proof of 4+-linearity of Kerdock code (but without cyclicity) was
repeated, 4-linearity of Delsart—Goethals and Goethals—Delsart codes
was proved and “Preparata” code (4,06)-dual to the Kerdock code was
no ted.

Each of these maps has own preferences: 7 preserved a good combina-
torial properties of the initial code K (for example the length and the

cyclicity], oq allows to guarantee that the result code is distance in-
variant and to investigate 4-duality. There exists the following relation
bet ween these maps.

*This work was supported by Russian Fundamental Research Foundation under
Grant N. 01-114
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For any & = (a(1),...,a(k)) € RF let
&®(1,3) = (a(1)- (1,3),...,a(k) - (1,3)) € R?*,

Then L (&) = vi*(@ ® (1,3)) and ok(L) = v (L ® (1,3)) for any
£ C RF. 1t gives the following possibilities to use 7, instead of Lo
preserving properties of og.

A code K < gR"™ is called 3-siabie if there exists an automorphism
i € S™ of K such that

¥ € K 133 = (alp(1)), -, afp(n)),
it is called mondegenerate if Vi€ 1,n 38 € K : a(i) € R* = {1,3}.

Theorem 1 Lei K < grR" be a lincar nondegenerate 3-stable code.
Then n = 2k, K is equivalent to some code LR(1,3), where £ < g R* angd
1T(K) is distance invariant code of efficiency |K| equivalent to ok (L),

An important class of linear cyclic codes satisfying the conditions of
Theorem 1 may be described in terms of linear recurrences. Let R he
the set of all sequences u : ¢ — R, u = u(z). It is a module over 5
polynonual ring P = R[z], where the product of u € R™® and A(z) =
> aix* € P is defined as A(z)u = v € R®, v(z) = X, asufi + 2). For
any ideal I <P the set Lp(J) = {# € R* : Tu = 0} is a P-submodule
of B*. We suppose that I is a reversible ideal, i.e. @t — 1 € I for some
t € . The smallest such # is called period of I and denoted by ¢ = T'(I),
The ideal [ has a generating system

Fg(z), QFI(."L'), deg Fg(;r) = My 2 deg Fl(..":) = my 2 '0, (2)

where Fy, F are monic polynomials and Fy(z)|Fo(z) (mod 2) [5]. The
reversibility of the ideal I is equivalent to the reversibility of Fy(z), i.e. to
the condition Fy(0) € R*. The cardinality of Lr([) is |[Lg(I)| = 2™et™
Let T'(I)|n, then '

K=L%"1I) = {u0,n—=1) :u € Lg(I)} (3)

is a linear cyclic n-code over R of the efficiency 2™e+™:  Any linegr
cyclic n-code over R has such a form.

Theorem 2 Let JaP be a reversible ideal such that T(J)n, JNR =9

and ¥ —3 € I for some k € . Then K = Lf?’”'l(J) is nondegenerafe

3-stable code and 77 (K) is distance invariant cyclic code of efficiency
|K].
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Ap important particular case of Theorem 2 is

Theorem 3 Let I aP be a reversible ideal with generating sysieml (2)
such that T(Fp) = t is odd and my > 0. Then T(I) = ¢, ilhe ideal
7 = (Fo(32),2F1(2)) has the period T(J) = n = 2t and saltssﬁes all
he conditions of Theorem 2. The code K = L?%ndl(J) is equivalent i.o
£® (1,3), where £ = Lﬁtdl(l), and v7(K) is distance invariant cyclic
code equivalent to og(L).

The dual codes to £, K from Theorem 3 are the following.. Let F'(z)
be a reversible polynomial of period T(F)|t. Then polynorplal t-dual .to
F(x) is defined as Fl(z) = (2! — ¢)/F*(z), where F (z) is polynomial
reciprocial to F(z).

il 3 there exists a unique
Theorem 4 Under the conditions of Theorem '
monic polynomial Fy(z) € R[] such thal Fl(a:)ng(:r) and (2) is @
generating system of 1. Then the codes £, K+ dual torl L, K are
ot = I (F @), 288 @), K = LT (RBa), 257 ().

Now we can (after puncture of two coordin ates) build in a cyclic form nogt
only Kerdock code but many others binary cod:es. Let m=2A+1 .;«Zb’
§ = GR(4™,4) be a Galois extension of the ring I? a_nd let 6 € 5 be
element of order 7= 2™ — 1. Then elements'ﬂ, oL+, j € 1, ) are roots
of some monic irreducible modulo p polynomials G(z), Gj(z) € R[.?%_;’r\ €
1, ) of the degree m. We denote H,(z) = G(z)G1(2)..Gr(z), 7 € 1, A

Theorem 5 Each of the following codes is 4-linear cyclic code of a form
¢ =7HIF" )

{ P unctured in Parameters
two coordinates n [&d] d(C') I
K erdock code gm4l 2| (n+2)? nt? e 2 _9| (G(3z)(z—3))
npreparata”’ code gmtl — 2 gn=2m 4 (Gl (3z))
D elsarte-Goethals m—gfnn | (B8l
BilotLie) it E e §=A—-r—-1 2G(z)(z — 1))
code
¢ oethals-Delsarte (GLT[Sx],
GD(m +1,r+2)- | 271 -2 gn—mirda) 6 21V ()
code
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Error-Correcting Codes as Abstract
Classes *
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University of Shoumen
Dept. of Math. and Comp. Science
nick@uni-shoumen.bg

1 The general model

In [3,4] the notions and theorems of a discrete mathe.matical tl'_leor;( was
modelled by abstract classes. The presented paper is an application of
this model to the theory of error-correcting codes. Formally:

() the classes N = [{0,1,2,3,...};add,syb,mu!t,div?mod,.:,g], Bi=
[{TRUE, FALSE}; and, or, not, =, <], which present the notions natural
number and logical constant are abstract classes. These c.la.sses are
described by a set of values and operations (including relations) over
these values. The classes N and B are called basic abstract classes.
(i) attribute is an ordered triple @ = (< name of the atiribute >,
D, Cr), where D is the domain of a. D=CgxCyx---xCr,r>01s
a Cartesian product of the abstract classes Co, Ch, .. -, C,. The value of
a (if it is known) is an object of the abstract class Cr, ca,.lled type of a.
If the object O is a value of the attribute a we denote this by a.0.

(iii) simple abstract class is a pair C = (< nameof theclass >, Ac),
where Ag is a set of attributes {ag,a1,...,am}, m > 0 A compound
abstract class C) = (< name of the class >, Ac,) is constructed by
set, of attributes A¢, = {ag,a1, ..., @m}, where ag is an array of objects
of a certain abstract class C. Such construction is denoted by C.A. I.n
both cases the attributes ao,ay, ..., am are all attributes with domam
D=CxCyx---%xCy r >0 The attribute ao is called a kernel
attribute (KA) of the abstract class C'.

*This work was supported partly by the Bulgarian National Research Foundation
under Grant [-519
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The abstract classes are arranged in a hierarchical structure, where each
class can have few ancestors and few children. The classes succeed the
non kernel attributes of their ancestors.

An object of a non basic abstract class C' = (< name >, {ap, a1, ...,am})
is described as follows: O = (C;a0.0¢,0;,.0;,,...,8;,.0;,),0< n < m.
If we want to point of which class is the object O, we write C.Q. The
object Op is said to be a value of the object O. An object Og of class B
is element of the set of values {TRUE, FALSE}. This element is called
also a value of the object Op. An object Oy of class N is presented
by three natural numbers - exact value, lower bound and upper
bound. The value of Op is an combination of these three values. Each
of them can be known, but not specified (not specified value of type
one), or equal to an expression which includes not specified values of
type one (not specified value of type two). The value of an atiribute of
an arbitrary type also can be known, but not specified.

If an attribute a has a domain D = Cy x Cy x ---x C, and O1,0s,...0,
are objects of classes C,C, ..., C,, respectively, then each of these ob-
Jects has an attribute a corresponding to the set of objects {0y, 0, ...,
O}

With the name theorems are denoted the assertions with constructive
character, the definitions and the axioms. The applicability of the theo-
rem depends on the set of conditions. A theorem is an ordered quartet
T = {a(01,0y,...,0,), R,UP}, where a is the attribute, whose value
is constructed by the procedure P. The attribute a = (< name >,
Cp x C3 x - x Cr,Cr) is called resulted attribute. The objects
01,0,...,0, are of classes C,Cy,...,C,, respectively. R € { ezact
value, lower bound, upper bound} is the type of the result. U is a set
of conditions of the theorem. The conditions refer to the values of at-
tributes of objects {CondO,, CondOy, . ..,Cond0,} D {01,0,,...,0,},
which are called conditional objects of T'. The conditions consist of
requirements either for existence of the value of an attribute (the value
of the attribute must be known) or for the truth of a relation between
the values of some attributes. The procedure P is said to be present-
ed by the theorem 7". The theorem T is said to be connected with the
result attribute a.

A theorem which is connected with KA of a non basic abstract class C' is
sald to be a definitive theorem of C'. It has one conditional object O
of class C. The attributes of O, for the existence of whose values there

are conditions in the set U, are said to be definitive attributes of the
class C.
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An object C.O is said to be completely defined, if its value is knowr},
and the values of its definitive attributes are such that at least one dei.im-
tive theorem of the abstract class C is applicable if its conditional object
is assumed to be C.O.

It is assumed that conditional objects of the theorem are completely de-
fined. The procedure presented by a theorem constructs a completely
defined object, which becomes a value of the result attribute of the the-
orem. For the construction C.A is assumed that the array of objects of
class C includes objects whose definitive attributes have identical values,

2 Modelling of the theory of error-correct-
ing codes

In the following we will use terminology from [1] and [2]. 'I.‘he abstract
class prime number succeed the basic abstract class N and is defined as
P = ("primenumber’, Ap), where Ap = {ag = ("prime number’, P, N_),
isSimple = ("is prime number”, P, B)}. With ag is connected one defini-
tive theorem Tp, = {ao(P.0), exact value, {0.isSimple = TRUE},0}.
With the attribute isSimple can be connected each theorem that presents
a procedure for checking whether a number is prime or not. ‘
An significant notion in the theory of error-correcting codes is Fhe IlOt:lOI'l
finite field (we will consider the finite fields GF(p), where p 1s f), prime
number). To present finite fields we define the abstract class GF(p) =
("element of finite field", Agp(p)), where

Agr(py = {ag "= ("element” GF(p),N),
p = (“characteristic”,GF(p), P),
add(p) = ("sum” ,GF(p)x GF(p),GF(p)),
mult(p) = ("product”,GF(p) x GF(p),GF(p))}-

With a definitive attribute ag is connected one definitive theorem T p(p)
= {ag(GF(p).0), exact value, {O.p exists, O.ap < p}@} Therefore the
attribute p is definitive of the class P. With the attnbut.es.add(p) a.nd
mult(p) are connected theorems concerning the arithmetic in the finite
field.

The vectors and matrices over finite field are presented by the classes V/
and M. The class M succeeds the class GF(p), and the class V succeeds

the class M. Let’s consider first the class M = {"matriz over finile

field", Aps }, where
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A."l»:f = {
ag = ("matriz’, M, GF(p).A),
n= ("columns”, M,N), k= ("rows", M, N),
addM = ("M Msum', M x M, M),
multM = ("M Mproduct”, M x M, M),

inverse = ("inverse matriz”, M, M),
GF(p)M = ("M Eproduct”, M x GF(p), M),
transpose = ("transposition”, M, M),

transform = ("transformation”, M x N x GF(p) x N, M),
colBzchange = ("exchange.of columns”, M x N x N, M),
isInSysType = ("is.a_systematic”, M, B),

toSysType = ("systematic”, M, M),

range = ("range’, M, N),
isVector = ("is_a_vector” , M, B)}.

The class M succeeds from the class GF(p) its attribute p. The definitive
theorem of the class M is Ty, = {ag(M.0), exact value, {O.p exists,
O.n exists, O.k exists,0.a0.00p = O.p,0On > 1,0.k > 1},0}. The
definitive attributes of the class M are the attributes n, k& and p.

With the attributes addM, mult M, GF(p)M, inverse and transpose are
connected one or more theorems presenting procedures which find a
sum or a product of matrices, a product of a matrix and an elemen-
t, the inverse and the transpose matrix, respectively. Let’s consider
the theorem which is connected with the attribute mult M and presents
the standard multiplication procedure: Tinupar = {multM(M.X, M.Y),
exactvalue, {X.k = Y.n, X.p = Y.p}, Prunm }, where Pyiar is the pro-
cedure which constructs the value of the attribute mult M of the objects
X and Y. X and Y are assumed to be completely defined. The proce-
dure Prunar constructs a completely defined object Z = X.Y of class
M (if the conditions of the theorem are truthfull) giving values of its KA
and of its definitive attributes - Zp= X.p,Zn= X.n and Z.k = Y.k
The attribute transform is connected with a theorem: Tiransform =
{transform(M.A, N.s, GF(p).b, N.t), exact value, {A.p = b.p},
Piransform}- The procedure Pironssorm constructs a matrix B from ma-
trix A after an elementary transformation, which can be: multiplication
of the s-th row by b and add to the ¢-th row. By suitable values of s, ¢
and b can be covered the elementary transformations multiplication of a
row by a mon zero element of a finite field and ezchange of two rows.
The attribute col Ezchange is connected with a theorem, presenting a
procedure, which, constructs a matrix B by exchanging of s-th and t-
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th columns of a matrix A: Tepigzen = {colEzchange(M.A, N.s, N.t),
exact value, {Ak > s, Ak > 1,5 > 1,1 > 1}, PeoiBacn}- .
With the attribute isInSysForm is connected a theorem presenting a
procedure, which constructs an object of the basic abstract class B. 'I.‘he
value of this object is TRUE for the conditional objects M.A, which
present matrices of the systematic form [Ix, A], and FALSE in the other
cases. With the attribute toSysForm are connected theorems presenting
procedures that transform a matrix to the systematic form U, A].‘
With the attribute range can be connected each theorem presenting a
procedure that computes a range of a matrix. .

The attribute O.isVector has a value TRUE if O is an object of the
class-child of the class M - the class V. With this procedure is connect-
ed the following theorem: Tj;vector = {z'sVecto-r(M,O),emafrtva!ue,@,
Pisvector }, where the procedure P;sVector constructs an object of the
class B depending on the number of the rows of the object M.O.

The class V succeeds the class M.V = {"vector over finite field", Av},
where

Ay = {ao = ("vector”,V,GF(p).A),length = ("length”,V, N),
inner Product = ("VVproduct”,V x V,GF(p)),
multVM = ("VMproduct”,V x M, V),
d= ("Hamming distance’,V x V,N),
w= ("weight”,V,N),
S:(y) = (“sphere”,V x N,V.A),
synd = ("syndrome”,V x M,V)}.

The class V has one definitive theorem Ty, = {ao(V.0), ezact value,
{O.length exists, O.p exists,0.ap.0p.p = O.p,0.length > 1},0}. The
definitive attributes of the class V are length and p. The class V succeed-
s the attributes of its ancestors GF(p) and M. With its own attribute
innerProduct can be connected each theorem giving a procedure for com-
puting the inner product of two vectors. These theorems have the follow-
ing general type: Tinner = {innerProduct(V.X,V.Y), exactvalue, {X.p =
Y.p, X length = Y.length}, Pinner}-

With the attributes d and w are connected theorems which present pro-
cedures respectively for computing the Hamming distance between two
vectors and the weight of a vector.

With the attribute S, can be connected theorems of the type: Ts =
{S.(V.Y, N.r), exact value,§, Ps,}, where Ps_constructs an array of ob-
jects of the class V that presents the set S,(y) = {z € Vi : d(a.:, y) <r},
V, is the vector space of all vectors with length n over the finite field.
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With the attribute synd is connected a theorem Teyna = {synd(V.z, M.H),
exact value, {x.length = H.k,2.p = H.p}, Psyna}. The procedure Pyyng
constructs the vector-syndrome s = #. H* as an completely defined object
of the abstract class V' : s.length = H.n,s.p = z.p.

Following two theorems give procedures, which compute the values of
the definitive attributes of the class M which are not definitive for V :
Thy.n = {n(V.0), ezactvalue, D, {O.n = 1}}; Tar 1 = {k(V.0), ezactvalue,
0,{0.k = O.length}}. In such a way the theorems that are connected
with the own attributes of the class M can be applyed for conditional
objects of its child class V.

Vector space V;, is defined by V;, = {"veclor space of vectors with length
n over a finite field”, Ay, , where Ay, = {ap = ("vector space”, Vy,, V. A),
p = ("characteristic”, Vn, P) length = ("length”, Vn, N)}. The defini-
tive attributes of the abstract class V;, are p and length.

The abstract classes LC and SLC present the notions linear code and
set of all [n, k] codes. Let’s first list some of potential attributes of the
class LC = {"linear code”, Apc}:

a0 = ("linear code", LC,V.A);p = ("characteristic’, LC, P)
n= ("lengthof acode", LC, N);
k= ("dimension of a code”, LC, N);
G = ("generator matriz of a linear code”, LC, M);
H = ("parity check matriz of a linear code”, LC, M);
dmin = ("minimum distance of a linear code”, LC, NY;
found = ("number of found errors”, LC, N);
correct = ("number of corrected errors”, LC, N);
(
(
(

i

r= ("covering radius of a linear code”, LC, N);
"speed of alinear code”, LC, N);
"is a cyclic code”, LC, B); dual = ("dual code’, LC, LC);

speed =
tsCycle =

The class LC has two definitive theorems:

Tpeo = {ao(LC.C), exact value, {C.n exists, C.k exists, C.p exists,
C.G exists, C.G.M.n = Ck,C.G.Mk=Cn,C.GMp=C.p,
C.G.range = C.k},0}.

Trco, = {ao(LC.C), exact value, {n exists, k ezists, p exists, H exists,
HMn=Cn—-Ck HMk=Cn HMp=C.p HMrange =
C.n—C.k},0}.

which correspond to the two alternative ways to describe a linear code -
either with a generator matrix or with parity check matrix. This means
that the class LC' has two alternative groups of definitive attributes:
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{n,k,p,G} and {n,k,p, H}. In the description of a theorem is assumed
that the conditional objects of the class LC' are completely defined by
the values of one of the two alternative lists of definitive attributes. Thus
it is necessary at least one theorem that computes one of the attributes
G and H using the other.

Let’s consider the realisation in the model of some theorems from the
theory of error-correcting codes.

Theorem 1. The binary linear code can correct ¢ errors if and only if
dmin(C) > 2t + 1.

In the model we obtain:

Typin = {dmin(LC.Code),lower bound, {Code.p = 2,Code.correct
exists lower bound}, Py, }.

Toorr, = {correct(LC.Code), upper bound,{Code.p = 2, Code.dmin
exists upper bound}, Peorr, }

Toorry = {correct(LC.Code),exact value, {Code.p = 2,Code.dmin

exists}, Poorrs }

These theorems present the procedures based on the Theorem 1. Pios
computes the lower bound of Code.dmin if the lower bound of C'ode.correct
is known. Peerr, computes the upper bound of C.correct if the upper
bound of dynin is known. Peer, computes the exact value of C.correct
if the exact value of dpin is known.

Let’s consider the definition of the notion covering radius and one theo-
rem which gives its bound value:

Definition. Let C is a [, k] code. The covering radius of C is r(C) =
maz{min{dist(z,c) :c€ C}:z € Va}.

In the model this definition corresponds to the following theorem : T;,
= {r(LC.C), exact value, B, Pr, }, where P,, computes the exact value of
7(C) by enumerating of the code vectors.

Theorem 2. (A bound of the spherical covering) [3] If C' is a binary
[n, k] code with covering radius r(C) then 2"~* < S

This theorem gives a lower bound of #(C'). Lt can be presented as follows:
T,, = {r(LC.C),lower bound, {C.p = 2}, P;,}, where Py, isa procedure
which computes the lower bound by a consecutively summing of binomial
coefficients until the sum exceeds 2" ~*.

To cover the notions related to all linear codes with a length n and
dimension k we include the abstract class SLC = (“set of all [n,k]
codes’ | Aspc), where:

Aste ={ ao= ("setof all[n,k]codes”, SLC,D),
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tln,k] = (“"minimal covering radius of [n, k] code” , SLC, N)}.

In the hierarchy of the classes SLC is a child of LC and succeeds its
attributes, including n and & which are the definitive attributes of the
class SLC. Let’s consider the definition of ¢[n, k] and three theorems
related to t[n, k] with their realisations in the model;

Definition. A minimal covering radius t[n, k] is said to be the minimal
among the covering radii of all [n, k] codes i.e. ¢[n,k] = min{r(C) :
C'is an [n, k]code}.

Theorem 3. For arbitrary natural numbers n and k t[n, k] < t[n+1,k].
Theorem 4. Ifn > 2k—maz{2¢*-2/2 k} then t[n, k] > tﬂa—?, k]+1.
Theorem 5. Ifk = 5 then i[n, 5] = [(n—5)/2] for n # 6 and ¢[6,5] = 1.
In the model:

Tz = {t[n,k](SLC.S),lower bound, {S, € SLC,S,.n = S.n — 1,
S1.k = S.k}, Ps}.

Ty = {t[n,k)(SLC.S), lower bound, {S, € SLC,S;.n = 8.n — 2,
51 .k = S8.k,5.n> 25 — maz{25FE*-0/2 511}, B}

Ty = {t[n,k](SLC.S), exact value, {S.k = 5}, Ps}.

3 Conclusion

The presented model is applyed in the development of an automatic
generation of programs and computation of a complexity of an attribute.
The complexity of an attribute is the minimal time complexity of a pro-
cedure which is presented by connected with the attribute theorem. To
solve this problem it is necessary to find a suitable metric for measuring
of an upper estimate of the worst time performance of a procedure. At
this measuring as a size of input we can assume the definitive attributes
of the conditional objects whose exact value is known but is not speci-
fied. If in a procedure is quoted the value of any attribute, which are not
known, this value has to be constructed by one of the theorems connect-
ed with those attribute. This construction reflects on the complexity of
the procedure. The analysis of this problem shows that it is necessary
to find heuristics methods to measure the complexity of a procedure
depending of the complexities of the attributes quoted in it.
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Abstract

In this paper we first will describe a random access method for a mobile communica-
tions system based on multifrequency transmission. We will investigate the problem of
corrupted subchannels. Then we will use a combinatorial block scheme for a random
sampling of subchannels by the user. We will show some simulation and theoretical
results for different subchannels selection schemes.

1 Introduction

In a multifrequency transmission system the total bandwidth B is divided into N subchan-
nels of bandwidth % In our system we consider that each user who wants to transmit data
will select n subchannels out of N and transmits his data without any kind of control (like
in an Aloha protocol). Due to the absence of control for transmission, several users may
overlap in the selection of some subchannels, producing a collision in these subchannels
and the information in these subchannels gets lost, We want to study this event, find out
how often it takes place depending on the system parameters and how big the information
loss can be.

This access method can be used for the first access in a centralized system. After this first
access, the base station will assign to each user the traffic channels to be used in the next
transmissions. This method is also interesting for a decentralized system where all users
may communicate with each other without any kind of control, or for a connectionless data
communication system where the packets are sent over different subchannels and a higher
level protocol will handle the retransmission of a packet in the case of too much collided
subchannels in that packet. From this idea we see that it is important to know the average
number of subchannels that are simultaneously selected by several users, the probability
of correct decoding of the transmitted information, the influence of the system parameters
and the subchannels selection scheme. In the following sections we will give a first answer
to these questions.

2 Random selection scheme

First we consider a completely random selection scheme. There are t users transmitting
data in the system simultaneously (t active users). In this scheme each active user selects
randomly n subchannels from the total N subchannels and transmits his information over
these n subchannels. If two or mdre users select the same subchannel, a collision will
take place in this subchannel and the information of the users in this subchannel will be



lost. Such a subchannel will be called a corrupted subchannel. However, if the number of
corrupted subchannels per user is not too large, the lost information can be recovered by
using an adequate coding scheme over the selected subchannels.

We will evaluate this access method in dependence of the system parameters n, N and t.
For this we have considered the following performance criteria: !

1. The total number of occupied subchannels respectively the total number of corrupted
subchannels: in a perfect collision-free access method each user would have different
subchannels and no overlapping would appear. So the number of occupied subchan-
nels would be n-t<N (FDMA). Clearly, the best access parameters for our system will
be those that make the number of occupied subchannels be as close as possible to
n-t<N. We will look for adequate values of the system parameters to obtain the best
ratio of occupied subchannels to corrupted subchannels,

2. The average number of users using the same subchannel: we will look for values
of the system parameters that make sure that the probability that more than one
user uses a given subchannel is small, because this criterion also gives us how many
subchannels per user will be corrupted in average (multiplying by the number of
selected subchannels per user).

3. The average number of corrupted subchannels per user: we are interested in a small
number of eorrupted subchannels. The number of corrupted subchannels per user
gives us a measure of how much redundancy we have to spend for assuring a correct
decoding of each user's data (what code parameters we have to use). If the number
of corrupted subchannels per user is small, then the redundancy needed will be also
small and more information can be transmitted.

4. The average number of corrupted subchannels after applying a decoding procedure:
we consider all the t simultaneously active users and look for the number of corrupted
subchannels in each user. We take the user with the smallest number of corrupted
subchannels (best user), and suppose it can be decoded correctly. Then we consider
the other t-1 users, calculate again the corrupted subchannels in each user and look
for the best. This procedure is repeated until there is only one user in the last itera-
tion, This decoding method is like a joint-detection over the subchannels. By applying
this method we will have two other evaluation parameters for studying the system
performance: i

(a) The average number of corrupted subchannels of the best user: if we have a
small number of users, if we are able to decode the best user's data, we will
also be able to decode the other users' data, because after each iteration of the
decoding procedure there will be less corrupted subchannels in each user. The

average number of corrupted subchannels in the best user is a measure for the

quality of our decoding method if there is a small number of users in the system.

(b) The average number of corrupted subchannels after each iteration of the decod-
ing procedure. )

2.1 Influence of the system parameters

In the following we will show the influence of the system parameters on the performance

of the random selection scheme.
If each user randomly selects n different subchannels from the total N, the probability p
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that a user selects a given subchannel will be p = %. If there are t active users in the

system we can compute the probability p., that i users select a given subchannel as:

%M=Gﬁﬂ—ﬂ4=ﬁﬂﬁfﬁ-%fq,oﬁsz W

The simulation results obtained show this performance.
From (1) we can compute the probability that a subchannel is corrupted as:

pleorrupted) =1 — py(0) —pus(l)=1-(1 "Pjt_l L4 (- 1) 'P] (2)

‘We are interested in a small number of corrupted subchannels, it m i
A i ¥ eans that the probabil-
ity that a subchannel is corrupted should be as small as possible. ’ l

2.1.1 Influence of n and N
By derivating (2) with respect to p we obtain:

o ted
Dpleormptet) _ 41y (1=p) 2 top>0 | 122 %

From (3) we see that decreasing p will decrease the probability that a subchannel is cor-
?'upted. If we consider the probability p we see that N and n have inverse effects on p. That
is, to decrease (increase) p we may increase (decrease) N or decrease (increase) n. ;

To maintain the same data rate per user when decreasing the number of selected subchan-
nels n we will have to increase the dimension of the modulation scheme used.

From the explanation above it is preferable to take N as big as possible and n as small
as possible, but this selection will be limited by a maximum of N due to implementation
problems and a minimum of n to ensure the use of coding (we cannot use n=1 because we

cannot apply coding over the subchannels, and so in case of collision the information would
be lost inevitably).
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Figure 1: Influence of t

2.1.2 Influence of the number of active users t

In fig. 1 we show the influence of various numbers t=5 i
=5, 10, 20 of active users and given
values N=512 and n=16. In the left side of fig. 1 the distributions of the total numlir of
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occupied subchannels and the total number of corrupted subchannels have been plotted.
With larger t the number of occupied subchannels increases, but the difference to n-t in-
creases as well. If we consider the ratio r = %%le we see that r increases
by increasing t (r=0.06 for t=5, r=0.13 for t=10 and r=0,27 for t=20). This indicates a de-
terioration of the system performance.

The right side of fig. 1 shows the distribution of the average number of corrupted subchan-
nels per user and also for the best user. Clearly for an increasing number of active users t
the performance of the system decreases because the tatal number of corrupted subchan-
nels as well as the number of corrupted subchannels per user increases with the con-
sequence that more often the whole information of a user gets lost.

3 Block selection scheme

In the previous section we have considered a random selection scheme for each user to
select n subchannels from the total N. We have realized that, depending on the parameters
N, n and t, for some cases the number of corrupted subchannels per user may be very high.
Due to this reason, we have investigated other selection schemes that could improve our
access method.

In the block selection scheme, we first looked at special sequences a = {ay, ..., } with the
property that any value of b;j = (a;—a;) mod K (i) appears only once. In fig. 2 an example
of such a sequence for k=4 and K=16 is given.

Figure 2: Block sequence (4,16)

The subchannels selection methed is as follows: each active user randomly selects a num-
berse€ {0,..., K —1},and thek subchannels selected by this user will be fi=s+a; mod K. The
advantage of such a selection scheme is that two users may overlap in none subchannel, in
only one subchannel or in all k subchannels; any other number of overlappings of subchan-
nels is not possible due to the sequence construction. Tor example: if user A selects s=0
then f4={1, 2, 4, 8}; if user B also selects s=0 both users will overlap in all subchannels; if
user B selects s=1 then fp={2, 3, 5, 9} and the users will overlap in only one subchannel.
If in the block-scheme the number n of selected subchannels per user is greater than k,
the total number N of subchannels can be divided into Ny, = % subgroups. Each subgroup
must have N, > K subchannels, so that the block selection scheme can still be applied in
each subgroup. We have also considered other selection schemes to be compared with the
random scheme over all N and the block-scheme and in the following we give some simu-
lation results.

We have considered N=1024, n=32 and t=30 and the following selection schemes: {0) Ran-
dom over all I, (1) random in 32 subgroups (1 selected subchannel in each subgroup), (2)
two contiguous in each subgroup, (3) block-scheme (4,16) in 8 subgroups of 128 subchan-
nels and (4) block-scheme (8,64) in 4 subgroups of 256 subchannels. Fig. 3 shows the
distribution of the average number of corrupted subchannels per user and for the best user
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for the different selection schemes considered. We see that the results for the number of
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Figure 3: Comparison selection schemes Figure 4: Comparison selection schemes
corrupted subchannels per user are very similar, and that for the the best user the block-
schemes are a little better (the mean value is smaller). In fig. 4 we show the distribution
of the number of corrupted subchannels after applying the already mentioned decoding
procedure for the selection schemes (0), (3) and (4). We realize that the block-schemes have
a smaller number of corrupted subchannels for the better users, but have a larger number
of corrupted subchannels for the other users than the completely random scheme over all
N subchannels. Due to this reason, and because it does not need the caleulation of the
block sequence, we can say that the completely random scheme over N is the best among
all considered selection schemes.

4 Special case of division in subgroups

In fig. 3 we have seen that the results for the random selection of subchannels over all
N are very similar to the results when dividing N in n subgroups of N, = & subchannels
:1.nd selecting randomly only one subchannel in each subgroup. Moreover, Ehis last selec-
tion scheme simplifies the mathematical problem and also allows us to apply some known
results from probability theory to check our simulation results and to better analyse our
system.

We define the random variable X to be the total number of occupied subchannels in a
subgroup of N, subchannels when there are t active users, each one selecting only one
subcl'fannel. We have X = {1,....1} with l=min(N,, t). We may compute the generatin,
function P(S) to obtain the distribution of the total number of occupied subchannels Thﬁ
generating function of X is Px(S) = p15 + paS? + ... + pS!, where p; = prob{X = i}. Our
51.mp.11ﬁed p}'oblem is the same as the classical occupancy problem [2] where t ba]l.s are
distributed in N; cells, From this the probability that i subchannels are occupied is equal

to:
;o= L : uf1 Ny—i+ ¢
pi= (N.,—:') Ef'” (u) (1‘7;\;5 U) @
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If we consider the random variable Y as the total number of occupied subchannels in all n
subgroups, we have that Y=n-X and the generating function of Y is

Qv(S) = (Px(S))" (6)

Now also the generating function of the number of corrupted subchannels per user can be
calculated. First it is calculated in one subgroup and then equation 5 is applied to obtain
it in all subgroups. In figs. 5 and 6 we show the distribution of the total numbers of
occupied subchannels and corrupted subchannels per user obtained by simulations and by
the theory mentioned,
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Figure 5: Occupied subchannels Figure 6: Corrupted subchannels per user

5 Conclusions and future work

In this paper we have shown first ideas for the multiple access in a multifrequency system,
We have shown the influence of the system parameters on the performance of the access
method. We have also compared different subchannels selection schemes with the result
that the completely random scheme over all N subchannels is better than the other con-
sidered methods. The results obtained theoretically and by simulations are well matched.
The use of the combinatorial block schemes has not given any improvement in comparison
with a random sampling. Further, we have developped a helpful analysis method to ob-
tain the equations of some performance criteria. In our future work we are interested to
find out better subchannels selection schemes and to obtain the best system parameters
for a given number of users in the system by minimizing the average number of corrupted
subchannels per user. :
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Abstract

We consider a class of codes defined in terms of generalized
hamming weights. This class of codes, which we call Near-Near-
MDS codes, contains some of the best known linear codes as the
ternary [13,7,5]s quadratic residue code, its dual [13,6,6]; and
the extended [14,7, 6]s quadratic residue code and the quaternary
(17,9, 7], [17,8, 8], [18,9, 8] codes.

1 Introduction

Let F, tfe‘the finite field of size ¢ = p™, where p is a prime integer and
m a positive integer. Further let C be a [n, k,d], linear code over F, of
length n and dimension k. We denote by H a paritycheck matrix of qC.

For an arbitrary code C denote by supp(C) the set of positions where
not all codewords of C are zero and call it the support of C.

Let Cbe an [n, k, d]; linear code. The r-th generalized Hamming weight
dr(C) (See Wei [2]) for 1 < r < k is defined by

d,(C) = min {| supp(D) | : D is a [n, 7], linear subcode of C}.

Of course di(C) = d(C) = d is the usual minimum hamming distance of
the code C. From Wei [2] we have the inequality d.(C) < d,4,1(C),r =
1,2,...,k and the Generalized Singleton Bound d.(C) < n—k+r,r =

1,2,...,}‘:.‘ We have (see Wei [2]) d,(C') = § if and only if the following
two conditions are satistied:

1) every 6 — 1 columns of H have rank at least § — r.
ii) there exist 6 columns in H with rank 6 — r.
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Helleseth, Klgve and Ytrehus [3] proved the useful inequality
(¢" = Ddr1(C) < (" = )dr(C),r = 2,3,k (1)

for ¢ = 2 and Helleseth, Klgve, Levenshtein, Ytrehus [4] proved it for
general gq.

2 Near-Near-MDS Codes

A linear code C'is said to be Near-Near-MDS if the following conditions:

are satisfied
dl (C) =n—k—-1

Bl = msbd
d(C)=n—k+r, r=34,.k

We have from Wei [2] that near-near-MDS codes have MDS-discrepancy
1 and that they are 3-rank MDS.

Lemma 2.1 If an [n, k], linear code is near-near-MDS then so is ils

dual.
Proof. The lemma follows easily from the definition of near-near-MDS

codes and the equality (see Wei [2])
{d:AC) i 12 rg k=AL2spl\Mn+l=

Next theorem shows that if n is large enough it is always possible to ob-
tain near-near-MDS codes by shortening an [n, k], near-near-MDS code.

de(Ct):1<r<n—k}

Theorem 2.1 The ezistence of an [n, k], near-near-MDS code C with
n>gq+k and k > 3 implies the existence of an [n—1, k—1]; near-near-
MDS code.

Skeich of the proof. Let H be a paritycheck matrix of a near-near-MDS
code C and {B;} and {4;} be two sets of subset of the columns in H
with the properties:

rank(B;)=n—k—1
1B§ l=n—k+1

rank(A;)=n—k—2
[AJ' |:n—k—1

for all i and j. A proof similar to the proof of theorem 3.4 by Dodunekov,
Landgev [5] shows that A; C B; must hold for some j if n > ¢ + k.
If # > 3 we can delete a column in the paritycheck matrix H while
preserving n — k + 1 columns with rank n — &£ — 1.
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We point out that not every [n,k, n — k — 1]; linear code is necessarily
a near-near-MDS code. For example, consider the two binary codes Cy
and 5 defined by their paritycheck matrices /; and Hy:

R 3 A A T |
Hy = I8 0T Lol
01010 11

6 [0 I 4 TN ) LT Y |
Hamrloig ool @ 0 A L4

B O A Vi P

—
-

The code € is near-near-MDS, while the code C3 has the generalized
Hamming weights {d.(C2),r = 1,2,3,4,5} = {2,3,5,7,8} and is by
definition not near-near-MDS.

In the next theorem we derive conditions on ¢,n
[n, k,n—k — 1]; code is near-near-MDS.

and k so that every

Theorem 2.2 Ifk > ¢ > 3 and n > 29— 1+k then every [n, k,n—k—1],
code C is near-near-MDS.

Sketch of the proof. The same technique as in the proof of theorem 3.4
by Dodunekov, Landgev [5] proves that do(C) > n—k+1ifn > ¢+1+k.
Since k > ¢ we have d3(C) < n — k + 2 because of the non-existence of
[n,n— k], codes with generalized Hamming weights {k, k+1,k+3, ..., n}
(follows from inequality (1) with r = 2).

We then need to prove that ds(C) > n—k+2. If d3(C) = n—k+2 then
there exist n — k£ 4+ 2 columns of rank n — & — 1 in the paritycheck matrix
H and n — k + 1 columns of equal rank (because dy(C) = n —k + 1).
Because of the fact that n > 2¢ — 1 + k& we have n — & — 1 linearly
dependent columns, from the proof of Theorem 2.1, in those n — k + 2
columns of rank n — k — 1. Delete k — 3 columns in H while preserving
the n — k + 2 columns of rank n — k — 1 and one column so that the total
rank of the preserved columns will be n — k.

This produces an [n — k + 3,3]; code C' with generalized Hammmg
weights di(C') =n—k -1, dy(C") =n—k+1and d3(C") = n—k+ 2.
Such a code exists if and only if an [n—k+2, 3], code exist with the same
generalized Hamming weights (see Lemma 4 by Helleseth, Klgve and
Ytrehus [3]). This [r —k+2, 3], code will be near-MDS (see Dodunekov
and Langev [5]) and for ¢ > 3 we have the inequality n < 2¢ — 2+ k&
for a [n, k], near-MDS code. For the [n — k + 2,3]; code this implies
n < 2¢ — 1+ k, a contradiction. This competes the proof.
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Theorem 2.3 Let C be a [n, k], near-near-MDS code. Then

) n<2¢+14k .

Esz) C is generated by its codewords of weights n — k — 1.’ n—k )
and n—k+1. If n>q+1+k then C is generated by s codewords
of weights n —k—1 and n — k.

3 2/
Proof. (i) follows directly from the inequality (¢* — 1)d1(C) < (g
q)d2(C) and the definition of near-nea:r—MDS cgdes..
(i1) By the Greismer bound [7] and the inequality (i) we get

_ ___”‘k“l] >n—k—14+A+k—-2=n+A-3,
n>glk,n—k—1) —Z[ pr k2
1 =0

where A = [2=£=1]. Weget A=1,20r3but A=3isa violation to (i).
Hence A = 1 of 2 implies 1 + g(k,n—k—1) < n < 2+ g(k,n—k : 1)%
According to Dodunekov [6] the code C'is generated by its codewords od
weights n —k—1,n—kandn—k+1. Ifn> q+1—+—k.then A:Zan_f
n =1+ g(k,n—k— 1), so the code Cis generated by its codewords of
weights n —k — 1 and n — k.

3 The Weight Distribution of a Near-Near-
MDS Code

Let C be an [n, k], linear code and let A; denote the numb_er of c_adgwo;ds
of weight i in C. Then the set {A;}7-, is called the.wezgh't dz.stml‘mtwf}
of the code C. Similarly the set {Af}7_, is the weight distribution o
the dual code C*.

Definition 3.1 Define the defect s (see Willems [8]) of an [n, k,d], lin-
ear code C by the equality

s=n—Fk+1-—d.

The defect of the dual code C+ will be denoted by t and will be referred
to as the dual defect of C. \ _

In the weight distribution of an [n, k], linear code, with defect s arﬁ
dual defect ¢, we have s +t — 1 degrees of freedom. In fact the weig
numbers A;,i =t,t+ 1,..., k are linear functions of the s S 1 weight
numbers A:_k+1,, Ap—kt1-s41:-An—k+i—1 a8 the following theorem
states.
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Theorem 3.1 For any [n, k,d], linear code with defect s and dual defect
tlet {A;}] g be its weight distribution. Then for everyv € {t,t+1,..., k}
we have the equalities

vt
n R T ;
e V3 o] (ad [CE BV
s4t-1 . ,
i Z k+s—i\(v—1+s5—14
— v t -
( e i=1 ( k—v )( v—t )An_k—s“

Remark: For MDS-codes we have s =t = 0 and the formula in The-
orem 3.1 gives the well known formula for the weight distribution of
MDS-codes (see MacWilliams-Sloane [1] p. 320) as a special case. For
the so-called near-MDS codes (see Dodunekov and Landgev [5]) we have

s =1 =1 and again the formula in the theorem gives the formula for
the weight distribution of near-MDS codes.

For near-near-MDS codes the defect and the dual defect are both equal
to 2 and we get the corollary:

Corollary 3.1 Let C be an [n, k], near-near-MDS code and let {A}
be ils weight distribution. Then for every v € {2,3, ..., k} we have

An_pyy = (k f v) Ug—z (n a }: g v) (¢ = 1) (-1)'-

(A ) - (s

Proof. Put s=t=2 in Theorem 3.1.

4 Examples

Example 1 The ternary [13,7,5]s quadratic residue code is near-near-
MDS. Then by Lemma 2.1 the dual [13, 6, 6]3 is also near-near-MDS. The
extended [14,7,6]3 ternary quadratic residue code is also a near-near-
MDS code. From Theorem 2.1 it follows that we can obtain the sequences
[18—4,7—4,5]3,§=1,2,3,4and [13—4,6—14,6]s,5 = 1, 2, 3 of near-near-
MDS codes and by duality the sequences [13 —7,6,6 —i]s,i = 1,2, 3,4
and [13 —4,7,56—d]3,i = 1,2, 3 of near-near-MDS codes.
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Example 2 From Theorem 2.2 the quaternary [17,9, 74, [17, 8,8]4 and
[18,9, 8]4 are near-near-MDS codes. As in Example 1 we can by 'I.‘hech
rem 2.1 obtain the sequences [17 — 1,9 — 1, T]4,i = 1,2, ...,.6, [17 — i 8 -
i,8le,1=1,2,..,5,[17-4,9,7—1]4,i = 1,2,..,5 and [17—4,8,8—id]4,i=
1,2,...,6 of near-near-MDS codes.
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Let £ = {¢;} and { = {¢;} be independent discrete-time second-order
stationary processes. Consider a stationary channel whose output signal
1 = {n;} is equal to the sum

n =€€ 4Gy F=0ikd0

where ¢ is some positive constant.
The information rate in such a channel is defined as

a

e . 1

I(e€;n) nlgglg H’I(EEI" R o R

In the case, where £ and { are Gaussian, an explicit formula for f(e:{; n)

in terms of spectral densities of the processes € and ¢ is well known. The

problem of determinating an explicit expression for the information rate

I(c€;m) in the case of arbitrary € and ( is rather hard, Therefore, it is of

interest to investigate the asymptotic behavior of T(e€; %) as e — 0. This

case corresponds a weak signal transmission over channel in question.
In [1, 2] the asymptotic behavior T(£€;n) has been investigated in the

case where ( is a Gaussian stationary process and ¢ belongs to rather

*This work was partially supported by INTAS Grant 94-469.
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wide classes of stationary processes (regular or entropy-regular). In this
paper we generalize the results of [1, 2] to a certain class of non-Gaussian
processes (. Such a class consists from stationary processes ¢ which can
be obtained by means of moving summation

G = ZCiZ_f_i, F =003 s

i=0

from a sequence of i.i.d. random variables Z = {Z;}. Moreover, it is
also assumed that the random variable Z; has a rather smooth densi-
ty function p(z) = pg, (x) such that, in particular, there exists Fisher

information J(Z1) 2 f [%] 2;p(..'v:) dz < co.
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Abstract

All inequivalent self-dual [38,19,8] binary codes which have an’
automorphism of order 7 are obtained. There are exactly 7 such
codes and at least 6 of them are new.

1 Introduction

There are two possible weight enumerators of a self-dual extremal code
of length 38 [1]:

(1) W(y) = L+ 171y> + 1862y° + 10374y + - -

(2) W(y) = 1+ 203y + 1702y"° + 10598y' + - - .

Codes exist in both cases. The authors in [1] present two such codes :
the double circulant code D4 with weight enumerator (1) and the code
R3 with weight enumerator (2) with no known structure. D4 has not an
automorphism of order 7 [2].

*This work is partially supported by the Bulgarian National Science Fondation
under Contract MM-503/95

239



In this paper we construct all possible self-dual [38,19,8] codes
with an automorphism of order 7 up to equivalence. One of them has
weight enumerator (1) and it is inequivalent to D4. The other codes
are with the second type weight enumerators. We use the method for
constructing self-dual codes via an automorphism of odd prime order

(see [6],[7] ).

2 Results

Let C be a binary [38,19,8] self-dual code with an automorphism o of odd
prime order p. The permutation o is of type (c,f) if its decomposition
consists of ¢ independent p-cycles and f fixed points. We obtain:

Theorem 1 All possible values of p(c, f) for the code C are: 19(2,0),
7(5,3), 5(6,8), 3(10,8), 3(6,20) and 3(8, 14).

Let p=7. We can assume that
(3) c=(1,2,..,7)8,9,..,14)..(29,30, ..., 35)

Denote the cycles by €4, s, ..., 5 respectively. We consider the sets
F,(C) = {v € C : va = v} and E,(C) = {v € C: wt (v|{k =
0(mod 2),i = 1,...,5 and v is 0 at the last three coordinates }. It is
known that C = Fo(C)® E,(C).

Let P be the binary cyclic code of length 7 generated by +1 and
E,(C)* be E,(C) with the last 3 coordinates deleted. We consider the
map ¢ : E;(C)" — P5 determined by repla.cing for v € E,(C)* v|Q =
(ag,ay...,ag) by polynomial ag + a1z + ... + agz® from P for each
i=12,..,5 ¢(E,(C))is a P-module. It is known (see [7]) that two
self- dual codes C and C' with an automorphism ¢ in the form (3) are
equivalent if and only if C’ can be obtained from C by applying a product
of some of the following transformations: (i) a substitution z — &
in ¢(E,(C)*) where t is an integer, 1 < t <6; (11) a multiplcation
of the j-th coordinate of ¢(E,(C)*) by =¥ , 1 5 j <5 andt; is an
integer, 1 <1; < 6 ; (iii) a permutation of the first 5 cycles of C ; (iv) a
permutation of the last 3 coordinates of C.

Using these transformations we obtain 5 distinct possibslities for
the generator matrix of ¢(E£,(C)*) . They are presented in [5]. Denote
them by Gy , k= 0,1,...,4. Since we construct C up to equivalence we
can fix the gen (¢(£,(C)*)) = G; .
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Let m(F5(C)) be the [3.4] binary code obtained from F,(C) by
replacing each restriction ¢|Q; ¢ = 1,2,....5 by one of its coordinates.
It 1s known that m(F,(C)) is a self-dual code too [6]. Then it can be
equivalent either to C4 or to the extended Hamming code Hg [3]. The
cyclic group < ¢ > of irder 7 acts on the vectors of C. A vector v from
C forms a lenth 1 orbit iff it belongs to #,(C) In particular the number
of weight 2 vectors in w(F,(C)) is congruent to the number of weight 8
vectors in C modulo 7.

We can choose a gen (w(F,(C))) in the form (Sg), where A

generates a [5,1,d > 2] self-orthogonal code [4].

1) Let A = (11000). Then =(F,(C)) has a generator matrix in
the form :

11000000
00100100
(4) 00010010
00001001

up to a permutation of the last three columns. Then n(F,(C)) is equiv-
alent to C3, it has 4 vectors of weight 2 and only 3 of them generate
weight 8 vectors in F,(C). Because 171 = 3(mod 7) C will have the
weight enumerator (1).

2) Let A = (01111). Then 7(F,(C)) does not have a vector of
weight 2 and the number of weight 8 vectors in C is a multiple of 7. Now
7(F,(C')) is equivalent to Hg and C will have the weight enumerator (2)

Let w(F (C)) be equivalent to C5 and H' = gen(x(F,(C))). W
can fix H' in the form (4). According to (iv) the permutation of the la.st
three columns leads to a code equivalent to C. Denote H; the matrix
obtained from H' by deleting the last three columns.

Let (F,(C)) be equivalent to Hs and H = gen(n(F,(C))). I
is known that the automorphism group of Hg is a 3- transitive group
We can fix H' in the form:

10000111
iz 01001011
00101101
00011110

Denote H, the matrix obtained from H" by deleting the last three
columns.
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We look for a generator matrix of a [38,19] self-dual code C7} in

the form :

(TT_I(H‘T)TA'T)

¢~ YGr) 0

,wherei= 1,2,k =0, ..,4, 7 is a permutation from the symmetric group
S5,
000
100
010"
001

Ay =

and
111

011
101
110

We consider products of transformations i), ii) and iii) which pre-
serve the P-code with a generator matrix G} . The permutational part
of them forms a subgroup Ly of S5, k = 0,1,..,4, presented in [5]. We

4‘12:

find the automorphism group N; ,1 = 1,2. The group N; has order 12

and generators (12),(34),(345). N5 is the symmetric group Sy acting on
the last four columns of H,. It is easy to prove the following lemma :

Lemma 1 Ifry and 73 are permulations from Ss the codes C7} and CJ}
are equivalent iff the double cosets N;my Ly and N;my Ly coincide.

We obtain that there exist 27 inequivalent [38,19] self-dual codes.
All of them are tested on a computer. Extremal are the codes: C{$ with
weight enumerator (1) and Ci§, Ci¢, C. (12) C{la) C;‘(,}‘U Ci4 with weight
enumerator (2).

The order of the automorphism group of the double circulant code
Dy is 342 (see [2]). Therefore it is not equivalent to C§

Theorem 2 There exist exacily seven self-dual [38,19,8] binary codes

with an automorphism of order 7 up to equivalence.

For example the code C( 2 is generated by the matrix

00000001111111000000000000000000000111
11111110000000000000000000001111111011
00000000000000111111100000001111111101
00000000000000000000011111411114111110
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11101000000000C00000000000001110100000
01110100000000000000000000000111010000
00111010000000000000000000000011101000
00000001110100000000011101001110100000
00000000111010000000001110100111010000
00000000011101000000000111010011101000
00000000000000111010001110101110100000
00000000000000011101000111010111010000
00000000000000001110110011100011101000
00000001001011110010110010110000000000
00000001100101111001011001010000000000
00000001110010011100111100100000000000
10010111001011100101100000001001011000
11001011100101110010100000001100101000
11100101110010111001000000001110010000

Aknowlidgment The author would like to thank V. Y. Yorgov for the
useful discussions and for his help in determining the minimal weight of
the codes regarded .
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Abstract

Some new binary self-dual [36, 18, 8] codes are constructed hav-
ing automorpism of order 3 without fixed points.

1 Introduction

There are [3] two possible weight enumerators for extremal self-dual
codes of length 36:

(1) 14 225y° +2016y'° 4 9555y'% 4 28800y - - -
and
(2) 1+ 289y° + 1632y + 1038732 4 28288y - -

Codes are known with weight enumerators of both kinds [3]. The group
order of such a code can be divisible [8] only by the primes 17, 7, 5, 3,
and 2. There is [3], [7] an unique code having an automorphism of order

*This work is partially supported by the Bulgarian National Science Fondation
under Contract MM-503/95
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17, namely the double cirqulant code Dz. All extremal codes of length
36 with automorphism of order 7 and 5 are found in [8], [9]. Here we
construct some new extremal codes with automorphism of order 3.

Let o be an automorphism of order 3 of a [36,18,8] self-dual code C.
We call o to be of type 3 — (c, f) if there are ¢ cycles and f fixed points
in the cycle decomposition of ¢. The following types f’f o are possibl.e:
3—(12,0), 3—(10,6), 3—(8,12), and 3 —(6,18). In this work we obtain
codes with o of type 3 — (12,0) and 3 — (6,18). We use the technics
developed in [1], [4].

2 Construction of the codes

Let o = (1,2,3)(4,5,6)--(34,35,36) and C be a [36,18, 8] code with
automorphism o. Denote ; = {1,2,3}, 22 = {4,5,6}, ..., Q12 =
{34,35,36}, F,(C) = {v € Clvo = v}, and E,(C) the set of those
vectors in C which have even weight in each cycle ;, j = 1,2,..,098
It is known that C = F,(C) @ E,(C) (a direct sum of subco.des). For
v € F,(C) define 7v to be the binary vector of length 12 obtalped from
v by choosing one entry of v from each &; , j = [ e 'It is known
that m(F,(C)) is a [12, 6] self-dual code. There are 3 inequivalent such
codes [5], namely C§, C3 ® As, and Bia. As 7(F;(C)) cannot have a
weight 2 vector, it is equivalent to Bys.

Let P be the [3,2,2] binary cyclic code generated by 1+ z. The code P
consists of all even weight vectors and is a field of 4 elements. Clearly
P={0,e=z+2z*, w=1+gz, w? =14 2%} A vector v € EJ(C) can
be regarded as ¢(v) = (v|Qy,v|Qz, ..., v[2) € P2 where v|Q; is the
restriction of v on ;. It is known [4] that ¢(E,(C)) is a [12, 6] code over
P, self-dual under the inner product (a,b) = a1b +azby + -+~ + a12b%,
a,b € P2, As the minimal weight of C is 8, the code ¢(E;(C)) cannot
have a weight 2 vector. From the complete enumeration [2] of quaternary
self-dual codes of length 12 it follows that ¢(£,(C)) is equivalent to one
of the codes with components di2, €7 + €5, 2dg, 3da, and es G 6. Denote
by E one fo these codes. We state a specification of a result in [4].

Lemma 1 Let C' be obtained from C by applying a product of the fol-
lowing transformations

(i) a substitution x — a* in ¢(E,(C)), 1 <1 <2,

(ii) @ multiplication of any coordinate of #(Eq(C)) by w;

(iii) a permutation of the cycles of .

Then C' has automorphism o and is equivalent to C.
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— x~H(B],) : ;
Denote CE, = 6-1(E) where 7 is a permutation on {1,2,...,12}.
We have that C'E is a [36, 18] self-dual code.
The next two lemmas are straightforward.

Lemma 2 Let Gibe a group of automorphisms of the code Biy and Gs
be the permutation part of the group of transformations defined in lemma
1 which preserve the code E. If the double cosels GimGy and G1mGo
coinside then the codes CE;, and CE,, are equivalent.

Lemma 3 The code CE. is eztremal iff there does not exist a support

of a wvector of weight 4 or 6 of B], which coinsides with e support of a
vector in the code F.

2.1 First case for E

In this subsection F is the code D generated over the field P by the
matrix

111100000000
001111000000
0000111100060
000000111100
000000001111
101010101010

Now we have G; = Gg = ZE.SG. This is essential for the proof of the
next lemma, which is omitted.

Lemma 4 Representatives for the double cosets of the symmetric group
Sip with respect to Gy and Gy can be chosen to fiz each of the points 4,
6, 8, 10, and 12.

A computer check shows that there are 1104 permutations satisfying
lemma 3 and lemma 4. Using conjunctions with all elements from
Z3.S¢ enables us to reduse this number to 12. Finaly it was shown
by hand that there are at most 3 double cosets consisting of permuta-
tions satisfying lemma 3. These 3 double cosets have for representa-
tives the permutations n = (1,2,3,5,7,9), » = (1,3,2,5,7,9,11), and
73 = (1,2,5,9)(3,7,11). The codes CD;,, CD;,, and CD;, have weight
enumerators (1).

Theorem 1 The codes CD,,, CD,,, and CD;, are up lo equivalence
the only [36,18,8] self-dual codes with aulomorphism of order 3 without
fized points for which ¢(E,(C)) = D.
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[t remains to be proved only that these three codes are inequivalent. Let
M = (my;) be a 225x36 matrix consisting of all weight 8 vectors in some
of the three codes. For an integer k, 1 < k < 36, let n(ji,..-,jk) be the
number of r such that mj, ---mpj, # 0for 1 < g < -+ < ji < 36.
Consider the set § = {n(j1,...,d)|1 < j1 < -+ < ji < 36}. Let
M (k) and m(k) be the maximal and minimal numbers in S, respectively.
These numbers are invariant under equivalence of codes. For & = 2 these
invariants are given in the next table. The theorem is proved.

Table 1: Invariants

CD,, | CD,, | CDy,
M(2) | 30 18 14
m(2) 6 6 6

For example the code C'D;, is generated by the matrix:

000111111111111000000000000000000000
000000000111111111111000000000000000
000000000000000111111111111000000000
111000000000000000000111111111000000
111000000000000000000000000111111111
111111000000111000111000111000111000
011011011011000000000000000000000000
101101101101000000000000000000000000
000000011011011011000000000000000000
000000101101101101000000000000000000
000000000000011011011011000000000000
000000000000101101101101000000000000
000000000000000000011011011011000000
000000000000000000101101101101000000
000000000000000000000000011011011011
000000000000000000000000101101101101
011000011000011000011000011000011000
101000101000101000101000101000101000
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2.2 The case Hex & Hex

Denote B = Hex & Hex with Hex the code over P generated by the
elleww

matrix [ DeQwew
D0ewwe

Lemma 5 If ¢(E,(C)) is the code B then up to a permulation of the
first 6 positions the code w(F,(C)) is gencrated by one of the matrices

F1:

and

100000101
010000011
001000111
000100110
000010110010
000001110001

Sketch of the proof. Each set of 4 positions of Hex is a support of a
weight 4 vector in Hex. Hence a weight 4 vector of 7(F,(C)) cannot
have a support in the first 6 or in the last 6 positions. As w(F,(C)) is
equivalent to By from [5] we have two cases:

(i) each pair of coordinates {1, 2},{3,4},...,{11,12} is disjoint between
the first half and the second half positions of #(F,(C));

(i) just one pear of {1,2},{3,4},...,{11,12} is in the first half and one
pear is in the second half positions of 7(F,(C)).

We obtain F and F} in the cases (i) and (ii) respectively.

The code Hez is a [6,3,4] code with monomial automorphism group of
order 1080. A computer check shows that the group G for the code
B is S x Sg where Ss is the symmetric group of degree 6. Now again
Gy = Z3.S6. Applying lemmas 1, 2, 3, and 5 we obtain

111
L1 1
000
100

Theorem 2 If ¢(F,(C)) is the code B = Hex & Hex, then C is one
of the codes CBy, and CB,, where py = (2,8)(3,10)(5,12) and py =
(3,10)(5, 12). 0

The numbers M(2) and m(2) for CB,, and C'B,, are given in table 2.
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Toble 2: Tavariants

CBI-H CB#:!
M(2) | 14 22
m(2) 6 6

Remark 1 The codes CBy, and CB,, have an automorphism
(1,2,3)(4,5,6) (7,8,9)(10,11,12) wich fires 18 points.
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§1. Consider programmable logic array (PLA) as a typical model of
two-level combinational circuit. PLA has m inputs and jp outputs. The
first level of PLA is the AND plane. The AND plane forms the teFms
(conjunctions) t; of boolean variables zj, &k = 1,2, ..., m, by intersections
of lines of terms with corresponding lines z. ‘
The OR. plane forms p boolean functions y;,7 = 1,2, ..., ¢, as disjunctions
of certain terms ¢;.

We consider following eleven single faults in PLA:

. Constant fault ¢; = 0.

. Disappearance of an intersection in the term #; of the AND plane.

. Appearance of new connection in the term t; of AND plane.

. Disappearance of an intersection in the line y; of the OR plane.

. Appearance of new connection in the line y; of OR plane.

. Fault at the input inverter z.

. Short circuit of adjacent lines ¢; and #;1, in the AND plane. A short
circuit of adjacent lines is equivalent to a logical product #;¢;4;.

8. Short circuit of adjacent lines y; and y;4, in the OR plane.

9. Constant fault y; = 0.

10. Constant fault g; = 1.

11. Constant fault ¢; = 1. _

We will assume, that sequence of total 2™ binary test sets are ap?lled 1.30
m inputs of PLA in the lexicographic order. Then this application will
produce certain PLA responses over G F'(2*) on p outputs.

O b GBS =

=1 &
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§2. Every fault under consideration causes some error vector in the
output response sequence. The following assertion were proved in [1]:

1) Let the sequence of total 2™ binary test sets be applied to m inputs of
PLA in the lexicographic order. ii) Two arbitrary terms ¢;, and ti,, that
belong to the same boolean function, contain at least two variable Z,
and zj, with the property: each variable occurs in distinct terms with
the complementation and without one.

(This requirement leads to the new kind of separating systems [1])
Then arbitrary linear cyclic code with generating polynomial

9(z) # (2 +1)¢ 1)

detects necessarily all single faults 1 — 5, when it detects single faults 6
=,

The following Theorem yields the above assertion:

The vector of arbitrary elementary boolean interval is not code vector of
the cyclic code with generating polynomial (1), when condition 1) holds.
In other words, no one basis vector of Reed-Muller code is vector of the
cyclic code with the generating polynomial (1).

The condition ii) guarantees that elementary boolean intervals of terms
{; and error vectors caused by faults 1 — 5 does not intersect.

The nonintersection mentioned above is only sufficient condition for de-
tection of error vectors caused by fault 1 — 5.

§3. It is well known that minimal normal disjunctive form of monotone
boolean function has no complementations of variables. That is the PLA
for monotone function contains no inverters. ‘

But then it is impossible to fulfill the condition ii). Therefore other valid
terms will partially compensate the initial error vector and final error
vector may be undetectable.

Following theorems are true:

Theorem 1. Let the monotone boolean function is symmetric. Then
the final error vector caused by faults 1 — 4 is the vector of the elementary
boolean interval.

Corollary 1. Let , without loss of generality, the monotone function is
Aziypy VAzi V...V Az;, where an A is the conjunction of variables
Ziy Ziy...%i,,- Then the final error vector caused by faults 1 - 4 is the vector
of the elementary boolean interval.

Theorem 2. Let the monotone boolean function is

2 g i, ¥ ZigZigeo By ¥ oos (2)
e Vo iy B By oo i V. B BB vy
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where [m/2] < w < m. Then the final error vector caused by faults 1 -
4 is the vector of the elementary boolean interval.
Corollary 2. Let the monotone boolean function contains in succession

arbitrary { < w + 1 conjunctions (2). Then the final error vector caused

by faults 1 — 4 is the vector of the elementary boolean interval.
Theorem 3. Let the boolean function contain the conjunction A. Let
other conjunctions of the boolean function belong to two classes. The
first class contains conjunctions B’,C", ..., D'. They contain variables

ziH"zicf""’zin' (3)

respectively, and the conjunction A contains no any variables (3). The
second class contains conjunctions B, C”, ..., D", that have no common
variables with A, but contain at least one variable (3). Then the final
error vector caused by faults 1 — 4 in A is the vector of the elementary
boolean interval.

Theorem 4. Let new conjunction A appears in the monotone symmetric
boolean function y;, (the fault 5) . Let the rank of an A is w4 and the
rank of y; is wy. When wa > wy then the fault 5 is masked. Otherwise,
the final error vector caused by the faults 5 is the vector of the elementary
boolean interval iff wy, = wa +1 .

Theorem 5. Let conjunctions Lz, and Lz, belong to y; and are
adjacent lines in the AND plane. Then the final error vector caused by
the short circuit of Lz;, Lz;, (the fault T) is not vector of the elementary
boolean interval, however it not belongs to the cyclic code with the
generating polynomial (1).

§4. Conclusion, It is clear it is sufficiently to construct the polynomial

(1) for the detection of faults 8 — 10 and some faults 5, 7. Then this

polynomial will detect all other single faults necessarily. The faults 6 are
absent.
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A Graph Decomposition Theorem
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In this paper we define triangle-(i,j,k)-pendant-edge to be the graph
G ; 1 with vertices

V(Gije) = {0, 21, @i, Y0, U1, -, Yy s 20, 21, - 5 24}
and edges
E(Gijx) = {zoyo,%ozo0, 2020} U {zoz:|l <t < i}U
{you:|1 <t < jPU{z02.|1 < < k).

We investigate when the complete graph K, is edge decomposable into
subgraphs isomorphic to G; ; x, where i, j and k fixed natural numbers.

Let. r =i+ j+k. Using Skolem and O’Keefe triple systems the following
main results are obtained:

IL.Ifn=0or1 (mod2(r+3)), then K, is G; j x~decomposable.

2Ifrn=0 (modr+3)and n =3 (mod4), then K, is G; ; 4—
decomposable. %

3. fn=1 (modr+3)and n =2 (mod 4), then K, is G; ; -
decomposable. b7

Also of independent interest are the boundary cases: n = r + 3 and
n—1=r+43.

I_f n=f + 3, then K, is Gy ; x—decomposable if and only if
z:;:i‘-;—sandk=0.

If n =1+ (r +3) >.5, then K, is Gj j x-decomposable only if n is even
and eitheri=j 4+ kori=j+k+2
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On Orbit Codes in Matrix Spaces *

V.M. Sidelnikov, e-mail sid@vertex.inria.msu.ru
S.P. Strunkov, e-mail strunkov@ium.ips.ras.ru
A.A. Klyachko, e-mail klyachko@nw.math.msu.su

Let G be a finite group of orthogonal or unitary matrices of size n X n
and z be a vector in the Euclidean or Hermitian space respectively with
norm 1. The orbit Gz of the vector z is called an orbit code or a group
code K(G,z) [1].

In this paper considers more general construction of group codes

K(G,M)={gM;g € G},

where M is an arbitrary real (or complex) matrix with Euclidean (or
Hermitian) norm 1. As usually, the Euclidean (or Hermitian) norm |||

of a matrix A is =
24172
AN = (3 las M2
ij=1
These codes will be called matrix orbit codes. Thus, we obtain codes
on the unit sphere in nm-dimensional space, where m is the number of
nonzero columns in the matrix M. They are the usual orbit codes in the

special case m = 1.
IftM = VIEE (E is the unit matrix), then we obtain a code K(G)

with parameters expressed in terms of characters of the finite group
G. Thus, a a relation between the theory of coding on a sphere and the
representation theory of finite groups is discovered.

It is easy to verify, that ||A|| = (trAA*)/2, where A* is the Hermitian-

conjugate matrix.
If the matrix A is unitary then ||A]| = n, since A* = A™'. Hence, for

cach pair of elements A and B of the code K(G) we have

|4 - B||* =tr(AA™* + BB~ - AR BAY =2~ %Re tr(AB™Y)

*This work was supported by Russian Fundamental Research Foundation under

Grant N. 01-114

256

Flnlte rr.la,trix groups can be obtained using linear representation of clas-
sical ﬁqlte groups. The distance between the elements A and B is then
det‘ermlned by the value y(AB~!) of the character of the representation
Using group—tk.leoretic program GAP one can compute the characters !‘.a.-‘
bles of many interesting large groups and obtain new classes of orbit
codes.

Theorem. Let G be a finite group, ¢ : G — GL,(R) be a faithful
orthogonal linear representation of G, and x4 : G — R be the character
of ¢. Then the code K(¢(G),(1/n)"/?E) lies in the unit sphere in n?-
dimensional Euclidean space, and its code distance is

2
d(g)=(2-= 12
== oo (Lxa(a))) "
Qorollary. Let G be a finite group, ¢ : G — GL,(C) be a complex
l.mear repre:sentation of G, and x4 : G — C be the character of ¢. Then
L}w code K(¢(G), (1/n)Y/2E) lies in the unit sphere in 2n2-dimensional
Euclidean space, and its code distance is

2
d(ég) = (2~ = max ((Rexs(s)))"*

Example 1. Le.t G = Ap, and ¢ be the nonreducible n — 1-dimensional
real representation of A,. Then we have maxx(g) = n — 4, and we
obtain a code with the length (n—1)?, efficiency n!/2 and code distance

d(¢) = (2-2n — 4)/(n— 1))}/2 = 1/*_"1_1.

We note th§t a given finite group G has many different irreducible linear
representation and therefore matrix orbit codes in these represetations
For exampl.e, let G = S5, be a symmetric group and ¢ be the irreducibie;
representation of S, such that ¢ + 1 is the natural representation of

S b . » .
y permutations. Then d(¢) = /-2, If ¢; = ¢d®e is tensor

n—-1
product of ¢ and the one-dimentional nontrivial representation ¢ of S
n

the?ﬂ dlmq‘ﬁl =dim¢ = n — 1, but d(¢;) = /5. The representation
¢1 is also irreducible and is not equivalent to ¢.

?xample 2. Let G = SL»(g), and ¢ be the standard nonreducible ¢-

lmensmna'l ref'a.l representation, obtained from the natural action of G

on the projective line over F,. Then we have maxx(g) = 1, and we
1

obtain a code with length ¢2, efficiency Lf%l and code distance

d(¢) = (2 - 2/9)"*.
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Example 3. Let G = SLa(g), and ¢ be the g + 1-dimensional con.lplex
representation, induced by a one-dimensional complex. representa..tlon ]
of the subgroup H comprising upper-triangular matrices. In this case
we have max x(g) = max{1,26(a);a € Fy — {0,1,-1}}, ar21d sele.ctmg
optimal § we obtain for ¢ > 7 a code with length 2(q + 1), efficiency
(¢® — ¢) and code distance

. 4 cos qz—_"l-
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The Viterbi Decoding Complexity
of Group and Some Nongroup
Codes *

Vladimir Sidorenko
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Abstract

Let codewords of a block or a terminated convolutional code
form a group under a componentwise group operation. The mini-
mal trellis of the code (with fixed order of positions) is defined as
one having the minimum number of vertices |V|. We show that
the minimal trellis also has minimum number of edges |E| and
minimum "branching” B = |E| - |[V|+ 1 (i.e. maximum Euler
characteristic |V| — | E]).

The Viterbi decoding algorithm on a code trellis requires | E|
additions and B comparisons. Thus the Viterbi decoding com-
plexity is minimal when it is implemented on the minimal trellis.

In fact, all these results were obtained for a wider class of so
called ”separable” codes. The class includes group codes and,
hence, linear codes.

1 Introduction and Definitions

A code is a set C of codewords of finite length n over an alphabet
Q@ = {0,1,...¢ — 1}. We are interested in soft-decision maximum-
likelihood Viterbi decoding of a code. To implement the Viterbi decoding
we have to design a trellis of the code. However, the given code can be
represented by many different trellises. The question is which trellis of
the given code with fized ordert of code symbols has minimum Viterbi

*The work was supported in part by Deutsche ForschungsGemeins, Germany.
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decoding complexity? In this paper, we shall show that for a group code
the complexity is minimum for the minimal (Forney-Muder (1] [2]) code
trellis. We use the definition of group code [4]: codewords of a group
code form a group under a componentwise addition, where an alphabet
Q is an additive group (may be nonabelian). In the more general case
one can consider different alphabets for different components.

In fact, all these results were obtained for a wider class of so called
»separable” codes. The class includes group codes and, hence, linear
codes.

Code trellis. A trellis T = (V, £) of length n is a directed graph,
with vertex set V and edge set E, in which every vertex is assigned
a "depth” in the range {0,1,...,n}, each edge connecting a vertex at
depth t to one at depth ¢ + 1, for some ¢ = 0,1,...,n— L. The set of
vertices at depth ¢ is denoted by V;, so that V = Uj_pVs. The set of
edges, connecting vertices at depth ¢ — 1 to those at depth ¢ is denoted
Ey, so that F = U?_, E;. There is only one vertex at depth 0 called A,
or the source, and only one at depth n, called B, or the sink. Each edge
e is labeled by symbol c(e) from the alphabet Q. A path from A to B
in 7" is a sequence of edges (e1,€2...,en) that connects A and B. We
say that the path corresponds to the word ¢ = (c(e1), ¢(e2) . - -, e(en)) or
that it is c-path. A trellis T(C) is called @ code irellis for the code C
if there exist one-to-one correspondence between codewords ¢ € C' and
c-paths in T'.

Ezample 1. Consider a code C = {(000),(110), (101)}. A trellis of
the code is shown in Fig. 1. g

QL0500
1 1 1
ot

Fig.1. The minimal trellis for the separable code of Example 1.

Viterbi decoding. Straightforward implementation of the Viterbi de-
coding algorithm on a code trellis requires |E| floating-point additions
and B = |E| - |V|+ | binary comparisons [3]. Indeed, to select the best
path among m paths entering a vertex v we need m — 1 binary com-
parisons. We say that the number B(v) = m—11s ”branching” of the
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vertex v (we adopt the convention that B(v) = 0 if m = 0). The total
number of binary comparisons during decoding is B = ZueT(C) B(v).
We say that B is branching of the graph. It is easy to see that branching
of a code trellis (with one source) equals B = |E| — |V|+ 1.

Thus, it is natural to seek the code trellises T'(C), for which |E| and
B = |E| —|V| + 1 are as small as possible.

The theory of minimal code trellises essentially begins with the papers
[1],[2] by Forney and Muder. They define the minimal code trellis as one
having minimal number of vertices |V/|. But we need to minimize |E|
and |E| — |V|. In [3], McEliece shows that for linear block codes the
minimal trellis-has minimum |E|. He also shows that it has minimum
|E| — |V| among a subclass of code trellises.

In this paper we show that the minimal trellis of a group code has
not only minimum |V| but also has minimum number of edges |E| and
minimum branching B = |E| — |V| + 1. The value |V|— |E|=1- B
is known as the Euler characteristic of a graph. So, we show that the
minimal trellis of a group code has maximum Euler characteristic. In
fact, we even do not need the group property of the code. All our results
were obtained for wider class of ”separable” codes, which will be defined
later on.

In Section IT we define separable codes and investigate there minimal
trellises. Theorems 1-4 and 6 follows from [5], [4], [2]. Theorem 5 and
Branching theorem are new.

When the paper was finished the author became aware of the sub-
mitted to publication paper [6] by Vardy and Kschischang where similar
results were obtained. In [6] separable codes are called ”rectangular”.

2 The Minimal Trellis of a Separable Code

Consider a block code C' with codewords ¢ = (cy,...,¢,) of length n
(n-words) over an arbitrary alphabet Q.
A separable code. Given a numbert € {1,...,n—1}. We split a code

word € = (cy,...,¢,) into the head ¢ = (c1,...,¢;) = h and the tail
or the end c%} = (ct41,---,¢n) = €, ¢ = (h,e). We omit upper index

(t) when it does not lead to confusion. The tail set E)(h) (or simply
E(h)) of a head h is the set of tails of all codewords that have common
head h

Eh)={cg:c€C,cg =h}.
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Fig. 2: The partition of the separable code C from Example 2.

We define the head set similarly:
H(e)= {cg :c € C,cp =e}.

Definition 1 A code Cis called tail separable if for eachi, t =1,... n—
1, the tail sets E(hy) and E(hj) either coincide or are disjoini, where
h; and hs are any t-words.

A head separable code is defined similarly.

Definition 2 A code C is called separable if for everyt =1,...,n—1
there exist a partition C = U?;lCi(e), C}t)ﬂ C_,m =0, # j such that the
following statement holds.

Given c,c¢’ € C,

(P, e eC < Fize,d eC?. (1)

Ezample 2. Let us show that the code C' = {(000), (110), (101)} from
Example 1 is separable. The partitions of the code for ¢ = 1, 2 are shown
in Fig. 2 both by tables (codewords are shown by rows) and by diagrams.
So, we have an example of a nongroup separable code.
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Theorem 1 (Willems) The following statements are equivalent:
(i) a code C is separable;

(ii) a code C is lail separable;

(i1} a code C is head separable.

Definition 3 A code trellis is called minimal if it has minimum number
of vertices.

The partition of a separable code allows us to define a canonical code
trellis in a natural way. For any codeword ¢ of a separable code and for
given t we can determine a tail set E(*)(c) the codeword belong to. The
set E()(c) can be determined using only the head cg or the tail ¢z of
the codeword ¢, E®)(c) = EM(cy) = E®)(cg).

Note, that in a code trellis T(C') of a separable code two codewords
¢; and ¢; may pass through a common vertex v € V; only if EM(c;) =
E(t)(cQ) holds. Otherwise a noncodeword will be found in the trellis.
Thus it is natural to identify the set E()(c) with the state of a codeword
c at depth t. So we have that two codewords may pass through a common
vertex v € V; iff they have the same state at depth ¢.

Given a code trellis T(C') of a separable code C'. We define the state
E(v) of a vertex v € V; as E()(v) = E()(c), where c is a path that comes
through ». It follows from above that the state of a vertex is well-defined,
since only codewords having the same state at depth ¢ can pass through
the vertex. We say that two vertices v1,vs € V4 can be merged into one
vertex if they have the same state E(vi) = E(vy). After merging a code
trellis remains to be a code trellis.

Definition 4 A code trellis is canonical if it has no vertices to be merged.

Now, we shall show that a canonical trellis is essentially unique and
coincides with the minimal code trellis.

Theorem 2 All canonical trellises of a separable code are isomorphic.

Theorem 3 Given a trellis T(C) of a separable code C, the canonical
trellis may be obtained by merging vertices of T(C).

Theorem 4 Given a separable code, a code trellis is minimal iff il is
canonical.
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Thus, we proved that the words ”canonical” and "minimal” are e-
quivalent for a trellis of a separable code.

Now it is easy to check that the following trellis in Fig. 1 is a minimal
one for the code considered in examples 1,2. Note that the trellis can be
obtained deleting one edge from the trellis of (3,2) linear code. It is easy
to show that by deleting an edge from the minimal trellis of a separable
code one obtains the minimal trellis of another separable code. This
is the way to obtain some separable codés from known linear or group
codes.

One can ask if there exists any nonseparable code?

Ezample 3. Consider the code C' = {000,100,111}. The code is not
separable, since for ¢t = 1 a partition that satisfies (2) does not exist.

Theorem 5 The minimal trellis of a separable code has minimum |E|,
t=1...,n, and, hence, minimum |E|.

Branching theorem 1 The minimal trellis of a separable code has min-
imum branching B = |E| — |[V| + 1.

Theorem 6 (Forney and Trott.) Any group code is separable.

So, the obtained results hold for group codes and, hence, for linear
ones.

The author wish to thank M. Bossert, Th. Ericson, and V. Zyablov
for very helpful discussions.
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Abstract
We present a ternary code showing that As(15,10) > 24.

1 Introduction

An (n,d) ternary code C is a set of vectors, codewords, of length n with
elements from GF(3), each pair of codewords differing in at least d po-
sitions. The Hamming distance between two codewords is defined as the
number of positions in which these two codewords differ, and the Ham-
ming weight of a codeword is the distance between that codeword and
the all-zero vector.

The maximum size of an (n, d) code is denoted As(n,d). Similarly, the
maximum size of an (n,d) ternary constant weight code, in which each
codeword contains exactly w non-zero elements, is denoted As(n,d, w).
In Vaessens et al. [3] a table of A3(n,d) for 3 < n < 16 can be found.
For A3(15,10) an upper bound of 45 can be derived from the Plotkin
bound. We present a code that improves the lower bound from 22 to 24.

2 Generalized Hadamard Matrices

A generalized Hadamard matrix H(n,L,) is an n x n matrix with
complex-valued elements from T,, = {a € T : a™ = 1}, satisfying the
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constraint H H* = nl, where H* is H transposed and complex conjugat-
ed, I is the n x n identity matrix and all operations are performed in the
complex number field ©. In the special case of m = 3 it is known that no
generalized Hadamard matrix exists for n # 0 mod 3 if n > 2. The gen-
eralized Hadamard matrices H(3,T3), H(6,C3), H(9,T3), H(12,T3) do
exist, but according to de Launey [2], H(15,T3) does not exist.

A generalized Hadamard matrix is normalized if the first row and the
first column only contain the complex element 1.

3 The Code

Denote the elements of GF(3) by 0,1 and 2. Given a normalized general-
ized Hadamard matrix H(n,T3) we can construct an (n,d) = (n,2n/3)
code with 3n codewords by replacing, as shown in Figure 1, the elements
of ©3 with elements of GF(3) in order to create a code C'.

A e
" T |
~Hr — 2

Figure 1: The mapping from €3 to GF(3).

Taking C' = C'U(C'+1)U(C’ +2) results in the desired (n,d) = (n,2n/3)
code having 3n codewords.

Let ¢ and ¢’ be two codewords from one of the subcodes C*, C’ + 1 or
C’ + 2. The orthogonality of the corresponding complex vectors implies
that ¢’ — ¢ contains n/3 zeros, n/3 ones and n/3 twos if ¢’ # ¢ and
n zeros if ¢’ = c. If we instead consider (¢’ + 1) — ¢ we see that this
vector also contains n/3 zeros, n/3 ones and n/3 twos if ¢’ # ¢, while it
contains n ones if ¢ = ¢. Likewise, (¢’ +2) — ¢ contains either n/3 zeros,
n/3 ones and n/3 twos or n twos. Since the distance between ¢ and ¢’
equals the weight of ¢’ — ¢, the distance distribution when ¢ varies over
the set C is independent of the particular choice of ¢. Consequently, for
a code constructed in this way, the distance distribution coincides with
the weight distribution.
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Although a 15 x 15 generalized Hadamard matrix does not exist, we can
use the construction given above to obtain a (15, 10) code with 24 code-
words by observing that eight pairwisely orthogonal vectors of length 15,
mapped to GF(3), are given in Figure 2.

00000 00000 0000O
00 0.0 .1 2102, 21802
001.0:2, 21126 12102
00120 10201 22121
00201 22021 21011
00211 01212 12020
01002 11221 01220
011321 02000 11222

Figure 2: The subcode C’ of the (15, 10) code with 24 codewords.

The complete weight enumerator of the resulting (15, 10) code is
WAz, 21, 22) = 25° + 23° + 23° + 212527 23.

We observe that by removing the codewords 0, 1 and 2 we obtain an
(n,d, w) = (15,10, 10) constant weight code with 21 codewords.

4 Comparison with the Corresponding Op-
timal Linear Code

It can be noted that the optimal linear (n,d) = (15,10) code has 9
codewords. The Griesmer bound can be used to show that a linear
(15,10) code can have no more than 9 codewords. An optimal linear
code is given by the generator matrix

G:( T T 1 1 B O T R )

s o O 1 AR 11 G PR I s (384

A table of optimal ternary linear codes can be found in van Eupen [1].
Acknowledgement
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Abstract

The classical (hermitian) unital of order 3 is characterized as
the unigque (up to isomorphism)
2-(28,4,1) design of minimal 2-rank (equal to 21} among all 2-
(28,4,1) designs without ovals. The Ree unital of order 3 is proved
to have the minimal possible 2-rank ( 19 ) for a 2-(28,4,1) design,
and is characterized as the unique design with this property. Some
results about linear codes of length 28 and dimension 20 contain-
ing unitals of order 3 are also given.

1 Introduction

We assume familiarity with some basic facts from algebraic coding theory
and combinatorial design theory. Our notation follows that from [1], [6],
(7, [10].

A unital of order q is a 2-(¢®* + 1, ¢+ 1,1) design. The classical example
is the hermitian unital H(q) defined by the absolute points and non-
absolute lines of a unitary polarity in the desarguesian plane of order q.
The Ree unital R(q) of order ¢ = 3*™*! m > 0 is a design invariant
under the Ree group [5].
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In 1981, Andries Brouwer [2] made the conjecture that the Ree unital
R(3) is characterized by the fact that its (binary) code has dimension
19, that is, by the 2-rank of its incidence matrix being 19. Brouwer
also noticed that the 2-rank of any other known unital, including the
hermitian unital H(3), was 21 or larger.

In this paper we establish the truth of Brouwer's conjecture. In fact,
we show that something more is true: 19 is the minimum possible value
of the 2-rank for a 2-(28,4,1) design. We also prove a characterization
of the hermitian unital H(3) in terms of its 2-rank and dual distance,
namely that any 2-(28,4,1) design which does not possess any ovals (sets
of 10 points that meet every block in 0 or 2 points), or equivalently,
has dual code of minimum distance at least 12, has 2-rank greater or
equal to 21, with equality if and only if the design is isomorphic to the
hermitian unital H(3). The proofs are based on bounds for codes and
the MacWillims transform.

We also compute the possible weight distributions for codes of dimension
20 that can contain unitals of order 3, and discuss some open problems
and a conjecture.

2 The Hermitian Unital

Throughout this paper, a code of a design is defined as the binary code
spanned by the incidence vectors of the blocks. Thus, the points of the
design are identified with the code coordinates. We will often identify
blocks with their incidence vectors, and consider the supports of code-
words of weight w as point sets of size w.

Lemma 2.1 (i) The code C' of any 2-(28,4,1) design D conlains the
all-one vector. Consequently, all weights in the dual code C* are cven.
(ii) The dual code C* contains the all-one vector.

(iii) The minimum distance d(C*t) of the dual code C* is at least 10.
Moreover, the codewords of weight 10 in CL are precisely the ovals in
D.

Proof. (i) Each point of D is in exactly 9 =1 (mod 2) blocks. Thus,
the sum (modulo 2) of all blocks is the all-one vector.

(i) The all-one vector is orthogonal to any of the incidence vectors of
the blocks, being of weight 4.

(iii) Let S be the support of a nonzero codeword z € Ct of weight
w = |S]. Then S meets every block of D in an even number of points (0,
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2 or 4). Denote by n; the number of blocks meeting S in 1 points. We

have
63,

Yuw,
(3),
8ng = w(w—10) >0 = w > 10.

Thus, d(C*) > 10. Moreover, if w = |$| =10 then ng = 0, hence S is
an oval. 2

ng -+ ny —+ 4
21’12 + 4?’14
ny + 0Ong

0

whence

Corollary 2.2 d(C1) > 12 if and only if D does not have any ovals.

Theorem 2.3 Let D be a 2-(28,4,1) design without ovals, and C' be the
code of D. Let dimC denote the dimension of C, or equivalently, the
2.rank of the incidence matriz of D. Then

(i) dimC > 21.

(i) dim C = 21 if and only if D is isomorphic to the hermitian unital
H(3).

Proof. (i) By 2.2, d = d(C*) > 12. Since codewords of weight 4 (the
blocks), C* contains the all-one vector, if d = 12 then
8d(n — d) 8-12(28—12) _

1< = A
I |_n—('n—2d)2 28 — (28— 2-12)?

by the Grey-Rankin bound (cf. [6], 17.4). Hence, dimCt < T and
dimC > 21.

Ifd > 12 then d > 14 by 2.1, (i). If d = 14, the Grey-Rankin bound
implies |C*| < 56, hence dim C' > 21. Finally, if d > 14 then C*+ must
consist of the zero vector and the all-one vector only, hence dim C = 27.
(ii) Assume now that D is a design of 2-rank 21 without any ovals.
Denote by {a;}?3, and {b;}?2, the weight distributions of C and G
respectively. Since the all-one vector is in both C and C*, ¢; = b; =0
for any odd f, and a; = apg—q, b,‘ = bgg_;‘, ap = bn = d23 = bgg =12
Since b; = 0 for 1 < i < 11, applying the MacWilliams transform (cf.
[6], 5.2, eq. (19)), we have

I8 v ,
Z(“)aﬂ-: (28>221-”; TR R (1)
1% I

i=y
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This system of 12 linear equations for the 7 variables as, a4, ag, as, ayp,
@13, ay4 has rank 6 (over the rationals). Therefore, one can express six
of the a;’s in terms of the seventh. For example, in terms of a; one has

ag = —12as+ 315,

dg = 660‘22 + 6048,

ajp = 495az + 206976,
a1z = —792ay + 472059,
ajq = 924ay + 630720.

Now we use the equations

28
1 . iy
b = EE ~a;P;(3,28) (0 < j < 28),

i=0

where

g—1

%(i,n):é(—l)'(n_i), §=0,1,3,...

is the Krawtchouk polynomial ([6], 5.2, eq. (13), (14)) to express the
b;’s in terms of the a;’s, and eventually, in terms of as:

b1 = big = 8az + 63, b4 = —16ay > 0,

whence a3 = 0, and b1y = big = 63. Thus, the dual code Ct is a
self-complementary [28, 7, 12] code with weight distribution

bO - 528 = 1, blg = b]ﬁ =63 (2)

that meets the Grey-Rankin bound. Up to equivalence, there are exactly
four such codes [9], one being the dual code C' of the code of the
hermitian unital H(3), plus three other codes. The 315 codewords of
minimum weight 4 in the dual [28,21] code of such a self-complementary
[28,7,12] code form a 2-(28,4,5) design by the Assmus-Mattson theorem.
It was shown in [4] that only the 2-(28,4,5) design in the code of H(3)
contains a 2-(28,4,1) design as a subdesign. Furthermore, any 2-(28,4,1)
design which is a subset of the 315 codewords of weight 4 in the code C
of H(3), is isomorphic to either the hermitian unital H(3), or the Ree
unital R(3) [8]. This completes the proof. 2z
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3 The Ree unital

Theorem 3.1 (i) The 2-rank of any 2-(28,4,1) design D is greater or
equal to 19;
(i) the 8-rank is 19 if and only if D is isomorphic to the Ree unital R(3).

Proof. (i) If C is the code of D then d(C*) > 10 by 2.1, (iii), and d > 12
implies rankD > 21 by 2.3, (i). Thus, let d(C*+) = 10. The dimension of
any binary linear code of length 28 and minimum distance 10 is utmost
10 [3]. Therefore,

dimC = rankD > 28 — 10 = 18.

Now we show that a [28,18] code with dual distance 10 cannot support
a 2-(28,4,1) design formed by codewords of weight 4. For, assume that
C' is such a code with weight distribution {a;}?2,, and let {b;}72, be
the weight distribution of C*, where d(C*) = 10. Proceeding as in the
proof of 2.3, (ii), we obtain

ag = —bda, — 10a4 + 966,

ag = 320ay+ 45a4 + 5418,

aijp = -—945(12 = 120(14 + 25824,
aiz = 1728as + 210a4 + h7813,
alg = —2100ap — 252a4 + 80100,

whence
b]g = 399 — 128&2 - 16(]4.

Now b1g > 0 implies 16a4 < 399, that is, aq < 25. On the other hand,
in order C to support a 2-(28,4,1) design, one needs a4 > 63, a contra-
diction.

(ii) Assume now that C is a [28,10] code spanned by the blocks of a
2-(28,4,1) design D. Proceeding as before, we have

ag = —bday — 10a4+ 2142,
az = 320as+ 45a4 + 9450,
aig = —945&2 = 120&4 - 57960,
a1z = 1728{12 -+ 210!‘.14 - 107541,
diq = —2100as — 252a4 + 170100,
and

blﬂ = —42 4 24as + 2(14,

blg = bH6T7— 64&3 == 8(14,

bia = —540 4+ 80as + 12a4.

274

Adding the conditions that a; > 0, &; > 0, a4 > 63 have to be all integer,
yields only 8 solutions listed in Table 3.2.

The weight distribution No. 1 in Table 3.2 is that of the code of R(3).
To show that a code C with this distribution is equivalent to the code of
R(3), consider the subcode E C O of dimension 7 that consists of all
codewords of weight divisible by 4. The code F is a [28,7,12] code with
weight distribution (2), that is, one of the 4 self-complementary [28,7,12]
codes [9]. The dual code E* is a [28,21] code with the weight distribution
of the code of the hermitian unital H(3). Thus, by the arguments from
the last paragraph of the proof of Theorem 2.3, if EL contains a unital
among its 315 codewords of weight 4, £+ must be equivalent to the code
of H(3). Consequently, the only unitals in E* are either R(3) (of 2-rank
19), or H(3) (of 2-rank 21). Thus, since C is contained in E+, C must
be the code of the Ree unital R(3).

The cases 2, 3, 4, and 6 are eliminated by the observation that for the
dual of a code of a unital one must have b;5 = b5 = 2™ — 1 for some m
(for, the codewords in C* of weight divisible by 4 form a (self-orthogonal)
subcode [2]). It is easy to see that a code with any of the remaining
distributions in Table 3.2 cannot support a 2-(28,4,1) design. The reason
is that such a code would not contain sufficiently many codewords of
weight 4. For, assume that C is such a code containing a subset of
63 codewords of weight 4 that form a 2-(28,4,1) design D. Let Q be a
codeword of weight 4 which is not a block of D. There are exactly 6
blocks of D that meet @ in exactly 2 points. After a possible reordering,
we may assume these blocks to be

B, = {1!2!516}1 By = {1:3)?:8}: Bs = {174191 10})

B4 ={2,3,%,%}, Bs = {2,4,%,%}, B = {3,4,%,%},

and @ = {1,2,3,4}. The 6 codewords @ + B;, i = 1,2,...,6 are all
distinct, and none of those is a block of D. For example, if @+ By is a
block then @) + By = Bg, whence () = By + Bg, which is impossible since
Q is of weight 4, while B; + Bg is of weight at least 6. Thus the blocks
of D, @, and @ + B;, 1 < i < 6 account for 70 codewords of weight
4. Since {3,4} is contained in the support of both @ + By and Bg, the
vector @@ + By + Bg is another codeword of weight 4, readily seen to be
different from any of the 70 accounted so far. Thus, C' must contain at
least 71 codewords or weight 4, a contradiction. 2

Table 3.2 Weight distributions of [28,19] codes

275



a4 ag ag aip 212 aiq big bz bia

63 1512 12285 50400 120771 154224 84 63 216
64 1502 12330 50280 120981 153972 86 55 228
65 1492 12375 50160 121191 153720 88 47 240
66 1482 12420 50040 121401 153468 90 39 252
67 1472 12465 49920 121611 153216 92 3 264
68 1462 12510 49800 121821 152964 94 23 276
69 1452 12555 49680 122031 152712 a6 15 288
70 1442 12600 49560 122241 152460 98 7 300

oo—qmcn.umw.—ag
coococooo ool

Open Problem 3.3 Is there any binary linear [28,19] code u{iih weight
distribution as in Table 3.2 other than the code of the Ree unital?

4 Unitals of rank 20

For the weight distribution of a code of dimension 20 with a dual code
of distance 10, the MacWilliams relations give

ag = —bday, — 10ay + 4494,
ag = 320ay + 45a4 + 17514,
dig = —945a9 — 120a4 + 120232,
a1z = 1728a;+ 210a4 + 206997,
aja = —2100a; — 252a4 + 350100,
610 = =119+ 120‘.2-1-(14,
b}g = 651 cery 32(12 -— 4&4,
bia = —810+40as+ Bay.

The conditions all a;, b;, to be non-negative integers, aq = 63 or aq > 71
(see the closing argument of Theorem 3.1), b1z + 1 to be a power of 2,
and the further condition a; = 0 (mod 2) (for, the words of we%ght 2
in a code C containing a unital D come in pairs: if z € C is of weight 2
and B is the unique block of D containing the support of z then z + B
is also a codeword of weight 2), yield 30 solutions listed in Table 4.1.

Table 4.1 Weight distributions for [28,20] codes conlaining unilals
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No. | ap a4 ag ag 210 a2 Q14 bio  biz  bia
1 i} 147 3024 24149 102592 237867 313066 28 63 T2
2 i} 155 20944 24489 101632 239547 311040 a6 31 120
3 0 159 2004 24669 101152 240387 310032 40 15 144
4 0 161 28584 24759 100812 240807 309528 42 7 156
5 0 162 2874 24804 100792 241017 309276 43 3 162
(i3 2 131 3076 24049 102622 237963 312888 36 63 56
T 2 139 2996 24409 101662 239643 310872 44 31 104
8 2 143 2056 24589 101182 240483 309864 48 15 128
9 2 145 2936 24679 100942 240903 309360 50 T 140
10 2 146 2026 24724 100822 241113 309108 51 3 146
11 4 115 3128 23569 1102652 238059 312720 44 63 40
12 4 123 3048 24329 101692 2397391 310704 52 31 88
13 4 127 3008 24509 101212 240579 309696 56 15 112
14 4 129 2088 24599 100972 240999 309192 58 7 124
15 4 130 2078 24644 100852 241208 308940 59 3 130
16 6 99 3180 23889 102682 238155 312552 52 63 24
17 6 107 3100 24249 101722 239835 310536 60 31 72
18 6 111 3060 24429 101242 240675 309528 64 15 96
19 6 113 3040 - 24519 101002 241085 309024 66 ¥ 1038
20 6 114 3030 24564 1008382 241305 308772 67 3 114
21 8 33 3232 23809 102712 2358251 3123584 60 63 3
22 8 a1 3152 24169 101752 239931 310368 68 31 56
23 8 85 3112 24349 101272 240771 309360 72 15 80
24 8 97 3092 24439 101032 241191 3083856 74 ¢ 92
25 8 938 3082 24484 100912 241401 308604 75 3 93
26 10 75 3204 24089 - 101782 240027 310200 76 31 40
27 10 79 3164 24269 101302 2408867 309182 &0 1b 64
28 10 81 3144 24350 101062 241287 308688 82 7 76
29 10 82 3134 24404 100942 241497 308436 83 3 82
30 12 63 3216 24189 101332 240963 308024 88 15 48

There are over 100 non-isomorphic 2-(28,4,1) designs known [2], with
2-ranks ranging from 19 to 27, but none of rank 20 so far. However, it
is easy to find codes of dimension 20 that contain unitals: just take the
linear span of of the blocks of the Ree unital R(3) plus any vector of
weight 4 that is not a block. For example, taking the following set of
blocks for R(3) together with the 4-set {1, 2,3,4} generate a [28,20] code
with weight distribution No.7:

1 2 3197 1 & 625y A4 5 920 A& 4 22 DUl
1 8 10 16; 141 172%1; 1 12 23 .26; 1 13 15 28;
114 18 27; 2 4 7 28; 2 513 17; 2 6 16 26;
20 BudBs205 2 9 A2V 2010 .22 26; 2 4F 23 24,
2:92 1424 -3 rd: BZda 3 16,20 235, 3 T A1y
3 8 9 24; 31012 18; 3 13 26 27; 3 14 25 28;
61 T22 7 & BER2026 48 l4 468, 410 15'20%
4 11 13 19; 4 12 24 27; 4 17 18 23; B 6 22 27;
B 712255 5 8:1415; & 10 11 .26; 5 16 23 28;
518 19 24; 6 7 14 1%; 6 8 13 21; 6 B8 11 18;
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6 10 24 28; 6 12 15 17; 7 8 23 27; 7 9 10 17;
7 13 16 18; 7 20 21 26; 8 11 12 28; 8 17 19 25;
9 12 13 22; 9 19 26 28; 9 21 23 25; 10 13 14 23;
10 19 21 27; 11 14 20 22; 11 16 25 27; 12 16 19 20;
13 20 24 25; 14 17 24 26; 15 16 21 24; 15 18 25 26;
15 19 22 23; 17 20 27 28; 18 21 22 28.

This example shows that it might not be nearly as easy as for the dimen-
sions 19 and 21 to eliminate most of the entries in Table 4.1. Neverthe-
less, we believe that an appropriate further development of the methods
used in this paper can be helpful in settling the following open problem:

Conjecture 4.2 There are no 2-(28,4,1) designs of 2-rank 20.
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Vladimir Tonchev ! Vassil Y. Yorgov ?

Department of Mathematical Sciences Mathematics Department
Michigan Technological University Constantin Preslavsky University
Houghton, Michigan 49931, USA 9700 Shoumen, Bulgaria
tonchev@mtu.edu yorgov@uni-shoumen.bg

Abstract

Some new extremal binary [54,27,10] self-dual codes are construct-
ed using automorphisms of order 7.

John Conway and Neil Sloane [1] proved that the weight enumerator of
an extremal binary self-dual [54,27,10] code is either

Wi =1+ (351 — 88)y'° + (5031 + 248)y'? + (48492 + 328)y** + ...
or
Wa =1+ (351 — 88)y"® + (5543 + 248)y"? + (43884 + 328)y™* + . ..

where 3 is an integer parameter. They also gave an example of an ex-
tremal code with weight enumerator Wy for # = 0. The existence of
extremal codes with the second weight enumerator Wy was left open in
[1]. Tsai [5], and Dieter Schomaker (unpublished thesis, communicated
to the authors by one of the referees) found a code with weight enumer-
ator Wy for 8 = 12. It is the aim of this note to give a construction of

! Research partially supported by NRC Twinning Program Grant R80555 and NSA
Research Grant MDA904-95-H-1019

?Research partially supported by NRC Twinning Program Grant R80555 and by
the Bulgarian Science Foundation Contract MM-503
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some extremal [54,27,10] codes with weight enumerator W for # = 1,
as well as codes with weight enumerator W, for § = 12.

We use the method for the construction of self-dual codes via automor-
phisms of odd prime order [2], [3], [6]. Assume that C is a [54,27,10]
sell-dual code with an automorphism o of order 7, where

o = (1,2,..,7)(8,9,.,14)(15,16, .., 21)(22,23, ..., 28)
(29,30, ..., 35)(36,37, ..., 42)(43, 44, ..., 49).

Denote
Q={7G-1)+1,7-1D+2, ., 7-1)+7} (1<i<T),

F,(C)={veEC :vo=v},
E;(C)={veC:9|%=0 (mod2), 1 <i<T, vag4; =0, 1<j<B}

Then C = F,(C) ® E,(C). Each vector v from F,(C') is constant on
each cycle Q;, i =1,2,...,7. For v € F,(C), denote by =(v) the vector
of length 12 obtained from v by replacing each restriction v|Q;, i =
1,2,...,7 by one coordinate from it. In this way we obtain a [12,6] self-
dual code w(F,(C)). There are 3 inequivalent [12,6] self-dual codes [4].
It is easily seen that «(F,(C)) is not equivalent to the code C§. Let
7(F;(C)) be equivalent to C% @ As. There are two 2-weight vectors and
their supports must be in the first seven positions. If Wi is the weight
enumerator, we have Ciq = 48492+ 328 = 2 (mod 7). This implies
Cis = 50314243 =6 (mod 7). Thus there must be at least 6 vectors of
weight 6 in w(F,(C)) with 1 in the last five positions, which is impossible.
Similarly, one comes to a contradiction if the weight enumerator is W,
Thus 7(F,(C)) must be equivalent to the code Bi, from [4].

Let F; and C; be the number of vectors of weight ¢ in F,(C) and C
respectively. The vectors from F,(C) are fixed by ¢ and the vectors
from C not belonging to F,(C) are split into orbits of length 7 under
o. Therefore, we have C; = F; (mod 7), i = 1,2,...,54. Assume the
weight enumerator of C' is W). Since there are no 2-weight vectors
in By, we obtain Ci4 = 48492 4+ 328 = 0 (mod 7). Hence 8 = 1
(mod 7). This implies Cjp = 351 —83 =0 (mod 7), and Cya = 5031 +
243 =1 (mod 7). Hence F1p =0 (mod7), Fia =1 (mod7), and
Fi4 =0 (mod 7). Therefore we can fix the following generator matrix
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for w(F,(C))

b 00 Bl T 0 (B, Aok
g 1. 0.0 001 010 L.1 1
AR e
B=ts o0 io0r1r0611101
glg ool oAt 18 0
040 et DivBigliat -3 il o, <1

Similarly, the following is a generator matrix for x(F,(C)) for a code
with the second weight enumerator Ws:

111 1000% 60000
a1 oo 000 e 1
000010010011
Ha= ey g g% o° 10 01 0 172
6 0.0 0.0 01 00 't 1 1
010100011101

Let P be the cyclic code of length 7 consisting of all even weight vectors.
We have P = I} @ Iy, where

I = {0, ey(z), zer(z), ..,,..":Bel(x)]-,

I = {0,e9(x), zea(z), ..., 2%2(z)}
with e1(z) = 142+ 2%+ 2% and ea(z) = 1+ 2%+ 2°+2°. Let E,(C)* be
E,(C) with the last 5 columns deleted. For v € E,(C)*, we have that
the restriction v|); belongs to P, 1 <1 < 7. Denote by ¢(v) the vector

of length 7 over P thus obtained. For every two vectors (ui(), ..., uz(z))
and (v1(z), ..., v7(2)) from ¢(E,(C)*) we have

wp(@)vi (2™ + ...+ ur(e)vr(z™1) = 0. (1)

Let Mj = {u € ¢(Bo(C)") :w € Ij, i = 1,...,T}, j = 1,2. Then
¢(E,(C)*) = Mi@M> (adirect sum of ideals) and dimy; My +dimyy My =
7 [6].

The next theorem is a particular case of a result from [6].

Theorem 1 Let C and C' be [54,27,10] self-dual codes with an a?aio-
morphism o. The codes C and C' are equivalent if C' can be obia_:meaf
from C by applying e product of some of the following i?"ansformatwns:
(i) a substitution ¢ — z* in ¢(E,(C)*) or in any of its direct summands,
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1<t <7

(i1) a multiplication of the j-th coordinate of (E,(C)*) byz'i, 1< <1,
1<t; <7

(iii) a permutation of the cycles of ¢(E,(C)*);

(1v) a permutation of the last 5 coordinates of C.

Since the substitution # — =z interchanges e;(z) and es(z), it in-
terchanges also M, and M. Thus we can assume that dimp M; <
dimyz M. Equality (1) implies that M, is uniquely determined by M;.
The case dimy; M; = 1 is impossible because then dimy; M5 = 6 and we
obtain a vector of weight 8 in C.

In this paper, we consider the case dimy; M; = 2. Then M, is a [7,5,3]
MDS code over the field I; and hence M; is a [7,2,6] MDS code over
the field I;. The codes M;, M> are essentially dual under (1). A com-
puter search shows that all [7,2,6] codes over I; form one orbit under

the transformations (i)-(iii) with representative the code with generator
matrix

m=(a0 0 9 4@ a@ a@  ae) )

0  eafz) e(z) zei(z) z?ei(z) 2%e1(z) ztei(z)

Equality (1) implies that M is generated by the matrix

ea(z) eaz) ex(z) O 0 0 0
ea(z) =%ea(z) 0 exfx) O 0 0
Ny = | ex(z) zles(z) 0 0 e2(z) 0 0
ea(z) zles(z) 0 0 0 exfe) 0
ea(z) zes(z) 0 0 0 0 eyz)

Let Gy, i = 1,2, be the subgroup of symmetric group S7 consisting of
all permutations on the first seven coordinates, which are induced by
an automorphism of the code generated by H;. We have G; = S5 and
Gz =k SSA ;
Given a permutation T from the symmetric group S7, denote by Cg’),
i = 1,2, the [54,27] self-dual code determined by the matrix H; as a
generator for 7(F,(C)) and the union of the rows of the matrices N; and
Ny with columns permuted by 7 as a generator matrix for d(EL(C)*).
It is easy to be seen that if r; and 7 belong to one and the same left
coset of S7 to Gy then the codes 05? and Cg) are equivalent.

The set
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A

000000011101001110100011101000111011001110010011100000

is a left transversal of Sy with respect to Gy (here (6,6) and (7,7) denote 000000001110100111010001110110011100100111101001100000
the identity). The set 000000000111010011101100111001001111010011110100100000
B 100101110010111001011000000000000000000000000000000000
T, = {h(1,2,3)" k=012 ke {id, (15),(16),(17), (25), (26), (27), 110010111001011100101000000000000000000000000000000000
(35), (36), (37), (45), (46), (47), (15)(26), (15)(27), (15)(36), 111001011100101110010000000000000000000000000000000000
(15)(37), (15)(46), (15)(47), (16)(27), (16)(37), (16)(47), (25)(36), 10032;100101113000000103;01100000goooooooooggooooooooo
. 110010110010110000000110010100000000000000000000000000
(25)(37), (26)(37), (25)(46), (25)(47), (26)(47), (35)(46), (36)(47), 111001011001010000000111001000000000000000000000000000
(36)(47), (15)(36)(47), (15)(26)(37), (16)(47)(25), (25)(36)(47)}} 100101101011100000000000000010010110000000000000000000
. of S» with respect to G3. A computer search shows 110010100101110000000000000011001010000000000000000000
lt;:tlfltl EZZT;VZEE?} ol : Ly I:He exbietial With weight enuniorale 11100101001011000000000000001 1 100100000000000000000000
h: 1o Hatlng the Tollowing walsht Bsteibation 100101110111000000000000000000000001001011000000000000
Wi for § =1, that is, having 110010101011100000000000000000000001100101000000000000
10 343 111001000101110000000000000000000001110010000000000000
12: 5055 100101101110010000000000000000000000000000100101100000
14: 48524 1100101101110000000000000000000000000000001 10010100000
16: 315038 111001001011100000000000000000000000000000111001000000
18: 1443468 111111100000000000000000000000000001111111000000001111
20: 4786684 000000011111110000000000000000000001111111000000010111
29: 11632969 000000000000001111111000000000000001111111000000011011
24 : 20905356 : 000000000000000000000111111100000001111111000000011101
96« 27971426 000000000000000000000000000011111111111111000000011110
98« 97971496 000000000000000000000000000000000000000000111111111111
e Similarly, the permutations id, (1), (26), (27), (36), (45), (47), (15)(27),
34: 4786684 (15)(36), (15)(37), (15)(46), (16)(27), (16)(37), (16)(47), (25)(36),
. o (25)(37), (25)(46), (35)(47), (36)(47), (16)(47)(25), (26)(36)(47), ... from T
38: 315038 yield extremal codes C) with weight enumerator Wy for 8 = 12, that
40 : 48524
42 : 50565
44 . 343
54 : 1

A generator matrix of the code corresponding to the i.dentity permutz.i—
tion (id) from T is listed below. The full automorphism group of this
code is of order 7. The group was computed as the permutation group
preserving the set of minimum weight codewords.

111010000000001110100111010011101001110100111010000000
011101000000000111010011101001110100111010011101000000
001110100000000011101001110100111010011101001110100000
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is, having the following weight distribution:

10 : 255
12 : 5831
14 : 44268
16 : 330174
18: 1414284
20: 4802364
22: 11681193
24: 20802220
26: 28028274
28 : 28028274

30: 20802220
32: 11681193

34: 4802364
36: 1414284
38 : 330174
40 : 44268
42 : 5831
44 : 255
o4 : 1

A generator matrix of the code corresponding to the identity permuta-
tion (id) from T3 is listed below. The full automorphism group of this

code is of order 14.

111010000000001110100111010011101001110100111010000000
011101000000000111010011101001110100111010011101000000
001110100000000011101001110100111010011101001110100000
000000011101001110100011101000111011001110010011100000
000000001110100111010001110110011100100111101001100000
000000000111010011101100111001001111010011110100100000
100101110010111001011000000000000000000000000000000000
110010111001011100101000000000000000000000000000000000
111001011100101110010000000000000000000000000000000000
100101100101110000000100101100000000000000000000000000
110010110010110000000110010100000000000000000000000000
111001011001010000000111001000000000000000000000000000
100101101011100000000000000010010110000000000000000000
110010100101110000000000000011001010000000000000000000
111001010010110000000000000011100100000000000000000000
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100101110111000000000000COCGO00000001001011000000000000
110010101011100000000000000000000001100101000000000000
111001000101110000000000000000000001110010000000000000
100101101110010000000000000000000000000000100101100000
110010110111000000000000000000000000000000110010100000
111001001011100000000000000000000000000000111001000000
111111111411114111111111111100000000000000000000000000
000000000000001111111111111100000000000000000000000011
000000000000000000000000000011111110000000000000010011
000000000000000000000000000000000001111111000000001011
000000000000000000000000000000000000000000111111100111
000000011111110000000111111100000000000000000000011101

Remark 1 We computed the automorphism group of the [54,27,10]
code of Tsai [5] and found that it is trivial. Therefore, the code found
by Tsai is not equivalent to any of the codes described in this paper.

References r

[1] J.H.Conway, N.J.A.Sloane, A new upper bound on the minimal

[4]

[5]

distance of self-dual codes, IEEE Trans. Inform. Th. 36 (1990),
1314-1333.

W. Cary Huffman, Automorphisms of codes with applications to
extremal doubly-even codes of length 48, IEEE Trans. Inform. Th.
28 (1982), 511-521.

W. Cary Huffman and V.D. Tonchev, The existence of extremal
[60,25,10] codes and quasi-symmetric 2-(49,9,6) designs, Des. Cod.
Crypt. 6 (1995), 97-106.

V. Pless, A classification of self-orthogonal codes over GF(2), Discr.
Math. 3 (1972) 209-246.

H.P.Tsai, Existence of some extremal self-dual codes, IEEE Trans.
Inform. Th. 38 (1992), 1829-1833.

V.Y. Yorgov, A method for constructing inequivalent self-dual codes

with applications to length 56, JEEE Trans. Inform. Th. 33 (1987)
T7-82.

287



Enumeration of 2-(25,5,2) Designs
with Automorphisms of Order 5
without Fixed Points and with 5 or
10 Fixed Blocks

Svetlana Topalova,
Institute of Mathematics,
Bulgarian Academy of Sciences, Bulgaria ~

Abstract

All nonisomorphic 2-(25,5,2) designs with automorphisms of order
5 fixing no points and at least 5 blocks were found.Their number
is 470. The orders of their groups of automorphisms were deter-
mined. It was established that 58 of them are resolvable, having
one nonisomorphic resolution each. Ounly 50 of the designs are
reducible into two 2-(25,5,1) designs.

Introduction

A 2-(v,k, X) design is a set of k-element subsets (blocks) of a set of v
elements (points), such that each pair of points is contained in exactly
A blocks.

An automorphism of the design is called a permutation of the points
that transforms the blocks into blocks.

A resolution of the design is a partition of its blocks into subsets,
called parallel classes, such that each point is contained in exactly one
block of each parallel class.

According to [1] there are at least 28 nonisomorphic 2-(25,5,2) designs
which can be constructed [2] by concatenation of two 2-(25,5,1) designs.

*This work was partially supported by the Bulgarian National Science Fund un-
der Contract No 1-506/1995.
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It is obvious that all designs obtained in that way are resolvable, because
there exists exactly one nonisomorphic 2-(21,5,1) design, which is an
affine plane.

The aim of this note is to enumerate all nonisomorphic 2-(25,5,2)
designs possessing an automorphism of order 5 without fixed points and
with at least 5 fixed blocks, to test them for resolvability and reducibility,
and to determine the number of nonisomorphic resolutions.

Construction of the designs

Let o be an automorphism of order 5 of a 2-(25,5,2) design fixing f
points, and h blocks. (f =0,1,...20,A=0,1,...55) Only the cases when
f =0and h# 0 are considered in the present work.

Proposition: If « is an automorphism of order 5 of a 2-(25,5,2)
design D fixing no points, then a cannot fix more than 10 blocks.

Proof:

If a nonfixed point is contained in a fixed block, then all the points
from the same point orbit with respect to a are also contained in this
fixed block. Yet there are 5 point orbits, and the points of one and

the same point orbit cannot be contained in more than two fixed blocks
(A= 2). '

¢

1. Let D be a 2-(25,5,2) design with an automorphism « of order 5,
fixing no points and 5 blocks. Without loss of generality we can assume
that « acts as follows:

a = (1,2,3,4,5)(6,7,8,9,10)...(21,22,23,24,25) on the points, and
a = (1,2,3,4,5)(6,7,8,9,10)...(51,52,53,54,55)(56)(57)(58)(59)(60) on the
blocks.

Then the incidence matrix of D is:

Arg Aig ur g z¥ gF gt
Agq Aed s Mgy 85 WY BT BT, 27
Agy, Aggs v Agy BT 2T 0F, ZE 2T

Agy  Asp Ausy S5 25 &80 UL, 2E

Ay Asg Ao 25 2 g% 2. UF
where A;;, 1=1,2,.5 j=12..11 are circulant matrices of
order 5, U = (1,1,1,1,1), Z = (0,0,0,0,0)
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Létommgy; 4 =11,2,..8.9 =1,9.....01" Bg equal to the number
of I’s in a row of A;;. The following equations hold for the matrix
M = (m; ;)sx11

11
T
j=1I

11
E :mihimi'z‘j =10,
=1

Y mi, =18, i=1,2,..5 (1)
1<) <ip <5 (2)

It follows from (1) that the rows of M must be permutations of
(2,2,1,1,1,1,1,1,1,0,0). It was found by computer that there are 3 noni-
somorphic matrices with such rows for which (2) is also true.

M,
22111111100
3 | o g e W G2 1
01022111111
11110211012
11101011212

M M

202111 111000
B 2 o A M WD 1
02011111121
0E 21111 11:10:2
20011111112

22111111100
10221111011
01102211111
1 05T ) 102
Tpded, Tsnd.Q 12 153

2. Let D be a 2-(25,5,2) design with an automorphism « of order 5,

fixing no points and 10 blocks. Without loss of generality we can assume

that « acts as follows: '

o = (1,2,3,4,5)(6,7,8,9,10)...(21,22,23,24,25) on the points, and

o= (I,2,3,4,5)(6,7,8,9,10)...(46,47,48,49,50)(51)(52)..,(60) on the blocks.
Then the incidence matrix of D is:

A1 Al Av,10 gt gr % ool gELER
Az Az Azsg o ZEZY grhog? o, gl gt
Aay Asp T RGO R T RN R
Agn Agp Ao ZF 2T ZT 2T .. ZT gr
A5 As:z Apso (2T 2T 2T ZT L 0pE [T
where 4;;, ¢=1,2,..5, j=1,2,...,10 are circulant matrices of
order 5, U = (1,1,1,1,1), Z =(0,0,0,0,0).
Let m;;, i=1,2,..5, j =1,2,...,10 be equal to the number

5
of 1’s in a row of Aij. The following equations hold for the matrix

M = (m; j)sx10

10 10
> mi; =10, >_mi; =10,
i=1 i=1
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vl 200k (3)

A

10
> miymi, ;= 10, 1< < iy <5. (4)
j=1

There is 1 nonisomorphic matrix for which (3) and (4) hold. All its
elements are equal to 1, and we shall denote it My.

Results

Replacement with circulants in the matrices My, My, M3, and M,
and addition of the fixed blocks leads to 470 nonisomorphic 2-(25,5,2)
designs. The orders of their automorphism groups are determined, and
the results are summarized in Table 1. The total sum in some of the
rows of this table does not match because one and the same design with

an order of the automorphism group 1000 was obtained from both My
and 11{{4.

Table 1: Order of the automorfism groups

|Aut(D)|\M’at?"£z ‘Ml M2 M3 ﬂfle All
5 173 38 230 1 442
10 3 3
20 1] 4 )
25 2 5 7
40 3 3
50 1 1 1 3
100 2 2
160 1 1
200 2 2
1000 1 1 1
12000 1 1
All 1535743 * 236~ 1977 470

The designs which are resolvable, or have an automorphism group
order greater than 5, are presented in the tables 2, 3, and 4. The rest
can be received from the author on request.

The designs are presented in the following format: for one point
from each point orbit the nonfixed blocks, in which it is contained are
given. The points are denoted by the numbers 1, 2,...25. The blocks
of the design are denoted by the numbers 1, 2,...60, but to save place
their number (between 1 and 5) in'the corresponding orbit is given in
the tables. The block orbits are denoted by the hexadecimal numbers
0,1,2... and are presented in the special row denoted by orb”.
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Table 2: Base points of designs obtained from M; of. the design, and A - the m;(#er of its automorphism group. A "{”
P, Ps Pi Pre P after the order denotes a transitive group. Resolvability and reducibility

N rr A\orb | 00112345678 02234567899 1134567899a 122345678aa 00345678%a results are surmmarized in column ”rr” where ”ii” means irresolvable and
1ii 25t 12131111111 11322344512 12135243131 11245335213 13354124112 irreducible, ”ri” - resolvable and irreducible, and ”rr” - resclvable and
2 ii 25¢ 12131111111 11322344512 12254133131 11253534213 13431524112 sedicible
315 12131111111 12412334512 12133524351 12314525324 13154432545 ; | _
drrs 12131111111 12412334512 12133524351 12314525324 13214543545 All resolvable designs obtained from M3 have one nonisomorphic res-
5rrb 12131111111 12412334512 12133524351 12314525324 13324154545 olution. Its parallel classes consist of the following blocks:
61r5 12131111111 12412334512 12133524351 12314525324 13434215545 1 9134951 210145052 3 6154653 4 7114754
7irs 12131111111 12412334512 12133524351 12314525324 13544321545 5 8124855 1617181920 21222324325 26 27 28 29 30
8rr 5 12131111111 12412334512 12133524351 12315543224 13144253545 3132333435 3637383940 4142434445 56 57 58 59 60
9rr5 12131111111 12412334512 12133524351 12315543224 13254314545

10 5 12131111111 12412334512 12133524351 12315543224 13314425545 = . F e .
11355 12131111111 12412334512 12133524351 12315543224 13424531545 Table 3: Base po;f,lts of dem}g,ns Obtmn;d from M‘*P
12rr 5 12131111111 12412334512 12133524351 12321554324 13254314545 EEATT 001123145678 0223335679 1244;;67 = 16 L
13rr 5 12131111111 12412334512 12133524351 12321554324 13314425545 ‘1 S T 2355 a — 89a 3466789?& 012‘35?889&3
14 rr 5 12131111111 12412334512 12133524351 12321554324 13534142545 S e Lo 11 13123542515 13321354235 15324412435
15rr 5 12131111111 12412334512 12133524351 12325531424 13154432545 : n 11235434211 13122435511 15421324234 14343512435
1611 5 12131111111 12412334512 12133524351 12325531424 13324154545 Wk 12131111111 11225343411 15232451322 11352423153 12434312325
17 1r 5 12131111111 12412334512 12133524351 12325531424 13434215545 : 1t 25: 12131111111 11225433411 14232535121 13522434233 12344312414
1871r 5 12131111111 12412334512 12133524351 12325531424 13544321545 4 1i 50 12131111111 12324134511 13342525125 14233541342 11254323335
15 oo & 12131111111 12412334512 12133524351 12331542524 13154432545 ii 25¢ 12131111111 12335414211 12153543244 13242534453 15424123124
20 1T 5 12131111111 12412334512 12133524351 12331542524 13324154545
2115 192131111111 12412334512 12133524351 12331542524 13434215545 Table 4: Base points of designs obtained from M
221r5 12131111111 12412334512 12133524351 12331542524 13544321545 P Ps P Prp Pix
23 1T 5 19131111111 12412334512 12133524351 12332515424 13254314545 N rr A\orb 0123456789 0123456780 0123456789 0123456789 0123456789
24 rr 5 12131111111 12412334512 12133524351 12332515424 13424531545 T rr 12000t | 1111111111 1122334455 1133552244 1144225533 1155443322
25 1r 5 12131111111 12412334512 12133524351 12332515424 13534142545 2 rr 200 1111111111 1122334455 1133552244 1144225533 1215453423
26 1 5 12131111111 12412334512 12133524351 12343521524 13424531545 3 rr 160 1111111111 1122334455 1133552244 1145243523 1154425332
27 11 5 12131111111 12412334512 12133524351 12353514224 13434215545 4 1T 20 1111111111 1122334455 1133552244 1145243523 1214525433
28 rr 5 12131111111 12412334512 12133524351 12353514224 13544321545 5 rr 100 1111111111 1122334455 1133552244 1215453423 1254235134
29 1r 5 12131111111 12412334512 12133524351 12354532124 13254314545 6 rr 100 1111111111 1122334455 1133552244 1215453423 1314245235
30 1T 5 12131111111 12412334512 12142353351 12313552424 13321454545 7 rr 200 1111111111 1122334455 1133552244 1215453423 1534215432
3lrr5 12131111111 12412334512 12142353351 12313552424 13432415545 8 rr 40 1111111111 1122334455 1134252534 1145425323 1213554243
32115 12131111111 12412334512 12142353351 12315453224 13135424545 9 ri 40 1111111111 1122334455 1134252534 1145425323 1214543253
33 rr 5 12131111111 12412334512 12142353351 12315453224 13241435545 10 rr 20 1111111111 1122334455 1134252534 1213554243 1255431324
34rr5 12131111111 12412334512 12142353351 12315453224 13413452545 1115 1111111111 1122334455 1134252534 1213554243 1443123552
35r1r 5 12131111111 12412334512 12142353351 12321554324 13241435545 12 rr 40 1111111111 1122334455 1134252534 1213554243 1535414322
36 rr 5 12131111111 12412334512 12142353351 12321554324 13524413545 13 1i 20 1111111111 1122334455 1134252534 1241525433 1315345224
37 rr 5 12131111111 12412334512 12142353351 12332155424 13135424545 14 1i 10 1111111111 1122334455 1134252534 1241542353 1315345224
38 5 12131111111 12412334512 12142353351 12335254124 13215443545 157 10 1111111111 1122334455 1214352534 1245421353 1341245235
39 11 50t 12131111111 12412334512 12142353351 12354352124 13352441545 16 ri 10 1111111111 1122334455 1214352534 1245421353 1353124542
4011 5 12131111111 12412334512 12213543351 12325531424 13134524545 17 ri 50t 1111111111 1122334455 1214352534 1245421353 1524543213
41 1T 20 12131111111 12412334512 12253314351 12313552424 13154432545 18 ri 20 1111111111 1122334455 1214352534 1341245235 1532542143
42 rr 1000t | 12131111111 12412334512 12253314351 12321554324 13524413545

To obtain the block number one has to add to its ——— It is obvious from the construction that all designs obtained from

orbit the orbit number multilpied by 5. ( For instance for design No 1 M, are resolvable because the Iblocks of each nonfixed block orbit form
obtained from Ma, point 6 is contained in the following Blscks: 1,0 a pz.j.rallel cla:ss. It was established that all of them have exactly one
13, 17, 22, 28, 34, 39, 45, 46, 47). The column "N” contains the number nonisomorphic resolution.
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The 470 designs are well distinguished by two invariants suggested
by Tonchev [3, Chapter 1]. For each block P the characteristics (ng, ni,
..., ng7) and (mg, my, ..., ms7) were found , where n; (i = 0,1,...,57)
is the number of pairs (@, R) of blocks different from P, and such that
there are exactly ¢ other blocks having at least one common point with
each of the blocks P, @, R, and m; (j = 0,1,...,57) is the number of
pairs (@), R) of blocks different from P, and such that there are exactly j
other blocks having at least two common points with each of the blocks
P,Q, R
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Linear Codes and The Existence of
a Reversible Hadamard Difference
Set in Zy x Zy X Z3

M. van Eupen, Vladimir D. Tonchev *
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931, USA

Abstract

Linear codes over GF(5) are utilized for the construction of a
reversible abelian Hadamard difference set in Z7 x %2 % 2. This
is the first example of an abelian Hadamard difference set in a
group of order divisible by a prime p =1 (mod 4). Applying the
Turyn composition theorem, one obtains abelian difference sets
and Hadamard matrices of Williamson type of order 4 x 5™ x
pi™ X ... x p;™ where n,ni,...,n, are arbitrary non-negative
integers and each p; is a prime, p; =3 (mod 4).

1 Introduction

We assume familiarity with the basics of combinatorial designs theory
and coding theory (cf., e.g. [4], [5], [9]). We use the notation [n, k,d],
for a linear code of length n, dimension & and minimum distance d over
GF(q), and w1 wy?wa . for the weight enumerator of a code with
Ay, nonzero words of weight w; = d, A, nonzero words of weight w,
etc. A t-weight code is a code with ¢ nonzero‘weights. A code is projective
if its dual distance is at least 3. A projective (n, k, hi, ho, h3) set O in
PG(k—1,q) is a set of n points such that every hyperplane meets @ in
hl, hg or h3 pOthS.

*Research partially supported by NSA Research Grant MDAS04-95-H-1019

295



A (v, k, X) difference set in a finite group G (|G| = v) is a set D of k
elements of G such that the multiset {gh~'|g,h € D, g # h} contains
each nonidentity element of G exactly A times. An abelian difference set
is a difference set in an abelian group G. A multiplieris an automorphism
of G that preserves the set of translates {Dg|lg € G}. A difference set
which is fixed by a multiplier —1 is called reversible. A Hadamard
(also a Menon) difference set (HDS) is a difference set with parameters
(4m2,2m2 — m, m? — m) for some integer m. Two recent surveys on
Hadamard difference sets and their applications are [2], [3].

For a long time, examples of abelian Hadamard difference sets have been
known only for m of the form 2%3* (cf. [10]), and many characteriza-
tions and existence conditions for such Hadamard difference sets have
been proved ([2], [3], [6]). It was only recently that abelian (and also
reversible) Hadamard difference sets were constructed for m divisible by
any prime p = 3 (mod 4) (Xia [11]. See also [12] for an alternative
proof of Xia’s theorem). On the other hand, Smith [8] found the first
example of a nonabelian reversible Hadamard difference set of order di-
visible by a prime p=1 (mod 4), namely, for p = 5. In particular, no
abelian difference sets (reversible or not) have been known for m divisible
by a prime p =1 (mod 4). Ray-Chaudhuri and Xiang [7] proved that
Hadamard difference sets do not exist in abelian groups G = Z, x Za x P
where |P| = p?*, p = 1 (mod 4) and « is odd, generalizing a theo-
rem by McFarland for « = 1. The simplest case not covered by any
known nonexistence test is the question about the existence of abelian
Hadamard difference sets in groups Zs x Za X (Z;)* where p is a prime,
p=1 (mod4).

It is the aim of this note to construct a reversible abelian Hadamard
difference set in Z3 x Zs x (Z5)*, which was the smallest open case
([2], [3], [6], [7]). Our construction method is based on the following
important theorem proved by Ray-Chaudhuri and Xiang [7] (see also

[12]):

Theorem 1 There is a reversible HDS in the abelian group G = Z3 X
Za X Z;f“, p an odd prime, o even, if and only if there are four projective

(?1,‘2&,% - p“_l,g,% +p* 1) sets Oy, i = 0,1,2,3, in PG(2a — 1,p)
with n = E;%i%)ll such that for every hyperplane H in PG(2a — 1, p)
there is a unique 1, 0 < i < 3, such thet |HNO;| # 5 and [HNO;| =2

iy 3
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2 Projective sets and 3-weight codes
in PG(3,5)

If p=2>5 and o = 2, each of the four projective (75,4,10,15,20) sets
@; from Theorem 1 can be viewed as the set of columns of a generator
matrix of a [75, 4, 555 code with weight enumerator 5572 60468 6534 (cf.
[7], [1]). The question about the existence of such a code was formulated
as an open problem in [7]. We construct four 75,4, 55]5 codes with the
intersection property of Theorem 1 as follows. Let A be the following
4 x 4 matrix over the field of order 5:

A=

LI s = O
=N S ]
e &0 = O
= O

4

=

The matrix A defines a projective linear transformation 7" in PG(3,5)
of order 6. The cyclic group {I,T, T2, T3, 17%, T3} divides the points of
PG(3,5) into 24 orbits of size 6 and 4 orbits of size 3. Representatives of
the orbits are listed in Table I, where each representative is represented
as an element of GF(5)%.

TaBLE [
nr. | 6-cycle || nr. | 6-cycle || nr. | 3-cycle
1 G001 (|13 |0113 ] a i Rl
2 001014 |0114}|l Db 1224
3 QOI1 | 1% (0121 |le 0013
4 001216 [0123||d |0102
5 001417 10124
6 0100 18 {0132
7 010119 (0133
8 010320 ({1001
9 0104121 1002
10 (0110 )22 | 1003
L1 =0u00 Lol | (M2 | 1000
12 (011224 |1011

We construct four disjoint [39,4, 30]5 2-weight codes! with weight enu-
merator 3043 35156 as unions of orbits:

1A [39,4,30]5 2-weight code has also recently been constructed by I. Boukliev
(private communication)
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Co =  unionoforbits 1, 2,3,9, 11,19 and a,
C1 = union of orbits 4, 5, 7, 10, 20, 23 and c,
C2 = union of orbits 6, 14, 17, 21, 22, 24 and b,
Cs = union of orbits 8, 12, 13, 15, 16, 18 and d.

We construct also two disjoint [36,4,25])5 2-weight codes with weight
enumerator 25144 30480.

Dy = union of orbits 1, 2, 7, 10, 19, 23,
Ds; = union of orbits 6, 12, 13, 15, 17, 21.
Then
Oy = GCoUD,,
0, = CiUD,, (1)
O, = CyuUD,
O3 = CsUD,,

are four sets in PG(3, 5) that satisfy the property in Theorem 1 for p =5
and a = 2. To verify this, we need a few lemmas.

Lemma 1 The union of o [39,4,30]5 2-weighl code with weight enu-
merator 30468 35156 and a disjoint [36,4,25]5 2-weight code with weight
enumerator 254 30%0 s g [75,4,55)5 code with weight enumerator
5572 60468 6584.

Proof: Let C be a [39,4,30]s code with weight enumerator 305 351%6
and let D be a[36, 4, 25]5 code with weight enumerator 2514 30%*°. Then
the union of C and D can only have nonzero weights 55, 60 and 65. If C'
and D are disjoint, then C'U D is a projective [75, 4, 55]5 code. Let A,
denote the number of codewords of weight w of C'U D. Then the first
three MacWilliams relations (see [5]) give:

Ass + Aso +Ass = 624,
20Ass + 16460 + 10465 = 9300,
190As5 + 105 Ag0 -+ 45Ags = 66600.

The only solution is: Ass = 72, Agp = 468 and Ags = 84. )

Lemma 2 The union of two disjoint [39,4,30]s Z2-weight codes with
weight enumerator 3048 35156 is a [78,4,60]s 2-weight code with weight
enumerator 60312 65312,
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Proof: Similar to the proof of Lemma 1. Notice that in this case Az
surprisingly equals zero. o

Lemma 3 The unton of two disjoint [36,4,25]5 2-weight codes with
weight enumerator 25144 30%%0 4s a (72,4, 55]5 2-weight code with weight
enumerator 55258 (336

Proof: Similar to the proof of Lemmas 1 and 2. In this case Asg = 0.0

Lemma 4 The union of a [78,4,60]5 2-weight code with weight enu-
merator 603126512 and o disjoint [36,4, 255 2-weight code with weight
enumerator 25144 30%%0 45 o [114,4,90])5 2-weight code with weight enu-
merator 90456 95168

Proof: Similar to the proof of Lemmas 1, 2 and 3. In this case Ags = 0.0

Lemma 5 The multiset union O;UQ; of two different 75-sets as defined
in (1)} is a [150,4, 115]s code with weight enumerator 115144120312125168,

Proof: Notice that O;U0; (i # j) always contains a [78, 4, 605 2-weight
code with weight enumerator 60%!265%'2 by Lemma 2. Furthermore,
0o U Oy and O3 U O3 contain a [36,4,25]s 2-weight code with weight
enumerator 2544 30%° disjoint from the [78, 4, 60]5 2-weight code. Thus
by Lemma 4, they both are the multiset union of a [114,4, 90]5 2-weight
code with weight enumerator 9056 9516% and a [36, 4, 25]5 2-weight code
with weight enumerator 251%430%3°, Hence @Oy U ©; and O U @5 can
only have nonzero weights 115, 120 and 125. The multisets O; U Oy,
i # 7, {6,7} # {0,1} and {7,7} # {2,3} all are the multiset union of
a [78,4,60]5 2-weight code with weight enumerator 6031265312 and a
[72,4, 55]5 2-weight code with weight enumerator 55223 6033¢ by Lemma
3. Thus they also can only have weights 115, 120 and 125. It is easy to
verify that [0; N O;| = 36 for all i # j. Using this and the first three
MacWilliams relations, we find that the only possible weight enumerator
for the [150,4, 115]5 code O; U O; (i # j) is 115144 120312 125168, o

From Lemma 1 and Lemma 5 it easily follows that the four sets ;
defined in (1) satisfy the property of Theorem 1. Indeed, the 36 hyper-
planes intersecting O; U O; (i # j) in 35 points have to intersect either
O; or O; in 20 points. Since there are only 18 hyperplanes intersecting
O; in 20 points and 18 intersecting @; in 20 points, every hyperplane
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has the property that if it intersects @; in 20 points, then it intersects
O; in 15 points. Similarly, if a hyperplane intersects (J; in 10 points,
then it intersects O; in 15 points (since 2 - 21 = 42). In addition, every
hyperplane intersects at least (and hence exactly) one of the J; in 10
or 20 points, since 4(18 + 21) = 156. Therefore, we have the following
theorem.

Theorem 2 There exists a reversible Hadamard difference set with pa-
rameters (2500, 1225, 600) in Z; x Z, x Z2.

Proof: Follows by Theorem 1 and the lemmas. To obtain the difference
set, extend each of the 4 x 75 = 300 nonzero vectors of length 4 corre-
sponding to the 1l-subspaces generated by the columns of the generator
matrix of the first (resp. second, third) [75,4,55]5 code by 00 (resp.
01, 10), and the 325 vectors from the complement (in GF(5)*) of the
corresponding set for the fourth code by 11. o
A copy of the difference set is available from the authors electronically
upon request.

Remark 1 The (2500, 1225, 600) difference set is reversible by Theorem
1. Furthermore, the action of the matrix A induces a further multiplier
of order 12 (since A!? = I).

Using the Turyn composition theorem [10], one obtains also

Corollary 1 There ezist a reversible abelian Hadamard difference set
in Za X Zy x (Z5)*"™ for anyn > 1.

Corollary 2 There exists an abelian Hadamard difference set in K x
(Zs)*" x (Zp,)*™ % .. (Zp,)*™t wheren > 0,n1 > 0,...n; >0, each p; is
a prime, p; =3 (mod 4) end K = Z3 x Zy or K = Z4. The difference
set is reversible if K = Zy x Zy. The corresponding Hadamard matrices
are of Williamson type.
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On the Construction of
Distance-Preserving Codes

A.J. van Zanten
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The Netherlands

1 Introduction

In the literature (cf. [2]) an ordered list of integers coded as binary
words of length n is called a difference-preserving code, if the following
two properties are satisfied:

e the list distance between two words, i.e. the absolute values of the
difference of their indices, is equal to their Hamming distance, as
long as the list distance does not exceed a certain threshold &;

e if the list distance exceeds ¢, then so does the Hamming distance.

Slight modifications of such a structure are known as path codes, circuii
codes, or snake-in-the-boz codes. They can all be considered as gener-
alizations of Gray-codes, which satisfy rule (i) for ¢ = 1, and even for
=2

In this paper we drop condition (ii). In particular, we define a distance-
preserving (t,n)-code, as a list of binary words of length n satisfying
condition (i). The length of the list is called the range of the code. A
natural question is to ask for the maximal range for given values of n
and t. If this value is equal to 2™ we shall say that there is a complete
(t,n)-code. Another natural question, of course, is for which values of
and n there exists a complete (f, n)-code.
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2 Notions and examples

Let v; and v; be two codewords of a {{,n)-code of range s. Then the
code is called cyclic if the Hamming distance d(v;,v;) = |i — j| (mod s),
for all ¢,j € {1,2,...,5}, with |[{ — j| <t.

Example 1. Any Gray code is a complete (2,n)-code. The binary-
reflected-Gray code is a complete, cyclic (2, n)-code.

Example 2. The following list is a cyclic (4, 4)-code of range 8.

co oo
|l e T s
— = O O
e i
— = =
[ B o
[ B e B
oo o =

In an analogous way one can construct cyclic (¢, n}-codes of range 2n. It
will be obvious that a complete (t, n)-code, with n > 2, can only exist if
b<n—1

As we announced already in the Introduction we have the relevant notion
of maximal range

S(t, n) = max{s| 3(t, n)-code of range s}. (1)

It will be obvious that s(1,n) = s(2,n) = 2", and s(n,n) = 2n.

Example 3.

—_— O O O O
[ e e B B
— O O
OO =D
Lo I s R e R e Y Y
L R R = ==
[ i e - B e s i s
O D e e O

The above list is a {3, 4)-code of range 14. It follows that 5(3,4) > 14, but
it can be proved that 5(3,4) = 14. This code is not a cyclic (3, 4)-code,
although, considered as a {2, 4)-code, it is cyclic.

Evdokimov showed in [1] that there exists a complete (¢, n)-code for all
t<n
—
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In order to define a (¢, n)-code, it is sufficient to specify which bit changes
any time when one goes from one codeword to the next. Hence, starting
from the zeroword, a (t, n)-code is equivalent to its transition sequence,
which is a sequence of s—1 bit numbers, indicating the bit to be changed
every time. (We adopt the convention that bits in a word of length n are
numbered from 1 until n, from right o left.) So, the transition sequence
of the binary-reflected-Gray code Gy is

Gy4=1,2,1,3,1,2,1,4,1,2,1,3:1, 2,1
and of the (3, 4)-code of Example 3 the sequence is
T, =1,2,8,4,1,3/9,.1,3,4.1,2,3.

It can easily be understood that a sequence 7' := ap,ay, ..., as_» is the
transition sequence of a (t,n)-code of range s, if and only if

e in each subsequence of T' at least one a; occurs an odd number of
times;

o each subsequence of length ¢ consists of ¢ different numbers a;.

In [1] Evdokimov constructed transition sequences of new (¢, n)-codes
out of sequences of smaller codes by the technique of merging sequences.
In the next sections we shall discuss a different type of construction based
on a linear-algebraic approach.

3 Outlines of a construction
Suppose we have a linear [n, k,d]-code C, d > 2, with a constant-weight
basis B = (b;,b,,...,b;) with ||b;]| =m, 1 <i < k.
Corresponding to the transition sequence of the Gray code
Gi i=1t1,15,85, ..., 0060 =1,2, | ISR i | (2)
we have the following ordered list of codewords (cf. [3]). -
v :=Q.: 21'-}-1 =2€+éﬂ! IS£<2kr : (3)

which is such that ||v; 4+ v; ]| = m, for all i. Next, we want to change
v; into v;,, one bit after another, giving 2% subsequences of length m,
such that the concatenation of these subsequences is a list of m - 2F
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different codewords. The order of changing the bits defines an ordered
block b := (i1,42,...,im), where the i; are the positions of the 1-bits in
b;. The row of blocks by, by, b1, ...,bg, ..., b then constitutes a transition
sequence of a ({, n)-code of range m.2%, for some ¢ < m. The intermediate
words, when going from v; to v;;, will be called w}, w?,. .. ,y;n_l. The
array

EI:E%JE—I—"%J"‘!EI :H‘Zaﬂérﬂz:'”)wgk (4)

is the list of words of the (¢, n)-code.
Whether all these words are different depends, of course, on the prop-
erties of the basis B and on the order in the blocks b;. One possibility
one can think of is that the sets {w?}, w}, .. Swh} 1<i<m—1,are
all disjunct cosets of C. This implies

vyte, te,Vate, te,¥3+e, +61,,8+e, e, (B)

is a permutation of v;,v,, -+, uy. Here, e, is the binary vector with
only one 1-bit, at position a¢. Hence, 1, e, €1, a8y, FEa e
have to be codewords of C'. A sufficient condition for this last property
is that for 1 <i < £k

&, te, =b+bu p(l)=1, (6)

where pis a mapping of {1,2, ..., k} into itself. Then (5) is a permutation
of the words of C, if the Gray-coded integers 0, 1, ...,2%—1 are permuted
by changing them in position p(1), p(2), p(1), p(3), ... respectively.
Similar conditions can be formulated for the other cosets, i.e. when
the sub-subindex 1 in (6) is replaced by 2,3,..., m— 1. Moreover, it can
easily be seen that these cosets are disjunct, if all blocks b; have identical
integers iy, tim—2, tm—4, - - --

4 Examples
(i) Construction of a complete (4,6)-code

We take n = 6, k =4 and m = 4. Applying the conditions of Section 3
provides us with the basis;

b, = 001111, b, = 010111, b, = 100111, b, = 110011,
and corresponding ordered blocks

by = (4132), by = (5132), bs = (6132), by = (6152).
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Hence we have the following transition sequence

4132 5132 4132 6132 4132 5132 4132 6152
4132 5132 4132 6132 4132 5132 4132 6152,

which defines a complete cyclic (¢,6)-code. Since in adjacent blocks
identical integers have the same position, it follows that ¢ = 4.

(11) Construction of a complete (4,5)-code

Now we take n = 5, ¥ = 2 and m = 4. Along similar lines we derive a

basis b = 01111, b, = 10111, b5 = 11011 with corresponding ordered
blocks

by = (3142), by = (5132), bs = (5142).

The transition sequence
3142 5132 3142 5142 3142 5132 3142 5142

defines a complete cyclic (2, 5)-code. However, since 01100 is a codeword
of C we can interchange 3 and 4 within a block. Doing so in the 3rd and
7th block we obtain

3142 5132 4132 5142 3142 5132 4132 5142
which corresponds to a complete cyclic {4, 5)-code.
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On the Extremal Binary Codes of
Lengths 36 and 38 with an
Automorphism of Order 5*

Vassil Yorgov and Nikolay Yankov

Konstantin Preslavsky Universily
Shoumen 9712, Bulgaria

Abstract

All inequivalent binary self-dual [36,18,8] codes with
automorphism of order 5 are obtained. It is proved
that there does not exist a [38,19,8] self-dual binary
code with automorphism of order 5.

1 Introduction

The weight enumerators of self-dual codes of length 36 and 38
with minimal weight 8 are known [1]. For length 36 we have
two enumerators:

(1) 14225y + 2016y + 9555y + 28800y™ - - -

*This work is partially supported by the Bulgarian National Science
Fondation under Contract MM-503/95
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and

(2) 14 289y° + 1632y + 10387y'* + 28288y™* - --

The codes R; and Dj given in [1] have weight enumerators (1)
and (2), respectively, and the two possible weight enumerators
for length 38 are realized by the codes Dy and Rj. In [6, 2] it is
proved that D3 and D, are unique double circulant extremal
codes for these lengths. All possible odd prime factors of the
order of the group of automorphisms of an extremal code of
length 36 and 38 are 17, 7, 5, 3 and 19, 7, 5, 3 respectively [7,
8]. It is proved there that there are correspondsingly 3 and 7
extremal codes of length 36 and 38 which have automorphism

of order 7. Here we consider codes with automorphism of
order 5.

2 Codes of length 36

Let C be a [36,18,8] self-dual code with automorphism o of or-
der 5. It is known [6] that o fixes exactly 6 points. We may as-
sume that o = (1, 2,3,4,5)(5,6,7,8,9,10)...(26, 27, 28, 29, 30).
Let E,(C') be the set of those vectors in C which have even
weight in each cycle of ¢ and zeros in the fixed points. Denote
F,(C) =v € Clvo = v. It is known that C = F,(C) & E,(C).
For v € F,(C) let mv be the vector of length 12 obtained from
v by choosing a coordinate from each cycle of v and from each
of the last 6 points. It is known that 7(F,(C)) is a self-dual
binary code [3]. All such codes are enumerated in [4]. In the
notation used there 7 (F,(C)) is equivalent to one of the codes
C3, C2 @ As, and Byy. As n(F,(C)) does not have a weight
two vector with two ones in the last 6 positions, it cannot be
equivalent to C§ or C2 @ As.
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Lemma 1 Up to a permutation of the last 6 coordinates the
code w(F,(C)) is generated by one of the matrices Fy, Fy:
100000021111 100000101111
010000101111 010000011111
001000110111 001000111000
000100111011 1000100110100
600010111101 000010110010
000001111110 000001110001

Proof. Call a duo any pair of coordinates. A cluster for a
code is a set of disjoint duos such that the union of any two
duos is a support of a weight 4 vector of the code. A d-set
of a cluster is a set of coordinates such that its intersection
with each duo of the cluster is an one element set. A defining
set of a code consist of a cluster and a d-set provided that
the weight 4 vectors arrising from the cluster and the vector
with support the d-set generate the code. Bi; has a defining
set. Each permutation which is a product of transpositions in
even number of duos of the defining set is an automorphism
of Bip. Since the minimal weight of C is 8, two duos of the
cluster cannot be in the last 6 positions of n(F,(C)). There
are two cases.

In the first case we assume that there is not a duo in the last 6
positions. Clearly the d-set cannot be in the last 6 positions.
Using an appropriate automorphism of the above mentioned
type we obtain that 5 coordinates of the d-set are in the last
6 positions of w(F,(C)). This leads to the first matrix of
Lemma 1.

Secondly we consider the case when only one duo of Bj; is in
the last 6 positions of 7(F,(C)). Hence there is also a duo in
the first 6 positions. This leads to the second matrix.

Let E,(C)* be E,(C) with the last 6 points deleted. Every
vector v from FE,(C)* has even weight in each cycle of 0. All
words of length 5 of even weight form an irreducible cyclic
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c?de vErhiCh we denote by P. The non zero elements of P are
given in tab_lfz 1. They can be considered as polynomials on
z. P is a field with primitive element . Denote by ¢(v) the

Table 1: Nonzero elements of P

e 01111 | @ | 11000 || «* | 10100
o® [ 11110 || o* | 10001 || «® | 01001
a® [ 11101 || o | 00011 || o® | 10010
o® [ 11011 || o | 00110 || o' | 00101
a'? [ 10111 || o' | 01100 || o' | 01010

vector v considered as a 6-tuple with elements from P. It is

known [3] that ¢(E,(C)*) is a [6,3] code which is self-dual
under the inner product

(3) : (u,v) = ugv} + ugvs + - - + ugvs
and next lemma holds.

Lemma 2 The following transformations applied to C lead
to an equivalent code with automorphism o:

(a) a substitution ¢ — z* in ¢(E,(C)*), 1 <t < 4;

(b) a multiplication of any coordinate of ¢(E,(C)*) by o'?;
(c¢) a permutation of the first 6 cycles of o;

(d) a permutation of the last 6 coordinates of C.

The proof of the next lemma is ommited.

Lemma 3 Every [6,3,d > 3] code over the field P which is
self-dual under the inner product (8) is equivalent under the

transformations (a), (b), and (c) to one of the two codes with
generator mairices:

e000a® al® e00eca®a®
Ei=| 0ec0c®a’e Jand E,=|0e0ea?a®
00ea®eal® 00ecea®a
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Denote by Cyj, 1 <4 <2, 1 <7 <2,the code determined by
the matrices F: and F;. A computer check shows that these 4
codes are extremal. The codes Cy; and Cig have enumerator
(1) and the codes Cg; and Cp; have enumerator (2). Thus we
obtain

Theorem 1 Up to equivalence the codes Ci1, Ciz, Cn, and
C,, are the only self-dual [36,18,8] codes having automorphism
of order 5.

Remark. The codes Ci1, Cia, and Caz; are inequivalent. It is
an open problem whether Cy;, and Cy, are equivalent.

3 Codes of length 38

Theorem 2 There does not exist a [38,19,8] self-dual code
with automorphism of order 5.

Proof. Assume C is such a code with automorphism o of
order 5. Tt is known that ¢ must fix 8 points. Now = (F,(C'))
is a self-dual code of length 14. There are 4 inequivalent such
codes : CI, C3 @ As, Cy @ Bz, and Diy [4]. It is easy to
be seen that = (F,(C)) is not equivalent to C3, C3 @ As, and
Cs @ Biz. It rermains that ©(F,(C)) is equivalent to Di4.
Consder a generator matrix of 7(F,(C')) of the form

A0
0B
D|E

where the matrices A, B, D, and E are of types ko X 6, ky X 8,
ky x 6, and k. x 8 with kg, ks, k4, and k. being the ranks
of A, B, D, and E, respectively. It is known [5, p.175] that
ky = ke, 2k, + kg = 6, and 2k, + k. = 8. Hence ky = k, +1
and ks > 1. As B must generate a code of minimal weight at
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least 8 we conclude that k, = 1. Hence B = (11111111) and
ko = 0. As the all one vector belongs to 7(F,(C)) the vector
11111100000000 must be in #(F,(C)) too. This is in conflict
with k, = 0. The theorem is proved.
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