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Preface
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and the Institute of Mathematics of the Bulgarian Academy of Sciences.
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in Leningrad (now St.Petersburg, 1990) and Voneshta Voda, Bulgaria (1992). The present
one is held in Novgorod, the oldest city of Russia.
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Asymptotically optimal binary codes of polynomial
complexity correcting localized errors

R. Ahlswede, L. A. Bassalygo, and M. S. Pinsker

Abstract. The asymptotically optimal transmission rate of binary codes
correcting localized errors is known for the case when the number of errors grows
linearly in the code length. Here we prove that this rate can be attained by codes
with polynomial complexity of encoding, decoding, and code construction.

Recall that the only difference between codes correcting localized errors (see [1], [2]) and
the conventional codes lies in the fact that the positions of possible errors are known to the
encoder in advance. Therefore, codewords depend not only on messages but also on these
positions. The asymptotically optimal transmission rate of such binary codes is known
[1]. Here we prove that this rate can be attained by codes with polynomial complexity of
encoding, decoding, and construction. We supply a recurrent proof in which every passage
(recurrence) from the greater to the smaller length is accomplished in three steps. This
proof is based on the following argument.

In the first step, we split the entire transmission segment of length n into a number,
growing with n, of consecutive segments of equal length. We then choose a segment with
the least possible number of errors. We call it the auxiliary segment for it will be used to
transmit a certain auxiliary information rather than the message. However, its length is
small compared to n and does not, affect the asymptotic behavior of the transmission rate.

Having chosen the auxiliary segment, we proceed to the second step. We arrange a new
partition of the entire transmission segment except the auxiliary segment into a large number
of intervals whose length grows slowly in » (here we say ‘interval’ instead of ‘segment’ only
in order to distinguish between the first and the second steps). The choice of the interval
length is determined by the two following conditions: a) the exhaustive search encoding
and decoding methods on the interval must be polynomial in n, b) we must record on
the auxiliary segment the number of possible errors on every interval. These conditions
suggest the following precoding method. We record on the auxiliary segment the number of
possible errors on every interval while the message is encoded on the intervals themselves.
Here we employ the existing asymptotically optimal codes correcting the known number of
localized errors (the asymptotic optimality of the code on the full length follows from the
asymptotic optimality of the code on every interval). Moreover, these codes can be taken
constant-weight with certain natural restrictions on the weight, and we use precisely these
codes (we need this on the third step).

If the number of the auziliary segment were known to the decoder, there would be no
need for the third step. It would be sufficient to transmit the codeword obtained on the



second step and our problem would have been solved, because the encoding/decoding on
the entire segment, of length n would be reduced to the encoding/decoding on the auxiliary
segment and to the encoding/decoding on every interval whose complexity is polynomial
in = by Condition a). Applying the same procedure to the auxiliary segment (notice that
the fraction of errors on it does not exceed the fraction of errors on the entire transmission
segment), and so on, after a certain number of steps (growing in n) we shall arrive at
the recurrent auxiliary segment of the sufficiently small length. For this segment, we can
accomplish the encoding/decoding by exhaustive search, which completes our recurrent
procedure,

Thus, the only thing left is to explain the way in which we communicale the number
of the auziliary segment to the decoder. Since the number of numbers is small (certainly
less than n), any reasonable transmission method, at first, does not reduce the transmis-
sion rate asymptotically, and, secondly, admits the exhanstive search encoding/decoding of
complexity polynomial in n. On the third step we present such a method. Here we consider
the codeword constructed on the second step as the error vector known to the encoder and
construct a code that corrects known errors and localized errors at the same time. We need
an additional restriction to the decoding method, namely, the decoder must reconstruct cor-
rectly not only the message, which in our case bears the number of the auxiliary segment,
but, also the transmitted codeword (it is precisely this property that imposes the restriction
on the weight of the known error, to which we paid attention on the second step). By now
it is clear that the transmitled codeword equals the sum of the codewords constructed on the
second and third step. When decoding, we first reconstruct the codeword congtructed on
the third step (and hence the auxiliary segment number) and then subtract it from the
received word (add modulo 2 since we deal with binary codes only). We then arrive at the
situation described above, namely, we transmit a codeword constructed on the second step
and the decoder knows the auxiliary segment number.

Let, us now proceed to the formal exposition of the result. Let us introduce the notation.
Let B be the set of binary sequences of length n, M = {m} the message set, let & =
{E C {1,2,...,n}| |E| =t} be the set of all possible positions of errors of multiplicity t
(|&] = (’:)), and let V(B) = {e = (e1,...,ex) € Ble; = 0, if i € E} be the set of binary
words of length n that are zero outside the positions of E (|[V(E}| = 2¢). Since on the
encoding stage, we know the possible £ error positions, the codeword z(m, B) depends on
m e M and E € &. The code X = {z(m, E)jm € M, E € £} corrects t localized errors if
the following condition holds:

z(m,E)+e#a(m E)+e foral B E €&,ecV(E)e € V(E"),m,m' € M,m #m'.

It is known [1] that the maximum transmission rate of such a code equals 1 — h(T) —o(1),
where t = mn{0 < 7 < 1/2) and of1) — 0 as n — oco.

Theorem 1. Let 0 < v < 1/2. Then for any € > 0, there exists n(e) such that for
n > nle), there exists a code of length n with transmission rate 1 —h(r) — € that corrects Tn
localized errors and has the encoding and decoding complezity not greater than cn®, where ¢
is a constant. The construction of this code can also be accomplished with complezity not

greater than cn®.

In the course of the proof of Th.l we frequently refer to Theorem 2 helow, which is
of independent interest. This theorem provides a natural continuation of Theorem 3 [1],
pointing out auxiliary properties of codes correcting localized errors, which were unclaimed
before the present paper.

Theorem 2. There ezists a t localized error-correcting binary code of length n for the
transmission of M messages, where M satisfies the following inequality:

zl‘l
S AL
M2 Sons,

t
(Se=2 (':) is the volume of the sphere of radius t). This code can be chosen so that the

two following properties are satisfied:

a) The decoding into the nearest codeword reconstructs not only the message, bul
also the transmitted codeword,

b) For any binary sequence e of length n and any message m, in the code set
corresponding to m there exisis o word such that its modulo 2 sum with the
sequence e lies at the distance greater than t from all other codewords (including
codewords of the same code setf).
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ON INVERSION IN EXTENDED FINITE FIELDS
Valentin B. Afanasyev and Alexander A. Davydov

Institute for Problems of Information Transmission
Ermolovoi str. 19, GSP-4, Moscow, 101447, Russia

afanv@ippi.ac.msk.su adav@ippi.ac.msk.su

For an extended finite field GF{qt) an inversion algo-

rithm using the norm of an element of the field is con-
sidered. Complexity of the algorithm is estimated for a
tower of the fields. The case t = 3 is considered spe-

cially. An algorithm of multiplication in the extended

field is described.

1. Introduction }

Finite fields arithmetic have been intensively studying,
see, e.g.; [1]1-[4],[6]1-[8] and references in these works. In
the papers [1],[5] the norm of an element of a field is used
for inversion and division in quadratic extension fields.

In this work we consider inversion in extended fields. To
estimate the complexity of inversion we use the known exact bo-
und on the multiplicative complexity of multiplication and give
an example of multiplication algorithm achieving this bound.

The multiplicative complexity of an algorithm is the number
of nonscalar multiplications in it. For estimates of complexity
we take into account only multiplication of arbitrary elements
and inversion of arbitrary elements.

Let GF(g) = Fq be a ground field, g » 2. Denote by GF(qt) =
2 k

t i i t t
F tend fiel | i e e B
& an extended field, t 2 2 Let F&, Fq Fé » Egq be a
tO th —
tower of the fields, k > 1. Let Bl Fq' If b € fé PR Tt S 2
. £-1
then b = [bo, b1,...,bf_1) = bD + b1d +. bt_1d , where
' ¢h -1 e
4 is a primitive element of Fq ) bi € Fq P EHERR el e SR B

Let C,(0) (resp. CL1(0)) be a complexity of multiplication
of two arbitrary elements (resp. of inversion of arbitrary ele-
ment) in the ground field Fq. Denote by C,(h) (resp. CL1{h))

the complexity over the ground field of multiplication of two
arbitrary elements (resp. of inversion of arbitrary element) in

the field ""; AR L

A Multiplication in extended fields
It is known (see, e.g., [2], [7]1, [4, p. 291]) that
if g » 2t - 2 then C.{1) = (2t - 1)-c,.{0). (1)

To achieve (1) for g = 2t - 1 one can compute values of the
product of 2 polynomials in 2t - 1 different points and use an
interpolation (see, e.g., [3] and references in [3]). We desc-

ribe example of such algorithm. Let a = (aU, a1,...,at_1], b=

t

(b, b b 1), d = tdy, dy,...,d, 4), ab,d € F, ab=d.

n*  SAr R St o |
We assume that (2t - 1) | (g - 1). Then we can use the Fourier

transform (FT) of order 2t - 1. Let T be the matrix of FT. Let

*

* *
a , b be vectors of length 2¢ - 1, a = (ag,...,8; ,0,...,0),

b* i {bc,...,bt_1,0,...,0). Denote by R the (2t - 1)xt matrix

obtaining the residue of a polynomial of degree 2t - 2 by modu-
le of the irreducible polynomial of degree t generating the ex-

tension F;. The algorithm has the form,

* *
Tl {AG'A1""A2t—2) = a xT, B = {30,31...,th_2} = b xT.

[¥]
]
I

(00,91..., 2t-2)' D, = A;"B,, i =_n,2t -~ 2.
3. d = {Dx1r1]xR.

The algorithm can be used on all levels of the tower of the

1

fields. Matrices of FT T and T  for all levels consist of

elements of the ground field Fq' We have for the tower:

1%/ lg > 28020 khen IBLTRY = (2E & 1) e (o) L Al
3. Inversion in extended finite fields
For an element b of Fﬁ the norm N{b) over the field Fq
2 £-1
is defined as N(b) = b-b%:p9 . ... b9 [6]. We have [6]
be r«-;, N(b) € F_, N (b) e F,y N(b) = 0 if and only if b = 0.
qi qi+1 qi+p—1

We denote N},p{b) = iy Sk byl 4 N#[b) = N1,t—1{b)’

E(t)= l logzlt - 1) J, L{t) = £(t) + w(t - 1), where w(t - 1)

is the weight of the binary representation of the value ¢t

[}
=

Clearly, w(t - 1) - 1 < £(E), L(t) < 2f(t) + 1, and



=
QI
{NE.p{b’) B Ni+5.p

(b). . (2)

The algorithm of inversion in the field Eﬁ_has the form.

1. Iterative computation of N, P{b) € F; for p = 2v, v =
1,2,...,f(t), with using of the relation (2) for s = ZV_1.

2. Computation of N#{b} € F; on the base of the binary repre-

sentation of the value (t - 1)}. The relation (2) is used again.

3 N(b) = b'Nk{b) € Fé,

4. N '(b) is computed as inversion of N(b) in the field e

5. 57! = Nk N (D).

The raising to the power gs of an element of F; is a linear

transformation. The 1st and 2nd steps of the algorithm contain

£(t) and w(t - 1) - 1 nonscalar multiplications in-F;, respec-
£

tively. The 3rd step has one nonscalar multiplication in F
The 5th step requires t nonscalar multiplications in F&. So,

C_4(1) < € {0) + L(E):Cu(1) + t-Cyu(0).

Let A(t) = L(t)(2t - 1) + . For h = 1,k it holds that
€ q(h) € € j(h = 1) + L(£)-Culh) + trCulh ~ 1)
#h-1 Y

If g > 2¢ - 2 then C_,(h) < C_,(h - 1) + A(t):Cplh - 1).
For t > 3 on the kth level of the tower we have the following:

k
If g > 2t - 2 then € (k) s € ,(0) + a(t)e,(0) T (2e- nk2 .
2=
el -1,

= € (00 & A(E)((2¢ ~ )" = 1){2E - 2) € (0) <

k(1+logt2l
C_q(0) &+ 2F(E) £ *C(0).

k
We assume now that g = 2™, t 5 3. Then qt o M= mtk and

’ r

c_,(0) + 2£(¢)-2KK ¢ (0)

1+logt2 ~(1+logt2)
CL1[k) < CH1(O) + M *2F(t)-C (0)-m £

—(1+logt2)
From [1],[3]1,[6]-[8] it follows that 1 < C,{(0)'m < m.

6

4. Inversion in cubic extensions of finite fields

Let £ = 3. Let W(x) = uu + u1x + uzxz + x3 be a polynomial

generating the field F;. We denote b = (bo,b1,b2) E F;’

q.,a° o
by by byE F, Ny(b) = b¥-b? = (P),P,,P,) € g PorPiPy € Fo.
Then N(b) = b'N}(b] = bUPO - ;,10{,E'.|215‘_I + (b1 = uzbz}Pz) E Fq.
This expression contains 3 nonscalar multiplications in Fé.

Let now g = Zm, t = 3. Denoting B uo + Uy b, we obtain

2 2 2 2 2
PD = bc + u2b0b1 + quObZ * Eb1b2 + “1b1 + (U1 *+ uguz)bz.

2 2 2 A 2
P1 = b0b1 + u2b1 + u2b1b2 + Ebz. P2 = bUbZ + u2b1b2+ b1

We have here 3 nonscalar multiplications in Fq since sgquaring

2
+ u1b2.

of an element of GF(2") is a linear transformation. So,

T ) s C Jthi- 1)y 9, (h = 1) for & = 3, g'x 2%, b = T,k

Cqk) < € (0) + 2.25:(5% = 1)20,(0), for t=3, g-=2
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Combinatorial Aspects of Secret
Sharing with Codes

ALEXEI ASHIKHMIN and ALEXANDER (SASCHA) Barg!
aea®ippi.ac.msk.su and abargtippi.ac.msk.su

IPPI, Moscow

We study access structures in secret sharing schemes determined by linear
codes. They are known to be characterized by the set of minimal codewords,
also termed the projecting set of a code. After stating some simple properties
of projecting sets, we find this set for the 2nd order Reed-Muller codes.

1. Secret Sharing Schemes

A convenient formalization of the concept of secret sharing is given by secret shar-
ing matrices. Let M be an M x n matrix with entries my,,] < u < M,a € I =
{po;P1,+++,Pn-1}, from a finite set S. For a given row i of M, let AC I,a € A, X C
A\ {a}, and define

N a,X) = {Mus : Mye = my, for all z € X}

Then M is called secret sharingif for all a € I, X C I'\ {a} either N(i,a,X) =1 for all
or N(%,a,X) = |5] for all i. We assume that the first column of the matrix, pa, represents
the secret, while all the other ones correspond to system’s users. Given the uth row, myg
is the value of the secret and the values mus,a € I'\ {po} form the shares of information
distributed to the users. A collection of subsets {X C I} such that py € X and for all
i, N(i,po, X) = 1 is called the access structure, denoted I'. We assume that the access
structure is monotone, ie., 7 € I' and 41 C 7, jointly imply 42 € I'. Thus, it is natural
to study the collection '~ of minimal sets in T, i.e., sets with no proper subsets in T'.
Suppose for any a € I, there exists a € T'~ s.t. a € v, in which case the access structure
is called connected. In [1], it is proved that if subsets not in a connected structure I are
called independent, this defines a (connected) matroid V with the set of circuits through
po equal to I'. The structure I'* defined by the dual matroid V* is called dual to T [2].

!The research of this author was partially supported by the International Science Foundation under
grant MEF000.

2. Linear Schemes

Linear schemes were studied in [3, 4, 5]. Fix a certain finite field F, and an integer
parameter r > 0. The shares are formed by the values of a linear functional f(e) = eH,
where e € (F.)" and H is an r x n matrix over F,. Thus, also § = F,. Then the
corresponding matroid V is vectorial, and we may identify its representation with a g-ary
linear code C. To characterize the access structure determined by V, we have to study
its circuits containing poe. In this way, we arrive at the concept of minimal codewords.

Definition [4]. A codeword c € C' is called minimal if it covers no other codeword in
C.

(Note that of all the minimal codewords with one and the same support, we keep only
one.)

The access structure defined by a given code is characterized by the set of its minimal
codewords with a nonzero first coordinate.

Under the title ‘projecting sets,’ the sets of minimal codewords of linear codes were
studied already in [6] (for decoding purposes). For a given code C, denote its projecting
set by P(C) or simply P. Since the passage from P to its subset with a nonzero first
coordinate is in most cases easy, below we prefer to work with entire projecting sets of
codes. By definition 0 ¢ P.

3. Intersecting Codes and Strict Secret Sharing

There are many examples of binary linear codes ¢ with ? = €'\ {0}. Codes with
this property are called intersecting [6, 7] (indeed, any pair of codewords has a nonempty
intersection). In our context, intersecting codes define access structures for a problem
that may be called strict secret sharing:

for a given collection T = {~;,73,...} of subsets of I s.t. v, & =, for all
u # v, arrange the distribution of shares in a way that the shares of any entry
of T', taken together, determine the secret completely, while the shares of any
§ C I,6 ¢ T provide no information about it.

For a g-ary intersecting code @, the ‘strict’ access structure is formed by |C|/g code-
words with a 1 in the first coordinate.

4, Projeéting Sets of Linear Codes.

Let € be a linear code realizing the access structure T. Then C realizes the dual
structure . This follows from a theorem for general access structures [2, Th. 10] since
the dual matroid of a vectorial one can be represented as the vector space orthogonal to
the vector space representation of the original matroid. In coding-theoretical terms, this



classical result on matroids is straightforward (we use the definition of matroids in terms
of bases).

Proposition 1. If some k coordinates in a linear code C form an information set,
then the remaining n — k coordinates form an information set in the dual code.

PRc;OF, A linear dependence among n — k columns of the parity-check matrix of C
implies that there exists a codeword ¢ € €' with nonzeros within these n — k coordinates,
i.e., with zeros on the k information positions, i.e., ¢ = 0.

Thus, we face the problem of characterizing projecting sets of codes and their duals.

In the next two propositions, the following fact is of key importance.

Proposition 2. a) Let G be a g-ary linear code, ¢ € P(C),U = suppc. Then the
rank of the parity-check matriz H of C' restricted to U, rkH |, = wt(c) — 1.

b) If ¢, € P(C) and supp c; = supp ¢y, then ¢; and ¢, are proportional.

The following proposition is immediate from a).

Proposition 3 [6]. Let C be an [n,k, d]-code and c € P(C). Then wi(c) <n—k+1.

In particular, all of the words of a binary code C with d < wt(c) < 2d — 1 fall into P.

Consider random linear codes.

Proposition 4. Let G be a random g-ary linear code and C,, the subset of its words
of weight w. Then

1 )m—z w=1

E|C,NP|= (::) (qq;{Tklh ..]-:I':J{qﬂ_k - &)
Next we characterize projecting sets for the Hamming codes and second order Reed-
Muller codes.
Proposition 5. Let (' be the g-ary Hamming code of length n = (¢™—1)/(¢—1}). Then
ils projecting set P(C) is composed by B, vectors of every weight 5,3 <s <n—k+1=
m + 1, where

1 =2 i 5
B, = mg(q —q)

The dual structure in this case is determined by the projecting set of the [n = (g™ —
1)/(g — 1),m,q™""] code, which consists of n codewords (all of the pairwise noncollinear
codewords except 0). Of them ¢™! have a 1 in the first coordinate. .

Let € = RM(2,m) be the second order binary Reed—Muller code, 4,, the number of its
words of weight w. Then A,, = 0 except for w = 21, w = 2m-142m-1-h 0 < b < |m/2].
Let B, = |Cu N P| be the number of its minimal codewords of weight w. The next

proposition forms our main result.
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Proposition 6. Foraw = 2™ 42™-1=h b — 0,1,2, and w = 0, there are no minimal
codewords (B, = 0). Otherwise, B,, = A, ezcept for the case w = 2™, when
[m/2]

Bw A= Z Agm;l_zwi—l—b(gm_zh+l = 2) 2
h=2

The proof is founded on Dixon's theorem, which provides a classification of quadratic
(symplectic) forms over GF(2). Suppose a symplectic form f(=z1,...,2,,) has rank 2h.
Then there exists an affine transformation by which f is reduced to the form

h -
Eyzi—qyzi + L(Yaha1y o« o1 Ym)s (1)

i=1
where L is a linear form. Since any affine transformation defines an antomorphism of the
code, it does not change the property of the codeword determined by f to be minimal or
not. Hence we are left with the forms given by (1). The remaining part of the proof is
a careful analysis of these forms, which enables us to characterize minimal codewords of
the RM(2,m) codes completely.

Acknowledgment. Thanks to Gilles Zémor for suggesting the idea of the proof of

Proposition 5.
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Covering Radius of Ternary Cyclic Codes with
Length up to 20
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Appl.Math.&Inform.Lab, Institute of Mathematics, Bulgarian Academy of Sciences
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Abstract

For the ternary linear cyclic codes with length less than or equal to 20 the upper and low-
er bounds for the covering radius are determined and the exact covering radius values are
computed.

1. Introduction

A linear code C is called cyclic if for every code vector z = (@Gn-1,8n-2,...,@0)
the vector y = (@o,@n-1,...,01) is from the code too. Let g(z) be the generator
polynomial of such a code, g(z)|=" — 1.

If & is a primitive n—th root of unity in some extension field of GF(3), then all
zeros of = — 1 can he written as of (0 < j < n—1). We will characterize C' by its
defining set R = {j|a? is a zero of g(=)}.

Let us define the check polynomial h(z) = (2" — 1)/g(z). Then h(z) is the
generator of the dual code.

2. Bounds on the covering radius of cyclic codes
The covering radius of C' is the smallest integer R such that the spheres of radius

R arround the codewords cover GF(g). According to [1] the following bounds were
used: -

LOWER BOUNDS

R(C) 2 |(d - 1)/2| (1)

12

R(©) [ )
O ( )(Q —1) > ¢** (Hamming bound) : 2)

i=o \?

UPPER BOUNDS

R(C)<n—k (3)
Let S be the number of nonzero weights in the dual code of C.

R(C) < S (Delsarte bound) (4)

3. Computer methods for calculating the covering radius
METHOD 1
If H = (hy, hs,...,hn) is any parity check matrix of C, then the covering radius

R(C) of the code is the smallest integer p such that every nonzero columns vector of
n — k entries is a linear combination if not more than p columns of H. The number

of the steps is proportional to at most ¥3%_4 ("?)2" and 3** words of storage are
needed,

METHOD 2
R(C) is the weight of the translate leader of greatest weight. The weight of a

translate leader is the distance between any vector of the translate and the code.
For a code in systematic form (G = [I|A4]) a vector of each translate can be found
by generating all vectors of the form (0,...,0,a), @ € GF(3"*. The number of
steps is proportional to n3™ and 3* words are needed to store the code, These 3k
words can not be stored in memory if the code is too long. In this case the code

was generated once again for each vector.
Both methos are based on [1].

Table IV from [2] was used as source for all ternary cyclic codes. As in [2] we
call two codes equivalent if their defining sets can be obtained from each other by a
combination of multiplying by an integer coprime to » and shifting over m (n = 2m).

The Table represents a list of the ternary cyclic codes of length less than 20, their
minimum distance, the roots, the upper (Hamming) and lower (Delsarte) bounds
for the covering radius, and its exact values. The computation method is given in
the last column.

13



Table. Bounds on R(C).

roots

2,6

4,12

M2

0,8

0,2,6

0,4,12

1,3,9,11

2,4,6,12

0,2,6,8

2,6,10,14

0,4,8,12

0,1,3,9,11

0,2,4,6,12

0,2,6,10,14

EA e R R A R e S e

1,2,3,6,9,11

0,1,3,8,9,11

1,3,4,9,11,12

2,4,6,10,12,14

0,2,6,8,10,14

0,2,4,6,8,12

0,1,2,3,6,9,11

0,1,3,9,10,11,14

0,1,3,4,9,11,12

0,2,4,6,10,12,14

0,1,2,3,6,89,11

1,2,3,4,6,9,11,12

0,1,3,4,8,8,11,12

1,2,3,6,9,10,11,14

1,3,5,7,9,11,13,15

0,1,2,3,4,6,9,11,12

0,1,3,4,9,10,11,12,14

0,1,2,3,6,9,10,11,14

0,1,3,5,7,9,11,13,15

1,2,3,4,6,9,10,11,12,14

0,1,2,3,4,6,8,0,11,12

0,1,3,5,7,8,9,11,13,15

0,1,2,3,6,8,9,10,11,14

1,2,3,5,6,7,9,11,13,15

1,3,4,5,7,9,11,12,13,15

0,1,2,3,4,6,9,10,11,12,14

0,1,2,3,5,6,7,9,11,13,15

0,1,3,4,5,7,9,11,12,13,15

1,2,3,4,5,6,7,0,11,12,13,15

0,1,2,3,5,6,7,8,9,11,13,15

0,1,2,3,4,6,8,9,10,11,12,14

=

1,2,3,5,6,7,9,10,11,13,14,15

tblhﬂ‘lmmﬁUla’i\h-rhv;hﬁkUlUlwUlmalhJih&U\0"MﬁmmMMNU#PMNUMNNMNNMNMWR.

ol gl ] il | en| | | | | | | | =3 | 3| | | @ oo o) 0ol )W WD WD

8

-

Noln |k | d Toots 2| 4 expl.
1 7 T e T 2 1] 2 1
v B 13 32 2
3 4 1 1 0,1,3 2|3 2 M2
4 8 7 2 4 1(1 1
5 8| 6 2 1,3 T 1
6 | 8| 6|2 2,6 1|2 2 M2
7 8| 8 2 0,4 11 2 2 M1
8 g |5 3 0,1,3 213 2 M2
"8 [ 5[ 2 0,2,6 23| 2 | M2
8§ | 4| 4 1,2,3,8 2] 5 3 M2
8|44 0,1,3,4 2[5 3 | M2
8 [ 4 2 1,3,5,7 20 4 4 M2
8 [ 355 0,1,2,3,6 3|6 4 M2
8 [3] 4 0,1,3,5,7 3| 6 4 M2
8 (=2 |8 0,1,2,3,4,6 4|7 5 M2
8§ [2 ] 4 1,2,3,5,6,7 4| 7 4 M2
818 0,1,2,3,5,6,1 57 [ 5 | M2
9 2 5 1|1 1
8| 2 0,5 12 2 M1
6| 2 1,3,7,0 Z2[ 4] 3 M2
5 | 4 0,1,3,7,9 3| 8 3 M2
5| 2 0,2,4,6,8 3|5 5 M1
4 | 4 0,1,3,5,7,9 3|8 5 M2
2055 1,2,3,4,6,7,8,9 5| LD 6 M2
1|10 0,1,2,3,4,6,7,8,9 6|9 6 M2
65 13459 T
5 |'s 0,1,3,4,5,9 3|5 5 M2
1|11 1,2,3,4,5,6,1,8,8,10 7 7T | M2
0] 3 1,3,9 ST [T
9 3 0,1,3,9 2| T 3 M2
e [ 1,3,4,9,10,12 3|7 3 M2
74 1,2,3,5,6,0 AETEs
6 | 6 0,1,2,3,56,9 3| 8 9 M2
66 0,1,3,4,9,10,12 T
1|8 1,2,3,4,5,6,9,10,12 511 6 | M2
3|9 0,1,2,3,4,5,6,9,10,12 611 7 | M2
1|13 1,2,3,4,5,6,7,89,10,11,12 8 8 M2
13| 2 i Tl 1
1Z] 2 T, 122 | M2
B |2 1,3,5,0,11,13 36| 4 | M2
7] 4 0,1,3,5,9,11,13 S [ 4 M2
7|2 0,2,4,6,8,10,12 e O
6| 4 0,1,3,5,7,9,11,13 a3 7 | M2
2 | 7 | 12345889,10,11,12,13 | 7|13 8 | M2
1 |14 ]0,1,23,4,5,689,10,11,12,13 | 9 | 13| 9 | M2
15| 2 1 1

0,1,2,3,4,5,6,7,9,11,12,13,15

. (=T
"‘m"‘woewoocaanwcom-amanmmmmaac:mmm»ﬁbmbhh-ﬁup&w-&.ﬂwwmuuu

-\Iﬂ')ﬂ!Ghﬂ!ﬂ}mﬂ'lUlU'UlOl(-ﬂE.’lﬂln‘krhlh-ﬁﬁ*&ﬂwwmwww—MwaNMMMNNMHH'—ll—l—lM
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No|n | k| d roots 2| 4 | RC) | expl
93 |16 | 3 8 0,1,2,3,5,6,7,9,10,11,13,14,15 T |15 1 M2
94 |16 2 [ 12| 0,1,23,45,6,7,89,11,12,13,15 | 8 | 15| 10 | M2
95 (16| 2 | 8 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15 | & | 16 | 10 | M2
56 [ 16 | 1 | 16 | 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15 | 10 | 156 | 12 | M2
97 [20] 19 2 10 1 1 1

98 (20|18 ] 2 5,15 1 2 2 M1
99 (2018 | 2 0,10 1 2 2 M1
100 [ 20 | 17 | 2 0,5,15 1 3 2 M1
101 |20 | 16| 2 1,379 o 5 D) .
102 {20 |16 | 2 2,6,14,18 2 4 3 M1
103 [20 16| 2 0,5,10,15 22| 4 | Ml
104 |20 | 15 | 4 0,13,7,9 2 5| 3 | M1
105 [ 20 | 15 | 2 0,2,6,14,18 2|6 3 M1
106 | 20 |15 | 2 0,4,8,12,16 205 &5 | Ml
107 |20 | 14 | 4 2,5,6,14,15,18 38| 3 | Ml
108 |20 |14 | 4 0,1,3,79,10 2 8 4 M1
109 [ 20 | 14 | 2 1,3,5,7,9,15 27 &5 | Mi
110 |20 |14 | 2 0,2,6,10,14,18 28| 5 | Ml
111 | 20 | 13 | 4 0,2,5,6,14,15,18 3 [11] 4 | Ml
112 ({20 | 13 | 4 0,1,5,7,9,15 3 |10 5 M1
113 (20 | 13 | 4 0,4,5,8,12,15,16 3 (13| 5 | M1
114 | 20 | 12 | 4 1,2,3,6,7,9,14,18 3 |12 4 M1
115 | 20 | 12 | 4 0,1,3,5,7,9,10,15 3 (13| 5 | M1
116 |20 |12 | 4 0,2,5,6,10,14,15,18 3 (16| 6 | M1
117 (20 |12 | 2 1,3,7,9,11,13,17,19 3 9 6 M1
118 (20 |12 | 2 2,4,6,8,12,14,16,18 39| & | M1
119 (20 | 11 | & 0,1,2,3,6,7,9,14,18 4 [13| 5 M1
120 | 20 | 11 | 4 0,1,3,4,7,8,9,12,16 4 [14] & M1
121 | 20 | 11 | 4 0,1,3,7,9,11,13,17,19 4 |13 6 M1
122 [20 |11 | 2 0,2,4,6,8,12,14,16,18 18| 6 | Ml
123 |20 | 10 | 6 0,1,2,3,6,7,0,10,14,18 % 16| 6 | M1
124 (20 | 10 | 4 1,2,3,5,6,1,9,14,15,18 4 |i5| 6 | M1
125 |20 | 10 | 4 2,4,5,6,8,12,14,15,16,18 i (16| 6 | M1
126 [ 20 | 10 | 4 0,1,3,7,9,10,11,13,17,19 4 |16 6 M1
127 (20|10 | 2 1,3,5,7,9,11,13,15,17,19 4 | 10 10 M1
128 (20| 9 | 8 0,1,2,3,5,6,7,9,14,15,18 5 (16| 7 | M1
129 (20| 9 | 4 0,2,4,5,6,8,12,14,15,16,18 5 [17| 7 | M1
130 [ 20 | 9 | 4 0,1,3,4,5,7,8,9,12,15,16 5 | 18 (] M1
19120 0 | 4 0,1,3,5,7,9,11,13,15,17,19 5 [15] 10 | M1
13220 8 | 8 0,1,2,3,5,8,7,9,10,14,15,18 5 (17| 7 | M1
33|28 |5 1,2,3,4,6,7,8,0,12,14,16,18 5116 7 | M2
134 | 20 | 8 4 1,2,3,6,7,9,11,13,14,17,18,19 5 |16 (i M1
135 (208 | 4 0.2,4,6,8,10.12,14,15,16,18 5 (18| 10 | M1
136 | 20 | 8 4 0,1,3,5,7,9,10,11,13,15,17,1% 5 | 18 10 M2
137|207 | 8 0,1,2,3,4,6,7,8,9,12,14,16,18 6 |16| 8 | M2
132 |20 | 7 8 0,1,2,3,6,7,9,11,13,14,17,18,19 6 | 18 8 M1
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No[n |k]| d roots 2 [ 4 | R(C) | expl.
139 |20 | 7| 6 0,1,3,4,7,8,9,11,12,13,16,17,19 6 (17| 8 | M2
140 (20 [6 | 10 1,2,3,4,5,6,7,8,9,12,14,15,16,18 7 17| 10 | M2
1|20 6 | 8 0,1,2,3,4,6,7,8,9,10,12,14,16,18 T 10 | M2
142|206 8 0,1,2,3,6,7,9,10,11,13,14,17,18,19 71T 9 | M2
143 [20 |6 | 4 1,2,3,5,6,7,9,11,13,14,15,17,18,19 718 | 10 | M2
144 [20 |5 | 11 0,1,2,3,4,5,6,7,8,9,12,14,15,16,18 8 (17| 10 | M2
145 [20 |5 | 8 0,1,2,3,5,6,7,9,11,12,13,14,15,17,18,19 g 18| 10 | M2
146 20 [5 | 4 0,1,3,4,5,7,8,9,11,12,13,15,16,17,19 B 19| 10 | M2
147 [ 20 |4 | 12 0,1,2,3,4,5,6,7,8,9,10,12,14,15,16,18 g (18| 12 | M2
148 [20 | 4| 8 0,1,2,3,5,6,7,9,10,11,13,14,15,17,18,19 g (15| 11 | M2
149 [ 20]4 | 5 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,18 8 |19 12 M2
50 (20 [3 [ 10| 0,1,2.3,4,6,7,8,9,11,12,13,14,16,17,18,19 | 7 | 19| 12 | M2
151 [ 20 [ 2 [ 10 | 1,2,3,4,5,6,7,8,9,11,12,15,14,15,16,17,18,19 | 11 |19 | 12 | M2
155 [ 20 [ 11320 [ 0,1,2,3,4,5,6,7,8,8,11,12,13,14,15,16,17,18,19 | 12 | 19 | 13 | M2
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Abstract. Coefficients of the transfer functions of random convolutional en-
coders are upper-bounded by powers of the factor of the code rate in Costello
bound en free distance of periodically time-varying codes. It is shown that
Costello bonnd may be proved based on these estimations and the period of
encoder attaining the bound is lower-bounded by the ratio of the value of
Costello bound and Varshamov-Gilbert bound for a given rate. This estimate
is tighter than the known one if rate is less than 0.413.

1 Introduction.

Transfer functions T(D) and T'(D) of binary convolutional encoders, intro-
duced in [1], describe spectrums of the code sequences and play important role
in analysis of convolutional codes and their performance in communication sys-
tems. In particular, estimates of the burst (first-event} error probability Pg and
bit error probability P, at the output of the Viterbi decoder may be expressed
as follows [1,2]:

P < iTCDa R < VB (05 (1)
where ;
T(D)= N id) DT DY =S pld) < pY,
d2dy d>dy
and

D, = 24/p(1 - p),

provided that a code sequence was transmitted over a binary symmetric chan-
nel (BSC) with crossover probability p; the parameter dy is known as the free
distance. Numerical results for specific convolutional encoders show that these
estimates tend to infinity when the code rate R is close to the computational cul-
off rate Reomp. In some sence, we explain this fact evaluating transfer functions
for random convolutional encoders in such a way that estimates (1) may be used
for these encoders only if R < Rcomp. This conclusion follows from the note that
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when the encoder memory grows, the structure of a specific code tends to the
structure a code generated by the random encoder. Therefore, results concerning
fixed codes confirm an assumption that our estimations are tight.

It is turned out that the terms of decompositions of the transfer functions
are estimated by powers of the factor in Costello bound on the free distance 3].
Using this result we give slightly different proof of Costello’s bound and show
that the period of time-varying code attainig the bound is lower-bounded by the
ratio of the value of Costello bound and Varshamov-Gilbert bound for a given
rate.

2 Estimations of Transfer Functions of Random
Convolutional Encoders.

Statement 1. Let 7(d) and 7'(d) be coeflicients of the transfer functions of
a random convolutional encoder of memory m and rate & when each coefficient
of the generator polynomials is equal to 0 or 1 with probability 1/2 and the
assignement is realized independently at every level of the code trellis, Then

() <27™ (2)°, (2)
T(d)<27™ (d+1)-(e)%, forall d>0

where
1 s 1

S 2'\/Pcomp“ = Pcamp_)‘

and peomp is the value of BSC crossover probability for which K is equal tothe
computational cut-ofl rate me;,, i.e..

R=1-log, (l st gnall —ipdang }) :

Corollary. Upper bounds (1) may be used for random codes in conjunction
with estimations (2) only if R < Roonip.

Proof. The proof will be given for codes of rate R = 1/N. It is well known
[2] that if coefficients of the generator polynomials of the encoder are random
variables, chosen uniformly at each time instant, then the code symbols assigned
to any given path on the trellis leading from the origin to the all-zero state and
merging with the all-zero state at level ! and not before (loops of length !) are
statistically independent random variables chosen uniformly from {0,1}. The
number of code symbols corresponding to these paths is equal to N{, and there

(il

(3)

are not more than

weight i. Thus,

—m ! ; ;
) paths corresponding to information sequences of

19



s 2, (1) = 5775

I>m41 i>1
<27™ - F(d),
HORSDY (?)'2‘”"2*-(:1"’)5
2m+1 £2]

<2 (Fa)- 5 F(d)) < 2™ F(d),

where

=3 () e

I>1

1 A 1 N1 g=iN=1)
F{d)_a-): iR

>1

Using the identity :

1
NI\ N NiI-DY
(=T Y

and interchanging the order of summation in (4) we write :

N 2 il
Fldy= 275 Dy (A) 0 (Ad('!_u..”) T T
it 3

w=0

N
— o=(N=1) Z( ) -F(d - w) for all d >0,

ur
w=0
where il 9-(N=1)
F(U):;? M
and

 F(d)=0 for all Id{(l

Similar transformations lead to the equation :

F'(d)y=2"("-1). f: (N) CF'(d -I w) + 1 . F(d) forall d>0
= 4 5 ] _ ,

w=0
where
F'(0)= l -Z:Q_(N"]‘)‘I o= ——Q;L—— <
2y et Eg
20

and :
VF'(d)=0 forall d<0.

For any 7, the functions (2)? and (d + 1) - (¢)¢ upper-bound F(d) and F'(d) for
all d < 0. Therefore [4],  satisfies (2) if

DN
A S o
w={

Bl N 1
(@+1) - @422 PNy (d-w+1)- (w) (@ 5 )

w=0

If 7 is defined by (8) then both inequalities are valid since © < 2N — 1. Q.E.D.

3 Estimation of the Period of Time-Varying Encoders
Attaining Costello Bound.

Time-varying encoders of period 7 are known as encoders whose generator
polynomials are periodically repeated every 7 time units.

Statement 2. There exist binary periodic time-varying encoders of memory
m, rate R = K/N. and period

da(R)
T 2> 5alR) m (5)
such that
dy 4
— > 8¢ (R) + o(1/m).
mN i
where R

§c(R) = bvg(R)= H™'(1 - R)

logo(2! -7 - 1)°
and H~}(z) is the inverse binary entropy function.

To prove Statement. 2 we use Statement 1 for all loops of length / < 2(m+1)
and Varshamov-Gilbert arguments for initial m + 1 branches and last m 4 1
branches of loops of length [ > 2(m + 1). If R < 0.413 then the lower bound (5)
is better than the known one [3].
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ABSTRACT

The paper introduces a class of linear codes which are non-uniform error
correcting, ie. codes which have the capability of correcting different
errors in differemt code words. A technique of specifying error
characteristics in terms of algebraic inequalities, rather than the
traditional spheres of radius e, is used. A construction is given for deriving
these codes _from kmown linear block codes. This is accomplished by a new
method called parity sectioned reduction. This is a technique of reducing
the parity check matrix of a uniform error correcting code by dropping
some rows and columns and of modifying the error range inequalities.

1. INTRODUCTION

The linear codes studied in Coding literature for correcting random errors are such
that the codes can correct uniformly up to e random errors in every code word. However,
the situation may arise in communication where certain words have a greater requirement
for error control than others, i.e. different number of errors in different code words, may
be most suited. ;

Some work has already appeared on non-uniform error correction. In [5], (see also
[1]), the authors examined the perfect codes and showed that by a process of
'sectioning!, non-uniform error correcting codes can be produced that remain ‘perfect’ in
the sense that their error ranges remain disjoint and exhaust the whole space. The idea
arises also in [3] where purely combinatorial type of results on sphere packings of
different radii have been considered.

The codes widely studied in the literature are linear codes in general and specifically
minimum distance specified codes like BCH codes [6]. If non-uniform error correcting
codes are to be obtained, we naturally consider obtaining them from the linear codes and
other well-defined codes.

In this paper, we develop a systematic method to produce linear codes that are non-
uniform error correcting, from known linear codes. The approach focuses on the errors
to be corrected; this is done by studying the error ranges using a method of representing
them'as algebraic inequalities. This technique arose in a study made by authors on error
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correcting codes with variable word lengths [2,4]. Since for a variable length code there
is no well defined code space, the technique of representing error ranges in inequality
form, which have meaning in spaces of any dimensions, was developed. The errors to be
corrected do not necessarily have to form a sphere of radius e around the code word but
may form an asymmetric figure corresponding to the error characteristics.

A non-uniform error correcting linear code is produced by 'sectioning ' a uniform
error correcting linear code at a parity check position. The new parity check matrix is
obtained by reducing the parity check matrix of the uniform error correcting code in a
particular fashion. The error ranges are represented by modified inequalities,

In section 2, we give some definitions and concepts. In section 3, we discuss
sectioning of linear codes at parity check positions; this produces the non-uniform error
correcting codes. In section 4, we consider the effect of sectioning linear codes at
information positions; what we obtain are shortened linear codes and their coset codes.

2, DEFINITIONS AND CONCEPTS

Let C be an e random error correcting, (n,k) linear code. The error range of a code

word c_is defined as
e(e)={u /w(c-u)<e}
where w (., }is the Hamming weight of the vector in ( . ). In this paper, inequalities are
used to define and determine the error ranges of code words. If ¢; = ( Cill2iCa s oty Chn)
is a code word of € which is capable of correcting e random errors in this code word,
the error range inequality of the error range of ¢ is given by
Xi=cial o -epalt. +[xn-Cigl < e

where [ xj - cij|, j=1,2,....n,is the Himming distance between xj and cij. For
the binary case, |x; - ¢ij| =0 or 1, according as x; is equal to ¢;j or not. Obviously,
the solution to the above inequality is the set of vectors at a distance e or less from Cit
The set of solutions so obtained is what in Coding Theory is generally referred to as the
sphere of radius e around ¢; . The inequality representation plays an essential role in this
paper.

Next we define what we mean by a sectioned code of C.

definition 2.1: Let C be an e error correcting (n,k) linear code over GF(q) with code

words { gy, &, . ..., Cqe} together with the code word range inequalities
n
Z |xj - cij|se =1, 20 . gk.

j=1
An (n-g) sectioned code of C with word length n-g is obtained by dropping some g
positions from each code word of C and by assigning specific integer values from
0,1,2,...,¢-1 to each corresponding variable in the range inequalities of the code
words. Those range inequalities which have no valid solutions are simply dropped along
with the code words corresponding to them,

23



The code words of a sectioned code of an e error correcting code in general do not
necessarily have error ranges of the same size and the resulting code is in general non-
uniform error correcting.

The theorem following is a generalization of the well known, minimum distance 2e+1
criterion as it applies to non uniform error correcting codes; it will be used in later

sections,

THEOREM 2.1 {Sharma & Bernard [5] )
A code C with cade word length n can correct e random errors in m; code words,

¢, errors in m; code words and so on , up 10 eg errars in mg code words, if and only if we
can partition C into g subsets Cy, Cy, . . ., Cgof sizesmy, my, . .., g respectively, such
that for eachc € Ciandc' € G, i,j=12,...8

dicc') 2 e +e + 1.

Sectioning of a code may be done at information or parity check positions . We take
up in the next section the sectioning of linear codes at parity check positions, which
produces non uniform error correcting codes.

3. SECTIONING AT PARITY CHECK POSITIONS

In this section we examine the effect of sectioning linear codes at parity check
positions. What we obtain are classes of non uniform error correcting linear codes. The
method used, which we refer to as ‘parity sectioned reduction’, induces a reduction of the
parity check matrix that has not been previously considered in the literature. 'We
introduce the ideas first using two examples; then, in Theorem 3.1, the general result is
given, The first example is of a single error correcting code which will produce non-
uniform error correcting codes correcting single errors in some code words and zero
errors in other code words. The second example is of a double error correcting BCH
code and it can produce new codes correcting 2,1 and 0 errors.

EXAMPLE 3.1
Consider the binary, single error correcting, (6,3) linear systematic code
C={g,C,. ..., Cs} withparity check matrix H={h;,hs,....,he } as follows:

110100
H= 101010
011001

The range inequalities are
6
DI b, S il
j=l
We may select any of the parity check positions for parity sectioned reduction, say cis,

1= , 23, In the inequalities, x, may take value 0 or 1. Let us first take xg=0. .

The range inequalities may be written as:
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5
_Zl|xj-c1.j| + [0-¢g| <1 Pl L a2
j=

Mm ¢ =0, the term on the right hand side of the inequalities will be unchanged,
while when ¢ =1, the right hand side will be reduced by 1. What we obtain is a
sectioned codfa C' capable of correcting e, = 1 errors in those code words formed from
words of C with ¢; =0, and e, = 1-1 = 0 errors in those code words formed from
words of C with c;¢= 1. The code C' consists of two disjoint subsets S, and S, of code
words such that

if cj,c0 € S d(cpey) 23
if':boz € S2 d(cbcl) 23
if g€ Syand ¢ € S, d(cpe) 22

This satisfies the distance criteria of Theorem 2.1 fore; = 1 and e, = 0.
The parity check matrix H' of C' is obtained by deleting the last column and the last row

of H to give
.[11010]
H=li1o101

The code obtained from H'is a linear (5,3) code capable of correcting e; = 1 errors in
the 22 code words of S, (those code words with Cia+¢;3=0)and e, = O errors in the
22 code words of S, (those code words with ¢;5+c;3=1).

Next, if instesad of setting xg = 0, let us select xg= 1. The range inequalities would be

'Ellxj-Ci’” o |1-ci,(,]sl o e , 28
j=
What we obtain is a sectioned code with the same two disjoint subsets S, and S, asin C'

but now with the words of S; correcting 0 errors and those of S, correcting single error.

The above discussion was for sectioning at ¢; 5. The result will be similar if we section at
any ?f' the parity check positions. The method introduced for reducing the parity check
matrix Hyyp, =[ A| Ly ] is as follows: If we delete the ptk column of I, we also
delete the pth row of H.

In th_e code of Example 3.1, which is single error correcting, we obtained sectioned
codes with just e; = 1 and e, = 0 error correction capability. In the second example, we

select a BCH double error correcting code and obtain sectioned codes with 2,1 or 0
EITOrIS.

EXAMPLE 3.2
Consider the binary (15,7) double error correcting BCH code generated by
. g =(x* +x+1)( P?+x3+x+1)
with parity check matrix
H =[l o a? oc3.,.ct14]
1 a? b a?. . al?
Wwhere ot is a root of x* +x + 1 and the minimum polynomial of o is x4+ x? + x2 + x+1
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The range inequalities are
15 i
Z % - oig] =2 e BT , 27,
j=1 . - . .
We now give the parity check matrix in systematic form for ease of visualizing the ideas

following:
[100010110000000
110011101000000
111011000100000
H= 011101100010000
101100000001000
010110000000100

go01011000000010
Looo101100000001 ]

We may select any parity check position for parity sectioned reduction, say ¢ s and let
us also set x;s = 0 in the range inequalities. We form the parity check matrix ofa (14,7)
non-uniform error correcting sectioned code by dropping the last (15¢1) column and last
(8th) row. We obtain two disjoint subsets S, and S 5 of code words. S, has 2° code
words, namely those for which the dropped parity check equation was c¢jq + ¢+ ¢ig =0

The range inequalities are;
. 14
Nl = eni] =2 et ) 28
j =1 . -
S, has 26 code words, namely those for which the dropped parity check equation was
c; 4+ ¢ ¢ + ¢ 7= 1. The range inequalities are:
; X : s

Zxj-eig] =1 e e S , 26,
j=1

We may proceed further by selecting any two parity check positions for d_ropp'mg, say
c; 14 and ¢; ;5. Let us select also x4 =x)5 = 0in the inequalities. The parity check matrix
of the (13,7) sectioned code is obtained by dropping the 14#h and 152k columns of H (and
the 7th and 8th rows). We obtain three disjoint subsets S;, S, and S5 of code words. S;
has 2% code words, with range inequalities

T x5 - cii] =2 e (S, , 25

S, has 2x25 code words, with range inequalities
13

Z x5 - eyl =1 =Ll .25,
j=1

Sy has 25 code words, with range inequalities
13
2 |x - cij| <0 e L 25
i=1

26

The distance criteria of Theorem 2.1 are clearly satisfied. The code is a (13,7) linear code
capable of correcting e; = 2 errors in those code words in 8y, e; =1 errors in those
code words in S,, and e; = 0 errors in those code words in S;.

The two examples discussed, illustrate a process for deriving non-uniform error
correcting codes by what we have called as 'parity sectioned reduction' of the parity
check matrix and the range inequalities of a linear code. We now formally define parity
sectioned reduction for the binary case:
Definition 3.1: Let C be a binary ¢ error correcting (n,k) linear systematic code with
parity check matrix Hy , = [ A | L, ] and range inequalities
o
T | xj = cij|<se 1=, 2o , 2k
j=1
By g-parity sectioned reduction we mean the following operations on H and the range
inequalities:
1. delete any g ( < e ) columns of I;; if the prh column of I is deleted then delete
also the p#h row of H. A reduced matrix Hyy 0 = [ AL ¢ ] is abtained.
2. in each code word of C, drop the g check digits corresponding to the g columns
deleted from H; in the range inequalities, assign values from (0,1) to the variables
corresponding to these g positions.

Next, we will state in Thearem 3.1, the method discussed in this section for deriving non-
uniform error correcting linear codes; but first, we state a Lemma that is needed in the
proof of Theorem 3.1.

LEMMA 3.1
Let C be a g-nary (n,k) linear code. The number of code words of C which have
given constant values in some g ( <k ) positions, is gke.
This Lemma can be proved in a straightforward manner using coset decomposition with
respect to that subgroup of the code which has all zeros in the given positions.

THEOREM 3.1
Let C be a binary, e-error correcting (n,k) linear, systematic code with parity check

matrix Hy,. = [A| 1L, ].g-Parity sectioned reduction of H gives a code C' which is
non-uniform error correcting (n-g,k) linear code having code words in g+1 sets

ot ey Cg*} wie‘h(j') 2%8 code words in C}-'.j =01, ...g suchthatinthe
wordc e C:,-’, the code C' can correct up 1o e-j errors.
PROOF

Let C have 2% code words {&.,%,. ... ¢ck} cormrecting randomly up to e errors. The
range inequalities for code words ¢; are
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n

T | xj-cig|se Bl , 2k,

I
Without loss of generality, let the columns to be deleted in parity sectioned reduction be
the last g columns of H. Obviously, C being a systematic code, the deleted g positions are
check positions, as required. We may write the range inequalities as

n-g n

T |x-cil + X Ix -] se 1=zl L2k,

il =1n-g+l
In the sectioning, we are at I1bcrty to set the values of the g variables x_ gt Xpgas + aKn
of the range inequalities to either 0 or 1. Let us choose Xp g4 = X049 = =x, =
We consider now the g-bit portions ¢; .gs1, Cingeas - - - Cigs 1= 1.2, 21‘ of the code

words of C. The code words which havej (j=0, 1,... g ) non-zero va]ues inthe last g

x
bits can be selected in ( j) ways and each of these, according to Lemma 3.1, occurs

2k times, Thus the number of code words with j non-zero values in the last g bits is

GJ 2%8 When the g bits are dropped, the right hand side of the inequalities would be

reduced by j for those code words which had j non-zero values. The parity sectioned

reduction therefore gives an {n-g k) code C= {iEa, Gl C } in which the error
range of each code word in the subset C;, j=0,1,...,8g conta.ins all vectors at a
distance e-j or less from it. It is easy to see that the ranges remain disjoint and the
distance criteria of Theorem 2.1 are satisfied. Hence the Theorem. 1]

4.SECTIONING LINEAR CODES AT INFORMATION POSITIONS

In this section, we examine the effect of sectioning linear codes at information
positions. The situation is quite different from that obtained in sectioning at parity check
positions. If an information position is dropped, we naturally would expect to get a
shortened code. The reduction of the parity check matrix is simply to delete the columns
corresponding to the sectioned positions. For the sake of completeness, we look at one
example, mainly to see what happens with the range inequalities.

Let us consider the (6,3) linear code C of Example 3.1. We may select any of the
information positions for sectioning, say ¢;y, i=12, . , 23, Also, in the range
inequalities, x; may take values 0 or 1. Let us select xl = 0 For the 22 code words of C
which have ¢;; =0, the right hand side of the inequalities will be unaffected; the
shortened code, C will continue to gorrect single errors in those code words. Those
code words of C which have ¢;; = 1 will now not satisfy the reduced parity check
equations and hence have no corresponding codewords in the shortened code. Hence, the
sectioned code, C" is a shortened (5,2)code with uniform single error correction
capability. The range inequalities are: -

6

T |xj - eyil=l e bl , 22,
i=2
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If, in sectioning the code C, we made the other choice, x; = 1, the code we obtain is
also uniform single error correcting; it is a coset code of’ C" formed from words of C in
which ¢;; = 1.

We may select any of the other information positions for sectioning, In all cases,
when we section at an information position, we do not get a non-uniform error correcting
code; rather, we get the shortened code and a coset code of that shortened code.

5. CONCLUDING REMARKS

The method of parity sectioned reduction of the H matrix, introduced for
constructing non-uniform error correcting codes, has not been considered previously in
the literature while several of the known modifications of H have produced very
interesting and useful codes.

Algebraic inequalities were used as an essential tool for defining and determining the
error ranges of code words. Traditionally, error ranges have been studied in terms of
spheres and sphere packings. The range inequalities provide an alternative representation
of error ranges that allow determination of the error ranges in a different manner.

Finally, one may be tempted to examine the uniform error correcting linear codes,
without sectioning, for non-uniform error correction. However, this does not work, at
least for the Hamming codes because it is not possible to partition the code words in two
or more different sets wherein the distance criterion of Theorem 2.1, for different values
of e}'s, could work. The sectioning of the BCH, RS and other well known codes may
provide interesting situations. [
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ONE RELATION WHICH IS USED TO
OBTAIN THE CAPACITY OF THE
ARBITRARY VARYING CHANNEL UNDER
LIST DECODING

Mark Pinsker
IPPI,Moscow

Vladimir Blinovsky

In the paper [1] were obtained necessary and sufficient conditions for the
list—of-L capacity Cy, of the arbitrary varying channel (AVC) with finite input,
output and state alphabets to be equael to zero. In [1] and in this paper the
deterministic code and the average error probability criterion are under consid-
eration. In [1] was noted that Cf, equals either random code capacity C. or else
zero. This is simple generalisation of the same fact in the case when L =1 [2].

In [3] was shown that for arbitrary AVC with finite alphabets there exist such
Ly < co that for all L > Ly the equality Ly, = C, is valid. In [3] was obtained
the explicit upper bound for Ly. In [4) authors suggest the upper bound for
Ly which in some cases improve the bound from [3] (for example when number
of states | § | of AVC is large). 3] was formulated one property of the
information which we are going to prove here.

At first offer some definitions. Let’s 5, X C R!'— finite sets and define the
family of the probability densities {w(y | z,s),z € X, s € S} on R? wiih respect
to Lebesgue measure by the following equalities

w(y|z,8) = \/li;e"h:%#m.a >0, (1)

This family of densities determinate the AVC without memory with set of states
S,input alphabet X and output alphabet Y = R!. In other words output of
the definded AVC at one moment is y = z 4 s + 7 where — normal random
variable N (0,0?).

Denote

Eia)) [t entem sty
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where we(y | 2) = 32, csw(v | 2,8)q(s); p,g— some distributions on X and S
respectively, Denote

C, = maxmin ™9, (2)
PEP q€Q

where P, Q— sets of all distributions on X and S respectively. Let’s 1— finite
partition of R? which consists of Borel sets and

o ~ 5 @4(4 | z)
Iﬂ 8 :egeanu Lelte)is Ezex "'-’e(A | =}P{=)‘

where @g(4 | z) = L‘ we(y | z)dy, A € N1. Denote

C, () = in 27, 3
(i) = max i i (3)

llere we intend to prove the following theorem.
Theorem 1 /

sup Gy (1) = C;. (4)
a

sup in 4 is taken over all finite partitions 2 of R! which consist of Borel sets of
R!.
Proof of the theorem. It is well known (see [5]) that

sup IR%i= IPi1,
o

From here and from 2 and 3 follows the inequality
C:(D) < Cy. (5)

So it is enough to prove the reverse to 5 inequality. To prove this it is enough

Lo prove that for arbitrary fixed distribution p € P the following inequalily is
valid

supmin J5? > min P9, 6

np €@ = geq (6)

To prove 6 suppose the existence of the sequence of partitions 2 = {f13, 1, ...}
of R such that 1, is subpartition of ); and for all p € P,g € Q

sup 157 = lim 12, )

n—00
Let’s suppose that 6 is not valid. Then for every {I; there exist ¢; € Q such that
IP-!H - I‘Pv' — €,
A <mipl—e
Because {1; is subpartition of 01}, j < i the following inequalily is valid
g <psi<i ®)
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Because | S |< oo one can choose a subsequence {d:} of the sequence {g;} such
that ge(s) — §(a), £ — oo. Then for arbitrary j

JElm:| I”'“ = I"" < mmI’" — €. (9)
= 0O

The last inequality is valid for arbitrary partition £1; from £; so turn j to infinity
in 9 we obtain

sup J29 = 174 < inf IP9 — ¢
np - T gEQ

~contradiction.

So it remains to show the existence of £ If we comstruct the sequence of
the finite partitions f}' = {01}, 05,...} which satisfies 7 with @, instead of 11,
then from 8 follows that one can choose Q; € {1 as arbitrary ﬁmte partition of
R! which is subpartition of 02},...,0}. Let’s construct the sequence §}’ which
satisfies 7. Choose r; € R! such that

oo>r;>max(maxla:l,max'|s|)
zeX sES

and

1) z w?(y | 3) i
j‘;:\[""il"i] ftyi )]n E:EI ﬂ'[y 1 :)p(z)d s 2i’ (10)

The possibility of choosing such r; follows from the explicit expression refeq0
for w(y | z, 5). Denote

: i) wy(y | z)
it E:ex“’q{y | z)p{:]'

The family
{lnet?(y),pE PgeQ,z € X}

is equicontinuos on [—ry, r;] over choosing p € P,g € @,z € X. Indeed it is easy
to see that -

|Inafi(y) ~Imnaf¥(y+4) |<
From here follows that there exist k < oo such that the interval [—r;, ;] can be

devided into k intervals ¢y,...,c;lJej = [-riyriliejNem = 8,7 # m in such
way that the following inequality is valid

slﬁlr‘.'
g

In&5%(C;) ~ a2 U(G)) € o= Lyovoy b (1)
where
&C;) = ;légaﬁ"(u).
art . P
27(C) f&ﬂ ab?(y).
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Next
a21(C;) 5 wy(Cj | 2)p(2)
zeX
< wg(Cj | 2) < &2(C)) D we(Cy | 2)p(=),
zeX
where
wy(Cj |z} = '/::', wol(y | z)dy.
Also
wy(C; | o) a23(C;) < L In a2 (y)w,(y | 2)dy
3
< wy(Cj | 2)In &29(Cy).

From this inequalities one can obtain that

it =i 9 (y)w
E:Ex Uq{cj | 2)p(=) j;',- In o9 (y)w,(y | 2)dy |
< (]Il &':rf(Cj} —Ln&i-f(cj))wqtcj | z].

| wg(Cj | 2)In

Summing parts of the last inequality over j and averaging them over the distri-
bution p using 11 we obtain that

k -
15037 6nl0; | 2iple) el L2)

zEX j=1 E:ex ‘*’w{c.f | 2)p(z)
wy(y | 2) i
f_,.._,_ g wely | z)p(z}ln S :Jg[y l z]p{a:)dy 1< T

From here and from 10 follows that sup in 7 attained on the sequence of parti-
tions 2} = {[—r;, ], {C}}} . This accomlished the proof of the theorem.
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Nonsyndrome maximum likelihood decoding of
linear codes using a trellis.

Irina E.Bocharova and Boris D. Kudryashov

Abstract

A maximum likelihood (ML) decoding algorithm for linear binary
block codes using a modified. trellis is presented. The linear transformed
generator matrix of a linear code is used to construct the trellis. The
complexity of the algorithm for a linear (n,%)-code is upper-bounded by
20n=4) a5 for Wolf’s algorithm. The proposed algorithm is extended to
convolutional codes, ' :

St.-Petersburg Academy of Airspace Instrumentation,
Bolshaia Morskaia str.,67, St.-Petersburg,190000, Russia,
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1 Introduction

We consider ML decoding of linear block codes and convolutional codes. It is
well-known [1] that a linear (n,k) block code can be decoded with the com-
plexity of order min (2*,2"~¥). The complexity of order 2* can be obtained
by instrumenting a word-correlation decoder and the complexity of order 2"~
provides by a so-called syndrome decoder[2]. Obviously the syndrome decoding
algorithm is of particular use in decoding codes of rate k/n > 1/2since the
complexity of this algorithm is upper-bounded by a function of the number of
parity symbols. '

As for convolutional code of rate ky/ng and constraint length v the com-
plexity of syndrome decoding is upper-bounded by 2("e=*o)+v [3]

First we show that a generator matrix of a linear block code can be reduced
to the form permitting soft Viterbi decoding with the complexity at most equal
to 2(*=*), The second part of the talk is concerned with decoding of convo-
lutional codes. We show that a generator matrix of a convolutional code of
rate ko/no and constraint length ¥ can be reduced to the form permiting soft
Viterbi decoding with the complexity at most equal to 2(Po—ko)+¥ Tahle of
binary convolutional codes having better spectra than known codes with the
same decoding complexity is provided.
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2 ML decoding of linear block codes

Consider a linear (n, k) code over GF(2) with generator matrix G. It may be
shown that using permutations of the columns and rows of matrix G and also
replacing rows by their linear combinations one can reduce matrix G to the
following form

911 12 91,(n-k)+1 0 bt )}
g=| 0 9 92,n-k)41 F2n-k)4z 0 ... O )
0 wiln 0 Gk o0 Gkn

It directly follows from the above properties that each symbol of codeword
depends on n — k + 1 or less information symbols. Now we describe how to
construct the trellis for a particular code using properties of its generator matrix,

Let J;,I = 1,...,n be a set of such numbers that current symbols of code-
words u; depend on information symbols indexed by these numbers. This set of
indices can be determined as follows

[ i e
B=4 {lntkt,.. )}, Hl=n—k+1,...,k
{ln+k,... k}, ifl=k+1,..,n

Let S;(!) be the collection of nodes at depth I, where j € {0,2!11-1} denotes
the number of nodes at depth I, |J;| denotes the cardinality of the set J;.

Edges of the trellis connecting two nodes S(I — 1) and S'(l) are labeled by
the codeword symbol ug s that is calculated by the formula

¥ us,s,1 = (ms,s:(N1), gi(J1))s
where mg, s:(J;) are components of an information vector correspending to tran-
sition from node S to node S', g;(J)) are components of [ — th column of matrix
G with indices from the set J;.

Modified trellis can be used for soft ML decoding of block code by Viterbi
algorithm. Since |J;] < n—k+1, the decoding complexity is upper-bounded by

L
3 ML decoding of convolutional codes

The generator matrix G of a convolutional code of rate ko/ng and constraint
length v has the form :

e Sl Cr Mt TS R

G = 0 Gp ... Gpho1 Gm 0... ; (2)
0 QR0 Gy G ...
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where all matrices G;,i = 0,v are binary matrices of size kg x ng and the
constraint length ¥ = m x ko. By transformations analogous to those described
for block codes the generator matrix G may be reduced to the form

¢ G el R 0.
{1} (m) (m+1)
G= 0 Gy G Gy 0 : (3)
1 3
B0l e i glint )
where all matrices G&’. ), j =0,1,... have the following form
L * * * * T *
1] * * * * he *
(et (T R A S AV R (4)
(5 AL et S P e

and by symbol * we denote nonzero element of matrix Go. All matrices Gf,’;),j =
0,1,... have the following form

LR LT L LA SR (5)

L 2
*
#*
*

From (5)-(7) it follows immediately that the maximal number of nonzero ele-
ments in each colomn of modified matrix G is at most ng — kg + ¥ + 1. Hence
constructing the trellis in accordance with the described algorithm and apply-
ing Viterbi algorithm to this trellis provide the decoding complexity at most
gno—koty

Some examples of high-rate convolutional codes and their performances are
given in the Table. Here d; is free distance, ;, f;, i = dy,...,d; + 2 de-
note weight spectrum coefficients corresponding to the transfer function and its
derivative respectively. The decoding complexity k is measured as the num-
ber of nodes in trellis multiplied by the number of comparisons in each node.
Proposed codes have better spectra than known ones with the same decoding
complexity [4,5].

37



Rate | Go,G1,...,Gm | dy | & | Spectra’

2/3 | 110 100 3 [27[t=1,4,14
011 111 f =1, 10, 54

2/3 | 110111000 | 4 |20 [t=2, 11,34
011 010 100 f =5, 41, 193

2/3 | 110 101 100 5 | 2% | t=5, 18, 54
011 001 011 f =15, 88, 370

2/3 [ 110 100 111 000 | 6 | 2° | t=15, 0, 190
011 001 101 100 £ =56, 0, 1351
3/4 | 1111 0000 3 |27 [ t=s, 23, 80

0101 1000 f =15, 104, 540
0011 0100

3/4 | 1111 1000 3 |28 [¢t=3, 13 64
0101 1100 f =10, 57, 402
0011 0110

3/4 | 1111 1000 4 [2¥ [ t=10,42, 194
0101 1110 =32, 212, 1476
0011 1101

3/4 | 11110000 0000 | 4 | 27| ¢ =3, 44, 160
0101 1100 1000 f =6, 296, 1354

0011 0101 0100
3/4 | 111100010000 | 5 | 2% | =15, 81, 354

0101 1010 1000 f =59, 530, 3210
© | 0011 0110 0100
4/5 [ 11111 00000 3 [ 2% [t =5, 36, 200

01110 10000 f =12, 210, 1705
00110 01000
00011 10100
4/5 | 11111 10000 4 | 2% 't =5, 36, 200

01001 11000 f =12, 210, 1705
00110 10100
00011 11011
4/5 | 11111 11000 5 |25 [t =8, 72, 247

01100 10100 f =20, 467, 4286
00111 00110
00010 01171
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Trellis representations for some block codes

Irina E.Bocharova and Boris D.Kudryashov

Abstract
We consider a new approach to minimizing the complexity of trellis
representation for linear block codes. The generator matrix of Goley code
in the form providing the decoding complexity of order 2° is presented.

We follow the approach considered in [1]. There it was shown that the decoding
complexity of a linear (n, k) block code is upper-bounded by 2(™=1), where m is
the maximal height of nonzero part of columns in the generator matrix having
the band form. Value m may be minimised by reordering code positions and
linear transformations of the generator matrix G. We propose the algorithm for
minimizing the complexity of trellis representation. Using this algorithm we
found the following form of the generator matrix of Goley code:

((111011111000000000000000 )
010101011111000000000000
001111001100110000000000
000110111001101000000000
000010111110010100000000D0
000001111001000111000000 (1)
000000110100010011110000 |°*

— 000000011011011010010000
000000000110101011011000
0000000000110011001111060
000000000000111101001110
L 000000000000000011111111

It follows directly from the above representation of the generator matrix that the
maximal number of nodes is equal to 28. This trellis representation is simpler
than all other known trellis representations of Goley code [2].
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New linear codes of dimension 5 over GF(3)

Galina T. Bogdanova and Tliya G. Boukliev
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Abstract

One of the problems of coding theory is that of finding the smallest value ny(k,d) of n for
which an [n,k,d;q] linear code over GF({g) exists. In this paper we determine the problem of
finding na(5,d) for all but 11 values of d.

1. Introduction

A ternary linear code of lenght n, dimension k, and minimum Hamming distance
d is called an [n, k, d]-code. Lef n,(k,d) denote the minimum »n for which an [n, k, d]
code exists. The Griesmer bound is an important lower bound on n,(k, 4)[2):

k-1
ng(k,d) 2 gy(k, d) = 3 [d/q],

i=0
where [z] denotes the smallest integer not less than z.

The problem of finding na(k,d) for small dimensions k for all d has been inves-
tigated by HILL and NEWTON [9],{10]. They determine ns(k,d) for all d when
k < 4, and ny(5,d) for all but 30 values of d. Recently Hamada, Helleseth and
Ytrehus, and van Eupen (1], (4], [5], [6],[7], [8] have reduced the number of unsolved
cases to 16.

Theorem 1.1.[10] 37 < ns(5,23) < 38; 38 < na(5,24) < 40; 49 < ng(5,31) < 50;
T3 < ng(5,47) < T4; T4 < ns(5,48) < 75;

2. New lower bounds on ny(k, d).

In this paper ternary linear codes with parameters (38, 5,24], [49,5,31] and [74, 5, 48]
have been constructed. In this way the number of unsolved cases for ng(5,d) has
been reduced to 11.

Theorem 2.1. n;(5,24) = 38; ns(5,31) = 49; ny(5,48) = 74;
Proof:

G, G, and G are the generator matrices for the [38, 5, 24], [49, 5, 31] and [74,5,48]
ternary codes.
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10000011101101101100111111010111110011
01000210202200021111021211022020102221
Gy = | 00100111211111220021022111020200220100
00010002110201211012212101200101202122
00001210201212112020100021202220110112

1000001110010110111110110110111101011111001101111
0100011111121001022221121001220001000111011100122
G; = | 0010002202211100201121101202202121211610021222021
0001012001012220110001222012221111202001102100121
0000121020210121201022021201100110002022211111120

10000110110001101010011011011011111001110111011011110110111101110011111011
01000220221012212000022100111111000110001121112111000111112200221111100102
Gy = | 00100022112102002211000200120101021000100202222212212102102120202122121112
00010112202111122101220012011102220201111200111202210010120100021102200022
00001012012212111200101111221102202022100001100101102120121212212022001020

Let A; denote the number of codewords with weight 7. The weight distributions
are as follows:

[38, 5,2‘1] 2 Au = 1, Az.‘, = ]68, A;T = 36, Agg = 35, Ase = 2,
[49,5,31] : Ao =1, Aa = 88, Az =52, A3 =172, Ass =8, Ao =20, Ay = 2;
[74' 5,48] W Aﬂ = I., A.;a = ].58, A51 = 56, Asq = 20, AB? e 4; AGI] =4.

Corollary 2.2. na(5, 23) = 37; ng(5,47) = 73;
Proof: By Theorem 2.1 it follows the existence of the [37,5,23], [73,5, 4T] ternary
codes.

Remark. It follows from Theorem 2.1 that only 11 unknown cases of n3(5,d)

remain. The bounds on unresolved cases are given in Table 2.1.

Table 2.1.

d | g n

25| 39 40-41
28 | 46 46-47
30 | 47 47-48
32 | 50 50-51
46 | 71 T1-72
94 | 143 | 143-144
95 | 144 | 144-145
96 | 145 | 145-146
97 | 147 | 147-148
98 | 148 | 148-149
99 | 149 | 149-150
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Some Remarks on Bossert-Mahr-Heilig
Scheme

Y. Borissov, N.L. Manev
Institute of Mathematics, Bulgarian Academy of Sciences,
8 G.Bonchev str., Sofia 1113, Bulgaria
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Abstract

It is shown that there exists an attack which makes the scheme of
Bossert, Mahr and Heilig vuinerable,

1 Introduction.

For data transmission in open channel usually both tasks - error correct-
ing and ensuaring the authenticity and integrity of information, have to ?)e
solved. In [1] Bossert, Mahr and Heilig propose a new scheme which satis-
fies these requirements. The idea is to concatenate an error-correcting code
( as inner code) and a cryptographic algorithm (as outer code) with good
statistical properties which is transperent for the errors in the chanel. The
proposed cryptographic algorithm consists of two steps: stream ciphering
and afterwards key dependent permuting of bits in the block. Key-stream
sequence used in the first step is provided by strong cryptographic algorithm
( for example DES in the OFB mode), while the permutations of bits of the
current block are chosen from some set of "random” permutations depending
on a key sequence (also produced by DES algorithm). The receiver performes
the steps in the inverse order.

In the examples of (1] the error-correcting code used is a subcode € of
Reed-Muller code R(u,v), u > v such that R(u,v) = CU(C + 1), where 1

i

is the all-one vector. Obviously C' is isomorphic to the factor code of R(u,v)
by the subcode {0,1}).

The method of selecting sufficiently random permutation described in [1]
is the following:

The procedure of permuting bits of given block of 2% bits is ruled by a key
k = (ky, kg, ..., kgs_1) - a binary vector produced by DES and different for any
block. The algorithm works in w steps. In the i-th step the processed block
(of 2 bits) is divided into 2* subblocks each of length 2“~*. The numbering
of subblocks is from 1 to 2°,
In the case i = 1 : if &y = 1 then first subblock of 2“~! bits transpose s his
place with second subblock of 2*~! bits; otherwise there is no change.
Fori=2: if k; = 1 first and second subblocks transpose their places, and if
k3 = 1 third and fourth subblocks are exchanged and so on.
At step i-: 0 < i < u, the key-subsequence kyi-1,..., ksi_y determines
whether the subblocks (1,2),(3,4),...,(2" — 1, 2) are exchanged or not.

Herein we show that the proposed in [1] (and described above) set of
"random” permutations together with the considered subcode € of R(u,v)
has a defect in the following sense:

The intruder can falsify the information passed through the channel in
such way that legitimate receiver not to be able to detect the exchange.

2 Description of the Attack.

Let IT be the set of permutation used by the algorithm and let = be arbitrary
element of II. As it is shown in [1], when an intruder adds a codeword =z
under transmition, the receiver after performing the inverse cryptographic
procedure will obtain c+x7'(e) + w~!(z), where ¢ is the codeword sent, e is
the channel error and = € II is the applied permutation. If ¢+ 77'(z) is a
codeword the receiver cannot detect the substitution of information.

The set of all codewords which are mapped into codewords by any =«
of I is obviously a subcode of the used error-correcting code C. We shall
call this subcode TI—invariant subcode and denote it by Cp. Below we prove
that in the case of the code C' considered in (1], the [I-invariant subcode is
nontrivial,thus it makes the system vulnerable.

Let R(u,v) be the Reed - Muller code of order v with block length 2%,
It is well known [2, Ch.13] that the Reed-Muller code R(u,v) consists of
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all vectors f of length 2* whose components are all 2 values of boolen
function f(zy, @2, ..., 4} being polynomials of degree not greater than v. The
considered subcode €' consists of vectors obtained by the polynomials without
monomial 1. .

Let z, be the quickliest running variable and z; be the slowliest running
one in the process of generating R(u,v).

Theorem. If the R(u,v) is generating in described above manner then
the TI—invariant subcode consists of all vectors generating by polynomials
f(z1,...,2u41) only of variables 2, 23,...,@us1.

Proof: Let M denote the set of Ve(..t()l‘s of R(u,v) correspoding to boolen
polynomials f(z,,-..,2,41) of degree at most v. According to the chosen
algorithm of generatmg R(u,v) the first 2u=*=1 components of f, fe M,
are zero and any next subblock of length 2*~*~! is all-zero 0 or all-one 1
vector. We shall use the following Lemma whose proof can be found in many
books on boolen function:

Lemma: A boolean function f of t essential variables considered as func-
tion of u variables, u > &, is of degree t if and only if ¥ consists of odd
number of subblocks of length 2“~* equal to 1.

The proposition that the number of subblocks of length 2“~*~* in ¥ equal
to 1 is odd and the Lemma imply that f is a polynomial of degree v + 1,
which contraducts to its choice. Hence the number of subblocks of length
9u=v=1 in F is even. Then for any « € Il #(F) consists of even subblocks of
length 2=~ equal to 1 and the left ones equal to 0. Therefore x( =nh,
where f; is a polynomial of v + 1 variables and according the Lemma is of
degree < v. Hence f; € R{u,v). Since f and = are arbitrary elements of M
and II we can conclude that M C Cp. Also, it is obviously that M # {0}.
Now we shall show that M = Cp. Let £ > v + 1 be the greatest number
with the property: there exists a polynomial g = g(z1,...,2¢) such that
%(§) € R{u,v), for any # € IL. Then g consists of subblocks 0 and 1 of length
9u=t and there is a subblock of length 24~**!, which contains two different
subblock of length 2%, eg. itis 0...01...1 1. If we take 7 € II which

30-! 21—1
replaces only these t.wo arl]a.cent subblocks of length 2¥~¢ than () = G+ &,
where h = 0.. 01 ..0. The Lemma gives that k = h(21,...,v-1) is
—1 1

a polynomial of degreet — 1 > v - contraduction. Therefore such g does not
exist and M = Cy.

46

3 Conclusions.

It is clear that in order to prevent Bossert-Mahr-Heilig scheme from the
described above attack when R(w,v) is used, the code must be factorized
by the subcode invariant under II. This however decreases the dimension of
used code.
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Optimal Linear Codes of Dimension 4 over Fj
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Abstract

Let ng(k,d) be the smallest integer n for which there exists a linear code of length n, dimension
k and minimum distance d , over a field of g elements, In this paper we determine ns (4, d) for
all but 55 values of d.

1. Introduction

Let F? be the n—dimensional vector space over the Galois field F;. The Hamming
distance between two vectors of F' is defined to be the number of coordinates in
which they differ. A g-ary linear [n,k,d] code is a k-dimensional linear subspace of
F? with minimum distance d.

Let ng(k,d) denote the smallest value of n for which there exists an [n, k, d] code
over F,. An [n4(k,d),k,d] code is called optimal.

The Griesmer bound provides an important lower bound on ng(k,d).:

f=1 d
ng(k, d) > gq(k,d) = Ef;]
=0
For given g and k this bound is attained for all sufficiently large values of d [3].

The exact values of n4(4,d) are determined in [1] for all but 52 values of d and
independently in [4] for all but 10 values of d.

The values of nz(3,d) are known for all d [6].

In this paper we study optimal linear codes of dimension 4 over Fy. We solve the
problem of finding ns(4, d) for all but 55 values of d, and prove that
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ns(4,d) < 2 + g5(4,d) for all d.
2.Lower bounds on ng(4,d)

Lemma 2.1 [6]. ng(3,d) =1+ g5(3,d) for d = 5,9,10,13,14, 15 and ns(3,d) =
g5(3, ) for all other values of d.

Lemma 2.2 [4]).If C is an [n, k,d]— code over F, having a codeword of weight
w, w < d+ [2] then there exists an [n — w,k — 1,d5}- code with dy > d—w+ [£]:

It follows by Lemma 2.1 and Lemma 2.2 that there do not exist codes with
parameters [gs(4, d),4,d] for 21 < d < 25,41 < d <50, 61 < d < 75.

Theorem 2.3. n5(4,d) > 1+ gg(4, d) for

ajd <d <5 b) 9 <d <104 12 < d <15
d)d =85, 89<d<90, 93<d<95
Proof.

a)lf a [7,4,4]— code over Fy exists then its dual code is a [7,3,d"]-code with
d* > 5 which is a contradiction to Lemma 2.1.

b)ns(4,9) > 1+ ns(3,9) = 14.

c)Suppose there exists a [17,4,12]— code C over F5. A shortened code of C is
a[16,3,12]-code. It turns out that there exist exactly six inequivalent such codes,
Their generator matrices are

01011001 1zzzzzz

1000011111111111
1
001121201 zzzzz 2

where ‘the missing part is one of the following matrices:

( 1222333 ) ( 1222333 ) ( 1222333 ) ( 1222333 1222334 1223344
2014234 /* \ 3134234 /' \ 3234124 /* 4024124) f (3234120) ¢ (,4342423) i

We showed that none of the six [16, 3, 12]— codes can be enlarged to a [17,4,12]-
code.

d)Suppose there exists a [117,4,93] code C over F5. Then By = B; = 0 and
the system formed by the first three MacWilliams identities has no solution in non-

negative integer multiples of 4. The proof is similar for d = 85 and for d = 89.
For the remaining values of d Theorem 2.3 holds by the inequality

ng(k,d) > ng(k,d—1)

49



3.Upper bounds on n;(4,d)

It follows by [6,Theorem 2.12] that ng(4,d) = gs(4,d) for 98 < d < 125 and
for d > 176. A [¢* + 1,4,¢* — g]—code over F, exists for every ¢ [2], hence a
[26,4, 20]—code over Fy exists. Codes with parameters [16,4, 11] and [40, 4, 30] have
been constructed in [5].

Theorem 3.1. There exist codes with parameters
[6,4,3], [12,4,8], [35,4,26], [45,4,34], [52,4,40], [55,4,42], [64,4,50], [66,4,51], [76,4,60],
[82,4,64], [86,4,67], [95,4,75], [101,4,80], [108,4,85], [114,4,90], [195,4,155] over F.

These codes have been found by computer search using heuristic algoritms. (The
generator matrices are available, on request, from the a.uthqm.)

Theorem 3.2. Let d =lg® + ¢, where [ > 1,1 < e < ¢® —q.

Then n,(4,d) = gqo(4, d).

Proof. It follows by [6, Theorem 2.12] that an [n,(4,d),4,d]— code C; exists
for lg* — ¢* + ¢+ 1 < d < Ig®. There also exists a [¢° + 1,4,¢% — gl-code O, [2].

By concatenation of 0y and C; we get the desired code which meets the Griesmer
bound.

Corollary 3.3. ns(4,d) = gg(4,d) for 126 < d < 145.
Corollary 3.4. n4(4, d) = gu(4,d) for 65 < d < 76.
By Corollary 3.4 two of the ten open cases in [4, Table 2] are solved.

Theorem 3.5. There exist codes with parameters [32,4,24], [201,4,160], [208,4,165),
(214,4,170], [220,4,175] over Fy.

Proof. A suitable concatenation of the [26,4, 20]—code and a [6, 3, 4]—code gives
a [32,4, 24]—code. The rest of the codes can be constracted by concatenation of two

codes of dimension 4.
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The Tight Spherical 4-Design on S° Is Unique

Peter Boyvalenkov,
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Abstract
We ider » truction p dure that allows us to obtain tight spherical E—d_eniglm
from tight 4—designs. This impli igq of the tight spherical 4—design on 8° (with 27
points) s & of the of the tight 6—design on 8° (with 66 points).

1. Introduction
A spherical code W C 8™ is called a spherical t—design if and only if
1
z)dp(z) = — flz
o @)ta) ] 2, f(e)

(p(S™1) = 1) holds for any polynomial f(z) = f(z1,2a, ..., Tn) of degree at most .
This is equivalent to the condition %
> f(z)=0
=W
for all homogeneous harmonic polynomials f on 8™ of degree 1,2,...,¢.
Delsarte, Goethals and Seidel [1] give the following necessary lower bound for the
cardinality of a spherical t—design on S** [1, Theorems 5.11, 5.12].

nte—1 )'+(n+e—2)’ if b= 2e;

( n—1 n—1
]W-IZ 2(n+e—1)

n—1

(1)
if t=2+1.

A spherical t—design which attains the bound (1) is called tight [1, Definition
5.13]. Exactly eight tight spherical t—designs with ¢ > 4 are known for n > 3 [1].
The tight ¢ —designs are very extremal objects from the viewpoint of both $—designs
and few distance sets [2, 4] .
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The tight 5—design on S? is the icosahedral. The tight 11—design on §%*, the
two known tight 7—designs (on S7 and on $%?), and the tight 5—design on S° are
unique up to isometry by Bannai and Sloane in 1981 [3]. Recently, we have proved
the uniqueness of the tight 4—design on S° as a consequense of the uniqueness of
the tight 5—design on S°. Thus, we give a particular answer of Open Problem 1.1.
from (2] (cf. [5, 6]).

Our approach is to reconstruct the unique tight 5—design on S® using two different
copies of tight 4—designs on S° (of course suitable placed). This is (in some sense)
an inverse construction of the deriving from [1, Section 8]. Then the uniqueness of

the tight 5—design implies our statement.
2. Reconstruction Procedure

A tight 5—design W C 8!, n > 3, could exist if n = m? — 2. In this case W
must be antipodal (symmetric) spherical code and one has [W|=n{n+1) = (m? —
L)(m? — 2) {see (1) for t = 5). Moreover, the set A(W) = {(z,y)|z,¥ € W,z # v},
which is assumed by the different scalar products, must coinside with {—1,£1}.
Also, the number m must be odd by [7, 5, 6]. Such designs are known for m = 3,5

(in dimensions 7 and 23 respectively).

A tight 4—design W1 C 8™, n > 3, could exist if n = m?—3, |Wi| = n(n+3)/2 =
m*(m?® —3)/2 (by (1)) and A(W1) = {—:13, 747} Again the number m must be
odd [5, 6]. Such designs are known for m = 3,5 (in dimensions 6 and 22 respectively).

They are the derived [1, Section 8] from the corresponding tight 5—designs,

W cS*! (n=m?—2)is a tight 5—design and & € W, then there exist
exactly ﬂ!%’;:_il points y € W such that (z,y) = L [1, 5]. Delsarte, Goethalts and
Seidel [1, Section 8] rescale these points to S™* and derive a spherical 4—design
Wi. Moreover, W, attains the bound (1), i.e. it is a tight 4—design. Therefore,

existence of a tight 5—design implies existence of a tight 4—design.

Conversely, let us have a tight 4—design W C 5" %, n=m? -2, |W| = '—“-ﬂ'—".;il,
AW) = {-, ﬁlf} We place points z and —z (the north and south poles
respectively) on 8™ ~3. Then we place the |W| points of W on $™~2 in such a way
that they belong to a hyperplane which is orhtogonal to the vector = and intersects
Oz in a point P between O and = such that OP = 1. Then the following geometric

Lemma is true [1, p.381] [6, Lemma 7.1].
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Lemma 1, All possible cosines of angles between points (viewed on §m*-3) of W

are exzactly 1.

Now we place on 8™ =2 another copy of W (W' say) arround the south pole —z :.
such that W' = —W. Then the set U = W U W'U {2z} U {—z} is an antipodal |
maximum spherical code [8]. Moreover, by [8, Corollary 6.3], [6, Theorem 6.1], !

the code U is a tight spherical 5—design. Therefore, we have proved the following
staternent:

Theorem 1. A tight spherical 5—design on §™'-3 exists if and only if a tight
spherical 4—design on §™* 4 (m > 3 is odd) ewists.

In order to prove uniqueness of the tight 4—design on S5, we reconstruct two 'I
tight 5—designs (U; and U, say) on 8° using two different (Wi and W, say) tight
4—designs. There exists an isometry T' € SO(T) that maps Uy onto Us. 1t is easy |

to see that T induces an isometry T' € SO(6) that maps W, onto Wy, i.e. Wi and

W, are isometric. Thus, we have proved:
Theorem 2. The tight 4—design on S° is unique up to isometry.

More general, we have the next theorem:

Theorem 3. A tight 5—design on S™ ~3 is unique up to isometry if and only if

a tight A—design on 8™ ~* is unique.

3. Two Open Cases,

Two problems for the classification of the known tight ¢—designs with ¢ > 4 |

remain still open. Namely, we conjecture that the tight 4—design [1] on 87! (with

275 points) and the tight 5—design [1] on §%2 (with 552 points) are unique as well. |

By Theorem 3, these two problems are equivalent.
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pransmission of binary information sequence over BSC with

erossover probability 0 < p < 1/2 1is oconsidered. It is assumed

that a noncatastrophical time-invariant convolutional eoder and &

Viterbi decoder are used. There are two types of performance
characteristics that are usually used to deseribe the behavior
of such commmication system. The firet type characteristics
deseribe stationary behavior of the gystem (e.g. bit-error
probability, averaged decoding delay etc.). Usually they are
of the main interest. The second type characteristios desoribe

behavior of the system at initial time moment (e.g. first-error |

event probability). The most commonly used “union bounds"

to estimate from above any of mentioned characteristics do not
take into account some principal difference between these two
types of characteristics [1,21.

We get here some improved version of those union bounds
for the firet (stationary) iype characteristios that allow us
to increase the accuracy of those bounds. Due to linearity of
the system we may assume that information sequence on the coder

input ie the all-zero semi-infinite sequence.
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Tet 1 __g =ilosisy 'ﬁ_, ’ ﬁo ) be a semi-infinite decoded
sequence and 0O _g be the semi-infinite all-zero sequenoce.
Denote by P(e] U 0 ) the probability that the first edge will
be decoded incorrectly provided that preceding semi-infinite

decoded sequence is u .*2 and the state E(O)

SO . Analogously
denote by P(DI | u *g ) the probability that 1 (or more) first
edges will be decoded correctly. Then similar to [3] we can show

that
0

max POy |4 O) =P |0 Q=0 3), 1=12,...
1
Therefore denoting P(DI)=P(01|G_°0°=O_2) and
= P(eia_?n=0_g).weget
PUO B0 Y E =t - B ) = 1,0
1 1 e £} = lplgans (1)

Now let P be the set of all codepaths coming at first iime-
moment from the state S - Then

P(t] u %) (2)

o0

Peeln 0)= 3
teP

Moreover if w = w(t) and 1 = 1(t) are Hamming weight and length
of codepath t , then from [3]} and (1) it follows that

riefa 0 g

—00 P(Ollu_g]ﬁ

1 - A, 1 - Ay

1
(1-2,1" @

where



Theorem 2. There exists some critical wvalue Pop such that

m = (wt1)/2 |f orossover probability p < p,. , then Py < B, where B is
AW = defined from the following system of equations
1 w w
N CATED T MO FD R i
= m=w?2 +1 Bum 20 ] T Gl e
ilw (5)
As a result we get from (2) - (3)
ia(w,1,1) Aw
tnt) TGt Bl = ¢ mt
s O e & 1 - A,
e
4) where a(w,l,i) — number of codepaths of weight w , length 1
4 aiw,1}i Ay 1 and information weight 1 .
= EE 1_— [1 - Pe ] s
iw Ay

¥ Irp > then the first equation in (5) will be
where a(w,l) — number of codepaths of weight w and lenght 1 . & Rideton i (5)

replaced by some similar equation.
We oan formulate this result in the following way. B - e

Th 1. Conditional t- t - bilit
eore_r:n on 1O onal first-event error probability ——
P. = Ple] n _0 =0 _- ) satisfies the inequality (4).

e o0 00

Remarks. 1) Inequality (4) differs from a "standard" union 1. A.J.Viterbi and J.K.Omura. Principles of Digital Communication

bound by presence of factors [1 - P, ]I in the right side of (4).- and Coding. New York: McGraw-Hill, 1979.

As a result it gives nontrivial ( i.e. P, < 1 ) upper bound for

e 2. M.V.Burnashev and D.L.Cohn, "On Bit-Error Probability for

any probability p and that bound is always tighter then “"standard"§ Convolutional Codes", Probl. of Inform. Trans., 26, No. 4,
rp. 3-15, 1990.

3. M.V.Burnashev, "On Extremal Property of Hamming Halfspaces",

union bound (which works only for some small p ). Inequality (4)

can be expressed in terms of the generating function T(D,L).

2) Inequality (4) ocan be easily generalized for other chamnnels Probl. of Inform. Trans., 29, No. 3, pp. 3-5, 1993.

(e.g. gaussian) as well.
In the case of bit-error probability Pb we limit ourselves '-j

here only by the following theorem.
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Singly-Even Dual Codes of Lenght 40

Stefka Buyuklieva
Dept. of Math., Veliko Tarnovo University
5000 Veliko Tarnovo, BULGARIA
Vassil Yorgov
Higher Pedagogical Institute
9700 Shumen, BULGARIA

Singly-even self-dual [40,20,8] binary codes are considered. These codes have
the highest possible minimum distance. Conway and Sloane found in [1] that the
weight enumerators of such codes must have the form

w(y) = 1+ (125 +168)y° + (1664 — 648)y™" + (10720 + 32b)y" e

for some values of 8. In the same work they give two codes having weight enumer-
ators for # = 0 and 8 = 10.

In this work we determine all possible prime orders and types of automorphisms
of the considered codes. These primes are 7, 5, 3 and 2. The automorphisms of order

7 have 5 fixed points and the automorphisms of order 5 have 20 or 0 fixed points.

All inequivalent [40, 20, 8] singly-even self-dual codes having an automorphism of !
order 7 or 5 are constructed. We use the known method for constructing codes via

automorphisms of prime order (see [2,3,4]). There are two inequivalent codes with

automorphism of order 7 and 37 inequivalent codes with automorphism of order 5.

The weight enumerators of all these codes have the above given form with # =0, 1, "

5 or 10.
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Abstract
We describe the noising method, a recent method for ct_meinat.oria.l
optimization, and we show how it can be used for constructing good co-
vering codes.

1 Introduction

The noising method was first described in [1]; it is a new heuristic for combina-
torial optimization problems of the form ==

min{ f(s) : s € S}.

The elements in S are called solutions and f is the evaluation functior’l. A trans-
formation is any operation transforming a solution s € S into a S?]l{thl‘{. s'eS.
An elementary fransformation is a transformation genera.llj: consisting in chan—
ging one feature of s without changing its global structure;; 1t defines the neigh-
bourhood N(s) of a solution s as the set of all solutions &' obtained from s by
means of an elementary transformation.

This makes possible the definition of an iterative-improvement method, calle!:i
the descent method : from a current solution s, take a solu?.ion s' € N(s); if
f(s') < f(s), then s’ becomes the current solution, otherwise keep s. It:erat,e
this process. When there is no s’ in N(s) better than the current solution s,
a local minimum is reached (with respect to this neighbourhood, t.e., to this

elementary transformation).
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The noising method is based on descent. Start with an initial solution and
repeat the following steps :

- Add noise to the data (in order to change the values of f).

- Apply the descent method to the current solution for the noised data.

For each iteration, the amount of noise decreases until it is equal to zero, at
the last iteration. The final solution is the besl solution computed during the
process.

Next we show how to use this heuristic for the construction of good covering
codes.

2 The Noising Method for Coverings

2.1 The covering problem

Let C C FJ be a g-ary code of length n. Its covering radius, t(C), is defined as
the smallest integer ¢ such that any vector z € F' is at Hamming distance at
most t from at least one codeword. In other words,

{(C) = max{d(z,C),z € F'}.

Let Ny(n.1) be the smallest cardinality of a g-ary code with length n and
covering radius 1 (equivalently, K (n,t) is the smallest number of spheres of
radius { necessary to fill in F7, .., any vector in F" is in at least one sphere).
Function A has been extensively studied, in particular for ¢ = 2 or 3 (see [5], [2]
or [3]. among many others). Upper bounds on A" are obtained by constructions;
some of them use heuristics based on descent : for instance, simulated annealing
gave several new upper bounds on A and K3, for t = 1 and small n (see [4] or
[6], for instance).

Our goal is to use the noising method to try to break records on upper
bounds for Ky(n,1). In the following, we shall restrict ourselves to the binary
case (¢ = 2), but the reader will have no difficulty in extending it to any gq.

2.2 How to use the noising method

The set of solutions S is the set of all binary codes of given length n and given
cardinality. The evaluation function f is the number of vectors of F at distance
greater than ¢ from the current solution C' C £3' :

(€)= |{z € F3,d(2,C) > 1).

The aim is to find a-code C such that f(C) = 0; in this case, Ka(n,t) < |C|.
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From a random initial sclution C, we generate a new solution C' by comple-
menting one bit of one codeword (this defines the elementary transformation).

To add noise, we give to each vector z € FJ' a value v(z) €1 —rl41]
where v is uniformely distributed and r is the rate of the additional noise, The
noised function, fneised, is given by :

fn?iud[c} — Z ‘U(Z).

2€F7 d(2.C)>1

Notice that, when rate r is equal to 0, then v(z) =1 for all z € F, and f and
Sroisea coincide.

If we find a code € such that f(C) = 0, we start again the whole process
with a cardinality decreased by one.

3 Results

For n =9, 10, 11, 12 and ¢ = 1, the best-known upper bounds on Kz are 62,
120, 192 and 380, respectively.

We chose to start with » = 1 and to decrease r arithmetically by 1/A, where
A is the number of descents, fixed by the user (we chose A = 10000).

This allowed us to find again the aforementioned upper bounds, in an ac-
ceptable time. Qur work is in progress, and we shall try to find record-breaking
coverings, by changing the parameters r and A : we also intend to consider other
values for n, i or g.

Remark. We chose ta consider the covering problem, but the noising method
could be applied to other coding issues, such as finding lower bounds on Aqln,d),
the greatest cardinality of a g-ary code € with length n and minimum distance
d (for this problem, genetic algorithms have been used in [7]).
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On weight distributions of the cosets of the
3-error-correcting extended BCH-codes of length
2™ m odd

f

Pascale Charpin * Victor Zinoviev *

Abstract
We consider the coset weight distribution of binary extended BCH codes of length
n=2™ , m is odd, and minimum weight 8. The problem is to enumerate such cosets
of weight 4. For the length n=32 the coset weight distribution was given by Camion-
Courteau-Montpetit [4]. We do it here for the next length n=128.

1 Introduction

This paper is initiated by the papers of Camion-Courteau-Montpetit [3],[4] and Charpin
[6],[7]. Charpin gave in [7] the weight distributions of cosets of 2-error-correcting binary,
primitive BCH codes, extended or not. We examine here the coset weight distributions of
the 3-error-correcting binary primitive BCH codes. For the length 32 the extended BCH
code of minimum weight 8 is in fact the Reed-Muller code [32,16,8] and we know, from
[4], that there are eight distinct weight distributions for the cosets. Our main result is that
this result does not hold for the length 128.

Let B be the extended 3-error-correcting BCH-code of length n = 27 , m odd. The
minimal distance of B is d = 8. The external distance of B —i.e. the number of non-zero
weights in B — is s = 6 [8],[10]. The covering radius of Bis p =6 [10]. As it follows from
[2] and [9], the code B is uniformly packed in sense of [1]. It means the following: there exists
., a, such that for every v € F} ;

iak felv) =1, (l)'l

k=0
where fi(v) is the number of codewords at distance & from v. For this case the code B has
parameters

real numbers g, ..

ag=1l=a1 =1 a; = 2(n — 68)/n(n — 8)
a3 = —120/(n —2)(n — 8) a4 =120/n(n —2) (2)
a5 = —ag as = 720/n(n — 2)(n — 8) .

*INRIA,Codes, Domaine de Voluceau-Rocquencourt, BP 105 - 78153, Le Chesnay, FRANCE

tnstitute for Problems of Information Transmission of the Russian Academy of Sciences, Ermolova stree

19, Moscow 101447, RUSSIA
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This resu.lt. follow‘s from [2] a:md [9). Let D =z+ B be a coset of B. The weight of the
ulmf:{ D is the minimum weight of the codewords of D. A leader of D is a codeword of D
ol minimum weight. L
For any i <6, let i be the weight of D; then
tij=card{z €D |w(z)=j}.

Il? kﬂOW the wﬂght dlﬂtﬂbutloﬂ of the coset, D Of weight 1 we hO 1d know ¥ umbels
£ snou any six

Let vE€F; ,v=(v1,..., v5). The supbort. of vis:
supp(v) = { 1| #0 .

The tqeight of v is the cardinality of its support and will be denoted by w(v).

2 The cosets of minimum weights i, i#4

I"n.:m equations (2), we know that there is only one weight distribution Ifor the cosets of
wm‘ght.s 1,2 and 3 and we know the numbers of such cosets. For the weights 5 it follows
cnsily from the fact that the code B is uniformly packed. |

Statement 1 There are n(n — 1)(5n + 8)/6 distinct cosets ;
: : of weight 5 and
vontains (n — 2)(n — 8)/120 vectors of weight 5. i A

lor the weight 6 we know only the following.

Htatement 2 Each coset of weigh}" 6 contains In(n — 2)(n — 8)/720 vectors of weight 6.

3 The cosets of minimum weight 4

In this section we always suppose that D'is a c ig i
: oset of weight 4. § i i
oven we obtain from formula (2): ' i S O

g pya+ og pag=1. ) {3)
|I,h::: 1:’;1?11 ttl;:\:;t tth‘:ov;':;illisdisftgbution c?f D is uniquely d.etermined from the value py 4.
g of D have disjoint supports, since the minimum weight of B
Statement 3 There em':st cosets D such that faq = 2m"2 i

II'Imt is, for instance, thf: cosets which are contained in the Reed-Muller code of order m — 2
(ie the extended Hamming code). In that case the leaders of cosets D satisfy:

vED.LI-:I{u)=4 supp{v.) 0 { I I = II’N] } : (4]
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We conjecture that there are not other cosets of minimum weight 4 such that peq =2m2
So we consider two cases:
1. Suppose that D is such that p44 =22 . Then

1-2"""a; n(n—8)(n—32)
Qg 5 7‘20
and the weight distribution of D is known.

Hags =

2. Suppose that D is such that ps4 < 2™~2 . Here we can tell only the following simplé
facts.

Statement 4 The number pqq is always even number.

Statement 5 There exist cosets D such that paq < 2m7% . Hence the number of distinel

weight distributions for the cosets of B is at least 8.

Number of words

Wonin Number of cosets
of weight:

(10 e i T R
0 1 10000 0 0
N 128 DL R0 05 (0gRRED
2 127 % 64 = 8128 0 010 0 0 2667
57 127+2688=341376 | 0 0 0 1 0 127 O
T 127 + 1792 = 227584 0000 2 0 2648
1 127 * 6272 = 796544 0000 4 0 2608
K 127%5376 =682752 | 0 0 0 0 6 0 2568
e 127 * 2240 = 284480 0000 8 0 2528
AT 127 * 448 = 56896 0000 10 0 2488
'y 127 % 21 = 2667 0000 32 0 2048
5 | 12713824 =1755648 | 0 0 0 0 0 126 O
6 127 + 300 = 38100 0000 0 0 2688

Table 1: The distance matrix of the 3-error-correcting extended BCH-code of length |

Wiain is the minimum weight of the coset.

4 The 3-error- correc_ting extended BCH-code of leng

128

For the length 128 we know all coset weight distribution (and this is the main result of th'

paper). The numerical results are given in Table 1. Note that in this case, we obtain twel

distinct weight distributions.
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Constrained distances

GERARD COHEN AND GILLES ZEMoR!

Let F = {0,1}. Let us use the following notation. For any binary code C,
D(0) = {d(e,¢) [ ,¢ € Cye £ ¢}
Afn, D) = max{|C| | C C F", D(C) C D}
m(n, D) =log, A(n, D)

and for linear codes
I(n, D) = max{dimC | C c F*, D(C) c D}.

If D € D(C), C is sometimes called a D-cligue. The classical coding case is D = [d,n], ]
but here we wish to concern ourselves with other types of constraints on the allowed ©
distances: the function I(n, D) can vary very much with the nature of the set D. For &
instance D-cliques with D = [0,d], in other words sets with mazimal distance d, have
been considered under the name of anticodes [3]. These anticodes have been used to '
construct gom:l codes, see ch. 17 §6 of [7]. More recently the problem of forbidding one ¥
distance, i.e. studymg !(n,{d}), has been considered. A variety of approaches to the |
problem have been put forward, among which additive techniques and more traditional §
codmg approaches. By way of illustration, let us mention the problem of detcrmmmg '
I(4¢,{22}). It was conjectured by Ito that l(4t {T}) = Zt Ito’s conjecture was provecl 1n b
[2] for all ¢. |

1. Some general results
" Denote by D = [1,n] \ D the complement of D. Let us state a few results from [2].

Propesition 1 — For n > 4t,

In,{2t}) < n—2 '
Un, (ZBTFTP < n—2-1 |

We shall need the following result which is a variation on the so-called “Elias-Bassalygo
lemma” [1]. |
Denote by A(n D, w) the mamrna.l size of a subset of F" such that any two of its
elements have weight w and distance in D. '

Proposition 2 —

2“
A(n,D) <
(&)

!Ecole Nationale Supérieure des Télécommunications, 46 rue Barrault, 75 634 Paris Cedex 13, France.

Aln, D, w).

TORME

Let €' be a code (simply a set of vectors in the non-linear case) realizing A(n, D).
Consider its 2" translates C + r,7 € F". Each vector of F", and in particular those of
weight w, appear A(n, D) times in the union of the translates C' + r. Thus one of the
translates, in itself a D-clique because d(.,.) is invariant by translation, must contam at
least (:)A{n D)2 vectors of weigh w. Hence

(:,) A(n, D)2 < A(n, D, w).

¢
2. Forbidding one distance
‘We shall need the following result [5].
Proposition 3 — If F is a family of w-subsels of an n-set no two of which intersect in

ezactly e elements, then
|F1 < Cw“mu{e,w—.e—l}

where ¢, is a constant depending only on w.

Set w = d = 2e, then clearly any two members of a family achieving A(n,Ze, 2¢) do
not intersect in e elements. Thus proposition 3 yields

A(n,2e,2€e) < czen”
and by proposition 2 we get, fixing e and letting n go to infinity,
L
A, %) =0 (3-) :
n
Hence,
m(n,2e) < n—elogn + O(1).

In other words, for fixed e, it is asymptotically just as costly to forbid the distance 2e
between codewords as to forbid all distances d, 1 < d < 2e. We have:

Proposition 4 — [(n,2e) = m(n,2e) = n — elogn + O(1).

We now consider the case when the forbidden distance d increases linearly with n.
In other words, we fix A and study I(r, An) by which we mean, abusing notation, I(n, d)
where d is the closest even integer not greater than An.

We shall need the following result from [6]:

Proposition 5 — Let g be a prime power. Let F be a set of w-subsets of the n-set
{1,2,...,n}. Suppase that for any F,F' € F we have

|F'nF'| # wmod g

Ifls(qfl)-.
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We now obtain, denoting by H the binary entropy function,
Proposition 6 — liminfn ™ 'm(n,An) <1 — H(X) + H(A/2) + o(1).

Suppose d equals twice the power of a prime d = 2¢. Let w = 2¢ — 1. Any code
of constant weight w and such that no two codewords are at distance d from each other
yields a set F such that |F N F!| # —1 mod ¢ for F, F* € . Hence

AmT2-1 < (") <o,
s

Apply proposition 2 to conclude the proof. 3
Note that for A < 0.27, this improves on n~'I(n,An) < 1 — A (corollary 3.2 of [2]).
More generally, if ¢ is a prime power and An = 2ig, considering constant weight codes

of weight w = (i + 1)g — 1, one obtains

Proposition 7 —
W rm(n, (200, o) < 1— H ( 4 1,\) +H (%) +o(1).

Remark: For growing 1, the righthandside of this last inequality tends to 1 — H(A/2), so
that it can be considered as a refinement of the Hamming bound

ntmin,[1,...dn]) < 1 — H(A\/2)
in the sense that one need not forbid every distance in [1,...,n].

3. A construction

We have the lower bound:

Proposition 8 —
n)n_)>1— ( A )+)i+o(]

. Consider the generating matrix

s I-\n—l 0
S [ 0 Go]

where Gy is a generator matrix of an optimal code Cy of length n — An + 1 and distance
An 4 1. Obviously every combination of rows of G has weight at most An — 1 - if it does
not use rows of Gy - or at least An + 1 if it does.

Take for Cp a code lying on the Varshamov-Gilbert bound to get the asymptotical
result. &

Large gaps remain between upper and lower bounds. Let us mention that contrary
to classical coding bounds on I(n, [6n,n]) and m(n, [én, n]), there is a notable difference
between the asymptot:cal behavmu.r of I(n, Xn) and m(n, An). For example, 1(4¢,28) =
1/2 and limsup Lm(4t,2t) > H(1/4) [4].

We would like to conclude by the question: what are the values of A that minimize
liminf n~'m(n,An) and liminf n=1(r, An) 7

T
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The Linear Programming Bound for
Quaternary Linear Codes

R.N.Daskalov
Departament of Mathematics, Technical University,
5300 Gabrovo, Bulgaria

Abstract

The linear programming bound for quaternary codes of word length between 132 and 200 is
determined.

LINTRODUCTION

Let GF(q) denote the Galois field of g elements, and let V(n,q) denote the
vector space of all ordered n—tuples over GF(g). A linear code C of length n and
dimension k over GF(g) is a k— dimensional subspace of V(r,q). Such a code is

called [n, k,d; g]— code if its minimum Hamming distance is d.

A central problem in coding theory is that of optimizing one of the parameters

n, k and d for given values of the other two. T'wo equivalent versions are:

Problem 1: Find dy(n, k), the largest value of d for which there exists an [r, &, d; ¢]—
code.

Problem 2: Find n,(k,d), the smallest value of n for which there exists an
[n,k,d;q]— code.

A code which achieves one of these two values is called optimal,

The Problem 2 for quaternary (g = 4) codes hase been tackled in (5], the values
of ny(k, d} being found for k < 3 for all d, and values of n4(5, d) for all but 10 values
of d.

New results for ny(k,d)(k = 5,6,7) are obtained in [2],[3].

Many upper bounds for ds(z, k)(1 < k < n < 132) are determined in [1]. In this
paper we continue this investigation for word length up to 200,
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2. Preliminary results.

The Hamming weight of a vector z, denoted by wt(z), is the number of nonzero
entries in . For a linear code, the minimum distance is equal to the smallest of the
weights of the nonzero codewords.

Let G be the generator matrix of an [n, k, d; ¢] code C.
Definition: The residual code of C' with respect to ¢ € C is the code generated

by the restriction of G to the columns where ¢ hase a zero, The residual code of C

with respect to ¢ is denoted by Res(C,c) or Res(C,w) if the Hammmg weight of ¢
is w.

Suppose quaternary linear code € and its dual code C* have respective weight
enumerators {A;} and {B;}(0 < i < n) then the MacWilliams identities [6,p.129]
are

[“j Kt(ij.A; =4*B,
=0

for t =0,1,...,n, where

- ()

are the Krawtchouk polinomials of degree ¢.

For an [n,k,d; 4]- code B; = 0 for each value of i (where 1 < i < k) such that
there does not exists [n — i,k — i + 1, d, 4] code. ([6]). In this way we find a lower
bound d* for the minimum distance of C* and so B, = 0,...,Bp_,=0.

Let C be an [n,k,d;4]- code and z € C, wt(z)—-wandw(d+f“'] Then
Res(C, w) has parameters [n — w, k — 1 y@°], where d® > d — w 4 =27 ([4]). ([=]
denotes the smallest integer > z). If no such code exists, as may be seen, for

example, by inspection of a table (or follows from other upper bounds), then it

follows that C has no words of weight w, and so A, = 0.
Thus, the weight enumerator of an [, k,d;4]- code C is a feasible solution of the
linear program, :
maximize: 1+ 5%, A;

subject to
Y K1) A = ~K,(0) =1, 4 1
i=d

3 K)oy > —K,(0) t=d',...,n
2 ;
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Solving the linear programming problem, by the well-known simplex method, we

A0 d=d. .n

A; =0, i €I (the set of absent weights)

find the following upper bounds on dy(n, k).

3. New upper bounds on d.(n,k):.

The next quaternary linear codes do not exist:

(133, 8, 95]
(156, 8,112]
[175, 8,126]
[194, 8,140]
[148,10,104]
[176,10,125]
[145,11,100]
[164,11,114]
[184,11,129]
[161,12,111]
[187,12,130]
[138,14, 92}
[157, 14, 106]
[176,14,120]
(195, 14,134]
[156,15,104]
[174,15,117]
[193,15,131]
[135,17, 87)
[154,17,101]
[139,18, 89)
[156, 18, 101]
[175,18,115]
(193,18, 128]
[186,19,122]
[140, 20, 88]
[136,21, 84)
(154,21, 97]

[140, 8,100]

[159, 8,114]
[179, 8,129]
(198, 8,143]
(152, 10,107]
[180,10,128]
[149,11,103]
[168,11,117]
[188,11,132]
[172,12,119]
[191,12,133]
[141, 14, 94]
[161, 14,109]
[180, 14,123]

(199,14,137)

160, 15,107)
(178,15, 120]

(197,15,134] -

(139,17, 90]
(157,17, 103]
(142,18, 91]
(160, 18, 104]
(178, 18,117
[197,18,131]
(189,19, 124]
(143,20, 90]
(140,21, 87)
157,21, 99]

[144, 8,103
[163, 8,117]
(182, 8,131]
[136, 10, 95]
[156, 10, 110]
(134,11, 92]
[153,11,106]
[172, 11, 120]
[192, 11, 135]
[176, 12, 122)
[194,12,135)
(145,14, 97]
[164,14,111]
[180, 14, 126)
[138,15, 91]
[164, 15, 110]
'[182, 15,123
‘[200, 15, 136]
(142,17, 92]
[161,17,106]
[146,18, 94]
[164, 18, 107)
[182, 18, 120]
(150,19, 96]
[196, 19, 129]
[147, 20, 93]
[143,21, 89|
[161,21,102]
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(148, 8,106]
167, 8,120]
[186, 8,134]
(140,10, 98]
(160,10, 113]
(138,11, 95]
[157,11,109]
[176,11,123]
[195,11,137]
[180, 12, 125]
(198,12, 138]
(149, 14, 100]
[168,14,114]
188,14, 129]
[149, 15, 99]
[167,15,112]
[185, 15,125
[164,16,109]

[146,17, 95]

[172;17,114]
(150,18, 97]
(167,18, 109]
[186,18,123]
(175,19, 114]
[200, 19, 132]
[154,20, 98]
(147,21, 92]
(164,21, 104)

[152, 8,109]
(171, 8,123]
(190, 8,137

(144, 10, 101]

[168,10,119]

(142,11, 98]
(161,11,112]
[180,11,126]
(199,11, 140]

[183,12,127]

(134,14, 89]
(153,14, 103]
[172,14,117]
[191,14,131]
[153, 15, 102]

- [171,15,115)

[189, 15,128)

[197,16,133]

150,17, 98]
135,18, 86]
153,18, 99]
[171,18,112)
(189, 18, 125]
(182,19, 119]
[136,20, 85]
(194,20, 127]
(150,21, 94]
168,21, 107)

(172,21,110]

[190,21,123] |

[179,22,114]
(197,22,127]
(148,23, 91]
(159, 24, 98]
(191,24, 121]
[183,25,114]

[175,21,112]
[194,21,126]
[182,22,116)
(200, 22, 129)
(141,24, 85)
[162, 24, 100]
[166, 25,102]
(187, 25,117]

[179,21;115]
(152,22, 94]
(186, 22, 119]
(134,23, 81]
[145,24, 88]
(166, 24, 103]
- [173,25,107)
[190, 25, 119]

[183,21,118]

[172,22,109]
(190,22, 122]
(137,23, 83]
(148,24, 90]
(169, 24, 105]
(176,25, 109]
(194, 25,122]

[187,21,121)
(175,22, 111]
(193,22, 124]
(141,23, 86]
[152,24, 93]

(180,24, 113]
(180,25, 112]
(197,25, 124]

Acknowledgement. This research was partially supported by the Bulgarian NSF
Contract 1-35/1994.
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Abstract

We present an algebraic decoder for the ternary Gashkov-Sidel’'nikov (GS)
codes, The decoder is based on a criterion to determine whether 1,2 or 3
errors have occurred when a GS code is used for data transmission.

1 Introduction

Recently, several algebraic decoders for ternary double-error correcting codes have
been proposed; see for example [4],[5]. Here, we present an algebraic decoder for the
Gashkov-Sidel'nikov (GS) ternary codes [1], see also [2]. The GS codes are the best
known family of double-error correcting ternary codes. They are quasi-perfect and
their parameters meet asymptotically the Hamming bound.

Let n = (3% +1)/2, r > 1, and let o be a priniitive n-th root of unity in the field
GF(3'). Denote by g.(z) the minimal polynomial of & over GF(3) and consider
the cyclic code C, of length n generated by ga(z). The code €, has parameters

n=(3"+1)/2, k=n—4r, d=5

and covering radius 3 (i.e., it is a quasi-perfect code); see [1].

Using the idea of [3] it is possible to devise an efficient decoder for C,. First
we find a complete indicator showing the exact number of errors when C, is used
for data transmission. Note.that since . is quasi-perfect we can assume that the
number of errors is at most 3. |

1Research has been done during the visit as a guest researcher to Department of Electrical
Engineering, Linkdping University. This work waa partially supported by the Bulgarian National
Science Foundation under contract N-I-35/1991.

78

2 The decoding algorithm

The received vector is denoted r(z) = c(z) + e(z), where ¢(z) € C; and e(z) is the
error vector. We use the locators 1, &, @?,...,a™". Since the roots of g.(z) are

3 a? 320y g.air gir—1
e S S S S ;

the syndromes 5; = e(a") € GF(3") are known only for 1 = 35, 0<j<d4r—1. Let
vi=Ss = Sf’r“. We get v € GF(3%). The following two lemmas are essential.

Lemma 1 » = 1 iff one error has occurred.

Lemma 2 v(v — 1) is not o square in GF(3%") iff two errors have occurred.

Sketch of proof for Lemma 2. Suppose
e(z) = pz' + pyzf, 0<i<i<n—1,

where p;, p; € GF(3). Then
5 = #iﬂiff'l-‘jﬂf’.: !

Sh o= et e
and

v =881 =2+ pipia + o). (1)
Denote & = pipje'™?. Then from (1) we derive

8 —(v+1)6+1=0. (2)
According to Lemma 1 v # 0,1. Now suppose v( — 1) is a square in GF(3*)".
Then it can be shown that :

§ € GF(3)

and therefore o' ~7 € GF(3)*. But o?(~9 = 1 leads ton|i—j,i = j - a contradiction.
So if two errors have occurred v(v — 1) can not be a square in GF(3*)*. Conversely,
assume v(v — 1) is not a square in GF(3"")* and let & be a root of the equation (2).
Then it can be shown that § = ya™ for some v € GF(3)*, 0 <m <n— 1.

Consider now the system

a+b=251, a=¥8bh
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The solution is

a=S586(1+6)7", b=S5(1+6)" ' (3)

It is easy to check that a?™ = b = 1. For if using (2) we get
41
B = S3n(1 4 ) = Y DL el B

(L+87)1+468) (L+87 (146)?

Hence
b= #‘_ai, b= “JQJ

are the errors with values p;, p; € GF(3)* and locators of, o which lead to the
syndrome 5. [}

Notice that
S LE = (L
To avoid an inversion in GF(3%)* we can instead calculate
A i e (4)

Remark: If § is a root of (2), the second root is 6=, Inserting §~" instead of & in

(3) only permutes a and b, i.e., the solution (4) does not depend on the choice of
the root of (2).

Based on the lemmas the following decoding algorithm is proposed.

Step 1. Calculate S; = r(e) and go to Step 2.
Step 2. If §; = 0 then no error has occurred. Otherwise go to Step 3.

; Step 3. Calculate v = 515_; = Sf““. If v = 1, one error has occurred and go
to Step 4. Otherwise go to Step 5.

Step 4. Find g € GF(3)* and i, 0 <4 < n — 1, from 5; = po’ and correct the
error with value g on position of.

Step 5. Calculate y = p(v —1). If v is a square in GF(3%) three errors occurred.
Otherwise go to Step 6 (two errors).

Step 6. Solve the equation 6% — ( +1)6 +1 =0; compute a = Si{l+6p b=
S —a. Find @ = o, b = pjod, g, p; € GF(3)*, 0 < i,j <n—1
and correct the two errors with values p; and g, on positions of and o,
{Note that a?" = b =1).

Step 7. End.
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Remarks f

A standard approach to decode doublwerwr ccrrzctmg codes would mclude the
following steps: find the error-locator polynomial, solve the corresponding quadratic
equation; check if its roots are locators (i.e., if they are degrees of the primitive root
of unity).

The main merits of our algorithm are the follcrwing.

Lemma 1 and 2, calculated from S; only, provide us with complete indicators to
determine the number of errors in a received sequence. Therefore, in the algorithm
we can completely eliminate the check if the roots of the error locator polynomial
are locators.

A major implementation a.dva.ntage-iu that. most calculations, iu.particu'la.r the in-
version for finding the roots, can be carried out in GF(3%") instead of in GF(3*").

Let us also mention, by applying the léemmas we only have to solve a quadratic
equation when two errors have occurred. This excludes the procedure of solving
quadratic equations over the locator field in about half of the cases (i.e about half
of the possible values of S correspond to three errors)

Up to some minor modifications a similar decoder can be arranged for the non-cyclic
Gashkov-Sidel’nikov codes [1]. They have parameters (r > 1)

n=3"141)/2, k=n—4r—2, d=35
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AVERAGE WEIGHT ENUMERATORS FOR
GEOMETRIC GOPPA CODES

IwAaN DUURSMA
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Abstract. While weight enumerators are difficult to determine in general, it
is straightforward to compute the average weight enumerator for a suitable finite
family of geometric Goppa codes. The codes in the family should be constructed
with the same curve and have the same designed parameters. The class group
of the curve, which is finite, serves as an index set for the family of codes. The

average weight enumerator thus obtained can be shown to depend only on the,

zeta function of the curve. The precise structure of the class group is relevant
for the determination of individual weight enumerators, but is irrelevant for the
determination of the average weight enumerator.
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ON SUPERIMPOSED CODES

A.G Dyachkov, V.V.Rykov
Moscow State University, Faculty of Mechanics and Mathematics
Department of Probability Theory
Moscow, 119899, Russia

Binary superimposed codes (SC) were introduced by Kaute-Singleton [1] in
1964. A let of results obtained over the last few years for the theory of SC
hawe been published in [2-7]. List-decoding superimposed codes (LDSC)
were suggested in [3] and were studied in [7]. The aim of this paper is to
obtain the lower and upper bounds on the rate of LDSC. New results
improve similar bounds from [3) and [7]. '

{a) Statement of the Problem

Let1 s <t 1<L <t-s, N > 1, be integers, [N] be the set of integers from 1 to N,
and 2 j< [Nl j = 1,1, bea family of t sets in which no union of L sets is covered
by the union of s others. Such family is called an (s, L, N) - family of volume t. The
Incidence matrix (With N rows and t columns) of (s, L, N) - family is called a

superimposed (s, L, N) - code of volume t. Let t (s, L, N) be the maximal possible

volume and
Ry(s) = [lim log,t (s L, N)
N ->00 N

be the rate of an (s, L, N)-code.

We also consider a family of t sets in which all Ci unions of s sets are different.
Such family is called an (s?l‘l)—family and the incidence matrix of (s?f( )-family is called a

superimposed (s:\ﬁ)-codc. Let t(s, N) be the maximal possible volume and
Fa) —
R(s) = lim _logy t (s, N)
N ->t0 N

be the rate of an (s?il)-cude.

The main goal of this paper - the development of new methods for the investigating

upper and lower bounds on the rates Ry(s) and ﬁ(s)

{b) Background and Significance
P
The concepts of superimposed (s, 1, N)-code and superimposed (s, N)-code arose in the
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fifties and found their main applications in the representation and handling of data in :;';
certain type of information retrieval system. The first fundamental results of the
superimposed code theory were obtained by WHXKautz and R.CSingleton in 1964. :_'.
gave the detailed algebraic constructions of these codes and set up the classical problem for

the combinatorial coding theory - to obtain any nontrivial upper and lower bound

of R,(s) and ﬁ(s).

{c) Preliminary Studies

This paper extends our investigations held in recent years and devoted to -?éj
4
bound) on R;(s) was obtained in [2]. In particular, this bound means that R;(s) <

for all s > 2. Later P.Erdos, P.Frank, Z Furedi (1985) independently obtained this upper
bound for the case s = 2. 4
In ref, [8] and [9] we discovered new applications of (s, 1, N)-codes for some models of the

multiple access channel and associative memory.

the help- of this obtained (see ref. [3]) the iIIIle'Ia__I

Another

concept we

A
inequality: R(s) < 1fs for s > 19. useful - generalizations

~ superimposed (s, 1, N)-codes were given in ref. [5].

of t(s, L, N) with the same relative accuracy for all L > 1. It makes possible to defi e

more exactly the logarithmic asymptotics of ?(s, N).

(d) Survey of Results

d1. Upper bound on Ry(s) and ﬁ(s)‘ We generalize the recurrent method of ref. [2]
and obtain a new upper bound on Ry(s) which has the following asymptotic form

Ris) < 2L logas (1 +o(1)) *)
8

N
[2}. The known inequality R(5) < Ra(s-1} (see ref. [3]) and (*) give

L)
R(s) < il%gz,g (1 + n(l)). § >0
5

A
We also improve the upper bound on R(s) stated in section (c). Namely, we show

that R(s) < 1/s for s 3-11.

N
d2. Lower bound on Ry(s) and R(s). The lower bound on R;(s) was proved in ref.
[5] with the help of the random coding method for the code ensemble with t independent
constant weight columns. We use the same method for the case of (S, L, N)-

codes, L. > 2. We prove a new lower bound which has the following asymptotic form

Ry(s) > L (1+4(1)), logze = 1,443

s? logge

if L »1 fixed and s —~> o< .For L =1 the above inequality was obtained in ref. [5].

~
We also establish a similar lower bound on R(s) which has the following asymptotic form

A
Ris) > -2 (1+0(1)), s—>o0n
52 log,e
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A Constructive Bound for Codes with two Levels

of Unequal Error Protection

Eva Englund and Anders Hansson
Department of Electrical Engineering
Linkoping University
S-581 83 Linkoping
Sweden

Abstract

The Zyablov bound for concatenated codes is generalized to binary codes with
two levels of unequal error protection. In some cases the bound exceeds the upper
bound for linear codes with unequal error protection. The t.omple:uty of specifying
these codes grows polynomially in the codeword length.

Introduction

Codes with unequal error protection (UEP codes) provide higher error protection
for some information symbols than what is guaranteed by the minimum distance
of the code. A two-level binary UEP code can be regarded as a code designed for
the degraded binary symmetric broadcast channel. In [2] Bassalygo et al. present a
lower bound on the rates of two-level binary UEP codes. This bound is valid also
with the restriction that the code can be expressed as a direct sum, see [4]. In some
cases the admissible rates obtained with this lower bound exceeds the upper bound
for the rates of linear UEP codes (LUEP) obtained by Katsman [6].

As complexity measure we use the maximum number of binary operations re-
quired to specify the code sequence that satisfies the bound. We use the same notion
of code specification as in [1, 3] where the terminology is formalized in terms of the
characteristic function of the code sequence,

‘We call a lower bound constructive if the complexity is bounded from above by
a polynomial expression in the code length for large code lengths. To our knowledge
no bounds for UEP codes are known to be constructive.

In [7] Zyablov used the non-constructive Varshmov-Gilbert bound to get a con-
structive lower bound. We generalize this idea and use the construction of [2] as an
inner code in a concatenated code. As outer codes we use Reed-Solomon codes. For
some rates this results in a constructive lower bound. Moreover there exist rates
obtained with this bound that exceed the upper bound on the rates for linear codes.

Unequal Error Protection

We will consider codes that can be expressed as a direct sum as follows;

C=0180C;.
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The UEP properties of a code are characterized by the following two distances:

51(C) = nl’iélc d{cy +ca,cy +¢5) and  so(C) = d(C),
€1 ,€. 1
e2,64€62
cse]

where d(z,y) denotes the Hamming distance between z and y and d(X) denotes
the minimum Hamming distance of a code X. The vector s(C') = (s1(C), 52(C})
is known as the separation vector for C. We address the problem of finding a
construction providing an infinite sequence [C(“)] of codes of increasing lengths n.
For a o = (01, 02), where

(n) (n)
gl:nﬁ—%%l a.nd Uzznﬁ_].l‘l”ﬂﬂ),
we present the rates
log, |ct™ log, |cf™
L =J:ﬂgo¢il i RFJEEC.JJJ'

obtained by the construction, which is a lower bound for the permissible rates. We
focus on the case o3 = 0.

The lower bound

We use the concatenated construction described in [5] where the inner code is the
construction proposed in [2]. Thus the inner code is a UEP code. Two outer Reed-
Solomon codes are used, one for each protection level.

The total code of length n can be described as a direct sum of two first-order
concatenated codes:

c™ = AMoB™ o AMoBM,

where [ denotes first order concatenation. The inner codes of length 1) can be
described as a direct sum:

{8 = B @ B} .

We denote
o _ [logalB]
i 1n)
and as n tends to infinity

4 (n)
r?')—fr.- and &E—?ﬂ)—}—sﬁ‘- fori=1,2.

For each code in the sequence above we choose a set of outer codes As") and A(;'),
n}(m]
where A™ is a (possibly shortened) Reed-Solomon code of alphabet GF(2/™i™),
minimum distance D‘[n) and length L(™ such that
L™ = min{Z‘{")"Enl - 1,2!(“)'£“] =1}
As n tends to infinity we dencte

oy p
T G AT
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We obtain the following lower bounds on the separation (see [5]):
51(C™) > 51 (BM)DY,  5(C™) > s(B™M) DS .

Finally as n — oo we get

: o s(0™) A
05 nll'rfulu m = &iA;, (1)
el Gt pit e g elpleli L i
By = lim TECY =(1- A : (2)
for i=1,2. For the case o3 = 0 we have from [2] and (1),(2) :
: a
0 2L )L R G, A_];: 1/2})), (3)

where @ < 1/2 is the solution to h(a) = Ry and h(z) = —zlog; z—(1—=)logy(1—a).
In figure (1) the bound (3) is plotted for o = (0.1,0), note that for small R, it
intersects both the upper and lower bound for linear UEP codes.

Complexity

In [1, 3] Bassalygo et al. formalized the notion of the computational complexity
of specifying a code sequence. We follow their terminology but use as complexity
meagure the number of binary operations instead of Turing machine steps.

Consider an infinite code sequence [C(?)] described above for which the param-
eters tends to the bound (3) as n tends to infinity. Let A be the set of all code
lengths n for which €™ is defined. Define the code set C to be the union of all
codewords in the code sequence:

g= |iiem e lj{u, 1}
neN n=1

The characteristic function x¢ of C'is one on all binary tuples in € and zero otherwise:
x : Ufo,1}"~ {0,1},
n=1

1, z€C
xe(z) = { 0} gl
By specification of the code set C we mean a description of an algorithm for com-
puting xc. We denote the complexity of specifying the code set to be the maximum
number of binary operations required by the algorithm to compute the value y¢(z)
for an arbitrary n-tuple =.

The most time-consuming steps are to check if = consists of codewords in B(™)
given by the construction in 2], and to find primitive polynomials to construct the
fields for the Reed-Solomon codes. These parts requires less than

o) ag o(yg™) + o((imyars)
binary operations respectively. If we impose restrictions on the inner code:

" 1
min{rg,r} > i MeN,

the total number of binary operations is less than O(n*™). Thus the bound (3)
obtained under this restriction is constructive.
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Figure 1: We see the lower bound on the rates Ry and R; for o0 = (0.1,0) obtained in [2]
and for the new bound (3). The lower and upper bounds for linear codes of [6] are also
plotted. The bound of (3) is plotted for constraint vy 2 1 /15 and 7y unrestricted.
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Spherical codes by balanced symmetric
Y4 construction
Thomas Ericson!2 and Victor Zinoviev!3

Abstract
A new construction for spherical codes is presented. The codes are based
on a quaternary alphabet and are generated from three constant weight
binary codes under a balanced mapping. We give examples of spherical
codes generated by this method. The construction produce new spherical
codes as well as new descriptions of known codes.

1 Introduction

A spherical code X is a finite subset of the set Qy of unit norm
vectors in Euclidean n-space %N . The parameters of main interest
are dimension, minimum distance and size . The dimension n is
defined as the smallest N such that the code belongs to %N ; the
minimum distance is the smallest distance between any pair of
distinct points, and the size M is simply the number of points.
The points are usually referred to as codewords and the distance is
often measured in terms of the parameter p , which is actually a
squared distance: :

pd min{lx-yI2:x yeX x=y}.

With respect to a given basis each codeword xeX can be
represented as an N-tuple x = (Xq, X9, . .., Xy), where the

1|NRIA, Codes, Domaine de Voluceau-Rocguencourt, B.P.105-78153 Le Chesnay, France

2Dept. of Electrical Engineering, Linkoping University, S-581 83, Linkoping, Sweden

Inst. for Problems of Inform. Transmission, Ermolova 18, Moscow, 101447, Russia
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coefficients x; clearly depend on the basis and where N > n=dim X.
Any subset Le® such that all components x; in all codewords x
= (X4, Xp, . . ., Xy) in the code X belongto L is referred to as an
alphabet for the code X . We will consider spherical codes which

are based on a quaternary alphabet and which are generated from
three constant weight binary codes under a balanced mapping.

2 Construction

Let A, Gy, and C; be three constant weight binary codes with
parameters (N, wp, da, Mg), (N-wu, wg, dg, Mg), (wa, wq, dy, My)
respectively. The construction Y4 [1] might be modified by
allowing an alphabet with unequal spacing , but still maintaining

the requirement on symmetry, i.e. using an alphabet of the form
Ly = {, -b, b, f }. For any codeword a=(ay, ay, . . ., ay)e A define

the functions ¢ and § by the formulas

1e=
|

o d 3 aj, % (ai)
j=1 i=1

where a & 8 ®1 . For each triple (a, ¢y, cy) of binary
codewords a=(ay, ay, ..., aN)eA, Co=(Co 1. Co o - - - Co N-wa)ECo:
€1=(Cq,1: C1,2: + - + :C1 wp)e Cy we define a codeword x = (x4, X, . . .
» Xy) of the spherical code X in Qy by

b, a; =0, CU,(P_(a,i) =0
WA h =0 Co e =
-b, ai =it} c1|{P(a.i) =0
f. g Canpitat) =01 5
Bt [ s e

For given codes A, C, and C, define
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f=(N-(wo + WyDNE, b= (wy+ wyE, (1)

where E is the squared Euclidean nom of resulting code words,
E= N(Wﬂ A WT](N*(WO + W1)) (2)

Theorem 1. Let the codes A:(N, wp, da, Ma), Cp:(N-wgy, Wy, dg,
Mg), Cqi(wp, Wy, dy, My) be given and assume (wg + wy)< N2 and
W (N-wpu)=wg wp.. Then the construction described above

produces a spherical code X with parameters (n,p,M), where

p 2 min { dy (a-b)2 ,dp4b2? , dy(a+b)? . dq(a+b)?} ,
n=N—1, M = MAMO M-‘.

) ' isting of only the
Take in Theorem 1 as a code A a trivial code consi
zero vector, and any constant weight code C:(N, w, d, Mc¢). Then our

construction gives us a spherical code X:(N-1, p , Mg) with p =
Nd/w(N-w). If instead we choose for the single codeword in the
code A a codeword consisting of all ones, then for the same code C
we obtain a spherical code X ‘with the same parameters. A union
of these two codes gives us the following result [3].

Theorem 2. The existence of a constant weight cod C:(N, w,
d, Mg), where w < N/2 , results in a spherical code X H(n,p,M),

where

: Nd _ 2(N-2w)
n=N-Lp 2 min { Jeos s " New

},M=2MA.
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3 Examples

Example 1. From the codes A:(8,8,2) and C:(8,2,2,28) we
obtain by Theorem 2 the following  well known optimal spherical
code [2] ,[4] X:(7, 4/3, 56).

Example 2. From the codes A':(16,B,8,30) and Co =

C,i(8,2,2,28) we obtain by Theorem 1 the spherical code X'(15,

2/3, 23520). Using the repetition code A':(16,16.2) and the code
C":(16,4,2,1820) we obtain by Theorem 2 the spherical code X'
(15, 2/3, 3640). Because of the condition d(A', A") = 8 the distance
p (X', X") between the codes X'and X" equals 2/3. Thus the union X'u

X"is a new spherical code X :(15, 2/3, 27160). These parameters
are best known.
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The Weight Hierarchy of Semiprimitive Codes

Tor Helleseth !, University of Bergen, HIB, N-5020 Bergen, Norway

P. Vijay Kumar 2, University of Southern California, CSI, Los Angeles,
CA 90089-2565, USA.

Abstract. An irreducible cyclic (n,k) code is said to be semiprimitive
if n = (2%~ 1)/N where N > 2 divides 2/ + 1 for some j > 1. The complete
weight hierarchy of the semiprimitive codes is determined when k/2j is odd.
We apply these results to find some of the generalized Hamming weights of
some classes of dual codes of primitive BCH codes with designed distance
N + 2 when k/27 is odd.

1 Semiprimitive Codes

Let F = GF(2%) be a finite field with 2¥ elements and let % be a generator
of the multiplicative group F* = F\ {0}.

Let h(z) € GF(2)[z] be an irreducible polynomial of degree k and period
n. Then any irreducible (n, k) code C over GF(2) can be described as

C = {c(a)le(a) = (Tr(a), Tr(aB), -, Tr(af""")),a € F}

where 3 is a zero of h(z) and T'r(z) denotes the trace function from GF(2*)
to GF(2). Note that k is the multiplicative order of 2 (mod n).

An irreducible cyclic code is said to be semiprimitive if 8 = ¥ where
N > 2 and N|27 4 1|2F - 1 for some integer j > 1, Observe that in this case
k is even and 2j|k. The length of the code C is n = (2% — 1)/N.

The weight distribution of this code was determined by Baumert and
McEliece [1] to be :

(@41 — (~1)BY(N - 1)28-1)/N if a€ Py,

(21 = (~1)m 281y if aeF*\BR, ¥

w(c(a)) = {

where P is the set of nonzero JV-th powers in F~.

!Supported in part by the Norwegian Research Council, proj. no. 100422/410
?Supported in part by the National Science Foundation under Grant Number NCR-
9016077,
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2 The Weight Hierarchy

For any code D, let x(D) be the support of D, i.e., the set of positions where
not all of the codewords of D are zero. The r-th generalized Hamming weight
of a code C is defined by

d.(C) = min{|x(D)| | D is an r-dimensional subcode of C}.

The weight hierarchy of a code C is the set of generalized Hamming
weights {d.(C) |1 < r <k}.

The weight hierarchy has been determined for the Golay code, Reed-
Muller codes by Wei [12], for codes meeting the Griesmer bound by Helle-
seth, Klgve and Ytrehus [8]. )

For the BCH codes very little is known. It has been shown by Feng,
Tzeng and Wei [4] that d = 8 for all binary primitive double-error-correcting
codes. Van der Geer and van der Vlugt [7] proved that d3 = 10 for all binary
primitive double-error-correcting BCH codes and dy = 11 in the triple-error-
correcting case. Kabatianski [10] proved that d; = 3t + 2 for all sufficiently
long t-error-correcting primitive BCH codes.

The generalized Hamming weights of the dual of the BCH codes are
studied by Chung [2], Duursma, Stichtenoth, and Voss [3), and van der Geer
and van der Vlugt [5] and [7].

In general it seems hard to determine the-complete weight hierarchy for
all the semiprimitive codes. However, in the case N[2? + 1[2% - 1 and k/2j
odd we can find the complete weight hierarchy.

Theorem 1 Let C be a semiprimitive code where N > 2, N|2/ 4+ 1]2¥ -1
and k/2j is odd for some j > 1. Then the complete weight hierarchy of C

is given by

JE N ar if 1<r<ky2,
T @ -1)d/2r 4 (N - 1)(2M2 £ 1)(1 - 2M2 )N if kf2<r <k,

where d = (281 — (N — 1)2%/2-1)/N is the minimum distance of C.

Sketch of Proof. The main idea is the simple, but very useful obser-
vation that for any r-dimensional subcode D of C it holds that

IX(D)] = 55 3 w(d) 2)

deD
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Hence, to find the r-th generalized Hamming weight of a code, it is
enough to find the smallest sum of the weights for any r-dimensional sub-
code. In particular, if we can find an r-dimensional subcode where all
nonzero codewords have minimum weight d this subcode will have support
size equal to d, = (27 — 1)d/2"~%.

A semiprimitive codes has only two nonzero weights given in (1). From
their description one can show that if k/2j is odd, then there is a subcode
of C of dimension k/2 where all codewords have minimum weight. Further,
for all dimensions 7, k/2 < r < k we are able to find the weight distribution
of an r-dimensional subspace where the sum of the weights is a minimum
and determine d, from (2).

The result of Theorem 1 has also been obtained independently in a dif-
ferent way by van der Vlugt [11]. In the case when k/2j is even the problem
is still open.

The results on the weight hierarchy for the semiprimitive codes when
k/2j are odd, can be applied to find some of the generalized Hamming
weights of some dual of BCH codes with designed distance N + 2. The fol-
lowing theorem extends some results in Duursma, Stichtenoth, and Voss [3],
and van der Geer and van der Vlugt [5] on the weight hierarchy of some
duals of the BCH codes.

Theorem 2 Let N > 2, N|2/ +1|2% — 1 and k/2j odd for some j > 1. The
dual code of a primitive BCH code of length 2¥ — 1 and designed distance
N + 2 has generalized Hamming weights i

d, = (27 - 1)d/2’?

for1 < r<k/2, whered = 251 — (N - 1)2%'1.

3 Conclusions

We have completely determined the weight hierarchy of the semiprimitive
codes in the case N > 2, N|27 + 1|2% — 1 and k/2j odd for some j 2> 1. A
code C is said to satisfy the chain condition if there is a chain of subcodes
Dy C Dy C +++ C Dy = C such that dimD; = i and |x(D;)| = di for
1 < i < k. We have also showed that the chain condition holds for these
codes.
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OPTIMAL QUATERNARY CODES OF DIMENSION 4 AND 5
R.Hill, I.Landgevi, P.Lizak

.Depar'tmcnf of Mathematics and Computer Science
Universily of Salford
Saulford M5 fWT, United Kingdom

1. INTRODUCTION

One of the fundamental problems in coding theory is that of finding the smallest possible value of th
function n,(k, d), defined as the minimum length n for which a linear [n, k, d], code exists. A well-known'
lower bound on n,(k, d) is the Griesmer bound [3].

nglk, d) = g.(k,d) =

An [n, k, ], code attaining this bound is called a Griesmer code. Let a prime power ¢ and a positive integer:
k be fixed. It is well-known that given g and & the problem of finding the exact value of n,(k, d) for all d°
is a finite one. In this nate we give a brief account of some recent nonexistence resulls for quaternary codes
of dimensions k = 4 and k = 5. In order to save space we refer the reader to [?] or [4] for the basic notions;
from coding theory.

Let C be a linear [n, k, d}; code with weight distribution {A;li =10, ...
the weight distribution of its dual. Then we have

Lemma 1.1. (The MacWilliams identities) [7]

Z(nt_') et ‘2(" ) =0, b

i=0

.n}and let {B]i =0,...,n} be‘-'

Let G be a generator matrix of C. The residual code Res(C,¢), ¢ € C, is defined as the code generated
by the restriction of 7 to the columns where e is zero.

Lemma 1.2.[5] Suppose ¢ € C has weight w, where w < dg/q — 1. Then Res(C,¢) is an [n—w, k — 1,d’]
code with d° > d — w4 [4].0

Lemma 1.3. Suppose that for every ¢ € C we have wt(c) = 0 or —1(modg). Then the set D = {z €
C; wi(2) = 0(modg)} is a linear subcode of C.

Proof. Let x,y¥ € P. Denote by z(x,¥) the number of positions where both x and y have zeros, Then
from wt(x) + wt(y) + ZAGF; wt(x + Ay) = g(n — z(x,¥)) = 0(mod g} we get wt(x + Ay) = 0(mod g) for
every A€ F}. o

Lemma 1.4. Suppose C contains a word ¢ with wi{e) # 0(modg). Then the number of words in € of
weight # 0(mod g) is at least ¢®~! + ¢ — 2.

Proof. Let wt(x) # 0(mod q). Then for each ¥ # Ax, A € Fy, at least one of the words y,x + Ay, A€ Fj is
of weight divisible by g.

t "This research has been supported by the Royal Society and the Bulgarian NSF Contract No 1-35/1991
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Greenough and Hill [2] found na(k, d) for k < 3, d arbitrary, and ny(4, d) for all d € N\ {37, 38, 41, 42,
11,72, 77, 78, 79, 80}.

A [97,4,72] code does exist via a concatenation of an [80,4, 60] and a (17,4, 12] code. Hence, nq(4,72) =
17 and ny(4,71) = 96. In [6] and [8] the following results are proved:
Theorem 2.1. A [52,4,38]4 code does not exist. ¢
Theorem 2.2. A [56,4,41]4 code does not exist. o
Theorem 2.3. A [104, 4,774 code does not exist. o

lompared with the results from [2] this implies that in Table 2 in [2] n4(4, d) is given by the upper hound
in cases d = 38, 41, 42, 77, 78, 79, 80. The remaining open problem concerns the existence or otherwise of
n [51,4,37] code.

I}, QUATERNARY CODES OF DIMENSION 5

In Table 1 we present the best known values and bounds for ny(5,d), d < 32. The commients explain

{le lower bounds only. For the upper bounds we refer to [1].

Table 1.

d ga(5,d) na(5,d) Comments d  ga(5,d) na(5,d) Comments

| 5 ] - die 26-27 -

2 6 i < 18 27 27-28

3 " 8 [1] 19 28 29 Theorem 3.2
4 & 9 [1] 20 29 30 Theorem 3.2
h 10 10 - P O 3133 -

i 11 11 - 22 32 32-34 -

712 13 [1] 23 32 34-358  Theorem 3.3
§ 13t i [1] 24 34 35-36  Theorem 3.3
o 15 16 [ %5 36 37 [

0 16 17 1] % 37 3% 1

11 AT e ) o758 ag i

12 18 20 Thearem .1 28 39 40 (1]

13 20 21 Theorem 3.1 29 41 42-43 (1]

14 21 22 Theorem 3.1 30 42 43-44  [1]

15 22 23 Theorem 3.1 31 43 4445 1]

16 23 24 Theorem 3.1 32 44 4547 [1]

Now we sketch the nonexistence proofs for codes with parameters [19,5, 12,4, [28, 5, 19]5 and [33, 5, 23]4. We
set for the rest of the paper Fy = {0, 1,w,w?}, w? =w+ 1.

Theorem 3.1. A code with parameters [19,5, 12]; does not exist.

Proof. Suppose C is a [19,5, 12]4 code.
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Step 1. By = By = By = 0 (computer proof); Az =0 (Lemma 1.2).
Step 2. Ag=0. ;
If ¢ = (000011...1), wi{c) = 15, Res(C,¢) is the trivial (4,4, 14 code. Let ¢ = (cole;) where cq is the
restriction of ¢ to the positions where ¢ is 0. Let further wt{eo) = 1. Each element of Fiy occurs at rrfos‘l, 4
times in ¢; and so some element A must occur exactly 3 times. But then Ae—¢' has weight 13, a contradiction
to Az = 0.
Step 8. If C contains a word ¢ of weight 17 and a word c; of weight 16 then c; and cz cannot have a
common zero position,
Suppose the contrary. We distinguish two cases:

(a) e =(001...1), e2 = {0004y . . . a15)

(b) ¢ =(001...1), ez = (0100a; ... a1s)
Denote by @, 3, 23 the number of 1's, w’s, w?’s, respectively, among the a;’s. Then we have

(a) @1 fagtes=16, 2,5, i=1,23 '

{b) @1 +x2tza=15 @ <6, i= 1,2,8, where z; # 3,5 (413 = 415 =0).
In both cases we cannot find nonnegative integers z; satisfying these conditions. !
Step 4. A1r=0, A1 =0, . 0 {
Let €' be an [18,4,12)4 shortened code of C containing a word of weight 17 with weight enumerator {Alli = :
0,...,18). Obviously, Ajy = Al; = Ajz = Az =0. The system obtained from Lemma 1.1 fort = 0,1,2 has
no solutions, |

If Ajg # 0 then dyg = A1s = 0 (similarly to step 3). It is an easy check that one cannot find nonnegative
A;’s which satisfy the system obtained from Lemma 1.1 for t = 0,1,2. !
Step 5. The only possible weight distribution of a (19,5, 12)4 code is Ap = 1, Ajz = 318, Aia = 306,
Arg =345, Az =54 A; =0, i#0,12,14,16,18 (Lemma 1.1). ) |
Sep 6. Let D be a [17,3,12]4 code. Denote by {Af}i = 0,. .., 17} (resp. {B:]l =0,...,17}) the weight
distribution of D (resp. D), and assume A}y = 0. Then by Lemma 1.1 and Lemma 1.4 B, =3,6,9, or 18,
and the weight distribution of D is one of

Bi A‘i F] ';4 A '1 (]
(a) 3 33 30 0
{b) i 36 24 3
(€) 9 39 18
(d) 18 48 0 15

Step 7. There is a unique [17,3,12]4 code witl; Bf = 18. It is not contained (as a twice shortened code) in
a [19,5,12]4 code (computer check).

Step 8, There is no [19,5,12]4 code. ‘
Let us count in two ways the number of elemients in the set T = {(§,¢}}, where & is an unordered pair
of coordinate positions and ¢ is a codeword of weight 12 with zeros in these two positions. Obviously,
|7] = A15(}). On the other hand, by steps 6 and 7, |7] < 39(%), whence Ajp < 30.(Y)/ (D) = 3174 < 313=f
a contradiction to step 5. ¢

Theorem 3.2. A code with parameters [28,5, 19]5 does not exist.
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Proof. Suppose C is a [28, 5, 19]4 code.

Step I. By =By =By =0; Agy; = Ayy = Aps = 0.

The nonexistence of (27,5, 19]4, [26,4,19]4 and [25,3,19]4 codes implies the first three equalities. The rest
is obtained from Lemma 1.2.

Step 2. Agg =10.

Suppose ¢ is a word of weight 26 in €. Denote by D the code obtained from C by shortening twice with respect
to the positions where c is zero. Denote the weight enumerators of D (resp. DL) by {A4]i =0, .. ., 26}
(resp. {Bj|i=0,...,26}. Note that Ajs > 0 implies A}y = 3, A}, = Ab; = 0, and that B} = 0. Now it is
casily checked that the system of Lemma 1.1 for ¢ = 0, 1,2 does not have a solution in nonnegative integers.
Step 3. From Lemma 1.1 we obtain the following possible weight distributions for ¢

Aig Az Asza Agg Aay Aza
(2) 363 306 18 333 3 0
(b) 426 186 ioael gl L e
(c) 987 261 ' op g7g. || g 3
(d) 450 141 300 111 18t

Step 4. The weight distributions (a), (b), (¢) are impossible, as by Lemma 1.3 we must have Agg+Agy+Azs =
4% — 1 for some nonnegative integer s

Siep 5. In case (d) the words of weight 20, 24, and 28 form a [28,4, 20] code, say £, with weight enumerator
{Afli = 0,...,28}, where Aq = 1, Ay = Az = 141, Ay, = Agy = 111, Afy = Ass = 3. Let the weight
distribution of £+ be {B:-‘|1' =0,...,28}. There is no [27,4,20]4 code , therefore B;' = 0. Now the weight
distribution of £ does not satisfy the equation from Lemma 1.1 witht = 1. o

Theorem 3.3. A code with parameters [33,5, 23] does not exist.

Proof. The proof is similar to that of Theorem 3.2. First we show (using Lemma 1.1) that Ass = 0. Then
we prove the nonexistence of a code with such parameters with the help of Lemma 1.3. ¢
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Abstract
The error-correcting pairs for binary cyclic codes of length 63 and 65 with d > dpen have been
found by computer scarch.
1.Introduction
The table given in (1}, represents error-correcting pairs for binary cyclic codes of length less than
63, which have error- correcting capability exceeding the error-correcting capability given by the BCH
bound. Herein we attempt to make the same table for binary cyclic codes of length 63 and 65,
Let first remember the basic definitions and results given in [1].
For a linear code €, we denote the dimension of € by k(C) and the minimum distance of C by
d(€) , or by k and d respectively.
Definition 1.([1]). Let U, V" and C be linear codes of length 7 over the field F. We call (U, V) a
t—error -locating pair for C if the following conditions hold

vsveet, kU)st dyi)>t.

Definition 2.{[1]). Let (U,V) be a t—error-locating pair for the code C as in Definition 1.
We call (U,V) a t—error-corecting pair for the code C if in addition the following is satisfied
d(C)+d(U) >n.

A cyclic code € C F™ is usually identified with an ideal in the ring F[z]/(z™ — 1) generated by
a polynomial g(z) , which divides z® — 1. A codeword ¢ = (cp,€1,-++,Cn~ 1) € C is interpreted as a
polynimial by the relation

elz)=co+eciz+...+ CINRT

with g(z)le(z). ; :
The code is determined by the seros of g(z). When the characteristic of F' and n are relatively
prime z® — 1 has n different seros, Let the extensi Fof F the n—th roots of unity and let

a € F be a primitive n— root of unity. Let m*(z) be the minimal polynomial of ' over F. If g(=)
equals lem{m’(z) : o' € R} then we call R a defining set for the code C. If R is the maximal defining
set for C we call R complete. We will describe the defining set by the exponents occuring in A.

For R = {ij,43,-..,%} let M(R) denote the following matrix: )
(ﬂi, )l:- (ai‘}!. i a-’,)n—l
(u")“ (ai, )1 e {af.,]n—i

M(R) =

{ai‘,)a (ai.,)l. ”: (ai:.)n-—l
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Then the code C over F with defining set R is defined as
¢ ={ceF": M(R)" =0},

and C = C N F", where C CF is the code over F with parity-check matrix M(R).

Definition 3.([1]). The set I is called a generating set of a cyclic code U over F if U is defined as

U={ueF:u=oM(I), c e T}

Our computer search of error-correcting pairs is based on the Theorem 5.6 from [1]:

Theorem. Let s < 1. Let the sets I, J and K satisfy

I =t+1,

U=t—s [J=t—s

|K|=s+1, |K|<t.

Let (c1,1) = (c2,7) = (c3,») = 1. Then the code C over F with defining set R = b+c I +ezJ +e3 K
has a {-error-locating pair (U, V), where I and V are codes over F with generating sets b + ¢, I and
e3J + caK, respectively. The pair (U, V) is -error correcting whenever I} < d(C).

Our goal in this note is to find error-correcting pairs for cyclic codes of lenght 63 and 65. We
use tables for codes of this lenght, given in [4], but we consider only those of them with & > dgey.
The theoretical base of our computer search is the Theorem 5.6[1]. We have found all error-correcting
pairs for s = 0, respectively for defining set R = b+ 17 + 3 J.

2.Description of Tables and Results.

The following two tables rep t error-correcting pairs for binary cyclic codes of lenght 63 and
65, which have error-correcting capability exceeding the error-correcting capability given by the BCH
bound. The start point of our resarch is the table of cyclic codes given in [4]. The block length n,
dimension k, the true minimum distance d and dgcg in Table 1 and Table 2 are the same as in [4],
as well as R is the minimal defining set of the code. The set I and J determine the error-correcting
pairs according to the Theorem.

‘We have tested the first one hundred codes of length 63 with d > dpc g given in [4] and have found
error-correcting pairs for 68 of them. These results have been obtained under stronger conditions than
those in [1]. That is why error-correcting pairs might also exist for the 32 tested codes for which we
have not found such ones.

The Table 2 consists of the obtained pairs for 14 codes among the 18 tesied ones of length 65.
For some of them we have not found error-correcting pairs for the greatest possible ¢, but we have
found error-correcting pairs for ¢, which is less than taax and greater than tpcy. Notes in the last
column mark these cases.

Acknowledgement.  This research was partially supported by the Bulgarian NSF Contract
1-35/1994.
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Table 1.

Error-correcting pairs for binary cyelic codes of length 63 with d > dpey

No | n k d dncg i R I 1

1 [63]40 ][5 3 2 {21,1,31} 0,1] {1, 2,61}
2 6349 |5 4 2 {21,1,5} 0,1 {1,2,21)
3 [63]48 |5 1 2 {7,27,1} 0,1 {1,14,54}
4 [63[48]5 4 2 {9,1,5} 0,1 {1,2,18}
5 [63 |48 )6 4 2 {9,1,31} {0,1 {1,4,9}
6 | 63|48 [ 6 3 2 {27,15,1} {0,1 11,2,4}
7 |63]48 6 4 2 0,21,1,5} 0,1 {1,2,21}
8 |63]|47[6 4 |2 0,7,27,1} 0,1 {1,14,54}
9 [63[47]6 4 2z 0,27,15,1} {0,1 {1,2,4}
10 [ 6347 |6 4 2 {0,9,1,5} 10,1 {1,2,18}
11 |63 |46 [ 6 4 2| {21,9,1,31} 10,1 {1,4,9}
12 [63 |46 |6 & 2 [ {21,7,27,1} 10,1} 11,14,54}
13 [ 63|46 | 8 3 2 21,27,15,1} 0,1] {1,2,4}
14 [63 |46 [ 6 4 2 (21,27,1,5) 0,1] 11,2,21}
15 |63 [45 |8 4 2 {27,9,1,31] 0,1} {1,4,9}
16 | 63 [45 |8 4 2| {0,21,7,27,1} [ {0,1 {1,4,54}
17 [63[45[ 6 4 2| {7.27,9,1} 10,1 {1,4,36}
18 [ 63 |45 | 6 4 2 | {0,21,27,15,1} | {0,1 {1,2,4}
19 |63 |45 [ 6 3 2| {279,151} 0,1) {1,2,4}
20 [63[45 |6 1 2 | {o0,21,27,1,5} 0,1) {1,2,21
21 [63 |45 ] 6 4 2 {27,9,1,5} 0,1 {1,2,29}
22 (63 |45 | 7 5 3 {15,1,31,} {0,1,2} {1,2,9}
23 (63 |44 ] 6 4 2 {0,1,5,11]} {0,1 {1,4,10}
24 (63446 4 2 [ {0,7,27,9,1} {0,1 1,4,36}
25 [63 |44 [ 6 4 2 [ {0,27,9,15,1} 0,1 {1,2,4
26 (63|44 [ 6 i 2 10,7, 1,5} 0,1 1,4,7]
27 [63[44 |6 1 2| {0,27,9,1,5} 0,1 {1,2,9}
28 | 63|43 [ 6 4 2| {21,7,1,5} 0,1 {1,2,21}
29 |63 43 |6 4 |2 {21,1,51i) 0,1) {1,2,21}
30 (63|43 |8 3 2| {21,7,1,31} 0,1 1,2,4]
31 (63|43 |6 4 2 [ {21,27,9,1,31} [ {0,1 1,4,9]
32 |63 |43 |6 3 2| {21,27,9,15,1} [ {0,1 21
33 (63|42 86 1 2 | {0,21,7,1,5} 0,1 {1,2,21}
34 63|42 6 1 2 | {0,21,1,5,11} 0,1 {1,2,21
35 [63 |42 [ 6 4 2 | {27,1,5,31} 0,1 {1,8,45}
36 |63 |42 6 4 2 {9,1,5,23} 0,1] {1,2,9}
37T [63 (40 |7 6 3 [ {21,9,1,5,31} | {0,1,2} | {1,21,40,42}
38 |63 |40 |8 5 3| {21,7,27,1,5} [ {0,1,2} | {4,7,27,32]
39 (63|40 |8 5 3| {21,7,9,1,5} 0,1,2} | {1,2,20,56]
40 |63 [ 40 | 8 6 3| {21,7,27,1,11} | {0,1,2 {1,2,4, 54}
41 |63 |40 (8 5 3 [ {21,9,1,5,11} | {0,1,2 {1,2,9, 34}
42 [63 |40 8 5 3 | {21,27,1,5,31} | {0,1,2} | {1,21,42,64}
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Table 1.{continued)
Error-correcting pairs for binary cyclic codes of length 63 with d > dgcr

No|n |k |[d|dpew |1 R ] I
43 |63 (40| 8 5 3] {21,9,1,5,23} {0,1,2} | {1,2,17,23}
44 (63 (40| 8 5 3 {21,7,9,3,1} {0,1,2 {1,2,6,7}
45 | 63 |39 | 7T 5 3 {15,1,5,31} {0,1,2} | {1,34,59,61}
46 |63 |39 | 7 5 3| {27,9,3,1,31} {0,1,2 {1,2,4,9}
47 |63 |39 | 7T 5 3 {15,3,1,31} [0,1,2 {1,2,3,31]
48 |63 |39 | 8 5 3| {0,21,7,27,1,6} 0,1,2 {1,2,4, 48]
49 |63 |39 | 8 5 3| {0,21,7,9,1,5} 0,1,2 {1,2,20,56}
50 [63 |39 ]8 [] 3| {0,21,7,27,1,11} | {0,1,2 {1,2, 4,54}
51 [63 |39 |8 5 3 [ {0,21,9,1,5,11} 0,1,2 {1,2,9,34}
52 |63 |39]8 6 3 | {0,21,27,1,5,31} | {0,1,2} | {1,21,42,54}
53 |83 |35|8 6 3 [ {0,21,9,1,5,31} | {0,1,2} | {1,21,40,42}
54 |63 |39]8 [ 3 | {0,21,9,1,5,23} [ {0,1,2} | {1,2,17,23}
55 |63 |39 | 8 5 3 {7,15,1,31} {0,1,2} | {1,2,31,47}
56 |63 |39 |8 [} 3| {0,21,7,9,3,1} 0,1,2 {1,2,67}
57 |63 |39 | 8 5 3 {7,15,3,1} 0,1,2 {1,2,6,14}
58 |63 |38 |6 4 2 {0,7,1,5,11} {0,1} {1,4,7}
59 |63 |38 |8 [] 3 {0,7,3,1,11} {0,1,2} | {1,2,6,48}
60 |63 38| 8 [] 3 {0,7,15,3,1} {0,1,2} | {1,2,6,14}
61 |63 |37 |6 4 2 {21,7,1,5,11} {0,1} {1,2,21}
62 |63 |37} 7 5 3| {21,15,3,1,31F [{0,1,2 {1,2,30,31
63 |63 |37 |8 5 3| {21,7,27,9,1,5} [ {0,1,2 1,2,4,18)
64 |63 |37 |8 [] 3 | {21,7,27,8,1,11} | {0,1,2 1,2,4,54)
65 [63 |37 |8 [] 3 {21,7,3,1,11} 0,1,2 1,2,4,52
66 |63 |37 |8 5 3| {21,7,27,9,1,31} | {0,1,2 1,2,14,59}
67 |63 |37 |8 5 3 | {21,7,27,9,15,1} | {0,1,2 {1,2,6,7}
68 |63 |37]8 5 3 {21,7,15,3,1} 0,1,2 {1,2,6,14}
Table 2.

Error-correcting pairs for binary eyclic codes of length 65 with d > dpey

No|n |k | d|dgeg |t R I I Remark
1 [65|53] s 4 2 T T R B {123}

2 [65|49 | 5 4 2 {131} {017} {1,247}

3 [65|41[ 8 6 3 {51} {0,1,2 {12457

4 [65]40] 8 [ 3 {051} {0,1,2 {1,245}

5 | 65|40 | 8 6 3] {017}, 0,1,2 {1,2,32,36 }

6 [65[37] 8 6 3] {1351} 0,1,2 {1,248}

7 |65 |36 [ 8 6 3| {01351} 0,1,2 {1,245}

8 [65(36 |10 6 3] {01317} 0,1,2 {1,21632} [t=tne—1
9 [e5|29 |12 8 5 {517} [{01234} [{2457810}

10 [65[20 |13 7 4 {513} {0123} [ {12330317} [t =tne—2
1mjes|28|12| 8 |5] {0517} [{01234]} [{245,78,10

12 (65(25 13| 10 [5] {13517} [{01,234) [{1,245832 ) [t=tmar—1
13(65 25 [15] 7 J4] {13513} [ {03237 [ {1,233031} [f=tme—3
14165 (24 [16] 10 [5] {03517} [ {01234} [{1,245832} |t=tmas—2

105




Upper hounds on the probability of undetected error

G.L.Katsman
1BM EE/A, 18 Bahrushina st.,
Moscow, Russia
ATIBM3RP@IBMMAIL.IBM.COM

The proposition we proved allows us to obtain new upper bounds on the probability of undetected error for
binary linear codes in binary symmetric chunnel,

1. Introduction

Suppose that we use linear binary /n,k/ code for error detection in binary symmetric
channel with error probability e. The receiver decides that received word is correct if it
belongs to the code.

If A= T4 x"y weight distribution of C then P(C.e) - the probability
i=tl
of undetected error can be calculated as
PCel =L 4 (- ¢ = A(l-ee - (l-€)
i=l

Let us define
P(nk.e} =min P(Ce)
C

where min is taken over all binary linear /n,k/ codes.
The function P(nk.e) was investigated in [1], [2], [3]. We will investigate the upper bounds
on Plnk.e).
Two upper bounds for this function are well-known [2], [3]
() Plke)< min {Z-1) ([ + (10 - (-0 42 - D"
0=t
(V.Levenshtein [2])

(2) Plnke < (25 - Df1 - 2(1-e)" + (1-2e" }/(2" - 2)

(T.Kasami, T.Klove, S.Lin [3]).
Let us define
P(Re) = liminf n' logs Pnk.e)
nyo
where lim inf is taken over all fmk] linear binary codes with n/k> R . From (1} it is not
difficult to obtain the best known upper bound for P(R.e}

[ p (R) logs e+ [1-p (R} log: (I-¢)
PRe < 14 0<R< 1-Hie)
|R-! I-He <R
where H(e) - binary entropy function, and p (R) - Gilbert -

Varshamov radiifor R (I - H(p (R}) = R) .Itcanbe proved that the improvement of bound

(3) is equivalent to impro of Gilbert - Varshamov bound for binary codes. |
So the bound (1) is the best known from the asymptotically point of view. Nevertheless the
bound (2) can be better for some values of n and £,

In this paper we shall prove the proposition that allows us to obtain bounds (1) and (2) as
particular cases. Besides we shall obtain new bounds for Pfn,k.e) that are better than (1) and -
@).
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2. The main result
Proposition 1. Let ¥ - linear binary {n.K] code, with weight distribution
Afcy)= T 4 x"'y
=0
Then for any k< K there exists linear [nk] code C (C ¢ V), such that

PCe)< min ({2~ D [A((-¢), €) ] - (- HE*Dy"
0 1!

The idea of proof, To obtain this bound one must calculate an average probability of
undetected error over all /n, k] subcodes of code ¥, and after it use the "expurgate” as in [2].

It is easy to see that if we will take £"s as fn,n/ code ¥, then we will abtain inequality
(1), and if we will take fn,n-I parity check code as ¥ and { = I, then we will obtain (2.1t
means that right side of (2) is the average probability of undetected errors for all /. k/
subcodes of {n,n-1] parity check code.

As an example of new bounds that can be obtained from Proposition 1 let us take
{27, 2" - m - 1] second order Reed - Muller code as code V. The weight distribution of
this code is well-known

Afy) = [+ )"+ 20-1)(3 - 2 )+ -0 fion
From Proposition 1 we have
Consequence 1. Let n=2", k< 2"-m- I. Then for all 0< es 172

P(nke) < min {(Z-D{f(I-e) + &I" + 2(n-Df(1-&" - ] +
0< 1= 1
+(1-e) - 1" - 2n(1-ef 22"

witht = 1 we have
Pinke) <
< (D1 + 2n-D(i-2e)"7 + (1-2¢)" - 2n(1-¢)"]/(2"-2n}
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Reed-Muller codes for error detection
Torleiv Klgve!, University of Bergen, HIB, N-5020 Bergen, Norway

If a block code is used for error detection only, then an error is unde-
tectable if it transforms a codeword into another codeword. The probability
of undetected error for a binary [n, k] code C used on a binary symmetric
channel with crossover probability p is given by

n
Pue(C,p) =3 Ap'(l —p)""

i=1
where (Ag, A1, ..., As) is the weight distribution of C, and alternatively by
1 & i
Pue(Cyp) = 27_-;}:03-(1 —2p)"f - (1 -p)
=
where (Bg, By, ..., By) is the weight distribution of C*.
The worst-case probability of undetected error is defined by

PuclC) = max { PuC9) [0S 9 < 3

A code is called good for error detection if Puc(C) < Pus (C.}). A code
which is not good is called bad. If Pye(C,p) is monotonously increasing on
the interval [0, %], then C is called proper. Clearly, proper codes are good.

Note that i skl
Pue (C: E) — om = 2k~“s
‘and sometimes the code is called good if Py(C) < 2577, For practical
purposes, we could define the code to be good if

Pul0) < (012) it

for a reasonably small ¢. We will call an infinite class C of codes uniformly
good if there exists a constant ¢ such that (1) is satisfied for all C € C.
Otherwise, we say that it is ugly. The 2-error-correcting primitive BCH
codes are all good for error detection [1], whereas there are 3-error-correcting
primitive BCH codes which are bad [4]. However, the 3-error-correcting
primitive BCH codes are uniformly good [3].

IThis research was supported by the Norwegian Research Council, project no.
100422/410,
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The r'th order Reed-Muller code R(r,m) has parameters n = n(m) =
2™, k= k(r,m) = T (7), and d = d(r,m) = 2™ " for m 2 r > 0, see
e.g. [2, p. 3706 Moreover, R(r,m)* = R(m —r —1,m). The performance
of Reed-Muller codes for error detection is summerized in the following the-
orem:

Theorem 1 (a) The R(0,m) and R(1,m) codes are proper for allm = 1.
(b) The R(r,7), R(r,r +1), ond R(r,r + 2) codes are proper for all r 2 0.
(c) The R(2,5) code is proper.

(d) All other R(r,m) codes are bad.

(e) Any infinite subset of the set {R(r,m) | r =2, m > r + 3} is ugly.

Proof: The R(0,m) codes are repetition codes which are proper. The weight
distribution of R(1,m) is given by

i |0 amel o] am

Ajr|zr =21

and so :
Puo(R(1,m),p) = (27 = 2) (p(1 - p))™" " +9™",

and this is easily seen to be monotonous, that is, the R(1,m) codes are
proper. This proves (a).

We have R(r,r) = GF(2)" which is proper, and R(r,r -1} is the [n,n—
1,2] even-weight code which also is easily seen to be proper. The R(r,r+2)
code is the [2™,2™ — m — 1,4] extended Hamming code. This was shown by
Leung et al. [1] to be proper.

(c) can be shown directly by using the known weight distribution (see
e.g. [2, p. 443]) of the R(2,5) code.

To prove (d) and (e} we first give some lemmas. For any [n, &, d] code C

we have 5 ;
E =
Pu(@) 2 P (0,2) 2 (5) (1- H.
n n mn

Ar, D) =27 (%)d (1 8 g)n—d,

Let
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where n = n(r +1), k= k(r,7 + 1), and d = d(r, 7 +1). Then

Py R(r,r+1
M_ > Aln ). (2)
Poc(B(r,r +1),3)
Lemma 1 Forr >0 and [ > 0 we have

A +1) = Alr 02207,

Corollary 1 Let r > 0. If A(r,l) > 1 for some lo, then A(r,1) > 1 for all
1 = 1y and A(r, 1) — oo when I —+ co.

Lemma 2 Forr > 2 and | > 3 we have
Mr+1,1) > T4x(r, 1)

Corollary 2 Let 1 2 3. If Mro, 1) > 1 for some o 2 2,Ithen M, 1) > 1 for
all » > rg and A(r,I) — oo when r — 00.

Table 1. Good and bad Reed-Muller codes.

1
i [ S I T S S R
R e T AL
1l o o' @ Qe P
0 Bl I EEE R R IR, R L o
2l0 0 9 o x % s o D
4 T Qw6 e o
{35 i L B ST R 5 B
g0 © B x 0o o @ °
oliiacal 03 Riib o el sol) ko
0| e N v B SR S R
gl il G s Lot o | ot ko
10|20 D ke e frgt ol 0
Sl i) ks Hulitel o R ) o
@ good %, ®, o bad

In Table 1 we illustrate our results so far. A 'Q' denotes a code which
is good by Theorem 1 (a)-(c). A 'e’ denotes a code which is bad by (2) and
the following values: A(2,6) =~ 2643.8, A(3,5) ~ 1.51 - 107, A(4,4) = 100.7,
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A(10,3) = 1.379. A o’ denotes a code with is shown to be bad by repeated
use of (2) and Corollaries 1 and 2, starting from the values marked with ’e’.
The remaining 10 combinations have been marked by a *x’. For these codes
the weight distribution is known, and a check shows that they are all bad.
This proves (d).

Finally, let C be an infinite subset of {R(r,m) | r = 2,m > r +3}. At
least one of the sets

R = {r| R(r,m) € C for some m}
and M = {m | R(r,m) € C for some r}

is infinite. Suppose R is infinite (the other case is similar). Let ri,72,...
be an increasing sequence in R. For each ¢ > 1, there is an m; such that
R(r;,m;) € C. By (2) and Corollaries 1 and 2 we have

Pwe'(R(r.-,rm))
Pye (R{‘I"“, "ni)v %)

when i —+ co. Hence (e) follows.

= Mri,my — ) = Ari, 3) = 00
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On the Capacity of the Binary Symmetric
Channel with the Finite Memory Input
Constraints

Victor D. Kolesnik, Victor Yu. Krachkovsky
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Abstract

The method for evaluating the lower bounds on the capacity of the binary syn-
netric channel (BSC) with the finite memory input constraints is considered, It
could be used to evaluate the capacity of the (d,k)-input constrained channel. The
method is based on the techniques for evaluating the lower bounds on the code
distance for the constrained codes, discussed earlier in [5],[6],[7]. The comparison
with the known results [3], [4] is presented,

1 Introduction.

Let X = {0,1} and X} be a binary constrained set of sequences of length n, which satisfy
some finite-memory constraint L. The best known example of L is a (d, k)-constraint for

the magnetic recording systems. For a given pair of integers d,k, 0 £ d < k < o0, a

sequence X € X" is called (d, k)-runlength constrained if each run of zeros in x has length
I, d <1< k. The general definition of the finite-memory constraints is using the notion
of a constrained system [5]. Let G = {§, F, L} be a finite labeled graph with the set
of states S, set of edges F and labeling £ : & — X, For an edge e € E we denote by
ue),m(e) € S the beginning and terminating states of e. A path of length n in G is a
sequence of edges ¥ = (e1,...,e,) such that t(e;) = 7(e;-1),2 < i < n. The constrained
system CS = C8 (@) is the set of all words x = L(7) = (L{e1),. .., L(en)) generated by
reading the labels of all paths of finite lengths in G. TFor a fixed n, X} is a subset of
all sequences of length n in CS. Further we will consider the constrained systems on the
irreducible and deterministic graphs G.

Let A = A(f,) € X7 be a constrained block code for a set of messages M, defined
by the coding f : My — X7 and decoding  : X™ — M, functions with the coderate

Ry & (1/n)log | My |. We will consider a transmission of codewords through a binary

symmetric channel (BSC) with the error probability p, 0 € p < 1/2. The transition
probabilities for the sequences on the input and on the output of BSC are W™(y | x) =
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p?- (1—p)"~¢, where d = dy(x,y) is the Hamming distance. A razimal error probability
for a code A(f, p) is denoted by

L

emax = mox(Py f,p) = max 1—W"(¢7'(m) | f(m)), (1)

For a given £,0 < e £ .5, the code A(f, ) is called a (n,€)-code i emex < €. A value
R > 0 is called an achievable rate, if for each €,0 < £ < 1, and for each § > 0 there exist
(n,€)-code A with the rate R4 > R—§ . The supremum of R denoted by Cf, = Cr(p) is
called the capacity of BSC with an imput constraint L.

In the following we will consider the problem of evaluating Cr. The traditional ap-
proach for evaluation is based on the estimation of the information capacity [1] C} . The
lower bounds on C} for (d,k)-constraint L were investigated by Zehavi and Wolf [3].
The lower bounds together with the upper bounds on C} were investigated by Shamai
and Kofman [4]. For these approaches the better lower and upper bounds may be pro-
duced by increasing the complexity of the evaluation formulas. For the case of the limited
complexity the lower and upper bounds of [3], [4] do not coincide for all p, 0 < p < 1/2.

In the next section we will consider the method that permits for some constrained
systems to compute the exact value of C(p).

2 Main Results.

For a set X C X™ and for any y € X" the Hamming distance between y and A’ is defined
as

da(y, X) = mip du(y, ) @

The set of all x that provide minimum for the right side in (2) will be denoted by
proj(y, ). For 0 <! < n we will denote "X = {y:ye X" daly, X) =1}

The central part of the derivation is the calculation of the values W,; =| T'X} |.
For this purpose a dynamic programming principle may be of use. For a pair of states
s,8' € §,edge e € E, 1(e) = s and integer m > | let us consider a sel of paths T(s,s’,e) =
{1 =1(e1,---16m)}, & € E, e; = e, terminating at ' = 7(e,,). For u € X™ we denote

A ;
pls, e 8", u) = Lemn, dp(u, L(7))- (3)
If T(s,s',e) = @ we set to the left side of (3) the value co. For a given u and s we select
e as the survived edge if

p(s! Bl‘srlu) <0 aJld p(aiel 8’? u) S p(’leil s,l u) {4:}

for every s’ € S and for every e’ € E, i(e') = s, (If several edges satisly (4) only one of them
is selected ). Let y(s) be a minimal m such that for every u € X™ there exist the survived
edge e oulgoing from s. If such m does not exist we set p(s) = co. We will consider only
the constrained systems CS with finite p(s) for every s € S (e.g. (d, co)-constrained
systems). For i = m(G) = max,es p(s) we propose an algorithm ¥ for constructing for
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every y € X™™ a path v = ¥(y) of length n such that Lv) € proj(y™, X7), where

y™ = (41,.++,¥n). The algorithm recursively finds 4 = (e1,....en) = \If(y(’”‘ﬁ‘)}_,

n = ng+ 1L,mo +2,..., by selecting e, as the survived edge outgoing from the state
= 7(en-1) foru—(y",...,y“‘*"“‘).

Proposition 1 Forn =mng+1,... the path ~+(") generates a constrained sequence x =

£(+™) such that x\™ € pr0](y(“’ X o

Let us consider the set B = {v: v = (s,u),s € §,u € X™*} of size r =l‘ S | -2”‘,‘We
will enumerate the clements of B as vy, ...,v, and define the vector generating function

Won(z) =Y Wapa 2,1 <i<n,
i=0

W(z} { n",(z),...,wn,u.(z]},

where Wi, v = (s,1u), is a number of y € X™™ such that (¥ny: oy Yapm) = 1 and
W(y) terminates at the state s. Then we have

Proposition 2 W, = 27 er Wt

Lel us construct the ¢ x r-matrix ®(z) = [$,+(2)], v,v' € R with the elements

Buot(z) = @28, (5)

In (5) for v = (s,u), v = (s',u') we have o = 1 if there exist a surviving edge e for
a given ussuch that ¢(e) = s, 7(e) = s’ and 0’ = (ug,...,un,6), § € X, and @ = 0
otherwise. In the case @ = | we have @ = (£(e) — u1) mod 2.
Proposition 3 Forn =mng+1,... we have

1 Wa(2) = Waa(2) - 8(2) = Woy () - (B(2))7

2 W,,{z] VWt = 0 W) B n e () BT, where B is an integer
vector of size 7.

Next result could be proved using the well known techniques for the Markov chains
and constrained systems (see for ex.[5][6])

Proposition 4 Let A(z) denote the mazimal modulo eigenvalue of mairiz ®(z) for1 < ]
z <'oco and let § be a constant, 0 < § < 1/2. Then, -

1 ;
F(6) 2 A= log Wig.n = inf A(2) — 8 - log z.

Clombining the previous result with the lemmas on the ma:mmal' code (see for ex. [2])
we get the final statement
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Proposition 5 The capacity of BSC with the finile memory input constraint L defined
by the irreducible deterministic graph G with finite value of W(G) satisfies

Crlp) = sup {F(8)+6-logp+(1—8)-log(l —p)} — Hip),

o<b<1/2
where H(p) = —p-logp — (1 — p) - log(1 — p) is a binary entropy.

Note that for the typical constrained systems the dimension of ®$(z) may be large
depending on the value (@). This dimension can be considerably reduced if the equiv-
alence on some elements of the set R will be introduced similarly to [6]. In this way the
set X™C) is substituted by some prefix code of considerably smaller size.
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Abstract

Consider [2™, k, 2™ —k+1] extended Reed-Solomon code. If every coordinate symbaol is represented
by the coresponding m—tuple over GF(2), using a basis of GF(2™) and a parity check symbol
is added to each m—tuple we obtain a [(m + 1}2™,m.k] concateneted code. In other words, we
use extended Reed-Solomon code as outer code and even weight code as inner code. Herein we
determine the binary weight distribution of the 1 code for & € 3. This distribution
does not depend on the basis. For & = 4 and m— odd the binary distribution is calculated and
the conection with the basis is revealed.

LINTRODUCTION
Denote by RS; the [n,k,n — k + 1] Reed-Solomon code over GF(2™) with generator polynomial:

9(z) = (z —a)(z — a®}...(z — o),
where a is a primitive element of GF(2™) and by ERS; its extended [n+ 1, k] code. It is well known
that: :
ERS: = {(1(0), u(1),u(a),-.., u(c” ))|u(z) = ug + w1z + ... + up_12*~1}
where « is a primitive element of GF(2™) and w; € GF(2™) for i = 0,1,...,k— 1.

Let B1,81,...,0m be a basis of GF(2™) over GF(2) and & = (go,61,...,as)- & codeword from
ERSy. Then, fori=0,1,...,n we have:

m
o= E aj.B5,
i=1
where a;; € GF(2). By adding a parity check symbol to each m—tuple (ai1, @ia, - ..,0im), every
coordinate symbol can be replaced by: |

(@i: @izy o+ y By G )y

where E:':ll g, =0,

The resulting concatenated code is a binary linear [(m+ 1).2™, m.k] code. We denote it by ERS;

In general, the weight distribution of this code depends on the basis 8y,/3,.. ., ;.

In this article we find the weight distribution of ERS; for & < 3, and for k = 4, m—odd. When .;

k < 3 the distribution does not depend on the basis. For & = 4 and m— odd we give the conection
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between the basis and the weight distribution. In this case the weight distribution of ERS) is expressed
by the spectrum of a binary linear code of length m + 1 that depends on the basis.

Using the above notation demote by @z, k¥ = 1,2,...,m + 1 the vector (aok, @1k, -+ -y Gak). I
81,63, ... ,6m is the dual basis of 81, B, .. -,0m it is easy to see that:

a;; = Tr(ai.b5)
forj=1,2,-..,myi=0,1,...,n and Gims1 = Tr(a;. Tjoy &) for i = 0,1,..., n. This implies:
aj = (Tr(65.a0), Tr(6;.a1),..., Tr(8;.ax)).
for j =1,2,...,m and
T = (Tr() 85,000 T3 B2 Tr(Y 6.0n))
i=1 =1 i=1
Therefore the weight of the binary vector is given by
m4l
S wi(ag).
i=1
Finally, since ag = u(0) and a; = u(a’~?) for i = 1,2,...,n we find that the weight of a binary
vector obtained by a codeword from ERS; is:

i wt(Tr(8;.u(0)), Tr(6;.u(a®), ..., Tr(6;.u(a™ ")) + wi(@nii)-
j=1

Next lemma [4] turnes out to be usefull one.

Lemma 1. If f(z) = fo+ fiz +...+ f32”, f; € GF(2™) and
7= (Tr(£(0)), Tr(f(e);-- ., Tr(f(a™"1))

(i)if f3 = 0 : wt(¥) = 2™Tr(fo), when fi+fa=0
wi(7) = 2™, when fi + f #0

(ii) if fa # 0: wt(7) = 2™, if there exists y such that fay* = y and Tr(f(y)} + fo) = 1
wi@) = 2™ & /52773,

where s is the number of roots of faz* = z, otherwise.
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2.BINARY DISTRIBUTION FOR ERS;.

By AF we denote the number of codewords from RS} with weight I. We begin with the trivial

case k = 1,

Proposition 1
Ay, = (3
for s = 0,1,...,[(m+ 1)/2] and A} = 0 for | # 2™+ .a.

Proof: The proof is trivial.

<
Proposition 2
A?mn).:m—l = 2m-('zm =1+ A%m-]v‘l.],l"'—’-
and A? = A} when I # (m+1).2m.
Proof: In order to find A,’ we consider all codewords obtained by poly ials u(z) = ug+u1.z where

u; # 0ie. we consider only the codewords from ER5;\ERS). Lemma 1 shows that for any up and

uy # 0, wi(@) = 2™ ! for j = 1,2,...,m + 1. Therefore:

A[’m+1}.3"‘" =27 (2™ — 1) + Al gayan-t

and A? = A! when | # (m+1).2™"1,
1 ']

Theorem 1
A2 ey = 212 — 1) (m ot 1)+ Afgnsy
Apiam =272 -2 —m - 1) + A 1yzme1y
Al yapme =271 — 1) m+ 1)+ + AL 2y
and 47 = A? when 1 £m.2™ 1,1 £ (m+1).2m" L, 1 # (m +2).2™L.
Proof: In order to find A} we consider only the codewords from ERS,\ERS; i.e. the codewords,
obtained by polynomials u(z) = ug + 1.7 + uz.2? where ug 7 0. Note that:

@ = (Tr(8.u(0)), Tr(d; u(1))y. .., Tr(S5.u(0™ "))

for j = 1,2,...,m and Gmyz = (Tr(T]2; 6;.u(0)), Tr(L7L, &i-w(1)h. . (T 85-u(e™ 1))
Lemma 1 shows that wi(@;) = 2™~ 1 if §;.u} # uy and wi(ay) = Tr(f;.uo), otherwise.

wi{@mr) = 271 i T, 65.uf # v and wi(@niT) = Tr(35%, &j-uo)) otherwise.
Streightforward counting shows that there are three possible weights and:

A ey = 2PN — 1) (m + 1) + Ay
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A e = 2T — 12" —m— 1) + Al yryamss

A npryams = 212" = 1)(m + 1) + Al papamer

<

In order to find the weight distribution of ERS, for m odd number we need some preliminary
resulis.

1t is easy to see that the set of vectors from ERS5;\ERS; can be partitioned into sets in a way that
the binary weight of the vectors in one and the same set are equal and one can choose for representative

of each set vector, obtained by polynomial with uz = 1.
Let E;";x 6; = 6m41- Let a be a primitive element of GF(2™). Then §; =a forj =1,2,...,m+
1. Since m is odd, there exists y such that §; = o®". Lemma 1 gives:
wi(ag) = 2™! if Tr(a® fla™"%) + o fo) = 1 and
wi(@g) = 2™~ £ 200 1/2 i Tr(a® u(am ) + o®#%ug) = 0.
Furthermore
Tr(a®% u{a™#%) + o ug) = Tr(e®f uy + o™ g +1).
Let v; = Tr{a®%i.(uy + uj).
Thus, if v; = 1 then wt(a;) = 2™~ £ 20"~142 and if v; = 0 then wt(a;) = S
Without loss of generality a?#%:, %3, .., a?%: (where s < m) are linearly independent and
alBvii — H_i’l_a’lwa i1t 5:+1,3-°=3“"’ A b__H’._a?ll“-

et = by g .08 by 0.07 Y L by .0

@A = by 1.0 by 2,078 Lt B0
for b;j € GF(2).

Consider a code € with generator matrix

100 o O BTR  FeA el
01 0 b1z «or bmire
00 .. 1 bz e | S

Let {N;} be the spectrum of C. If all-one vector does not belong to C then streighiforward counting
shows that the number of {ug,uy,uz) such that among @j,@3z,...,@ms1 have p vectors of weight

2m=1 4 2(m-1)/2 ¢ vectors of weight 2™~ — 2(m=1)/2 and m — p — g vectors of weight 2™~ is

amk N L (P:’) 2™,
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The weight of the binary vector corresponding to (ug, uy, uz) is: p.(2™ + 207~1)/3) 4 g (2m=1 _

2(m— I.),"i} + (m —p q)_zm— p e
m 2™t (p— g).2m-D/2
Hence, we proved the following

Theorem 4 :
| L fmeiym o
— il - —2g—
Al pyzm-rgpatmenga = (27 = 1).2777F, ZD Nagyi ( g ) 2™ L AR pamet gt
= '

and Af = 47 if 1 # (m + 1)2™-1 £ ¢.20m-1/2,
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4 KEY DISTRIBUTION SCHEME BASED ON BIB-DESIGN THEORY.

Valeri Korjik Yuri Merinoviteh
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1. Introduction.

We consider a broadcast encryption similar to the
scheme which has been proposed in [1]1. The center provides
the users with prearranged keys when 1t forms the system.
Then the center transmits some common key to a dinamically
changing privileged subset of users to broadcast a messege
to the same userg. This common key is not received by other
users, and any coallition of t illegal users should not be
able to dist1ll this key. This scheme may be called
i-resllient. j

To avold the extreme cases: a very long transmission to
any user or a huge number of keys, the schemes were proposed
in [1], which are based on concatenating of 7-resilient
gchemes and t-resilient schemes. The "inner" f-resillent
scheme can be taken from zero message schemes which are
based or not on the assumption that one-way fumctions exist.
The "outer” t-resilient schemes are based on the famlly of
hash functions containing a perfect hash function.

In case we know all 1llegal users we propose to keep
inner 1-resilient scheme but to form the outer t-resilient
scheme using some properties of the BIB-deslgns. Thls
approach allows us to provide a regular method for the
prearranged key distribution which guarantees a i-resillence
of this scheme and a moderate length of the required
transmission.

2. Description of the problem.
A balance incomplete block design (BIB-design) 1s such
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a set of b blocks each of which consists of different R
elements taken from a set (7,2,...,U), every element of thls
set belng present exactly in r different blocks and every
palr of the elements taken also from thls set being present
exactly in a blocks. If v=b and k=r, BIB-design 13 called a
symmetric BIB-design. Every BIB-deslgn can be described by
5-tuple of parameters (v,b,r,E,a). But 1t 1s not necessary
an existance of some BIB-design for any such 5-tuple. It 1s
known from [2] that the following equation should be true

r(R-1)=A(v-1) (1).

Ezample. The following blocks satify the definition of
'BIB-design with parameters uv=b=7, R=r=3, a=1: (1,2,3,);
(2,3,5); (3,4,6); (4,5,7); (5,6,1); (6,7,2); (T,1,3).

Now we can compare some BIB-design with prearranged key
distribution. So the set (1,2,...,v) corregponds to a set of
user numbers and each of BIB-deslgn blocks 1s commected with
a gingle key different from the others. This means that
every user has exactly r different keys, and every palr of
users has exactly a common but different keys. The keys for
all the users are distributed by the center beforehand and
all of them are known to 1t. Some time later the situation
may happen when the center should remove some group of 3
users from legal users. Then 1t should be able to transmit a
common key to the rest users in such a way that the illegal
users cannot disti1ll this key even 1f they will form a
coalition and use all their keys to do 1t. We can say also
that there are s compromizations through users by adversary.
The problem 18 to estimate t as the maximum value of s for
the worst case (t-resllience) and the number of
transmissions with the use of a single key to distribute
common information through all legal users for the worst
a-member coalition of 1llegal wusers () - connectivity,
8=0,1;ieanl)e

3. The maln results. ,
Theorem 1. The key structure based on BIB-design is
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t-resllient scheme 1f the following unequality 1s true
At <r (2)-

Proof. Iet us suppose that 1llegal users are (070 IR A
Conglder any legal user a'. We obtaln from definition of
BIB-design that each pair (a',a ),...,(a'.q) 18 not more
than In A blocks and therefore all these palrs are contalned
not more than 1In at different blocks. But each user Is
contained exactly iIn » blocks and 1f (2) 1s true, we can
find at least one block which contailns a' but does not
contain (a,,a,,...,a ). Then the center can use the key
corresponding to this block to transmit a common secrete key
to a'. It completes the proof of the theorem.

For BIB-design with a=7 the unequallty (2) 1s necessary
condition to provide a t-resilience of BIB-design Key
structure. To prove 1t we can consider a set of r blocks
containing any common element a'. Then 1f we take single
element unequal to a' from each block and let these elements
be the compromized users then the center will not be able to
find a secrete key for a'.

Theorem 2. The key structure based on symmetric BIB-design
with a=7 has connectivity y=r.

(The proof 1s based on relation (1).)

There 1s the followlng natural control algorithm for a
key structure based on BIB-design. Having known about s
compromized users, we delefe from a set of BIB-design the
blocks which contain these elements and use the remalning
blocks for secrete communication with all non-compromized
users. After 8 compromizations the following relations will

be true:
2 '
b <b-ra+al,, v =v-8, rzr-ad, A i, ¥ <0

Betianl. i i

It 18 easy to show that for a=1, E;S the key structure based
on BIB-deslgn 18 not some BIB-design after the first
compromization, already.
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Theorem 3. When the key structure is based on the BIB-deslgn
with a=1 and above mentioned control algorithm is used

X, € 2r-3, 8=1,2,..,1. (4)
TPo prove this statement we construct an algorithm to cover

v-a users by the set of blocks and estimate the number of -

blocks contained in this set using a notion of matrix depth
[3]. (Unfortunately the proof of this theqrem is too
unwieldy to give 1t here iIn the extended absiract.)

To provide BIB-designs we can use different ways
(direct or recursive) which are described in [2]. The most
simple of them is based on using a notion of a differential
get.

4. Concluslon.

The results 61 this paper show that there 18 regular
method to form a broadcast key for any gubset of v users by

transmission at most 2¥ual bits over a channel after known
compromizations of not more than v users, where 1 1s the
numbér of key bits for broadcasting. It requires to store

Yo#w blts of keys for each user, Wwhere v 18 the number of
key bits for 1-resilient scheme.

As far as we lmow this 1s the first application of
BIB-design theory to key distribution. This approach 18
superior even for milti-level scheme given in [11 If the
number of compromizations 1s fractlon enough of all users.
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A Fast Parallel Berlekamp-Massey Type Algorithm for

Hermitian Codes
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Abstract We obtain a parallel Berlekamp-Massey type algorithm for determining error locating
functions for Hermitian codes. The outline for an implementation is given, which uses as main blocks
a number of similar one dimensional Berlekamp-Massey algorithms.

The efficient decoding of algebraic geometric (AG) codes up to half the designed minimum
distance was first described by Sakata et al. in [1]. The complexity of this algorithm, counted
as the number of multiplications over a given field lies for codes on Hermitian curves in the
order of O(n3). However little work has been done on the implementational aspects of this
algorithm. We focus on the implementationally efficient calculation of error locating functions
and derive a parallel Berlekamp-Massey type algorithm which runs in time O(n?) based on the
time required by a multiplications in a given finite field. This is achieved without increasing
the space requirements of the algorithm from [1]. Here we only consider the case of Hermitian
codes. The general case is treated in [5].

Hermitian Codes

Let .2 denote the finite field with ¢* elements. The Hermitian curve X' over IFy2 may be
described by X : X9t! = ZY? 4 Z9Y. X has genus g = L_;)i, contains one point at infinity
Py =(0:1:0) and ¢* affine points P;. Let L{mP,,) denote the space of rational functions on
A with only one pole of order at most min Po,. With @ = X/Z and y = Y/Z it is known that

a basis for L(mP,) is given by functions z'y’ where ig + j(g+ 1) <mand 0<i,0<j < q.
We define a sequence of functions ¢y, ! > 0 as

@:{ 2y 2yl € L(1P) \ L((I - 1)Pw), 5 <4
0 L(IPy) = L{{l - 1)P.,).

The set of numbers [ > 1 such that ¢y = 0 is denoted by G. We introduce a (m+ 1) x ¢* matrix
H(m) as {H(m)};; = ¢i(P;). The code C(m) is defined as the linear subspace of IF:: with
parity check matrix H(m). For 2g — 2 < m < ¢? the parameters of C(m) are length n = ¢*,

dimension k = n —m + g — 1 and designed minimum Hamming distance d > m — 2g + 2. It
can correct ¢ = |431| errors.

A parallel Berlekamp-Massey type algorithm

In the decoding situation we are given a vector y € IF%; which is the component-wise sum of

a vector ¢ € C(m) and an error vector e of weight not exceeding ¢t. We define a semi-infinite
matrix § = {5;;},0 < 4, j with elements

n-1

Si5 = endi( Ph)d;(Ph)- (1)
P
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The fact that the matrix § contains zero rows and columns makes no difficulty in the
theoretical treatment of the codes. However it simplifies the implementation of a decoding
algorithm as will become clear in the sequel.

It is known that the space of all solutions for o to equation So” = 0 is the space of
coefficient vectors for error locating functions expanded as ¢ = ¥, oy¢y. The entries S; ; with
i+ 7 < m are sufficient to calculate the set of error locating functions. Feng and Rao showed
in [2] that the values of S; ; for i4j > m can be determined iteratively by a majority scheme.
In this paper we assume for simplicity that all entries in S are known, due to the fact that
they can be determined whenever they are needed to continue the algorithm.

Let 5(%®) denote the submatrix of § consisting of the elements in the a first rows and in
the b first columns. It follows that S(®® is an empty matrix. By saying that a ‘vector has
length b we always mean that the vector has greatest nonzero position b — 1. The following

lemma, which is a special case of Lemma 4 in (4], formulates the key observation for saving
computational complexity.

Lemma 1 Let a vector o of length b, b — 1 ¢ G be given which solves the equation
50T — 0, a > ¢ and let ):?;1 0i8a: = A, The vector o', that is oblained from o by
q right shifts with zeros in the g lefimost positions solves S©@'#)a'T = 0 with o’ = a — ¢ and
b = b+ g. Moreover we have

b—1
0 deqd

=0

(H]
A collection of vectors (™) and Al of length b(ri@) and br#) is called valid at pole
order 7 if the following conditions hold.

s The ol satisfy S(ugr.i,a),b(n(.a))a_(,_‘-)ﬂ' s

for a minimal (%) guch that b{"v) _1 ¢ @, !_l("’i")— 1 = i mod g and al") 4 plrie) =
7+ 2. If no such solution exists we define o{"*) as the vector of length i(g + 1) + 1 with
a single one in position i(g + 1).

o The A" satisfy
HrE) q

SN 6, Y A gy =1
h=0

for a maximal a{™*) such th_a.t almid) = ¢ mod g and a.(;"‘-'n + pimiA)} < r+42. If no such
solution exists we define A% = 0.

To the vectors o("*) and A" valid at pole order r we associate a collection of polynomials
in one variable z by letting

! Brie) q ! : Mg i
E(P.I){z) A Z a.l("-‘)zbf"-‘-") —l—f’ x[r.a](z) = Z A?“)Zb(m'” -1-1
=0 =0

The following theorem gives an algorithm to iteratively and in a parallel fashion calculate
the set of polynomials valid at increasing pole orders.
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Theorem 1 Leta matriz § as defined in equation (1) be given. With the initial conditions

g (z) =1, "2 = —i(g+1), 0<i<y,
A1) =0, alBN = g+ 1) — g, 0<ji<yq,

the following set of recursive equations can be used to calculate a collection of glmil(z), 0 <
i< gand Ami(z), 0<j<q.

i = a"') mod ¢ ,
st (ar) < 0)U (@) € ©)
AL = E,'.l:;(r.i.a] 5&!‘.‘)5‘:(“‘._’} realrie) otherwise

0 otherwise

Pl { 1 (AFD £0)n (almid) < alrie))

r+i)(z) 1 —Al) ali)(z)
[ A1) () ] B [ i) g (1-8D)z | | ACWN(z)

gl i) = (e g(f-i)Ja(f.l'ﬂ) + Slridglrdd) 4y
gt = (1 — §iyalndA) | gnadglrie),

Proof.  For lack of space we can only sketch a proof. A complete proof, including the
problems of initialization and treatment of the gap sequence, can be found in [6]. Let 5(™)(z)
be valid at pole order r. If Al equals zero then E‘r("”)(z) is also valid at 7+ 1. In this case the
quotient %)/ Alr) is treated as zero, Otherwise two cases can occur. Let a("--'"”-' al™?) = sq
with s > 0. From Lemma 1 we see that the vector )\’(f"), obtained from A7) shifted sq
positions to the right, solves an equation S(I“["""’-"':"'T'”'+'!!}.}\"T = 0. Thus we can obtain
o rH160) a0 olr1i0) = glrie) _ ACANC) A gimilar argument holds in the case that
alr32) < g{rie) with the difference that here the vector o(7) is shifted. In this case we also
find a new AU proportional to the (™) which just failed to give 6(n) = 0. This translates
nicely to 4 polynomial language. Assume the polynomial Ard)(z) was found at pole order
r' < . After shifting either Ard) or o) the length difference of the two vectors that are to
be combined equals r — /. But precisely this length difference has been realized as Ara)(z)
has been multiplied with 277" when it is needed. So no further positioning is required by the
algorithm. For details see [5]. u]

The equation set of Theorem 1 is surprisingly similar to the equation set of a one di-
mensional Berlekamp-Massey algorithm (BMA). This makes it possible to design an imple-
mentation based on g copies of a modified one dimensional BMA. In Figure 1 we chose
the serial implementation of Blahut. For details on the inner workings of this implemen-
tation see [3, p.189]. However we point out that any implementation of a one dimensional
BMA can serve as a building block. Let the syndrome register in Figure 1 have length
2¢ 4 1 in order to calculate 3(2-14)(z) and A(2-13)(z). It is loaded with the sequence
{S0,0,0, S2t—1,0, 52¢-2,0s - - -1 S2,051 0} ' If we choose £ > & 1 29 — 2 + g the circuit will give
coefficient vectors of error locating functions for an error vector of weight t (5].
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Ay | I Figure 1: Outline for a circuit
'—.J ’—P‘{ L (Rl l A implementing a Berlekamp-
| Massey type algorithm for codes
on Hermitian curves with g=2°
A total of 2/ iterations
are required with 2£ clock
Al cycles per iteration.
Y_I In each clock cycle both
e b e R syndromes corresponding to

&l register (£ stages)

s St i the same pole order are
e i e B R e ";J calculated.

i — At the beginning of each iter-
it TR H:*‘ ation the constant term of the
I I polynomials &} and A(+) is
syndrome register (2041 stages) |.] in the leftmost position.

Jg+q stages |

The main difference of the outlined BMA for Hermitian codes to a one dimensional
BMA is that the polynomials for updating are passed cyclically between the one dimensional
Berlekamp-Massey algorithms. This ensures that every one dimensional BMA is provided
with the A"3)(z) that it needed at every instant. The other difference is that we occasionally
need two different syndromes corresponding to the same pole order. The choice between these
two syndromes is controlled by a g periodic sequence of zeros and ones. For the necessary
inclusion of the majority scheme proposetd by Feng and Rao in the above implementation see

(5].

Conclusions -

We have given an algorithm for Hermitian codes over IF;z of length ¢* that calculates error
locating functions in a parallel fashion from the set of syndromes . The main blocks in this
algorithm are ¢ copies of a slightly modified one dimensional Berlekamp-Massey algorithm.
Thus the time requirements are essentially the same as for a Reed Solomon code correcting
i + 2g + g errors whereas the space requirements are g times as large. This has to be seen
in the light of the Hermitian code being g times longer than a Reed Solomon code over the
same alphabet.
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A.S5.Ruzmin, A.A.Nechaev (Moscow)

Distribution of elements in linear recurrences

of maximal period over sz

Let R-Z,, F(z)eflz] be a monic polynomial of degree m
vith invertible constant term, and T(F)=min{teN: F(IHIt-G}
be the period of F(z). Then T(F)s2-(2™1) [2]. We assume that
T(F)=2-(2™-1). 1In this case F(r) 1s called a polynomial of .
maximal period [2]. Let F(z) be the image of F(z) modulo 2.

A sequence u=(u(0),u(1), ...) over R 1s a function
u:Ny+R.  Let LR(F) be the set of all |R|™ linear recurring
sequences (LRS) over R wilth the characteristic polynomial F(z)
[2]. Let u be a LIRS of maximal period from L,(F), 1I1.e.
T(u)=T(F). PFor any {=0 we have the unique representation

u(t)=u (t)+2u, (1), u (i),u, (1)el0,1}.

It 1s shown In [1] that these binary sequences u
the following relations

or U.I, satlsfy

u, (1)=tr(as’), uTu)=tr(b«3")+ttr(acﬂ‘)+ca(a~a‘J, =0,
where 4 1s a root of F(z) 1in Q=GF(?™), a.be@ are constants

depending on the Initlal vector of the IRS u, ce@ 15 a constant

determined by the properties of F(z), 0,(z)= Z zEJJfEk,
S j<k<m
tr(z) 1s the trace function from @ Into GF(2).
Denote by fﬂ(a) the frequency of appearance of an element
aeR on the cycle of u. |
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Theorem 1. Iet u be a LRS of marimal period 2(2™1) over
Z, with the mintmal polynomial F(z) of degree m. Then
v, (0)=2"-2-v (2), v, (3)=2"-v (1), and the distribution of the
elements 1, 2 on the cycle of uw {s given {n the following
table 1.

condltio
L e v (2) il SERl e
tr(c)=0|e™ -2t |2m1i0hs £5=0
m=cA -
tI‘(C )#D 219!"‘ _'Eh_1£ 2m—1 +2h_16 86#0
m= |tr(c)=0|2®1-2re |2 42hs lel=10]
2A+1 i
tr(ey#0|2™ 1M e |om oA 5| 1g1#16)

The number of sequences of mazimal period from L(F) with the
given type of distribution of elements is described in table 2.

condltions on ¢ conditl-|the type of the number of

ons on m|distribution sequences
6 =1 g E=D zm—‘a_ ;\-—1 ; m_
i |6 ( i TR Oz )
8=0, |&|=1 ' 0
ez 1o
8l=1, =0 | (2™ 124 15)(2"-
Sy |G} ( Ao )
5=0, |g|=1 0
|E|=|8]=0 2Rt (oR 1)
tr ¢=0 w2 | feje(al=1 ™22 ey Rt
cre m=221 | |el=(8]=1 | (2™ 2-2M15) (2™
m=2A £8#0 m-2_pA-15) (2™
tr 0 0 ARG
m=2A+1 £6=0 @™ 22M8) (2™1)
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The proof 1s reduced to the evaluation of the welghts of
quadrics tr(bx)+UZL£) over the field @, and the welghts of
their restrictions to the subspace {ze@|tr(z)=01.

These results make it possible'to give the complete descrip-
tion of the welght function of the linear cyclic code i)
over R consisting of all words (u(0),ufl),...,u(N-1)), where
ueL, (F), N=2(?™-1), and also to determine the spectrum of the
distances of the bynary cyclic code CT(F) consisting of all
words  (u,(0),u, (1),...,u,(N-1)) [31.

In the case R:Zpg, p=3, we only have the following
estimations of the frequencies of appearance of elements of R
on the cycle of a IRS of maximal period.

Theorem 2. Iet F(z) be a polynomial of marimal period
over RﬁZFF. p=3, of degree m=12, and ueL.(F) be a LIRS
of maximal pertiod. Then

21

lvu(a) - p“" <p Al
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A.5.Ruzmin, A.A.Nechaev (Moscow )

ERROR CORRECTING CODES ON THE_BASE OF LINEAR
RECURRING SEQUENCES OVER GALOIS RINGS

Let R=GF(g®,p°) be a Galols ring with the identity e of
characteristic p® (p 15 a prime) and size gq°, g=p", reN . ,We'll‘
say, that a code € over a fleld P:GF(q)' is a linear represen-
table over R 1f there exist a map o: R -+ P%, deN, and linear
code K of the length N over R (submodule of the module AY)
such, that C=0(K) (0 ac%.s on the words of K coordinate_—wlse). _
First this construction was used in [1,21 for the builﬁing of :
linear representation over Z, of the blnary Kerdock code. Later
an this result was published (in weaker form) in [4], where the
linear representation of the "Preparata" code was builded too.
Simultaneously In [3] was. dicribed a serles of nonlinear cyclic
codes over P which 1linear representable over R .

A linear code may be discribed In terms of polylinear recur-
rences. We call an ideal I of the polynomlial ring ‘Pk=R[E] '
Z=(Z,,...,2,) , & montc 1f 1t contains a monic polynomials of the
form F,(z,),...,F,(z,) . Let us say that I is a reversible ldeal

t t E " ;
if z'-e,...,r,~e « I for a suitable t,,....t,.e N . Next we

..,t, are the smallest parameters with the

: = i i
= 7 e r o ] = i- - k .
stated property. Let { < N, and :-': =Z, ...~z . Then any

assume, that ¢

i k

polynomial A(z) « P, has be the form A(z) = E_EN,; ap-zt .
: i

o

We denote by R®’ the set of all k-sequences over R ,
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i.e. the set of all functions u: N = R, u=u(z,,...,2,)=u(@) .

Iet v=A(z)-u , where v < R*®, v(Z) = § aru(z+i). Then R**
is Pk—module. Por a moﬁic ideal I of the ring Ph the submodule
L (D)=(ueR**’: I-u=0)} of this module we call a k-LRS family
over R. et II={%,,....,T,} <N} and L. (I,0) be the set of all
vectors ullll=(u(Z,),....u(fy)), where ueL,(I). Then K=L(I,0)
is a linear code of the length N over R and any linear code
over R may be represented ;In the stated form for same k<N. If

I 1s a reversible ideal and I = D.t,—1 x...-<0,£k—1 , then
K= L(I,m 1s a k-cyclic (polycyclic) code. 1.e. for s<T.&
along with any word ullll the code K contalns the word
(w(T,+e_), ..., u(T+e, ), where e_ - s-th row of the ldentity
kxk-matrix and the unilt adding to the s-th coordinate of each
vector {iell modulo t_. If k=1 1t is usually cyclic code.
The set of all polycyclic codes over R coincides with the set
of all group codes K<RG, where G {s a finite commutative group.
Now we discrlbe the representation o . Every element aeR
may be unlquelly represented in a form a=7 (a)+p-7v, (a) , where
T, (@),7,(@) « T(R) = {o=R : a%=a}. Tet us define the operation
on I'(R) by the equality o®f = 7,(a+p). Then (I'(R),®,-)=GF(q).
We suppose o(a)=y,(a) for any aeR . The code CT(I) = G(K(I))
consisting of all words T, @(M))=(7, (W(T,), - - u(Ty)) . usLy(l),
is a nonlinear (in general) k-cyclic code of the length
N=t, ....t, over GF(q) , which has a linear representation
over R.
For the bullding of the ideal I we choose in the extentlon
Q@ = GR(g?™,p?), meN , some primitive element ¢ of the field
e = GF{qh) and for an arbitrary cel'(@)\O suppése that
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£ = £ - (e+p-c). Elements ¢ and ¢, are roots of some monic .
polynomlals of the degree m , respectively G(z) and F(z)

from RIzl, which has periods respectively No;qm—1 and N,=N,-p.

We study cyclic codes GO=G7(G{$)-{$—6), p-G(z)) of the length

1 2
N, and size g g

q
of the length N, and size gemilite ;E-H,E . For p=2 the

r-cyclic code C,=CT(I) °is discribed, where I=(F(z,): (x,-M,)
Z,Mpe e s 7N) 1s the ideal of P_, M,.--->M, 1s a generating
system of the group e+2+H, MOreOveET n,=e+2-c. There are_tne
following results concerning code dlstances a, of codes
C5, SEﬁTE 5 '

I. (Kuzmin A.S.) If R=Z @ . p>3, then for se0,1

3

Pl 2=s 2 Pabiy
p-[ﬂs—p R e

Tt is the first estimation, which glves the opportunity to
state,'that the equallty

p-t
d5= p_°N5't1+o(1))

is true.
II. If R=GR(g%,p°). then

g = ‘?; [ mp+ k¥ Wt ]t 0, % ( N p2-kyv Npw2 |2

where k=7 q if misodd, k=q if m is even, and constant &
m ]

k, 18 defined by the following table

m t5 odd m is even
cel'(R) | cel'(@INI'(R)

& |/

2

cel'(R) or tri(ec)#0

q/f._z

cel'(RY , tri(c)=0

v 2
v 2q d
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and codes C,=CT(F(z)- (z-).,p-F(z))

These results revise theorem 3 of (3], which 1s true only

for R=F, 1l.e. g=2. If g=2 and m 1s odd the code C

4" o
has the parameters colncldent to the parameters of the linear
eyclic code constructed by Delsart and Goethals [5,15.5,
corollary 17, case d=tl.

ITI. Code C, {is a nonlinear r-cyclic code over GREET)
of the length N_=q-(q™-1) and size (N4q)%. If m=2A+! , then

its code distance is

gl
d, = ﬂa_ [ N, +q -7 Nq ]—q :
This code is immediate generallzatlon of the Kerdock code
in a cycllic form over Za' building in [1,21. The last Is C

]

under the condition r=t and is equals to CT(F(z)-(z+8)).
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On asymptotically good packings and coverings *

Nikolai N. Kuzjurin
Institute of System Programming, Academy of Science,
B. Communisticheskaya 25, Moscow, 109004, Russia
e-mail: nnkuz@ivann.delta.msk.su

Let I < k < n be natural numbers. By a k-tuple of an n-element set S
we mean a subset g C S such that [g| = k.
Deﬂniti?n. .A system Q of k-tuples of an n element set S is called
(n, &k, D)-packing iff every I-tuple of § is contained in af most one k-tuple
from Q, a.nd a system P of k-luples of an n element set S is called (n, k,1)-
covering iff every I-tuple of § is contained in at least one k-tuple from P.
T.he covering function M(n,k,!) is the minimum of the sizes of (n, k,I)-
coverings, and the packing function m(n, k,!) is the maximum of the sizes
of (n,k,I)-packings. It is well known that
M(n, k,1 Q '
(ﬂ, ) )2 (t) 2 m(ﬂ'sk)!l) (1)
! .
and bl:lt}.l of these inequalities turn into equality simultaneously. In this case
there exists Steiner system S(n, k,1), i.e. every I-subset of § is contained in
exactly one k-subset from S(n, k,I).
Every (n,k,!)-packing is an equal-weighted code with length n, weight

w = k, and code distance d = 2(k—{)+ 2 [1], [6]. P.Erdos and H.Hanani [3]
conjectured that for all fixed { < k

i TR K, D)
e )
and

nm M(“’f! l)(k)

n—oo (r

=1 3)
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and proved (2) and (8) for | = 2 and all fixed k, and for I = 3 and k = p or
k = p+ 1, where p is a prime power.

The packings and coverings for which (2) or (3) holds are called asimp-
{otically good. In [1], [4], [6] some special cases of (2) and (3) were proved.
V.Ré&dl [5)] proved the conjecture (2)-(3) for all fixed I < k.

The question that we consider here is as follows. What is a ?threshold
function” k(n) for the existence of asymptotically good packings and cov-
erings for slowly increasing {7 This means that (2) or (3) must hold for all
k < cok(n) and do not hold if k > c;k(n) for some constants o < Ty iy Sl
We prove that asymptotically good coverings exist for all k = o(n) and
slowly increasing [ as n — oo (Theorem 2). On the other hand, we prove
that k(n) = /n is the threshold function for the existence of asymptotically
good packings (Theorem 1).

Let a be the constant such that for any e > 0 and sufficiently large n in
every interval [n, n + n%t¢] there exists a prime number. It is known that
a < 23/42.

Theoreml. Lel the sequences k = k(n) and | = I(n) > 2 be
such that | = o(k) and k > cy/n, where ¢ > 1 is some constant. Then
asymplotically good packings do not erist and (2) does not hold.

Let k < cy/m, where ¢ < 1 is some constant, k — oc and for any e > 0

1=o(VE), I=o((})'"""").

Then (2) holds.
Theorem 2. Letthe sequences k = k(n) and ! = l(n) be such that

"in®r

— 0 asn — oo,
r

where r = min(k, 2). Then (3) holds. |

The problem on a covering radius of some packings was addressed in [2].

Definition. A system P of k-tuples of an n-element set S is called
(n,k, 1, A)-system iff every I-tuple of S is contained in at most one k-tuple
Jrom P and every (I — A)-tuple of § is contained in at least one k-tuple from
P

By definition (n,k,I,A)-system is simultaneously (n,k,[)-packing and
(n,k,I— A)-covering. Obviously, every (n, k,[,0)-system is a Steiner system
S(n, k). It is well known that the problem of finding the values (n,k,!)
such that Steiner systems §(n, &, 1) exist is very difficult one. Until now such
values = > k > | > 5 are still unknown. Assume thatn >k > 12> A+ 2.
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Let 8 = k — {. The following two theorems were proved in the joint paper of
the author and 5.D.Cohen [2].
Theorem 3 [2]. If the inequality

(k—14+A+2)k-1+1)>(A+1)n—l+A+1)

holds, then (n, k,1,A)-systems do not ezist.
Theorem 4 [2]. Let k < ¢t and s < cl% for some constants
c< 1 and ¢, < 1/2. Then for all A > 3 and sufficiently large n there ezisl

(n, k, I, A)-systems.
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Asymptotically optimal variable-rate codes
correcting localized errors

Per Larsson, Dept. of Electrical Engineering, Linképing University
S-581 83 Linkoping, Sweden, ematl perla@isy.liu.se

Introduction

We consider codes of length n which can correct localized errors on a binary channel. The concept
of localized errors was introduced by Bassalygo, Gelfand, and Pinsker in {2]. The encoder knows
a set E of unreliable positions ( £ C {1,2,...,n}). The decoder has no a priori knowledge of E.
Usually a code is designed to correct a certain number, say ¢, of localized errors. The receiver
and the transmitter decides before transmission starts what code to use. Then the same code
is used for every transmitted block. Denote by |E| the cardinality of the set E. As long as the
following relation holds, | E| < i, it is possible to correct all localized errors. For |E| > t if is not
possible to guarantee error free transmission of messages.

One of the characteristics of the concept of localized errors is that the encoder knows a set E of
unreliable positions. When a system as the one described above is used (the same code is nsed
for every transmitted block) it is not pessible to increase the information content of a cerfain
block even if it is known that we have |E| < t for that block. The transmission rate will always
be given by the worst case, namely |E| = ¢. This is the reason why we look at what we call
variable-rate codes, i.e. codes for which we can change the rate from one transmitted block to
ancther depending on the knowledge about E. The idea is that the receiver and the transmitter
decides before transmission what code to use for every possible value on |E|. Then for each
transmitted block the value on |E| is communicated to the receiver through a special technique
described in detail later. Clearly error free transmission is not possible for |E| = n/2. Therefore
there are at most n/2 messages concerning |E| that has to be communicated to the receiver.

We define L(n,|E|) as the maximum size of a code correcting | E| localized errors, where | E| is
not known a priori to the decoder. In particular we are interested in the asymptotic behavior of
variable-rate codes correcting localized errors. Therefore define also the maximum asymptotic
rate,

R(7) 2 lim supn"log L(n, | B|),

where |E|/fn — 7,—+ co. In constructing the codes we use some recent result of Ahlswede,
Bassalygo, and Pinsker [1].
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Gemneral idea

The general idea is to perform encoding (and decoding) in two steps (as in [1]). Suppose we are
given a set E of unreliable positions, known a priori to the encoder.

Encoding:

Step 1: In the block of length » we use a constant-weight code, Code I, of maximum size
which can correct | E| localized errors, given that codewords of weight w are used. For a certain
message and configuration £ a particular codeword of weight w is nsed. Denote by G the set of
positions where this particular codeword has ones. Certainly the set G is known to the encoder.

Step 2: In the second step we use a code, Code II, for which it is possible to correct |E|) G|
localized errors. The encoder of Code II, which regards the set E|JG as unreliable positions,
constructs the codeword and adds to it (component-wise modulo 2) the constant-weight code-
word from step one. The message of the second code consists of the value on | E|. It is clear that

n/2 messages is sufficient. It is important that the decoder can reirieve not only the message

but also which codeword from Code II that has been used.
Decoding:

Decoding is performed in the reverse order compared to encoding. First Code I is decoded. As
a result the decoder finds what constant-weight code is used (i.e. the value on |E|) and also
the actual codeword from Code II (in theorem 2 of [1] they give a lower bound on the size of
codes with the property that not only the message but also the transmitted codeword can be
reconstructed by the decoder). That codeword from Code II is subtracted from the received
vector (added componeant-wise modulo 2 to the received vector). The new vector corresponds
to a codeword from Code I with possible errors on the positions in E. After decoding Code I
we obtain the transmitted message.

The details are investigated more closely in the following section.

Results

We derive bounds on E(n, |E|),i.e. bounds on the maximum size of a code of length n correcting
| B| localized errors, where |E| is not known a priori to the decoder.

Theorem 1 For any set E C {1,2,...,n} (known a priori to the encoder but not to the decoder)
there ezists a code of length n and size L(n,|E|) which can correct all possible errors on the
positions in B, such that the following ‘inequality holds,

(ﬂl 2- v%ﬂos_n) 2

S < L{n,|E|) < I
4 ﬁ(mi) % (%)
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Asymptotically the upper and lower bounds coincide and the result is given by the following
corollary.

Corollary 1
R(r) =1~ h(r),

where |E|/n — T,n = co and where h(z) = —zlogz — (1 — z)log(1 — z) is the binary entropy
Junction.

The corollary shows that it is possible to adjust the error correction capability of a particular
block to the actual number of positions in E without the decader having any a priori information
about |E|. There is no need to fix a certain designed error correction capability,

Proofs

Proof:[Theorem 1] Clearly it is not possible to do better than if the decoder knows |E| for
every transmitted block of length n. Therefore as an upper bound we can use the upper bound
from [2] (which coincides with the Hamming bound).

The lower bound will be treated in more detail. First assume that both the encoder and the
decoder knows |E|, i.e. the number of unreliable positions. It is clear that the encoder knows
|E| but the decoder will know |E| only after the first decoding step, which we return to soon.
From [3] it is known that there exists a constant-weight code (of length n and with codewords
of weight w) that corrects | E| localized errors of size greater than or equal to

(o 1m)
w2 ()

After encoding the constant-weight code, denoted by Code I, (in the first step of the encoding
procedure) we therefore have a codeword, say c;, of weight w (an appropriate value on w is
calculated later). Denote by G the set of positions where the codeword has ones (|G| = w).

In the second encoding step (encoding of Code II) we regard G| E as the set of unreliable

positions when transmitting one of n/2 messages, corresponding to the different values of | E|.

Suppose the codeword ¢; is used for a certain message and a certain configuration E|JG. The

output from the overall encoder is formed as the component-wise modulo 2 sum of ¢; and cp, i.e.

:]."1 @ cz. The decoder receives a vector of type ¢, @ ¢z ® e(E), where e(E) = (e, e3,...,€,), 6 =
g E.

After decoding Code II and retrieving of | E| the next step is to decode Code 1. In order to do

that we have to subtract ¢; from the received vector. That means that at the second decoding
step we must know the codeword cg, used by Code II. This property is important since we can

141



use different codewords for the same message depending on the configuration of possible errors.
In theorem 2 of [1] they give a lower bound on the size of codes correcting localized errors with
the property that decoding into the nearest codeword reconstructs not only the message but also
the transmitted codeword. Using the lower bound from [1] together with the conditions that
the size of Code II has to be at least #/2 and that Code IT must correct T' = w + | E| localized
errors, we get the following condition,

gn

32n§: i)

1=0

2

1)

b | 3

This gives us a condition on T = w + |E|. Using Stirling’s formula (see (4, pp. 50-53]) and
the Taylor-series expansion of h(+) around the point 1/2 we find that (1) is satisfied for T'/n <
1/2— 1#’—1‘:‘53. Hence w can be chosen as w = nf2 — |E| — +/2nlogn and the theorem is proved.
B ;

Proof:[Corollary 1] The upper bound in the theorem says that the rate is upper bounded by
the following inequality, R(r) < 1 — h(7), where |E|/n — 7,7 — co. From the lower bound we

have

(n;z 2 m)

L(n,|E]) 2
(5

B

Therefore we have the following lower bound on the rate

(bie oavags)

dn2ym| ™
n2 (|E|)

where |E|/n — 7,n — 00. Again we have used Stirling's formula and the Taylor-series expansion
of h(-). The upper and lower bounds coincide asymptotically and the corollary is proved.  H

B(r) > lim ntlog =1-hk{r),
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A Simple Proof of the Main Inequalities
for Fundamental Parameters of Codes in
Polynomial Association Schemes

Vladimir Levenshtein

Institute for Applied Mathematics
Russian Academy of Sciences
Miusskaya Sq.4, 125047, Moscow

Codes in P- and ()-polynomial association schemes are considered. A simple proof of seven main ineqguali-
ties for such code parameters as the minimal distance, the dual distance, the number of distances, the external
distance and the covering radius is given. It is based, in essence, only on the annihilating and dual-annihilating

polynomials for a code and on orthogonality conditions for systems P and € and for certain adjacent systems,

We consider some properties of sets in P- and @-polynomial association schemes with D
classes (Delsarte [1], Bannai and Tto [2]) or, equivalently, in ()-polynomial distance-regular
graphs of diameter D (Delsarte [1], Brouwer, Cohen and Neumaier [3]). As known the
adjacency matrices A;,i = 0,1,..., D, of such a scheme or graph X generate a (D + 1)-
dimensional commutative algebra and connect with the basis E;,i = 0,1, ..., D, of the minimal
idempotents of the algebra by means of eigenmatrices (P; ;) and (Q; ;) as follows:

b 1 D
Aj =) PijE E:ﬁﬁﬂ%@i.jﬁn i=01,.,D.

i=0

Futhermore, Qo ; =rank E; which denoted by r; , and P ; is the number of elements yeX
such that d(z,y) = 7 for a fixed zeX which is denoted by k;.

Q- and P-polynomiality means that for any 7,7 = 0,1,..., D, Qq; and P, ; are polynomials
of degree j in Q41 and Py, respectively. In this case it is convenient to put
_ k- Py

n-q
aq(d) = Szdl ap(d) = g

il 4=40,1,..D,
L "QD,}

and consider polynomials @;(z) and P;(z) of degree j,j = 0,1,...,D, in a real z(0 < z < 1)
such that )

Qa; = v;Q5(oe(d)),
P,; = k;P;i(ap(d)).
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For these polynomials the orthogonality and normalization relations take the following
form:

Ty

D
3 Qiloo(d)Q;(ogld)ks = 6ij;  Q4(0) =1,

ki

| X =

. An arbitrary set €' in a polynomial scheme X is characterized by distance distribu-
tion (Bo(C), ..., Bp(C)) and dual-distance distribution (By(C),.... Bp(C)) where for any
5i=0,1,..,D,

Fi(op(d))Pi(op(d))ra = i3, Pi(0) = 1.

M

BAC) = (7 | (2. 56C.yeCi e 3) = 1} |

and

S o]
BI(C) = 3" By(C)Qi(0g(d)).
| ¢ | d=0

The fundamental parameters of C' € X are
the minimal distance d(C) = min{i : ¢ = 1,..., D; Bi(C) # 0}
the number of distances s(C') = |{i : i = 1,..., D; Bi(C) # 0}
the dual distance d'(C') = min{i : i = 1,..., D; B{C) # 0}
the external distance s'(C) = [{i i = 1,..., D; BI(C) # 0}
the covering radius p(C') = max min d(z,y).

reX yeC

Let also §(C) = 1~ 8 gy(c) and B(C) = 1~ 6o 51 (0)-

A polynomial f(z) in a real z is called annihilating or dual-annihilating for C if respectively

Bi(C)f(ag(i)) = 0, i=1,..,D,
or |
Bi(C)f(ep(i)) =0,  i=1,..,D.

For an arbitrary ae{0,1} and be{0, 1} we consider also polynomials Q_';'b(z) and Pj“'b(z] in
a real z of degree 3,7 =0,1,...,0 — 6, 0 — 8,0, which are determined up to a constant factor
by the following orthogonality relations:

o

E)Q?'b(ao(d)}Q?‘b(aq(d)](ﬂq(dJ)“(l —0q(d)’ka =0, i#3j, (1)
D

Y P (op(d) PP (op(d))(op(d)*(1 - op(d))Pra = 0, i# 3.

d=0

Let z;-"b{Q) and z;"b[P) be the smallest roots of polynomials Q;-"b(z) and ij“b(z) respectively.
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Below we will keep to an additional restriction that the functions og(d) and op(d),d =
0,1,.., D , increase (from 0 to 1). It is really satisfied for all classical (in terminology of
Stanton [4]) polynomial schemes except for scheme H e(n,q?) of Hermitian matrices. We
save notations gg(z) and op(z) for a continuous increasing interpolation onto the interval
0 < z < D of the corresponding function defined before only at points 0,1, ..., D . Then each
of equations og(z) = z;‘b{Q) and op(z) = z;-"&[P)' has a unique solution which we denote
d?‘b(Q) and d?'b(P) respectively. In particular, for (self-dual} Hamming schemes H(n,q) we
have D =m, =k =(g—-1)(] ), 00(2) = 0p(z)= &, Qs(2) = Py(2) = LK (em),
where

KDM@y = 30~ () (527) @)

=0
is the Krawtchouk polynomial of degree j , and
&*(Q) = di*(P) = din —a—b) +a,
where dj(n) = dj(n,q) is the smallest root of (2). For Johnson spaces J(n,w) we have

+1-
D=w, oq(z)=%, or(z)= i

Theorem.Let C be an arbitrary set in a polynomial association scheme with D classes, k be
an integer and e€{0,1}. Then

1. d(C)+d'(C)<D+2,

2. d'(C) < 2s(C) + 1 = B(C),

3. d(C) £ 26'(C) +1-B'(C),

4. d(C) > 2k + 1 + ¢ implies d(C) < dy*(Q),

5. d(C) > 2k + 1 + ¢ implies d'(C) < d*(P),

6. dI(C) > 2k + € implies p(C) < dY(Q),

7. p(C) € &(C).

We found a proof of Theorem based on only definitions of annihilating and dual-annihilating

polynomials for C and orthogonality relations (1). It also gives necessary and sufficient con-
ditions for attainability each of the inequalities.

The most of the inequalities really are consequences of the known bounds on the size of
a code C with a given value of a parameter. In particular, 4 is a corollary of the bound
for designs (Wilson and Ray-Chaudhuri [5), Delsarte [1}, Dunkl [6]) and the bound for codes
(Levenshtein [7-9]), and the 5 is a corollary of the Hamming bound for codes and a new bound
for designs submitted for publication in [10] (for Hamming spaces). 6 belongs to Tietdviinen
[11,12] for the Hamming space; it was generalized to an arbitrary polynomial association
scheme in [13]. The inequality 7 belongs to Delsarte [1], and 2 and 3 improve his results
when 8(C) = 1 and #/(C) = 1. The first inequality seems to be new although it is well
known for Hamming and Johnson spaces and is attained for MDS-codes and Steiner systems
respectively.
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METHODS OF CONSTRUCTING HADAMARD CODES
A.LITVIN, O.PODGORNY, A.ZASUADKO, O.SIZONENKG

Though the problem of existence of Hadamard codes is not
solved yet [1—5] , they have found numerous applications in
various branches of science and technics. The codes obtained
from Hadamard matrices are called Hadamard codes.Due to their
large code distance, these codes correct a large number of
errors. To construct and realize Hadamard code first it is
necessary to construct Walsh-Hadamard matrix having correspon-
ding order.

Iet us use the concept of generalized Kronecker product
of matrices [4] .

The Kronecker product of mtrioes(fﬂﬁ!g will be compre=
hended according to definition [1,2] where from each ele-
ment of matrix A is multiplied with matrix B

Kronecker product by 1lines in introduced according to {4]:

C=A®B
where the matrix A is multiplied according to Kronecker me~
thod with first line of matrixg, then second line and so on.

Also we shall use the concept of slant Kronecker product
of matrices by lines:

(=488
wheraB is the matrix which has the even number of lines.

i Matrix A is multiplied according to Kronecker method with
odd lines of matrix A in direct order and with even 1lines
of matrix 8 in undirect order,

Example: I L ahGs
10 11 ek i
AL 4 -
[0 1] ® [1-1] 00 I-1|,
I-I00

The Walsh~Hadamard matrices of order % and 2 have the
following form . 'I 2 i

Hn()=[1] ; fﬂz)[ ]
The Walsh-Hada.mard matrix of arbitrary order can be pre-
send as
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Hi()=| £ 2)"

wr.nere /L is the symbol of conventional product of /1 iden=- i
tical matrices of order./v-. The matrixffv/g is identity mate

rix of order /V/:Q.

The other methods of constructing the matrices of ortug;ona.'-

discrete functions can be pointed out:

Hs(W)=[Enp®H(2)]"

Example: /V= 4y ST = 2%

R T O o

Jdoig prla-1 1

Hs(4)=19 § 1.1k |11 13
okl T

| We ‘ahall change the signs ih the lower half of matrix
in the lines having uneven numbers.

ihen B e I ST
e )
OG0 D T
}{%DG¢Q =la'ong ol eE
: 0000.1-100
GHOSTIC s s b
B e e G V) p
Ecample:”: 8, 1= 3 _
L1100 00007 012111 r1]
; 0011 0,0 .00 P R e
2l 0 G T0o S R
ﬁgof?)" 060000011 =1Ll
000000-11 I T i1 P Taral
0. g o0 I-1 00l U1T=1iIsL =1 iI-1
00-IT10000 =121 =B iL]
Ll—IJO 00000 LI lataT

Notice that the 1last two methods ofﬂ constructing the
ortogonal matrices differ from Walsh~Hadamard, Walsh~Paley and
H'Ealah—xachmarz matrices. But they are convenient for using |
in practice and it is possible to use to them the met.hod‘p
of fast transforming [2-—4] . -
# Transortogonal codes could be obtained from matrices
SW) and f('g, (/V) - To do thig, it is necessary to transpoay
the matrix /() and discard the first colum. 1
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Also it is possible to obtain Reed=MNaller codes [5] .

T™e examined methods of factorization of the Walsh ma-
trices are efficient for realizing in real scale of time,
becouse for beginningg of calculations it is enough to have
only two from the first input data readings. _

They are also convenient to be realized in vecior mo~
de for computers with one-command - many=-data type architecture.
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The Exact Minimum Distance of Some
Cyclic Codes
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Department of Mathematics
University of Puerto Rico
Rio Piedras
and
Vijay Kumar
Communication Sciences Institute
Department of Electrical Engineering Systems

University of Southern California
Los Angeles, CA 90089-2565

If i = 4o + 41+ - -+ + 1,¢" is the g-ary expansion of i, then we can denote
the g-ary weight of i as follows:

Wo(3) =i+ iy + - +i

The Generalized Reed-Muller (GRM) codes, are defined as follows:
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Definition. The d'* order GRM code Cy(e,q) of length ¢* (g = 2™) over
F = GF(q) consists of the set of vectors (P(0), P(W,),..., P(W,)) where
s=gq¢"—1and O, W,,..., W, is some ordering of the pomts ofF , and P(z)
is any polynomial of Pd[z], flesye =y ooy

Z C{Z‘f z;’ o

£eUy

withUy = {&=(i1,...,%.) i+ +H. <dand0<i;<q-1,7=1,...,e},
and C¢ € GF(q).

Now in a natural way, we can consider

Cj(e,q) = {cyclic code with zeroes o' : W, (i) < e(q— 1) — d — 1}

Now we want to point outl that Cj(e,q) comes from puncturing (i.e.,
deleting the coordinate corresponding 1o zero) Cale,q). Ci(e,q), the dual
code of Cyle,q) is actually Ce(o-1)-a-1(e,q). Now, if we denote By(e,q) the
binary subfield subcode of Cyle, g) then in [3] il was proved:

Theorem 1. With notations as above we have that the minimum distance
ofBel“_ln_d_l(e,q} is at least (g° — (d — 1)g=~1/%)/2.

Corollary 1. The minimum distance of (C)*, the binary dual code of (the
cyclic code) C' = {cyclic code with zeroes o' : W, (i) < d} is at least (¢° —
(d —1)g=*2)/2.

Example 1. Let us take e = 2 and d = 4. Then Cj(e, q) is the cyclic code
with zero set {a, a®, a9, a®*!, o**1} 1If we now also take ¢ = 8 then
the set is {a, o*, a®, a'?, a®®} or taking the minimal representatives in the
cyclotomic cosets we obtain {a, a®, a®, a®, a''}. In this case the dual code is
equivalent to the cyclic code with zero set {a®, a®, a7, °, a®, a!, af, a''}.
This code is listed in Peterson and Weldon’s book ([6]) as a (63, 27, 16) code
and therefore one of the two best cyclic codes with those parameters. On
the other hand, in [4] an improvement of the Weil-Carlitz-Uchiyama bhound
is obtained, and in (2] this is used to improve upon Theorem 1. If we use
this we can estimate the minimum distance of the above code to be d > 14,

In [4] the following theorem was proved:
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Theorem 2. Let d | 2° + 1 and let us further assume that a is the least
integer with this property. Then for any b we have:

Y (1) = (—1PH2(d - 1)

z€F 3.

Corollary 2. Polynomials z¢ for d | 2° + 1 and for the pairs (a,b) provide
a doubly infinite family of examples for which the Weil-Carlitz-Uchiyama
bound is tight over fields which are an even power of 2, and of the form
innh.

Corollary 3. The dual of the BCH code with designed distance d+2 where
d | 2°+1, and for any odd b has minimum distance exactly 2%**~* —(d—1)2%7}
over the finite field Fyaa.

In [5] the following theorem was proved.

Theorem 3. The bound of Theorem 3 gives us the exact minimum distance
of the codes whenever q, a, b, d are as in Theorem 2 and also with b odd.

Corollary 4. The bound of Corollary 1 gives us the exact minimum distance
of the cyclic codes wherever the parameters are as in Theorem 3.

Main Result.

Our main result of this paper is to apply the techniques of Deligne in [1] and
of paper [3] to Deligne’s Theorem B as denoted in [3], in order to obtain the
following improvement of Corollary 1.

Theorem 4. The minimum distance D' of (C)*, the binary dual code of
(the cyclic code) C = {cyclic code with zeroes o : W,(i) < d} for d odd,
d=2t—1is:

D' =¢'D
where D is the minimum distance of the dual of the t-error correcting B,C.H.
code defined over the finite field with ¢ = 2™ elements.
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A.A.Nechaey
Linear codes over finlte rings and QF-modules

el RM be a finlte module over a finlte commutatlve ring
F with the unlit e. Any submodule K of the R-wodule MH"=
Y., 15 sald to be a linear code of the length n over i,
Linear eodes over flelds are well-known [11. During the last 12
years the results about linear codes over residue rings and
Galols rings were published (see [2,3] and also [4,5,61).

®or the development of the theory of linear codes OVET
finite rings it 15 necessary to introduce correctly the concept

of the dual code, in partlcular such that the general welght-

functions of the mutually-dual codes were connected by MacWllliams

tdentity. To this end we need to study codes over quasi-Frobenlus
modules.

1. Dual codes. Iet U=(U,,....U YeR™, G=(0, »0.0-0 Jel™
n 1 Lo

and TO=u0,+...t0 0 . We say that the submodule EEziﬁeR“: uK=0}

of the module RR“ is the code cver R dual to K. By analogy
we define the code L, < #" dual to the linear code C<B™. Then

Lol ot - ) 2l =
ERH =K, £MR = [ (1)
EEE = (2)

A module Eg (a ving R) 1s sald to be quasi-Frobenius or QF-
modute (QF-ring) if Ku, = K Tys =1 (Ipp = I) for any sub-
module Kmﬁg and any ldeal I<R. @F-module HM is faithful,
t.e. Mpy =0 [7,8]. For every finite commutative ring with
identity there exists the unique up to isomorphism ¢F-module RQ.
All principal ldeal rings are quasi-Frobenius.

Theorem 1. The following statements are equivalent: (a)
RH is a QF-module: (b) the relations (1) are equalities for

ey ” h Lok
any £‘ﬁu and £xHR s e RH {5 faithful module and ERM K
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for any K< ™.

Corotlary 1. The relation (2) is equality for any code
LR Aff R s a QF-ring.

Corotlary 2. Let H be a faithful module. 4ny linear code
rc<Ru" has a checking matrix over the ring R Iff M 15 a
QF-module.

2. MacWilliams idemtity. Iet R=(p,,....p.} and s,(u)
1s the amount of coordinates of the row ueR™ which are equal
to the p,, tel,r. The general weight-function of the code
£ f* 15 the polynomial over Z |

5@ s @ i i A Y
Wl vmn s8N YA isumpCaserch T ACIBIES rirald 6 )
PO ST |
By analogy if K< M™, H={p,,....p ) and o,(@) 1is the amount
of coordinates of the row oeR™ which are equal to p,, then

T T ny‘(a)...yz’"m : Z Axtg}y?‘...yz"' TR
ek L oeND
We say that the codes £ and £, are connected by the Hac-
Williams {denttty 1f there exlsts a character x of the group
(¥,+) such that
Wt Wyoeeesly) = T}CT WA@Y, -ens PEE), (5)
where
m i
@) = ) Xy, BT

s5=1

If M=R=GF(g) thls identity 1s well-known [1], for u:azz4 5 ke
is recleved In [6].

We call a module M distinguishable 1f it has a disting-
uishing churdcter i.e.a character of the group (M,+) which is
not equal ldentically to the 1 on every nonzero submodule of the

module M. It gives some new characterization of QF-modules.
155 ,



, f

Theorem 2. Ru is distinguishable iff it is QF-module.

Theorem 3. If M is a QF-module and ¥ {s {is disting-
ulshing character then the MoacWilliams identity (5) is true for
all linear codes (< R". If M 1is not a QF-module then there
exists a linear code E{RH" such that the identity (5) is not
true for any character x of the group (M,+).

155 g 1s a @F-module then (¥,+)=(R.+) and 1n (5) m=r.

Corollary 3. If R is a QF-ring (particulary principal
tdeal ring) then any linear code L< R" (s connected with the
dual code Lp<H" by the MacWilliams identity (5) (for M=R, m=r),
where ¥ 15 a library distinguishing character of the ring R.

3. Codes and polylinear recurremces. For keN we call an
ldeal I of the ring of polynomials P =RIT], Z=(I,,....Z,),
a monfc i{deal! 1f 1t contalns some monic polynomials of the form

F1 {$1). Sy Fk(:rh). We say that I 1s reversible ldeal if
t1 ] ty . o
2, -€, euny T, € € I (6)

. b s
for some t,,...,t,eN. Let M°"° be the set of all k-sequences

over M 1l.e. the set of all functions WiNE+M, P=p(z,....,2,)=
= - T e
S0(2). ILet A(T)= z _ ., @Z €P,, where I'=z ] ...r’,
i
(4]

ped® . We put A(T)u=v where veM®’, v(Z)=) a_ p(z+1).
)

and

Then M°*’ 15 a P -module. We say that p 1s a k-linear
recurring sequence (k-LRS) ;I An(u)={A(I)eP;: A(zp=0} 15 a
monic ldeal of Pk. Por any monic ideal Ia‘Pk we define
L(D)=tpel** s 1p=0) 1s'a k-LRS-family over M.

Let F=(1,,...,T )N} and WIFI=(T, ). m(T ), pe®] Then

K = Li(I) = {WIF1: pel, (1)} (1)

1s a linear code of the length n over ¥M.

Theorem 4. Let A be a QF-module, then any linear code K
of the length n over M haslgene form (T) for suitable Rel,n, i '

|

k
Id?k. fc:lND.
Let ¢ be a finite group, RG be the group algebra and #G
be the RG-module of all formal sums geo hg B Rell. any

o
L

submodule £<HGHG 15 called a linear G-code over RH. T, G
a direct product of k& cyclic groups:

G = <g1>;...;<gk>. ord g =t _, 3¢l , kR, (&)

then 1t 1s natural to call the code K E-cyclic {polycyclic).

Iet (6), (8) hold and I = O,%,-1x...<0,t -1 = LNg. Then

= LE(I) (10)

is a linear G-code. The correspondlng submodule of MG consists
Melag’ 1
of all elements ) _  w(i)g,'...g," such that wIilek.
tell

Theorem 5. Any linear k-cyclic code over @F-module RM has
the form (10) for a suitable reversible ideal IQPR.
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The boundary functional method for
isoperimetric computational problems.
A _.A.SAPOZHENKO
{(Moscow State University)
{E-mail :mathcyb@cs .msu.su)

There are many enumeration problems which can be reduced to
computation sums of type T(X,f) = Z £(A), where f is so called
boundary functional on X, and the summation ié over all subsets
of X or over some its subfamily. An evolution of the n-cube [1],
the percolation problem [2], the problem of , computation of the
matchings number and the independent sets number, the monotone
Boolean functions number, binary codes number and 'so on (see
[31,[4]) are among such problems. The goal of the paper is to
obtain asymptotics for T(X,f).

Let X be a finite set, function f : 2xa(0,1], is called a
boundary functional if the following properties hold:

1) £(A) = 1 if and only TEA a,

2) f(AUB) 2 £(A) f(B),

3) £(AUB) > £(A)+f(b) =» Ju€a IvEB £({u,v}) > £({u})-£{{v}).

Example 1. Let G'= (X,Y;E) be a bipartite graph. A boundary
y(R) of ACX is defined by the equality: y(A) = {vEY:Ju€a

- A
2Iy()i

{u,v)EE}. Then £ such that f£(A) is a boundary

functional and 2|Y|T{X,f) is ‘the number of ‘independent sets of G

(see [3]).

Example 2. Let B" be the n-cube, r be Hamming distance. A

edge boundary e(A) of ACB" is defined by the equality: e(A)
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" any 0<p<l the functional f such that f£,(A)=p

|e ()]
{(u,v)EB":vER, u€B™\A, r(u,v)=1}. Then £ such that £(A) =D

with 0<p<l is a boundary functional, and T(X,f) = Y £(a) is the

expectation of the number of components in a random subgraph of

the n-cube under random choice of edges with probability p (see
¥

[11).

Example 3. Let P, is the plane integer grid, A is some set
of vertices of P . Denote by g(A) the set {vGPa:-r(v,A)=1}. For
[A] (1-p) [g(a)] is a
boundary functional. Note that 1 - 2 £, (B) where summation 1is
over all connected sets A with (0,0)EA, is the probability of
percolation in Boolean model (see [2]).

n . n 3 }GB“‘

Example 4. Let B" is the n-cube and B = {(a,i..-ha, :
a+...+a3, = k} is k-th level of B". For ACB' let S (A) =

{VEB';:EIuEAIutv} be a shadow of A. For B;B: let Q(B) be the number

of antichains r u B"  with S, (A)=B. Then  f:
S ;
f(C)=Q(C)2-ISw4{C}|, provided that k < n/2, is a boundary

functional (see [3], [4]).

The main idea of evaluating of sums of the type T(X,f) is to
reduce its computation to computation more simple sums of the
same type-with summation over the family of connected sets ACK.

A pair I = (X,f), where X is some finite set and £ is a
boundary functional of type 2X 5 (0,11, is called a functional
pair (abbreviated, FP). A set ACX is called connected (relatively
£) if for any pfoper subset BCA the strict the inequality

f(n) > £(B)-£(A\B) holds. Let A(I) be the family of all

n

connected subsets ACX, 4, = {n€m: |A| = Kk}, Hx = u fl, . Let
; D k€D
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us put a(&,) = ) f£o(a).
A€Ay, _
FP I = (X,F) is called an (D,k,q,c)-ordinary FP, if the

following properties hold:
-k
1Ly EArk) & 207,
2

2) {X! < 2{D+l}k-21092k’
3) £(au{v}) s f(A)-E{{v})-Z_IAJq,
4) |{A€R : £(au{v}) > £(A)-E({v})}]| € k™

. The minimal D, such that the property 2 holds, is called the
index of the ordinary FP I. The sequence of FP's {1, = x££}
is called D-convergent if

1im Y £() =0,
-0 e
AEHD(In)

Theorem 1. Let a sequence of (;,kn,q,c)-ordinary pairs

{I,=(X,,£ )} be 1-convergent and lim k_ = ®. Then for n’®
n 2o

1
T(X,.£) ~ exp{a m‘}}.

Theorem 2. Let a sequence of (2,kn,q,cl~ordinary pairs

In=(Xn.fn)} be 2-convergent and 1lim kn = . Then for n»w
n =w 5

T(X. £) ~ exp{m(I )},

A i 2 1 (2)
where m(I ) =a (d) +a'(d) - a @y)/2 - a {8 a0

an@) =. Y@, a'@® )= F 5 e{uh) £({v}).

[21,1

AER, A€d,
The theorems allow to obtain asymtotics for some

computational problems (see. [3], [4]).
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IDEALS OF ERROR LOCATIONS AND DECODING
REED-SOLOMON CODES WITH d/2 ERRORS

V. M. Sidelnikov

Introdution. Let Fy be a finite field of g elements and let 2 = {a1,..., @, } be an N-element subset
of F,. Consider a g-ary code RS, () of length N, s < N < g, with the parity check matrix

T IR S e
S e @
a) af ... ay

and code distance d = s+ 2 (see [1]). By definition, all vectors a such that aBT = 0, where BY is the
transpose of the matrix B, are contained in the code. Let a € R5,(2) and e be a vector from (F.q]j‘r of
weight w(e) < t, which is reffered to in what follows as the error vector . We say that a® =a-+teisa
code vector distorted by ¢ errors. An algorithm that for every a* distorted by t errors finds a vector a'
from RS, (%) such that a” = a’ + €', w(e') < ¢, will be called a decoding algorithm of depth ¢ for the
code RS, (%) .
The vector

b= (bg,..,b,) =a*BT =eBT = i} k: B (aj), (2)

where B(a;) is the j-th column of the matrix B, is called the syndrome correspending to the error vector
e. The vector e that satisfies (2) is called the error vector corresponding to b.

A syndrome decoding algorithm of depth 1 is an algorithm that, given a syndrome b determined
by an error vector e of weight at most £, computes a certain error vector &', which corresponds to this
sindrome and also has weight at most t. Thus, a syndrome decoding algorithm is an algorithm that
solves the equation b = §BT, w(§) < 1. For the RS, (%) code, the last relation is the set of simultaneous
equations

t
Ea:,—z;-:b;, =0, (3)
i=1
with 2t unknowns @ and z;, where @; € Fq,2; € %, and b;’s are obtained from (2).

In this paper we investigate only the case 2t= d= s+2. Consider a symmetric polynomial Oy(z,y) =
O4(z,y,b) in Fylz,y] of degree £ — 1 defined by (6). This polynomial has the following property: if 11 is
the set of error locations with syndrome b, then any 2-element subset £’ of the set {1 is a sero of O(z,y).

The converse is also true. Namely, let (o, 10) be a zero of Oy(z,y) and let yg, ..., Ye—2 be t— 1 distinct
roots of the polynomial O(y) = Oy(zo,y) in an extention F of the field Fq which all are distinct from
zp. This condition is sufficient for b;’s to be expressed as

E=1

=Ykt i=0,....a (4)

i=0

where y_1 = zo. Thus the set © = {up, ..., -2, zo} is the set of error locations of a code RS, (%)
where 20 is such that © ¢ . If the set © is a subset of 2, then the former is a set of error locations,
corresponding to the syndrome b of the code RS, (2) with the parity check matrix B. Thus the zeroes of
Ou(z, y) determine all the locations of errors of weight ¢ with syndrome b, i.e., decoding is equivalent to
finding zeroes of O¢(z,y) in a given set 2 .

Taking these properties into account we propose a decoding algorithm for Reed-Solomon codes with
t=df2=(s+2)/2 ertors.
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The main part of the present paper is devoted to the study of an ideal J of the ring Fyalz,y] of
polynomials of two variables over the finite field Fq. The ideal Jis defined by the polynomial O(x,y,b)
and a certain set of polynomials defined by the set 2. The set of roots of the ideal J is finite and each of
them belongs to 2. The ideal 7 contains a one-variable polynomial H(y) whose the set of zeroes coincides
with the set ©® = B;|J...|J By, where B; = {Bi,...,Hu}i = 1,...h are all the t-element subsets
of the set B that satisfy (2) for some k; from Fg \ {0}. This polynomial H(z) has the smallest degree
among all the one-variable polynomials in the ideal.

Preliminary remarks

Lemma 1. Let B be an u-element subset of the Fy and b; = 3 fc_,-,ﬁ;:‘i > 0, where k; € Fg\ {0]

j=1

and let

L/ RC . A |
A Bl Rt by, (5)
5||-‘.l il b}ﬂ—!&

Then Ay # 0 and Ay=0forl > u

This lemma enables one to determine in an obvious manner the number of errors ¢ in the distorted
code vector a® if this number is a priori known to be at most (s + 2)/2.

Consider a symmetric polynomial

0 1 Tl gl
1 by by ... buia
Ou(2,¥) = Ou(e, 1, B) = Oulz, v, boy - bawez) = (But) ™| v b b2 .o bu [. (6)
Tl SOE R R T W
Lemma 2. The following relation holds:
0 if i#7,
oA R e ¢ ™

Let us fix an u-element set B. Denote by L(B) an Fg-linear space spanned by all polynomials
Ouz,y) = Oul=,y,bo, ..+, bau—1) such that each moment b; can be represented as the sum of powers of
elements of B with all possible nonzero coefficients kg, g € B.

Lemma 3, Let u < q. Then the dimension of L(B) is v, .

Proposition 1. Let Ou(z,y) be a polynomial in L(B) such thet Ou(F;,5;) = 0,7 = 1,...,r, and
O0u(8;,8;) #0,i =7 =1,...,4,0 < r < u. Then for a certain constant C,

Oulz, ¥) = COu_r(z, ¥ b0, . - 2 b2u—ar-z) H(” =By - B)s (8)
jo1

where b; = iﬂ*jﬁﬁl A= —C‘lili(ﬁ: — Bi)*/0.(8;,55)-

i=r

L(gﬁ)(brollary 1. The polynomials Fi(z,y) = Fa(z)Fa(v)/(c — &)y — Bi)ii=1,...,u, form a basis of

Main results
Theorem 1. Let B C A C Fg,B = {B1,.... A1, [% = N, 1 <t < N, Fyfz) = [l (= — a), and

aE®
Oc(z,y) = Oz, 1, by, .- J’zc——a)- where

i
=3 kB i=0 2t k0, (9)

j=1
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Define the nonzero polynomials Ho(y),..., Hi—a(y) by the relation
Riz,y) = U(z,y)0ulz, y) + S(y)Fa(=) = Ho(y) + ..: + Hi_a(y)a' "%, (10)

whe‘m_ﬂ(z,y) # 0 and the polynomials E(z, y) and S(y) are relatively prime.

Then the set Ry of zeroes of the polynomial H(y) = g.c.d.(Ho(y), ..., He—a(y), Fuly)) coincides with
the set D =B, |J...|U By, where B; = {B,....Bul i =1,...,h, are all the t-element subsets of the set
B that satisfy (9) for some k; from Fg\ {0].

Let Lm(z ) . L{"}(z, ), Lm(a: y) = E L{"ﬂ(z)y deg L“'ﬂ(z) < u—1 be linearly independent

polynomials in L(B), |B| = u, and let £ =< Lm{w Wioo oy B8z, 9) > be the ideal in Fyfe, ) formed
by these polynomials.

Lemma 4. The polynomial Fo(y) =] (v = 8) = i fiy* belongs to the ideal L.
feB i=1

Theorem 2. Let B = {A...,5}B C UAC Fq, | = N,1 <t < N. Let m; be the moments

defined in (9), Ou(x, v, bo, ..., bae—z) be o polynomial defined above, let © = By |J...|J By, where B; =

cofBahi=1,...h be all the t-element subsets of the set U that satisfy (9) for some k; from Fg\

{0}, and let 0_(,;'}(!!‘ T L Ol;rn(x, y) be linearly independent polynomials in L(2) such that Og](ﬂ,ﬁ] #
0,i=1,...,N, forgd e !

.Thgn the ideal T=< Oy(z, y, by, ..., bai—2), OE\',)(n:‘ u) ... ,OJ(,NJ(:L‘, y) > contains a one-variable poly-
nomial Fy(y) whose zero set 15 ©, This polynomial Fay(y) has the smallesi degree among all the one-
variable polynomials in the ideal.

Decoding algorithm

The following deterministic algorithm, which finds all the solutions of Eq. (3) in fifor s = 2t — 2, is
deduced in a straightforward manner from the Theorem 1.

1. Compute the polynomial Oy(z,y) = Ou(z, ¥, bo,- .., bar—2).

2. Using the Eunclidean a.igonthm (or some other technique) compute the nonzero polynomial Rz, y)
as in (10).

3, I?smg the Euclidean algorithm (or some other technique) compute the set fy of zerces of the
polynomial H(y) = g.c.d.(Ho(v),. .., He-2(y) Fuly)).

4. Choose an arbitrary element 8, in Ry and find the set B' = {Fy,...,5;} that consists of all the
t — 1 zeroes of Oy(z,5;). Put B = ' B}

5. Compute the coefficients k; = —(0.(53;,8;))~% 7 = 1,...,t, which yield a solution B of Eq. (3).

f?, If the set fig Y B is nonempty, choose an arbitrary element 3 in it and run Steps 4 and 5 of the
algorithm. Thus, we shall finally exhaust all of the set £z and, therefore, find all of the solutions of Eq.
(3) in %,
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GUAVA: A Computer Algebra Package for
Coding Theory

Juriaan Simonis

August 3, 1994

1. What is GUAVA?

CUAVA is a share library package that implements coding theory algorithms. It
has been developed by Reinald Baart, Jasper Cramwinckel and Erik Roijackers
at Delft University of Technology. Almost all of GUAVA has been written in
the GAP language. Currently, the package and its manual will be sent to you
upon request (e-mail J.Simonis@twi.tudelft.nl). In the near future, GUAVA will
be distributed together with the new releases of GAP.

2. What is GAP?

GAP (Croups, Algorithms, and Programming) is a powerful computer algebra
system designed for doing computations with algebraic structures like groups,
finite fields, vector spaces etc.. It has been created at the Lehrstuhl fiir Mathe-
matik, RWTH Aachen. GAP is freely obtainable by anonymous ftp from
samson.math.rwth-aachen.de (internet number 137.226.152.6). If you get GAP,
the authors would like to be notified, e.g. by means of a shmt e-mail to
gap@aa.mson math.rwth-aachen.de.

3. Features of GUAVA

An important data type in GAP is a "record”, and the basic object in GUAVA
is the "code record”. A code record contains several components that give infor-
mation about the code. Some of these components, like name, basefield and
size, are mandatory. Other components, like'minimumDistance, weightDis-
tribution, coveringRadius and isSelfDualCode, are created in the course of
a seasion and contain knowledge about the code. The use of these code records
has proven to be very versatile.
The functions within GUAVA can be divided into four categories:
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Construction of codes. GUAVA can construct non-linear, linear and cyclic
codes over an arbitrary finite field. Examples are HadamardCode, Reed-
MullerCode, QRCode and GoppaCode.

Manipulation of codes. These functions allow the user to transform one
code into another or to construct a new code from two codes. Examples are
PuncturedCode, DualCode, DirectProductCode and UUVCode.

s Computation of information about codes. This information is stored in
the code record. Examples are MinimumDistance, OuterDistribution,
IsSelfDualCode and AutomorphismGroup.

Miscellaneous functions. These are primarily used by GUAVA inernally.
Examples are KrawtchoukMat, GrayMat, MOLS and Cyclotomic-
Cosets.

4. Speed considerations

The most important parameter of a code is its minimum distance. To increase
speed in the binary case, the code vectors are converted into Boolean lists (Blists).
Then the distance of two vectors can be calculated by means of the (very fast)
XOR instruction. In the linear case, a considerable improvement of the minimum
distance canculation is obtained by taking advantage of the weight ordering of
the information vectors. All this results in a calculation speed that is usually
vastly superior tn the speed of the commercial package MAGMA.

5. The future of GUAVA

The following features are planned to be incorporated in GUAVA in the near
future:

o Incorporation of the table by Brouwer and Verhoeff into GUAVA. The goal
is to create a function that, for given length n and dimension k, produces
a generator matrix of a binary linear [n,k,d] code such that d equals the
lower bound for the optimal minimum distance found in the table.

L

Automorphism group computations. Presently, GUAVA computes the au-
tomorphism group of a code by means of external C programs written by
J.S. Leon. These programs, only work for binary, ternary and quaternary
codes. We aim to implement the automorfism group calculations in GAP
and to remove the restriction on the alphabet.

e Codes over rings. GUAVA can only handle codes over finite fields. The
growing of interest of the coding community in ZZ4-codes suggests an ex-
tension of the code alphabet to rings.
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BOUNDS ON DISTANCES AND AN ERROR EXPONENT
OF FIXED MEMORY CONVOLUTIONAT, CODES.
0.D.Skopintsev.

(RUSSIA)

Binary time-varying convolutional codes with a fixed
memory are considered. Asymptotic lower and upper bounds
on distances and an upper bound on an error probability
for these codes, used on a memoryless binary-input chan-
nel, are given. The asympiotic results are obtained by
taking the limit as ¥ = «, where N is the block length
of the convolutional codes.

1.Basic definitions. .

Let X = (ru.xta, ; "'an)’ t=0,0, be a sequence of informa-
tion vectors and let y = (y ,.¥ .- .ytN) be the sequence of en-
coded vectors. Then the equations for a rate R=E/N time-varying
fixed memory convolutional code (a CFM-code) can be writien as

¥y = XG,
where X = (xo,xi,xg....) is the sequence of information digits,
T (yo,yi,ya. .} 18 the sequence of transmitted digits, and

ol0) G (1) ... Gm(m)

G 0 s
G = 0 60(1] L] Gm_i(m) Gm(m+1) LaL AL

is the semi-infinite generator matrix in which each Gh{u) is a KaN
matrix, h = O,m, u = O,w. AS usual, we are assuming that all com-
ponents of X, ¥, G are members of some finite field GP(2) and
that all operations are carried out over GF(2). We say that

= N(m+1) is constraint length and m — the memory of the CFM-
codes As well as in [1], a CPFM-code is said to be catastrophic if
there is a sequence with infinitely many nonzero X which is enco-
ded into a sequence with only finitely many nonzero yt.If T is the

least integer such that Gh(u) = Ght'l.hT), h = 0,m, u = h,w, then
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the CFM-code is periodic with period T.

The distance properties of the CFM-codes will be discussed
with reference to column, row and free (d ) distances [2].If w(x)
indicates the Hamming weight of the sequence X, then n-th column
distance d:, n =71,w, is

d® = min iRk qe i (s s, b ARl [k
n t t+1 t
t=0,T-1 x, #0
L - T . e8
where [(0,...,0,X ,X, 1....)G] = (Y oV, qoeeesVy,p.q)5 then th

row distance d ’ n —T,w. is

L 4E t+n
dn.— min min {w({(o,...,0,xt.x“1,...J]t G)},
t=0,T-1 xt¢0
) t¥n _ .
where [(0,...,0,X X, ,..0)] " = (X, +X, 9e-sX ). From the

ge definitions it is seen that

d: < d; e d; : d: = d; > ...z2d,

where we define d_ = min {d"}; d° = max {d°}. Clearly d° = d_ and
f n 0 n w £

n=1,0 n=1,0

tor the non-catastrophic CPM-codes d° =d .

In these definitions we have the standard terminology for the
general convolutional codes [2,3]. The CFM-codes may be described
as these general convolutional codes with the fixed memory m. The
asymptotic results for them are obtained by taking the limit as
N - o, whereas for the general convolutional codes N is fixed and
m = o [3,4]. Let us note that the unit memory codes [5,6] ensue
from the CFM-codes by m=1.

2.Bagic results.
For t20 and n=21 let I denote the set of all x such that
X #0 for J=0,n-1 and X, =0 ror 1<t and 1=ztin. We define the

extended row dlstance d: by

@ = min min {w(x6)}, n=T,w.
t=0,0-1 XEIt &

Moreover we shall use distances &: and &: defined by
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E i

RS P R—————

R

dc = min min  {w([xG]1;*")}, n=T,w,
t=0,T-1 Xel
t,n
d@° = min min  {w([xc1**2*")}, n=1.«.
n t+1
t=0,T-1 Xel
t,n+l

Then d, = min {d"}; d° = min {d_,d°).
n n £

n=1,

Let #(z), Osr<1, denote the binary eniropy function and 1let
# '(y) for Osy<1 be the unique solution to #(z)=y, Oszs1/2.

Theorem 1. For every R, 0<R<1, and N -3 « there exist binary
non-catastrophic CFM-codes with period T, satisfying the following
inequalities

d, =n, {mn [((nm)/(mt1))%" (1-nR/(nm)) 1}, (1)
n=1,0

d° = min { df,NnR'if1—R}}.n=m, (2)

° » W' (1-R),n=T,T, (3)

é; > (n+m)W* ! (1-nR/ (n4m)) ,n=1,T. (4)

Tet us note that the lower bounds given by (1) for all R,
0<R<1, and for all fixed m lie under the Costello's lower bound on
d, for the general convolutional codes [3] and reach one by m— w.
It follows from (2) and (3) that d° grows at least linearly until
d ig reached and that this llnear growth continues beyond d for
d°. Similarly (4) indicates that dr grows at least linearly with a
rate of growth which is lower bounded by N¥“'(1-R).

Theorem 2. Let the minimum distance of the best binary (n.R)
block code be d(n,k) and let an asymptotic upper bound (n— «) on
d(n,k)/n be § (r) (r=k/n). Then an asymptotic upper bound on d, (N

- «) of the binary CFM-codes can be written as
d, =n, { min [((n+m)/(m+1))_SH(nR/(n+m)}]}. (5)
n=1,0 -
The bounds given by (5) differ from the bounds for the general
convolutional codes because the limit for N— o rather than m- «

is considered and ones depend on 5E(r).
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New we consider random ensembles of the OFM-codes with T = w

and we extend the ensembles to inelude coset codes of the type
¥y¥=3G+v

with v = (vo,vi,va,...), where v, = (Utl’utz""’vLN)' t=0,w, is a
binary vector and the symbols of V.. and G are selected
independently with the probabilities p(0)=p(1)=1/2. The codes are
used on a memoryless binary input channel.

Theorem 3. There exist binary CFM-codes with R=(X/N)1n2 and T
- o that by N- » the average over the ensemble probablility of an
error event starting at time t with Viterbi decoding - p(e,) upper
bounde by

p(st) = A exp { -n, e(R) }, O<R<C,

where C is the chamnel capacity, A - constant and
e(R) = min {((n+m)/(m+1)) B(nR/(n+m))},

n=i,m
E(R) is Gallager's random coding exponent for block codes with a
rate r» [4].
Let us note that e(R) = eD(R} for all m and all R, O<R<C,
where ec(R) is the usual random error exponent for the general

convolutional codes [4].
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A COMBINATORIAL COMSTRUCTION OF PERFECT BINARY CODES

F.I.5oloveva
Institute of Mathematics, Novosibirsk, Russia

Abstract A combinatorial construction of perfect
binary single-error-correcting codes of length n,

n=mk+k+m from given two perfect codes of

length m and k is presented. The number of in -

equivalent codes 1s more than

where 5n—»- 0 if n— =

Introduction. In 1962 Vasil'ev [1] constructed a large

number of nonisomorphic perfect codes of length n (named also

a close-packed codes) for any n = 2%-1, g = 3. A lower bound

inequivalent perfect Vasil'ev codes is

on the number of

z"n{%‘s“. where & —0 If n—m &)
Later on classes of binary nonlinear perfect codes have been
constructed by Heden [2]1, Solov'eva [3,4], Laborde [5], Phelps
(6,71, Zinov'ev [8].

In this paper we present a combinatorial construction for
perfect codes of length n, The codes are
constructed from two perfect codes of lengih n and m. Our

construction allows us to get the number of inequivalent

n=mk+m+ k.
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perfect codes more than

(L~ 5)
285 Bl Sat g e S T 2

There are some difflcultles in establishing the inequivalence
of our perfect codes to the other classes of perfect codes
(because there are many classes of perfect codes , see [1-8]).
We only show that our class of perfect codes contains Vasil’ev
codes and we have 5n $iEL where 6ﬂ from (2) and €, from
lower Vasil’ev bound (1). Still the coefficient by n in (2)

equals to 1/2 as In the other known lower bounds on the number
of inequivalent perfect codes.

Construction. Given two perreét'codes of length kX and n
we construct a perfect code of length n = km + k + m. Let Ck
K < EX, pe a perfect code of length k = 28-1, t « {1,... g-1},

=27-1, and C*, C"cE™ bea perfect code of length n =

= (n-k)/(et1) = 29°*=1. Define the set €, C* < E* as

follows:

@zﬂm@ﬁénﬁif&,&w;J,WLMJ&qo

izi

(A (). A (BN, O™, (u (6).. L (O)D

where 6 e C®, & e Ck, a‘ Is any vector from e, A X
z 1s efther O or 1, I Is the negation of z; @ {sa zero

vector of length m-k, the symbols e ana_E: define summation
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modulo 2. The function A (&) maps the code c* into the set
(0,1}, j = 1,....m. Analogously the function ui(s? maps the
code C® into the set 0,1}, { = 1,....k |

THEOREM The code C" constructed above is a perfect

code of length n.

If z =0 the functions Hi,.;},uk are arbitrary and can
map the code C" into the set {0,1} being independent of each
other. It is analogously for the functions A ,...,A If x = 1.
In particular if s =0, k e {1,3} we get the following lower
bouﬁd on the number of the inequivalent perfect codes of
length n:

rr l_
Pt O e e

where 8- , &7, 6 —01if n —r o
n n n . ! Of

The class of the codes described above contalns class

Vasil’'ev codes. In fact, if k= (n-1)/2 and =.1 we have
O s eC. metaers s s clnithiee il yhere

6 = €

¢{r-1)72 s a perfect code of length (n-1)/2. Hence we get the

construction of Vasil’'ev [i]

{(N&) @ |dl, o, d @ 5)}._ .
vhere o < E1)72 & < (™12 and the functfon A(5) maps
the code c{™*)72 {nto the set {0,1}.

It is analogously in case m = (n-1)2, 7 = O.

Moreover our constructlon rlgorously contalns the c]a;s
o? vasil'ev codes because if k=3, m=(n-3)/4, 1=0 and Lﬁsé) is
any nongroup function, i {1,2,3}, any described above code of
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length n 1is inequivalen£ 1o any Vasil'ev code. It is
analogously 1in case m=3, k=(n-3)/4, x=1. Therefore 5n <&,

wnere S from our lower bound (2) and € from lower bound (1) |
of number Vasil’'ev codes of lengih n.

Steiner Triple Systems of Order 15 and their Codes
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, We assume familiarity with some basic facts and notions from combinatorial design theory
8. V.A. Zinov’ev. Combimatorial methods of construction and and coding theory. Our notation follows that from [1], [2], [3], [4], [6], [9), [12]. A Steiner
Triple System of order v (or an STS(v)) is a set of v points together with a collection
of triples (called blocks) of points such that each pair of points is contained in exactly one
Moscow, 1988. : block. In terms of the “t-(v, k,A)-design™-notation, and STS(v) is a design on v points
with ¢ = 2, block size k = 3, and A = 1. An STS(v) is completely determined by its
point-by-block incidence malriz A, being a (0,1)-matrix with rows labeled by the points and
columns labeled by the blocks, where the entry in row i and eolumn j is 1 if the ith point
is in the jth block and 0 otherwise. One can also consider the block-by-point incidence
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matrix AT. Two ST'S(v) are isomorphic if there is a Permut.a,t.ion' of rows a.nd co;url?nsttil:at
transforms the incidence matrix of one of the systems into the l‘Ilﬁldel'J.Cﬁ matrix o thc o tel}
An automorphism of an STS(v) is any permutation of the If-o'mts that preserves the sc;l ' (:n
the blocks. The automorphisms form a group under composition, called the automorphis
Qm‘jf (:ijl:lzfsi{:rtl;?}{ n is a linear subspace of the n-dimensional v‘ec:tur. space over a given
fnite field F. The codes considered in this paper will be all binary, th.at is, over I‘; = ﬁ‘F (i}
Two codes are equivalent or isomorphic if one of the codes can be obtaunec! from the o tci’oi
a permutation of the » coordinate positions. An automorphism of a code is any permu }? i ;
of the coordinates that preserves the code as a set of vectors. The set of all automorphism
1 roup of the code.
[Orlr%inthHZl;;nglﬁ?;}i DEI:L vector is the number of ?ts non-zero comﬂponents. Imﬁ})qrt:ﬁt
information about the code is provided by its weight dsstmbutl;on {Wi}":"' wht?re i },1 is tlhe
number of codewords of weight i. If the minimum non-zero \a\nzlghtiI 1111 the code is d then the
code can be used as an error-correcting code that correct§ up Fo %] errors. g

The code C of an STS(v) (or the code of the points) in this paper is defined ?r_shf—_lle ro\:
space of its point-by-block incidence matrix A. Clearly, €' is a code of lena;gll:h s ‘dana
dimension the 2-rank of A (that is, the rank of A over GF(2)). One can SE CEIlIS;k e}l-:‘ :
code of length v being the column space of A (equivalently, the row space of ]T, e block- t]},'
point incidence matrix A, or the code of the blocks), and suc}h co?les have .eeln (;‘:eoenthi
discussed in [1], [7), [8]. Most of the general results about designs in codes, ;nc ]111 1;1}:3 :
famous Assmus-Mattson theorem ([1], [4], [9].[12]), are about codes spa.nned. ¥ t‘el doc‘ s.
A parallel study of both the code of points and the code o‘f blocks of a oornbma.t?ll?a :mg:
sometimes provides very useful information about the design stru.cture [13]. In t is note‘v\;
discuss some interesting properties of the codes spanned by the points of the 80 Steiner triple

r 15.
EYSt;ﬁl: Zi;r‘:lgiesiona of the code of an STS(v) has been detern:ﬁned by Doyen, H;Eau!t.,
Vandensavel [5], and Teirlinck [11] in terms of number of maximal subsystfz;ns S (:];
v < (v — 1)/2. Moreover, it has been proved in (5] tha.t’ the rank of the 11:11:1 hencSeTrg?ﬂr)l‘E
of an §TS(v) over GF(q) ¢an be smaller than » only 1f.q = 2 01"3, and the §
with minimum rank correspond to designs formed by the lines in a binary pr01¢t1ve space
PG(n,2) (g = 2), or a ternary affine space {4G{n,3) (g = 3). The code of tlhi bl:}fksiiﬁi :l:;
unique STS(2" — 1) with the minimal possible 2-rank 2" —n — 1 spanne : yChe o
PG(n — 1,2), is the well-know Hamming code‘ (cf., g Assmus and Ke:y [1], al:j a.'
Any other STS(v) with v = 2" — 1 that is not isomorphic to the geometric one, produces
code of the blocks with minimum weight less than 3. e !

In this note we report the computation of the weight dis!,rlbutmn,. automorphism grou:l}a.
and distribution of designs within the codes of the 80 nanlEOml?]?pth. STS(15). Thla: cfot ]:s
of length 15 spanned by blocks fall into 5 isomorphism c‘la,sses acc.:or.dmg to the rank of the
incidence, matrix of the related design: two codes are isomorphic if and only if thtlay a._r_;:
generated by ST'S(15) with the same 2-rank (Section Z,lTable VI) T}'ne 30 codeshof «an.gi};l ;
35 spanned by points are all non-isomorphic. The non-isomorphism 1.s seen by the weig] i
distributions and the column sums of the matrices formed by the codewords of weight
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(Section 2, Table I, IT). Despite the fact that non-isomorphic ST S(15) define inequivalent
codes of length 35, there are 54 codes that contain several non-isomorphic STS(15) among
the codewords of weight 7, and any such code is generated by the $T'S(15) of maximum 2-
rank (Section 2, Table I1I, IV, V). We use the automorphism groups of the codes and related
designs (Table I) to find the distribution of the 80 STS5(15) among the 80 inequivalent codes.
It is amazing that the code (of length 35) with largest automorphism group is not the code
of the geometric design PG(3,2) (of order 20160), but the code of the ST'S (15) No. 16. The

automorphism group of that design is of order 168, while the group of the corresponding
code of length 35 has order 225,792,

2 The Tables

In this section we summarize the data for the codes of the 80 STS(15). The labeling of the
80 designs is the same as in [10].

Explanation to the tables.

Table I. Since the all all-one vector is always in the code (as the sum of rows of the
incidence matrix), the number of words of any weight w is equal to the number of words of
weight 35 — w. Moreover, all weights are = 0, 3 (mod 4). Therefore, only weights up to
16 are listed. Rank is the rank of the incidence matrix of the design over GF(2). AutD is
the order of the automorphism group of the design. AutC is the order of the automorphism
group of the code.

It is perhaps worth noting that the code with the largest automorphism group is not the
code of the design with the largest automorphism group (design No.1
lines in PG(3,2), but the code of design 16.

Table IL The column sums of the matrices with rows all codewords of weight 7 are listed
for those codes that are not distinguished by their weight distribution or group order,

Table III. A set of 15 codewords of weight 7 is the 15 x 35 incidence matrix of an STS(15)
whenever their mutual Hamming distances are all equal to 12. Furthermore, the orbit of a
design D under the code automorphism group contains |AutC|/|AuiD| designs isomorphic
to D. In Table IIl, for each code of length 35 the total number of designs ST'S {15) found
among the codewords of weight 7, as well as the number of designs of each rank, is given,
Tables IV and V provide additional information that identifies the designs of rank 13 or 14
appearing in the codes of designs of higher rank.

Note that the geometric design PG(3,2) (No. 1) does occur in several codes but s not
contained in every code that contains more than one design (compare with [8]).

Table IV. Only codes of rank greater than 13, and of those only the ones containing
designs of rank 13, are listed. D3, Dy, Dy, Dg, and Dy are the designs of rank 13. This table
records the number of times that a design isomorphic to one of these occurs in a code,

Table V. Only codes of rank 15, and of those only the ones containing designs of rank
14, are listed. The columns are headed by the designs of rank 14, and this table records the
number of times that a design isomorphic to one of these appears in 1
row. Designs Dyg and Dy, are not included since they do not occur in

) corresponding to the

he code heading cach
any code of rank 15.
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Table VI. This table lists the weight distribution of the codes of blocks (of length 15).
It turns out that any two designs with equal 2-rank have the same row reduced form (over
GF(2)) of their block-by-point incidence matrices, whence their codes are equivalent. Since '
the all-one vector is in any code (as the sum of all rows), only weights up to 7 are listed.

Table I
Weight distribution of codes of points (length 35)

Design | Rank AutD  AwtC W, W, W, Wi, Wiz Wi Wi
1 11 20160 20160 0 15 0 0 105 448 455
2 12 192 768 10 2l 3 33 199 851 939
3 13 96 4608 3 =33 9 99 387 1657 1907
4 13 8 128 2 29 10 112 389 1644 1909
5 13 32 512 2 28 11 117 384 1634 1919
6 13 24 24 0 22 15 137 382 1612 1927
T 13 288 288 0 18 15 153 378 1588 1943
8 14 4 768 4 44 25 275 764 3220 3859
9 14 2 128 3 39 23 280 717 3213 384T
10 14 2 128 Ji N8 G2de O SRR SO0 S 3NET
11 14 2 8 1 30 26 320 776 3177 3861
12 14 3 192 3 40 24 286 T4 3215 3849
13 14 8 512 3 40 26 288 766 3207 3861
14 14 12 2304 4 45 24 270 769 3230 3849
15 14 4 16 1 31 29 319 765 3171 3875
16 14 168 225792 Ts 200231 763 3269 3843
17 14 24 96 1 30 30 324 760 3161 3885
1R IR s 4 16 I 32 28 314 '770. 3181 3865
19 14 12 12 0 22 27 349 774 3140 3879
20 14 3 3 0 28 27 3257 780 3176 3855
21 14 3 3 0 28 27 3250 T80 3178 3555
22 14 3 3 0 25 24 33 789 3170 3849
23 15 1 256 4 51 46 668 1567 6330 7717
24 15 1 256 4 53 48 662 1561 6334 7721
25 15 1 256 4 54 Bl 661 1550 6328 T735
26 15 1 768 5 60 52 642 1542 6345 7737
27 15 1 16 2 42 49 699 1566 6294 7731
28 15 1 16 2 44 51 693 1560 6298 7735
29 15 3 768 4 53 48 662 1561 6334 71721
30 15 2 32 2 42 49 699 1566 6294 7731
31 15 4 1024 4 49 48 678 1537 6310 7737
32 15 1 16 2 41 46 700 1577 6300 7717
33 15 1 4 1 39 49 707 1573 6291 7723
34 15 1 4 1. 39 49 707 1573 6291 7123
35 15 3 12 LAl 5l G010 CI56T0 6295 TTRT
36 15 4 4 0 35 50 720 1575 6278 7125
37 15 12 12 0 27 42 744 1599 6262 7709
38 15 1 1 0 32 49 731 1576 6264 7731
39 15 1 4 1 39 49 707 1573 6291 7723

Continued | .

178




Table I (Continued)

i AutD AutC W4 W-r Ws W-u 12 W‘I.B Wm
Dijll]gn Rflslk 1 4 1 41 51 701 1567 6295 7727
41 15 1 4 1 39 49 707 1573 6291 7723
42 15 2 2 0 30 47 737 1582 6260 7727
43 15 6 6 0 34 51 725 1570 6268 7735
44 15 2 2 0 32 45 727 1592 6280 Y7707
45 15 1 1 0 33 48 726 1581 6274 7721
46 15 1 1 0 30 43 733 1598 6276 7703
47 15 1 4 1 36 44 Tl4 1590 6293 7705
48 15 1 1 0 32 45 727 1592 6280 17707
49 15 1 1 0 30 43 733 1598 6276 7703
50 15 1 1 0 26 43 749 1594 6252 7719
51 15 1 1 0 33 48 726 1581 6274 7721
52 15 1 1 0 34 47 721 1586 6284 7711
53 15 1 4 1 3 44 714 1590 6293 7705
A4 15 1 4 1.0 3ra A T3y 1519 62T Y
55 15 1 1 0 33 48 726 1581 6274 7721
56 15 1 1 0 32 45 727 1592 6280 7707
57 15 1 1 0 26 39 745 1610 6268 7695
58 15 1 4 1 32 40 726 1602 6285 7697
59 15 3 12 1 41 51 701 1567 6295 7727
60 15 1 1 0 28 45 743 1588 6256 7723
61 14 21 21 0 922 21 343 798 3164 3843
62 15 FE) 1 32 36 722 1618 6301 7673
63 15 3 12 1 29 39 737 1603 6271 7703
64 15 3 12 1 35 45 719 1585 6283 17715
65 15 1 1 0 30 43 733 1598 6276 7703
66 15 1 1 0 28 41 739 1604 6272 7699
67 15 1 1 0 2 39 745 1610 6268 7695
68 15 1 1 0 20 40 734 1609 6282 7689
69 15 1 1 0 26 39 745 1610 6268 7695
0 15 1 1 0 33 48 726 1581 6274 7721
71 15 1 1 0 27 38 740 1615 6278 7685
72 15 1 1 0 26 39 745 1610 6268 7695
73 15 4 4 0 25 44 754 1589 6242 7729
T4 15 4 4 0 31 46 732 1587 6270 7717
75 15 3 3 0 28 45 743 1588 6256 772?
76 15 5 5 0 35 50 720 1575 6278 7725
77 15 3 3 0 23 30 748 1643 6286 7653
78 15 4 8 0 25 44 7Th4 1589 6242 7729
9 15 36 36 0 21 48 774 1569 6202 7769
80 15 60 60 0 15 30 780 1635 6238 7685

180

Table IT

Column sums of codewords of weight 7 in codes of points (length 35)
Design | Column sums
20 4444445555555556666666666666 T TTTTTT
21 33333334445555556666666667 7788888810
24 667777888888889101011111313131313131313 141414 14 1414 14 14
29 7T777779999999991111111112121212131313131313131313131313
27 455566777 777778888999910101010 10101011 1111 11 11 14
30 5566666667T7T777T777771010 1010101010 1010 10 10 10 11 11 11 11 14
33 58587 TTTTTTTT7T7777888888999999101010101010
34 5555666666777 788888899999999991010101011
39 444445555566777888899910101010 101010101011 11 11 13
41 444455666667 7777788999999991010101010111115
35 5656666667777 77888888999999911111112121214
40 4455555566667 7788888999101111111111111112121214
59 5566556667777 778888889991010101111111112121212
36 3355655666666667777777788888888999915
76 44444555556666688888888889999999999
44 345555555566666667 77777 7777788888810
48 34445555555666666666777TT7T7788888991010
56 3334444445556666667T7777888999999999
45 344455555566666666777777888889999911
51 33444445555555566777888888899999101011
55 33444445555666667TT7T7T7T7T7T788889999991010
70 344445566666666TTTTT7T777788888888999
46 3444444555556666666666667 77778888910
49 33444455555566666666667 777777888889
65 34444444555555566666677 7777788888910
47 4444445566667 T7T7T7788888888889999101010 13
53 4444445556666 T7778888888888990909101011 12
57 33334444444455555555566666666777888
67 333334444444555555666666666666678838
69 344444444455555555555556666667T7T7T7TT
72 333383344444455555666666666666777778
60 33334444445555566666666666T7777778910
75 344445555555565555666666666666777888
73 44444444444444555555555555666666T779
78

444444444455555555556555556666666666

181



Number of designs of each rank found in codes. of points (length 35)

Table IIT

Table III (Continued)

Total

Rank 11

Rank 12 Rank 13 Rank 14 Rank 15

1
1
16
16

—
=]

P SO

=

b =
hoh = b RO B e e

e —
- O N B e

B e et e

r--l:i:::co*--h-u:-.-nc:-ra-aa.cwcﬂhhwwccc%ci—-ccohnﬁcc

QQDGO@hb-h-lkﬂl::?«k-#OQQ&%GQQQG%OQOQQ%%#QD

QQGO@OCDGGQQGQOQDDOQOGGGQDGHOODGOE

n::ac:H:::cuh-':-m:-—-::ubmxcc::acacoaccn‘—c:cccm.h-hmcc

1
1
4
4
4
1
1
1
1
1
4
1
1
1
1
1
4
4
1
1
1
4
4
1
0
4
4
1
1
1
1
1
1
1

Code | Total Rank 11 Rank 12 Rank 13 Rank 14 Rank 15
1 1 i 0 0 0 0
2 8 4 4 0 1] 0
3 144 24 72 48 0 0
4 64 16 32 16 0 0
) 64 16 32 16 0 0
6 1 0 0 1 0 0
ki 2 1 0 1 0 1]
8 1152 96 384 480 192 0
9 512 64 192 192 64 0

10 512 64 192 192 64 0
11 8 0 0 4 5 414 0
12 512 64 192 192 64 0
13 512 64 192 192 64 0
14 1152 " 96 384 480 192 0
15 8 0 0 4 4 0
16 5040 168 1176 2352 1344 0
g 16 4 4 4 4 0
18 16 4 4 4 4 0
19 2 1 0 0 i 0
20 2 1 0 0 1 0
21 2 1 0 0 1 0
22 2 1 0 0 1 0
23 4096 256 1024 1536 1024 256 |
24 4096 256 1024 1536 1024 256
25 4096 256 1024 1536 1024 256
26 9216 384 1920 3456 2688 768
27 64 0 0 16 32 16
28 128 16 32 32 32 16
29 4096 256 1024 1536 1024 256
30 64 (1] 0 16 32 16
31 4096 256 1024 1536 1024 256
32 64 1] 0 16 32 16
33 16 4 4 0 4 4
3 16 4 4 0 4 4
35 16 4 4 0 4 4
36 1 0 - 0 0 0 1
Continued ...
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Table III (Continued)

Code | Total Rank 11 Rank 12 Rank 13 Rank 14 Rank 15
1 1 0 0 0 0 1
T2 1 0 0 0 0 1
3 1 0 e 0 0 1
T4 1 0 0 0 0 1
75 1 0 0 0 0 1
76 2 1 0 0 0 1
77 1 0 0 0 0 1
78 4 2 0 0 0 2
79 4 1 0 2 0 1
80 1 0 0 0 0 1

Table IV

Codes Containing Designs of Rank 13

Code DS D‘ D5 Dg .D';
8 LOXTHRIO2EN g6 8 V0SS0
9 0 192 60 0 0
10 0 128 64 0 O
11 0 0 e B
12 0 192 050 0
13 0 128 64 0 0

14 192 288 6 0 0
15 0 0 L JRRRIEZ SRR
16 | 2352 0 0 0 0
17 0 0 0 o 4
18 0 0 0 4 0
23 0 1280 256 0 0
24 0 1536 0 0 0
25 0 1280 256 0 O
26 768 2304 384 0 0
27 0 0 0 16 0
28 0 16 0 16 0
29 0 1536 0" 200
30 0 0 0 16 0
31 0 1024 512 0 O
32 0 0 0 16 0O
9 0 0 O
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Table V
Codes Containing Designs of Rank 14
Code | D Dy Dy Du Dy Dy Dy Disg Dig Dy Dy D Dn Da
23 0 256 512 0 256 0 0 0 0 0 0 0 0 0
24 0 512 0 0 512 0 0 0 0 0 0 0 0 0
25 0 256 256 0 256 256 0 0 0 0 0 0 0 0
26 | 768 0 384 0 768 0 768 0 0 0 0 R, 0
27 0 0 0 16 0 0 0 16 0 0 0 0 0 0
28 0 0 0 16 0 0 0 0 16 0 0 0 0 0
29 0 768 0 0 256 0 0 ] 0 0 0 0 0 0
30 0 0 0 32 0 0 0 0 0 0 0 0 0 0
31 0 0 1024 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 32 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 4 0 0 0
34 0 0 0 0 0 0 0 0 0 0 4 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 4 0 0
39 0 0 0 0 0 0 0 0 0 0 0. 4 0 0
40 0 Qi 0 0 0 0 0 0 0 0 4 0 0
41 0 0 0 0 0 0 0 0 0 0 0 4 0 0
47 0 0 0 0 0 0 0 0 0 0 0 4 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 4 0
54 0 0 0 0 0 0 0 0 0 0 0 0 4 0
58 0 0 0 0 0 0 0 0 0 0 0 0 4 0
59 0 0 0 0 0 0 0 0 0 ] 4 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 4 0
63 0 0 (] 0 0 0 0 0 0 4 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 4
Table VI
Weight distribution of codes of blocks

Weight | Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

1 0 1 3 7 15

2 0 T 21 49 105

3 35 63 119 231 455

4 105 189 357 693 1365

D 168I 357 735 1491 3003

6 280 595 1225 2485 5005

T 435 835 1635 3235 6435
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Enumeration of 2-(21,5,2) Designs with an
Automorphism of Order 7

Svetlana Topalova
Applied Math. & Informatics Lab.,
Institute of Mathematics, Bulgarian Academy of Sciences,
P.O. Box 323, 5000 V.Tarnovo, Bulgaria

Abstract

Twenty six Tew nonisomorphic 2-(21,5,2) designs possessing an antomorphism of order T without
fixed points or blocks are found.

Ten nonisomorphic 2-(21,5,2) designs have been constructed by Mathon and Rosa
[1,2] as a concatenation of two 2-(21,5,1) designs. One of these designs possesses an
automorphism of order 7 without fixed points or blocks. The aim of this note is to
enumnerate all nonisomorphic 2-(21,5,2) designs possesing an automorphism of order 7.

A 2-(21,5,2) design can have automorphisms of the following prime orders: 2,3,5, and
7. An automorphism e of a prime order p, p > max(k, ) of a 2-(v, k, A) design can fix at
most (v — 1)/(k — 1) points [3, Chapter 1]. It follows that an automorphism o of order
7 of a 2-(21,5,2) design can fix at most 5 points. But & can not fix less than 7 points, so
that @ can not fix any point. As far as k < 7, a can not fix any block either. The only
automorphism of order 7 that a 2-(21,5,2) design can posses is without fixed points or
blocks.

Let D be a 2-(21,5,2) design with an automorphism a of order 7 which acts as follows:
o = (1,2,3,4,5,6,7)(8,9,10, 11, 12,13, 14)(15, 16, 17, 18, 19,20, 21)
on the points, and
a=(1,2,3,4,56,7)(8,9,10,11,12,13, 14) ... (36,37, 38,39,40,41,42)

on the blocks. Tinen D has an incidence matrix of the form

Ap Az Ap Ay Ais Agg
Ay Asg Az Ay Ass Asg
Asy Asz Ass Asa Ass Ass
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where A;;,¢=1,2,3,7=1,2,...,6 are circulant matrices of order 7.

Let my;,¢=1,2,3,7 =1,2,...,6 be equal to the number of 1’s on a row of A4;;. Let
us consider the orbit matrix M = (m; ;)sxe. It is easy to prove that

8
Ymiyy=10, i=1,2,3 (1)
i=1
A :
Yml; =2, i=1,23 2)
=1

(3

Em.-l_jm.-,d = 14, il,iz = 1,2,3, 2'1 < ‘ig. (3)

i=1
There are three nonisomorphic orbit matrices for which these equations hold:

s S N L AET g PN L)
M=|11 3 3 L, Ma=11 0 2.3 2 2],
3 B 3

202 Lieps 23

i

1

3

T iy
M= 1iofa g va ol

Sl L

After replacement with circulants the orbit matrix M; yields 13 nonisomorphic solu-
tions. One of them is a design already constructed in [1], the other 12 designs are new.
The orbit matriz M, yields 11 new nonisomorphic designs, and the orbit matrix Mz— 3.
Each of these designs can be generated from only one orbit matrix.

Table 1.
1 LI Bae B, Auv
My Dy ‘:_n v 13 18 10 18 16 31 30 u“u 31 14
M0y 10 a8 i3 36 | 7 8 _ib 10 31 3 0 15 10 31 3t
M Dy i0_3v 13 36 | @ 14 18 19 _ar 3 0 38 30 31 i
My Dy 11 18 10 14 30 | § 6 18 10 a1 118 18 17 31 38|
M Dy 0 1130 10 14 31 3 0 18 10 31 ¥ 13 A8 _if 91 L
M;Dg 15 FERET) i0 15 | 3 o is 310 31 ® 11 18 17 3t i |
M, Dy 5 FESETY i0 16 | 8 © is 16 31 § 10 18 17 31 CED
WMy Dy 3 11 18 0 18 [ 5 6 is 10 31 3 & 16 17 31 [ED)
M, Dg 15 13 10 13 a 30 3 9 18 19 31 T 18 18 17 31 631
™ B9 v 16_30 i3 1 [} 0 14 18 30 18 18 31 1 38 38 17 a1
My D)y L) T D) i3 30 | ® G 14 19 [ 6 11 16 18 31 T s 18 a7 31 3381
| ™y, 5 3 3 7 0 18 i3 14 30 | ® 0 14 18 3 4 18 19 31 T 13 18 1F¥ 31 14
MyD, 1L T 8 18 30 1 T 18 18 ) e 5 9 1 18 31 13 14 1858 18 31 314
M,y 17 8 16 30 | 1 4 ¥ 19 31 3 ELS ® 11 18 18 31 | 10 13 16 18 31 | 311
MaDg | L T 8 18 30 | 1 85 T 18 it 3 10 @ 13 15 19 % 11 16 30 a1 7
MyDg | 1 7 8 15 16 | 1 4 & if 18 ) 38 ¥ 13 18 31 § 14 16 18 30 EiL)
My Dy ¥ 0 14 8 19 3 3 15 EEY % 13 18 Al ® 10 i 18 30 EEL)
MaDg o ¥ 1T 3 30 10 10 14 _ie 30 11 13 16 a0 a1 7
MyDy J T 30 3 3 30 11 i3 14 15 _30 10 13 16 19 3l ¥
MaDg 0 & 30 3 7 8 14 320 10 I0_18 18 30 | 11 18 15 _ie a3t T
[ M0y o 816 3 B 8 14 18 i1 38 | @ 10 11 18 30 | © 18 38 39 31 T
WM3D1g i6_30 e 18 17 3 4,8 13 31 13 14 15 30 | 31 18 is 18 31 EIT)
[(M3D;, 18 _ie L A1 € 8 13 1T 3 13 14 30 33 14 18 30 31 | ¥
MpD, 16 7 8 i |3 8 13 14 31 L L) T 7 8 i3 18 ETY % 13 318 37 31 L
MgDy 1 a7 8 a6 [ 3 8 11 14 39 RO O ¥ 08 13 18 31 @ 13 18 30 31 e
MyDy 147 8 i | @ 8 31 34 T A O U T 4 8 i3 30 31 | 31 13 38 30 3 1%

The base blocks of the twenty six 2-(21,5,2) designs and the orders of their automor-
phism groups are given in Table 1. The notation M;Dj stands for the j-th nonisomorphic
design obtained from the orbit matrix M;. A "t” after the order of the automorphism
group means that the design has a transitive group of automorphisms.
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The twenty six designs are well distinguished by a modification of an invariant sugested
and often used by Tonchev (3, Chapter 1], e.g. for each block P was found the number
n; (i =0,1,...,39) of pairs (@, R) of blocks different from P, and such that there are
no other blocks having two common points with each of the blocks p, @, R.

The first 9 designs obtained from M; are divisible into two 2-(21,5,2) designs.

Acknowledgements. This research was partially supported by the Bulgarian NSF
Contract I-35/1994.
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The Covering Radius of Two-Dimensional Codes over
GF(4)

Evgenia Velikova,
Sofia University, Dept. of Math and Inform.
J.Baucher 5, Sofia, BULGARIA

Abstract
In this paper the covering radii of all 2-dimensional codes over GF(4) are given.

In this paper we consider linear codes of dimension 2 over Fy = GF(4). The covering
radius of code € with length n is defined as the smallest integer R, such that the spheres of
radius R around the codewords cover the space F™.

Let C be a linear [n, k] code over GF(4) without zero coordinate. Then an upper bound
on the covering radius of the code C is

3n
roy <%, )
and if the code has dimension 1 then the covering radius is R = I‘%j

Let C be a code with dimension 2 over GF(4) without all zero coordinate. Multiplying a
column of generator matrix of a code by nonzero element of the field we obtain an equivalent
code. Then without loss of generallity we can assume that the generator matrix of the code
consists only of columns :

0 1 1 1 1
@y = 1 y G2 = (R az = 1 ) Bq = a |’ ag = a? ’
where GF(4) = 0,1,e,0%, and a®* = a + 1. ¥

The matrix obtained by taking n; copies of the columns a;, i = 1,.

G(ny,...,ns), the code generated by that matrix by C(ny,...,ns) and its covering radius by
R= R{ﬂl,...,ﬂ5).

Let n; = 4s; + ;, where 0 < £; < 3. In that case, the bound (1) is

3(ty + - + ts)

B(nq,...,n5) < I_%EJ =3(s1 +...+)+ | 7 ] (2)

180

, -5 will be denoted by

As in the binary case [4] we define the normalized covering radius as plng,.ng) =
R(ni,...,ns) — 3(81 + ... + s5). Therefore from the bound (2) we obtain

s L) = Lﬁj_i.ﬁj

I G* = G(t1, .- ts) then the generating matrix of the code C is G = (G* | G1), where G,
is a four times repeated code with covering radius 3(sy + +- -+ s5). The C is catenation of
codes [1] Therefore R > 3(sy + -+ + 85) + R", where R* = R(ty,...,ts), and

p(ﬂl,‘..,ﬂ.sl_)_'R‘;R(t‘l;v-‘:ts) (rl'}

i G(ny,...,ns) = (Gi(n1) | Ga(nz) | -..Gs(ns)), where Gi(m) is the m-times repeated
column a;. Then B(ny,..,ns) = X5, |2] = 3(s; + -+ + 85) + Ly | %] (C is catenation
of codes). Therefore

5
3
P(“l;---:ns) > R =R, Z _:l_ (5)

To obtain an upper bound on p we use the elementary matrix transformations. From

generator matrix we obtain:

G(n1, ..., n5) = (Gi(ma) | Ga(ns) | ..Cs(ns)) = (Gjy(ma) | ... | Galms) | . | G (ms))
, where jg | s # i is permutation of 2,3,4,5. Therefore by the bound from [3] we obtain:
— T 3t 3t -1,
R(m,...,ns) < lsn'J B . 2L e el L) . ety o b
Therefore: ( )
pln, .yms) < mm{[ j +|/—=]li= 1,,..,5} (6)

To obtain p we use the bounds (3)-(6 } Flrstly, we describe all codes C*, i.e. their
generator matrix G*, in which each column a; is repeated up to 3 times. The variants of
the possible sets &, ..., are given in the Table below and all codes corresponding on one of

that set is equivalent by the following theorem:
Theorem 1. The code C(ty, ..., ts) is equivalent to code C(t], ..., tg), where (£, ..., &) is

permutation of (£y,...,t5), and 0 <t; <3, fori =1,...,5.

Proof: We denote by L{as, ...,as) the matrix G(1, ..

a; by mulliplying by nonzero elements of the field. Usmg thc elementary transformations of

1) and by a] the column obtain from

the matrix L we obtain the matrices

L[az,ﬂhﬂa,ﬂi,a’;): L{a;‘ﬂzaﬂhas;aa)‘ L(ﬁ-hﬂa,ﬂzgﬂs,ﬂa),
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i.e. we obtain the following permutations of the columns (1,2)(4,5), (3,4,5), (2,3)(4,5),
which generate the alternating group A;.

Let T = (t1,...,t5) | 0 < t; < 3 and Aj act on T, ie. o(ty,...,t5) = (ta(1)s -1 ta(s)), & € As.
But in (t,...,t5) we have two equal elements, and if (£, ...,£;) is permutation of (ty,...,45)
then there is & € Ay, such that (t),...,¢;) = o(t1,...,ts). Therefore the codes C(ty, ..., 45) and
C(t},...,t) are equivalent.

In the table below all non-equivalent codes C(t;, . .., i) with 0 < £; < 3 and the upper and
lower bounds on p(ny,...,ns), where n; = 4s; + ¢;, are given. The values R* are computed
using the basic methods on covering radius computations and the bounds on the covering
radius using catenation or lengthing of a code [1].

Table

No|tiuis |t [ m | R* po|ug |ug | No[dsts | ¢ | m | R p | u | us
1|oo000 (O] 0| O 0|00 29 | 33200 B | 5 | 5 516165
210000 (1[0 | O 0 (0] o0 30 (33110 | 8 | 4 | & 5 | 6] 5
3 20000 (2(1]|1 1 1|1 31 |32210 | B | 4 | & 5|6 ] 5B
4111000 | 2| 0 | O 0 1 (0 3232111 |8 | 3| 5 5 | 6] 5
530000 3|2 | 2 2 2|2 33| 22220 ( 8 | 4 | 5 5| 6] 658
6 (21000 | 3| 1 1 1 2 1 34 | 22211 | &8 3 ] 5 6 5
7111100 |3 | 0 | 1 1 2| L 3533300 ( 9 | 6 | 6 6 6| 6
8| 31000 4|2/ 2 2 33 3633210 | 9 | 5 | 6 6 6| 6
9| 22000 |42 | 2 2 3. 2 37 | 33111 | 9 | 4 | B 6 6| 6
10 | 21100 (4 | 1 2 2 3 2 38 | 32220 | 9 5 6 6 6 6
11| 11110 |4 | 0 | 2 2 302 39 | 32211 (9 | 4 | 6 [ 6| 6
12 | 32000 | 5| 3 | 3 3 3|3 40 | 22221 | 9 | 4 | 5 |56 | 6 | 6
13 (31100 | 5] 2 | 3 3 |31]3 41 | 33310 |10 | & | B [ 716
14 | 22100 | 5| 2 | 3 3 |3 3 42 133220110 | 6 | 6 6 il e
15 | 21110 | 5| 1 2 [ 23| 3 3 43 (33211 |10 | B 6 6 s 6
16 | 11111 |5 | 0 | 3 3|33 44 (32221 |10 | 6 | 6 i 7|6
17 | 33000 (6 | 4 | 4 4 | 4] 4 456 (22222 |10 | 6 | 6 | 87| T | T
18 | 32100 | 6 | 3 | 3 3 |43 46 | 33320 |11 | T | 7T i 8 | 7
19 | 31110 (6| 2 | 3 3 [ 4] 3 47 (33311 |11 | 6 | 7T 7 8|7
20 (22200 |6 | 3 | 4 4 | 4|4 48 | 33221 (11| 6 | T v 8| 7
21 (22110 | 6| 2 | 3 3 4 |3 49 | 32222 (11| 6 | 7 7 8|7
2221111 |6 | 1] 3 3 4 |3 50 (33330 |12 | 8 | 8 8|9 0
23 | 33100 (7| 4 | 4 4 | 5| 4 5133321 |12| 7| 8 8 |9 |8
24 | 32200 | T | 4 | 4 4 |65 | 4 52 | 33222 (12 | T | 8 8198
26 | 32110 | T | 3 | 4 4 5 | 4 53 33331 (13| 8 | 9 9 9| 9
26 (31111 (7| 2| 4 4 5 | 4 54133322 |13 | 8 | 9 9 9|9

27 | 22210 [ 7| 3 | 4 4 5| 4 55133332 |14 | 9 [ 10 | 10 | 10 | 10
28 |22111 |72 | 4 4 5 | 4 56 (33333 |15 1011 |11 11|11

m= T8, 3] w = ||y = ping,. ) < min{[ 3] 4292 i =1,...,5)

i=1

In almost of the cases the upper and lower bounds on p are equal, except of the codes
with numbers 15, 40, 42, 45 in the table. The normalised covering radius of that codes is
given by :
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Theorem 2. b )
if s : 5
a.p(dsy + 2,483+ 1,495 + 1,484 + 1,455) = {2 i tlhe b (code N 15)

b. p(481 + 3,43, + 3,483 + 2,484 + 2, 485) = 6, (code N 42)

i 6 if81=...:-55=0; de N 45
c. (s +2,..., 45 +2) = {T in the other case pitode )
if 89 =...=8=0;

y (code N 40},
in the other case (eo )

5
d. plhsy 42, dse+ 2,485 + 1) = {6
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LINEAR MDS CODES OVER ABELIAN GROUPS
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I. INTRODUCTION

Study of codes over groups is motivated
by the observation that when more than two
signals are used for transmission, a group
structure for the alphabet, instead of the
finite field structure, is matched to the
relevant distance measure [1,2]. Given the
length of the code n and the number of
information symbols k, the largest minimum
Hamming distance possible for a code over
any alphabet is (n-k+1) [3]. A (n,k) code
which has the minimum Hamming distance
equal to (n-k+1) is called a Maximum
Distance Separable (MDS) code.

For linear codes over abelian group, say
G, a construction technique is given in [4]
in terms of homomorphisms from G* to G,
or equivalently, in terms of a set of
endomorphisms of G. In this paper, we
characterize the homomorphisms from G*
to & which will give (k+s,k) MDS codes over
G. Since such homomorphism can be
expressed in terms of k endomorphisms of
G, a (k+s,k) code is described by a set of
sk endomorphisms. A sxk matrix over the
ring of endomorphisms of G is associated
with the code and the characterization is
stated in terms of this matrix. Specifically,
it is shown that the code is a MDS code iff
all square submatrices of this associated
matrix have quasideterminant [5] which is a

unitin the ring of endomorphisms of . For
the special case of codes over elementary
abelian groups a nonexistence result is
obtained.

The results of this paper generalize the
results available in [6,7] and the well known
results concerning MDS codes over finite
fields [Chapter 11, 8]. Proofs of all the
lemmas and theorems have not been given,

ll. ALGEBRAIC CHARACTERIZATION

Definition 1: [5] A systematic (n k) linear
code aver an abelian group G is a subgroup
of G" with order |G [* described by n-k
homomorphisms ¢, { =1,2,....n -k, of G*
onto G. Its codewords are
(xls XXy ""xn)
3
whers Xy o= Oyl X)) = Irl]q),(e,...,e.x{,e,..,,e]
jm
(1)
and ¢ is the identity element of G.

From this definition it is clear that given
n and k all subgroups of G" are not
considered in this paper. Only those for
which G* is a subgroup of G" are
considered. Such codes are said to be the
codes that support an information set [5].
Moreover, it has been assumed that the
code is systematic, i.e., there are k symbols
which can be taken as information symbols
and the rest as check symbols.
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From Definition 1 it follows that a single
homomorphism from G* to G defines a
(k+1,k) code over G. Every component,
dileses . nXpe,..ne)in (1), is essentially an
endomorphism of G. So, every codeword of
(k+s,k) linear code over G is of the form

(%1 X3 e r Xn Xy 1y X 420 e

= (X5 Xy eens X By 00 oo a XDy oy B, e X))

= (X Xy o Xy W (0 s coap e )

(2)
where LEG, i=1,2,..k,
Wi j=1,2,..,k arek endomorphisms of
G and ¢, [=1,2,..,5 is sad to
decompose as these endomorphisms and
written as :

=W - Wy

Definition 2: A homomorphism ¢:G* =G
is called a Distance Increasing
Homomorphism (DIH) if

either K, = {€} ord (K =2, i
where ¢ is the identity element of G, ¢ is
the identity element of G*, K, denotes
kernel of ¢ and d,;, stands for minimum

Hamming distance.

Lemma 1: A (k+1,k) linear code is a MDS
code iff the defining homomorphism is a
DIH, '

Lemma 2: A homomorphism ¢ from G* to
G which decomposes into k
endomorphisms y, Yy, ..., Wy, of G, isa DIH
iffa;, i=1,2,...,k are all automorphisms of
G.

Definition 2 is extended to a set of
homomorphisms as given in Definition 3.

Using this, Lemma 1 which characterizes
(k+1,k) codes over G is extended to (k+s.k)
MDS codes over G in Theorem 1.

Definition 3: Let {4¢;};., be a set of

homomorphisms from G* to G, denoted by
D, and Ky, o, denote K, MK, 0K, Py
is said to be a Distance Increasing Set of
homomorphisms (DISH) if, for all 1 =7 <4,
either

dmil.(K‘¥;|¢,-2 ""u") =r+1

or Kygn ={e,e,...,e)=¢

N el 2 s

The following theorem holds which
characterizes the set of homomorphisms
that define a MDS code.

Theorem 1: A (k+s,k) linear code over G
defined by a set of s homomorphisms
Dy = {4y -0} fromGF to G, isa MDS
code iff @, is a DISH.

From Theorem 1 it follows that a
necessary condition for the defining
homomorphisms of a MDS code is that the
component endomorphisms of these are all
automorphisms of G. From Definition 3 it
follows that if @y = {4\, ¢z . ¢,} is a DISH
from G* to G, then so is every subset of @,
This observation and Theorem 1, leads to
the following lemma. .

Lemma 3: If

L= ¥ bbby m ) R EGL D LTk
is a (k+s, Kk} MDS code then, for every
h=1,2.....s-1, the (k+h k) code L, defined by
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a subset of h homomorphisms of the s
' defining homomorphisms of L is a MDS
code.

Alternate Characterization I:

Definition 4: For a (k+s,k) linear code L
over G given by

L=t o B (E o) o)) | R EG, i=1,2,000)
the sxk matrix with endomorphisms of G as
entries,

Py Yz o - - Wy
Y W - - - Yy
1".9] w.sz % AT, w.sk

where ¢; = ;.. Py for i=1,2,....8, is
called the associated matrix of the code L.

Every such matrixdefines a linear (k+s, k)
code over G. Moreover, this matrix when
multiplied element  of
(X%, ..., x3) € G* (information set) gives the
check vector (x,, %, X..)s @S given
below. .

X1 Yy W - - - Wyl [x
Liy2 Yy Yo < Wyl X

with an

Yoo Yo W] | Xk

(Here matrix multiplication represents the
action of the endomorphisms on the
components of the information set resulting
in a group element and these Qroup
elements giving rise to check symbols in
accordance with the group operation.)

Xk vs

From Lemma 2 it follows that the
necessary condition for a code to be MDS
isthat all the entries of its associated matrix

are automorphisms of G. The complete
characterization is given by the following
theorem.

Theorem 2: A (k+sk) linear code L over
G,

L= ({xpapee bk b o)) | 2, EG, ia 1,208
is a MDS code iff every square submatrix
of its associated matrix of the form

Yy Y - - - W
Yo W o o - Wy

) el i R i bt [3
Wir Waa o - - W

for h=1,2,...min{sk},
automorphism of G".

represents an

Alternate Characterization II:

Theorem 3: A (k+s.k) linear code L over G
k
X=X x) = Il'Ildr‘(-?, niesne; ...,_e)
ja

.3
isaMDS code iff for every square submatrix
of its associated matrix of the form

Yoy Y - - - Wi
W W o - - Wy
W, =
Wiy Wz o -« Wy
for h=1,2,..., min{sk} one of its

quasideterminants is an automorphism of
G.

ill A NONEXISTENCE RESULT

Throughout this section the group under
consideration is an elementary abelian
group. The following result of [3] justifies
concentrating on codes over elementary
abelian groups.
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Theorem 4: If there exists an (n,k,) MDS
group code aver an abelian group G, that is
not elementary abelian, then there also
exists an (n,k) MDS group code over an
elementary abelian group G’ thatisaproper
subgroup of G.

Consider the following 2x2 submatrix of
the associated matrix ¥,
qrz p ’ 11 'll’;z]
Y Wy
For this matrix to represent an
automorphism of G? one of its
quasideterminants has to be an
automorphism of G. i.e.,
[ =01~ Wbeps,  Should  be  an
automorphism of &. Equivalently,
I =y, should be an automorphism
ofG. This means, considering only two rows
of the associated matrix (without loss of
generality first row can be taken as
consisting of all identity homomorphisms)
as shown below
I fEr i S e
Mg, vy - - - Wy
the automorphisms of the second row must
satisfy the property that difference of any
two of them should again be an
automorphism. The number of
automorphisms that one can find satisfying
this condition gives an upper bound on s
and k. Using this the following theorem can
be proved for the case of codes over
elementary abelian groups.

Theorem 5: LetG be an elementary abelian

group of order p™: Then (k+s,k) linear MDS
codes over G do not exist, for s,k =2, it

max{s,k} =p" - 1.
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LEXICODES AND GREEDY CODES
A.J. van Zanten

Dellt, University of Technology
Faculty of Technical Mathematics and Informatics
P.O. Box 5031, 2600 GA Delft, The Netherlands

1 Introduction

Lexicodes, or systematic codes, were introduced by Levenstein [5], and later by Conway
and Sloane [2,3,4], in the following way. If one orders the binary vectors or words of
length n lexicographically, 1.e. according to increasing values when interpreted as binary
numbers, and if one searches this list, starting with the zeroword, from top to bottom,
selecting the next vector on the list if and only if its Hamming distance to each previouly
chosen word is at least d. then one obtains a code with minimum distance d, which appears
to be linear. We shall call this type of codes standard lexicodes. In [3] these codes were
generalized in terms of turning sets, i.e. sets of indices specifying where two codewords may
differ. Another generalization of standard lexicodes was presented by Brualdi and Pless
in [1]. Their starting point is again a list of all vectors of the n-dimensional vector space
V. but now ordered lexicographically with respect to an arbitrary ordered basis instead
of the standard basis. Since the algorithm, producing the codes, is a greedy algorithm,
they speak of greedy codes. Proving the linearity of these codes, the various authors use
‘elements of the theory of heap games, like G-value and the mex-operation [2,3,4], or show
that there exists a homomorphism g, defined on V, and mapping into N [1]. We shall
present a relatively short and staigthforward proof, which uses only some simple principles
from linear algebra. 'The proof holds for any ordered basis B of V', and for any selection
eriterion applied in the greedy algorithm, thus generalizing the results in [1-5]. We shall
not make any distinction between the terms lexicode and greedy code.

2 The Main Theoreml

Let the vector space V := GF(2)" be spanned by some ordered basis B 1= (by, by, -+, b,).
With respect to B we define lexicographically ordered lists V; = @y, &2, - -, @y recursively
by

W=0, Vi=Vib+V, 1<i<n (1)

By v < w we mean that v occurs before w in the ordered list V(= V).

Let P be some property or criterion which is such that all vectors of V' can be tested
whether they satisly P or not. With respect to this selection criterion £ we now formulate
our greedy algorithm in the following way.
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Choose the nezt vector @ of the list V. whose distance veclor  +y with respect to each
previously chosen vecior y satisfies P. _ s

The resulting set of vectors is called the lezicode C(B; P) or shortly C. We remark iha.tl
the zerovector 0 will always be selected, whatever criterion P we apply, since the set of
previously chosen vectors is empty at the moment that 0 is tested. Let C; be the set of
codewords selected from V;,0 < i < n. Hence, we obtain a nested sequence of ordered

codes I
0=0,CCCCC--CC,=C. (2)

The proof of the linearity of C is based on the following simple Lemma { which is related
to a lemma of Levenstein in [5]).

2.1 Lemma

Lei @,y and z be three different vectors of the levicographically ordered list V. If 2 < y+ =2,
then precisely one of the following twe inequalities hold:

(i) z+y<z (i) :=t+z<y.

2.2 Theorem

The lezicode C(B; P) is linear for any ordered basis B, and [or any s.elr_:r'.f.ir;n (:ri!.r:r‘r'w: 1
In particular one has for all i,1 < i < n, that either C; = Ciy, or C; = Cioyiap+ Ty,
for some vector a; € by + Vi1.

Sketch of Proof : O |

The notation P[v] stands for "v satisfies criterion P”. 'I_‘h{-:_codc Cy is trma.ll_v. linear.
Assume that Ci_, is linear for some 1 > 1, and that Ciqy C C. Therefore, there is some
@ € Vi_y, such that b; 4+ € C.. Suppose that @ is the vector with the ‘Fow.r:,ﬁ _fnd(im having
this property. Then, P[b;+z +¢),Ye € Cioq. From the assumed linearity of Ci_ it follows
that ¢’ +¢ € Ci_1,¥e, ¢ € Cioy, and hence Plb; + +ete)and Plbi+a+e +b+at c]r.
So we may conclude that b; + = + ¢’ € C;, unless there is a vector b, +y < by + @ 'l--‘c L
with b; + y € C; and not Plb; +a + ¢' + b; +y]. The proof now comes down to sholwmg
that such a vector y docs not exist. Let y € Vi1 be the vector with fh? lowest index
such that b; +y € C; and y & @ + Ci_1. From the definitions of = and y it follows that
<y, sob+x<b+y,and consequently Ply + 2]. Let eq € Cioy, and eg < ¥y + x.
From the Lemma then we have thal either y +cp < @ or @ + ¢y < ¥. I-Iowwuf,l the first
inequality would imply b; + y + co € Ci_y, contradicting the definition of z. I'he proof
then continues by showing that the second inequality would imply Ply +ot e _Imm:e
y + x € C;y. Contradiction. By defining @; := b; + @ for all relevant 7 we obtain the
results of the Theorem. i =
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A special case of the Theorem, covering a wide class of greedy codes is obtained by par-
titioning the codewords according to a partition (ny,ng,+,n) of n, and prescribing a
weight spectrum for each part.

I’h‘e greedy code C(B;(n),(5)) is linear with respect to an arbitrary basis B, for any par-
tition (n) of n, and for any choice of the designed weight spectra §', 5%, -+ il

Another typical consequence of Theorem 2.2 concerns greedy codes over the field GF(2'),1 >
0. If we redefine V as the vector space GF(2')", we can order V lexicographically as soon as
we have defined an order for the elements of GF(2!). To this end we represent the elements
ae GF(2") by the corresponding vectors & € GF(2), and order these lexicographically
with respect to some basis B = (8,,8,,-++,8;) of GF(2)\. If B = (by,by,---,b,) is a
basis of ¥, such that the components of each b; are equal to 0 or 1 (binary basis), we can
introduce the following ordered basis in GF(2)™:

(B, @by, By @by, -, BB by, B, ® by, ® by). (3)

The Theorem then provides us with the following result, which is a generalization of a
theorem of Conway and Sloane.

The lezicode C(B, B; P) is closed under addition, for any binary basis B of V, for any basis
B of GF(2"), and for any selection criterion P.

3 Greedy codes over G'F(ng)

In 3,4] Co*nwa.y and Sloane introduced a special set of multiplication rules ( Nim-multiplication)
in GF(2%"). They pointed out that a special class of lexicodes over this field are closed
under this multiplication as well, and hence, that these codes are really linear. We are able

to generalize their rf:su]t-, by extending the approach of the previous section.

We consider GF(2%°), (" Fermat field"), as a chain of degree-2-extensions of GF(2), by a
series of generating elements w;, 1 <1 < k, defined by

wyp = 1, W;') + Wy + wigwi—g - cwp = 0.

Using these elements, we define an ordered basis B, = (1,82, -, Fz) (canonical basis)
with

B; = witwity w0t
where the &; are determined by the binary expansion j — 1 = (€ggp—r - €1)2. We can

prove that the order imposed by B. is such that common field-multiplication is identical
to Nim-multiplication.
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3.1 Example

We present the elements of GF(16) in canonical order.

o o w a; a; w
0 0000 0 ,.‘3'4=u:gw| 8 1100 wﬁ
Bi=wp|1 0001 1 D10 e
fp=w | 2 0110 o° 10 1010 of
3 01ll at 11 1011 W
Ba=uwy | 4 0010 w 9 e et
5 0011 wt 13 1111 o'
6 0100 w? 14 1000 w®
7 0101 Wt 15 1001 w
Working out the properties of the field GF (22°) with respect to the canonical order enables

us to derive the following theorem.

3.2 Theorem

The greedy code C(B, Be; P) is a linear code for any multiplicative property P, and for any
binary basis B of (GF(2%"))*.

A multiplicative property P is defined to be such that Plv] implies Plaw], Ve # 0.

Simple example :

We construct lexicodes from (G F(4))", for the standard basis, and for the condition Il;z; =
1. For n = 2 we obtain the code 00,11,23,32. Obviously, this code is not closed under
multiplication. If wetake n = 3, the resulting code is 000, 111,222,333. This code is linear,
due to the fact that now zj2,73 = 1 is a multiplicative property.
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Abstract

We consider decoding of a concatenated code that consists of inner convolutional code
and outer block code. The problem is to estimate reliabilities of outer code symbols after
inner deceding. Then these reliabilities are used for repeated decoding of outer code in
the usnal fashion.

We propose an algorithm for the reliability estimation of decoded blocks of convolu-
tional code. The algorithm is based on the special list decoding of the code. Correction
up to (d— 1)/2 errors is guaranteed by the concatenated decoder that uses the reliability
estimations, where d is the constructive distance of the concatenated code.

Introduction

Let us consider a concatenated code that consist of an outer block code over GF(2")
with the distance d, and of an inner unit memory (UM) convolutional ky/n; code. Let the
extended row distance [1,2] of the convolutional code be as follows (this is the case of all

interesting examples):
dy, if 1<y
dr(f)_{df-l—(f—fo}a, if f)fg !

therewith
d_f —aly >0,

then the concatenated code distance estimation holds [1]
d> d(dy).

The known concatenated decoding algorithm is to decode inner and outer codes one after
another, The algorithm corrects up to ~ d/4 errors. We propose an decoding algorithm that
corrects up to (d"(ds) — 1)/2 errors. The algorithm computes reliabilities of decoded blocks
of inner convolutional code, The reliabilities are then used in repeative decoding of the outer
block code correcting errors and erasures.

The method of reliability estimation based on the special list decoding of the inner con-
volutional code is the original part of the paper. The method differs from one of the paper
(3].
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Reliability Estimations

To estimate the reliability of decoded blocks of the inner code we propose the following
procedure. Let y be the received vector.

1. Using the Viterbi algorithm we find the nearest to y path uy in the Viterbi trellis.

2. An auxiliary list w;,us,... of paths in the Viterbi trellis is constructed as follows.
Consider a pair of nodes vy, vz , where v; belongs to the level I; of the trellis, v; € ug,
i=1,2, <y, I3 — I <d,. For each of these pairs v;,v; we construct the nearest to
y path u; that diverges from up at the node v; and remerges with ug at the node vy,
and we add the path u; to the auxiliary list. For the path u; we compute the following
characteristics: T; = d(u;,¥) — d(wo,¥); A; =la — Iy — 85 7; = T;/X;, where d({u,y) is
the Hamming (or another) distance between the vectors u and y, s = 1 for UM codes
and s = 0 for PUM codes, The list can be constructed using a modification of the
algorithm [4].

3. Select a path u; from the list that has the minimum value of ;. Assign the reliability

7; to each block of unmerged interval of the path u;: r = v;. Remove the path u; from
the list.

4. If a value of reliability was assigned to each block of ug, then Stop. Otherwise, select
a path u; from the list that has the minimum value of ;. Let t blocks from the
unmerged interval of the path u; have reliability estimations r;, each less than «; :
r; < 738 = 1,...,t. We do not change the reliabilities of these t blocks. All the rest
blocks of the unmerged interval (they had the estimations » > ¥; or had no estimations
at all) are assigned the value

r= (T = o m)/ (A - 1)

i=1
Remove the path u; from the list. Repeat the step 4.

Assertion 1 A concalenated decoder that uses the proposed algorithm to estimate reliabilities
of outer code symbols can correct up to (d™(d,) — 1)/2 errors,
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