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A METHOD OF REED-SOLOMON DECODING WITHOUT ERASURE RECOVERING

V.B. Afanasyev

ABSTRACT: A new algorithm for decoding of
shortened RS codes is proposed.

Consider an (n,k) RS code {C1,...,Cn) over GF(q) given by

the Fourier transform on arbitrary fixed set of points

{:],....:n], :j being from GF*(q), n < g-1, where

el
T s R

b=

k 3
and a(x) = ¢ aix] L is the information polinomial.
i=1
Supposc that a received word (u],...,unj contains errors e;
on positions iel, 3|1| = t, and erasures on positions jeJ,
|J] = s. A method of RS decoding without erasure recovering was
originally proposed by D. Mandelbaum (1979). Here we propose

another method based on the Lagrange interpolation.

1. Compute the erasure location polinomial

ix) = b (x=-I.), &(x) =1 when |J]| =0,
jeJ J

and the vector b, by = L(Z;) for ifJg.
Z. Perform the Lagrange interpolation over nonerasured po-

sitions of the received word

n
i-1
fE = M) - Bt
(x) e g g o 1

Where Lilx} = L[x){L'(:i)(x-;i] and L(x) =

L=

(x-2.). The inter-
i i
olation gives

flx) = alx) » G(x) + E(x)




neeT

where E(x) = iEI bieiLi(x]

VARNA'8

The coefficients fn""'£k+s+l of f(x) depend only on the
error polinomial e(x).
3. Applying the Euclidean method, find a solution to the
key equation of the type
pO/x)£(1/x) = w(1/x)L(1/x)mod xNK-8
where

L(:)'(I / = E =
)/p(x) ! (x) L(x) ifl‘biei/{x-di}l"(di)

and p(x) is the error polinomial. Note that we apply only n-k-s
coefficients of f(x). Originally similar equation and a way of
its solving was described by Y. Sugiyamo, M. Kasahara et al.
(1975).

4. Correct errors and find information symbols. There are
different_ways of evaluation of k+s coefficients of the product
a(x)2(x) and the information polinomial.

The advantages of the proposed method are: reduction of the
computational complexity for growing number arbitrary shortened
RS code, given by the Fourier transform, without using a cyclic

RS code, containing the given shortened ceode.

VARNA'88
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ON CONSTRUCTION OF CONVOLUTIONAL-BLOCK CONCATENATED
CODES GF SECOND ORDER WITH UNIT MEMORY

V.B. Afanasyev, 0.D. Skopintsey

ABRSTRACT: A new construction of convolutional-
block concatenated codes of second order with
unit memory which is based on another struc-
ture of the set of inmner codes, than in [1],
is considered. It is shown that the introduc-
ed concatenated codes have the asymptotic ra-
tio of free code distance to constraint
length better, than for concatenated codes in
[1] for transmission rates from 0,48 to 1,0
and for equal decoding complexity of these
codes.

We shall describe convolutional-block concatenated code.
of second order with unit memory (CBCUM-codes). The semi~infi-
nite sequence { of binary symbols is considered as a matrix p
with ny semi-infinite columns. The matrix p is formed by submat-
rices utk], i = 1,2, of size In *ng. With respect to the order
of CBCUM-codes each submatrix uLR) is divided into two submatri-
ces utk’i], ¢ =T1,®, i = 1,2, each of size nxny [1-3]. We
assume that before the encoding the information symbols occupy
the b, left columns and the a first rows in the submatrix u(t,i),
{ =T,=, i = 1,2, where by > b,. The positions free of informa-
tion symbols in the submatrix uci’i), L =T1,», i =1,2, are
filled in with zeros.

The matrix (sequence) U of binary symbols is encoded by

outer codes. Here for all &, g = 1,#, each submatrix uiz’l] is
encoded with corresponding code B. linear over GF(2*) of length

9
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which is formed out of the matrix G. For it each second row of

ACCT VARNA'S

ny and of transmission rate Rb 3= bifnb, 1 = 1.2, As & resalt
»
Ch,1)

the matrix G, i.e. Uu(kJGT(k+1), k = 2p-1, peN, is thrown away.

of this encoding we have a submatrix y of size nxn,, in [he matrix G' presents a sequence of block codes with transmis-
]

which a word of code Bi is written, 2= 1,%, i = 1,2. The encod= pion rate Ra,l = ajlno - Ra’z/Z. Each block code A1 has length

ing of thg outer codes B, is independent for all i, i = 1,2. i, and code distance da,1' The code A; is a subcode of the code

5fte:rencoding by the outer codes By and B,, a submatrix Wlﬂ) Ay The codes A, and A, generate a set of imbedded inner codes.

of size 2n xn, is formed, the submatrices y{i'l) of which have THEOREM 1, There exists a matrix G, which is a generating

code symbols of cuter codes B, in the a first rows and zeros matrix of CUM-code A, with the df a Z/nCI ratio meating the Thom-
» ¥

in the n_-a next rows, & = 1,=, i = 1,2. Here the matrix p is mesen-Justesen bound as a function of the rate R, ,(m +=) fil
t ]
transformed inte a semi-infinite matrix y, consisting of the suich that the matrix G' formed out of the matrix G is a gene-
Ll (%) ] g ;
submatrixes YL S - BT rating matrix of a sequence of block codes A4, for which the

Enceded by the inner codes, cach column of the matrix Y i l;:no ratio meets the Varshamov-Gilbert bound as a function

i,

s 91 Bt (2.

We shall define the free code distance df and the constraint

CEseity i Ttﬁg} is multiplicd by the semi-infinite matrix of the rate R

j! i
Glaver "GP AT Slee, Mol V=i 60 B PR T I A Tl

i uJ YJ[ The columns u], ] I,nb, form
a matrix . wnich presents a sequence of binary code symbols of length n of CBCUM-codes as in[1, 31. Then n = n n, and a lower

a CBCUM-code of second order. The matrix ( is a generating mat- f ostimate of dg is given by the next theorem.

rix of a nonsystematic time-varying convolutional code with THEOREM 2. The free code distance dg of CBCUM=codes |satis-
unit memory (CUM=-code) {ies the inequality
G,(0) G, (1)
60(1] Gy(2)
GO(E) GI(S)

DR

de & min(d,  dp 4 5 dg , 5 dy 3)e

The decoding of described CBCUM-codes uses the known methods
as in [ 1, 4] . The decoding complexity is estimated by the com-

i.e. it is completely defined by the binary matrices G (k) and plexity of the finite automatus working on-line and performing
decoding operations.

G1(kJ, k = 0,=, of size axm . The matrix G generates the main

inner code A, with transmission rate R, 5 = a/n, and free code THEOREM 3, When Reed-Solomn codes, decoding by Berlekamp

distance dp . 5. Let us consider the matrix algorithm [5], are used as outer codes and the code A, is decod-
NSy

64(0) G, (1) ed by Viterbi algorithm [1, 4] and the code A; - by mimimum

G' = GO[ZJ G1(3J

distance algorithm [5], the asymptotic decoding complexity of

G (4) G, (5) CBCUM-codes is upperly bounded by cns, where c is a constant de-
Io I1 ]

10
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péﬁding on the set of functional elements used while the finite

g‘;amatus is constructed. CUNTROLLED SYSTEHS UF DIFFEREHT REPRESENT“TIVES

It will be noted that CBCUM-codes of second order in [1]

; : L.A. Bassalygo and M.S. Pinsk
have an order of growth for the decoding complexity n5, but a e o5

ratio of free distance to the constraint length better than fox
ABSTRACT: The notion of a controlled system

concatenated codes, defined here. The CBCUM=-codes of first or- 5 i
4 of Jdifferent representatives for a collec-

der in [1] are decoded with complexity cns, however for trans- tion of sets is given. Sufficient conditions

mission rates from 0,48 to 1,0 and equal decoding complexity for the existence of such a system are

: X I established.
the d{,n ratic {or these codes is lower than foxr the codes in

this work (1 =2, A system of different representatives (s.d.r.) of the sets

Nyseeohy is a set of pairs {(Ai,ai], i=1,...,n} such that

KREFERENCES ”i‘“i’ a; > aj, for i # j. We say that the sets Al,...,An
il s Loey Sie SHavpuiidscy GEfstaMizell conybluwibimt catisfy the condition ¢™ | if the cardinality of the union of
concat ted codes with unit memory, l'roblemy Peredachi In- any k of them is at least k, for any k, 1 s k s m. A theorem of

formats i t, 22 (1986), No. 4, 9-28.

I'h. liall (see e.p. [1] ) states that there exists a system of
7. b.L. Blekh, ¥.V. Zyablov, Linear concatenated codes, Nauka, & y

Moscow, 1982. diflerent representatives of sets A,,...,AL if the condition
3. 0.D. Skopintsev, On error correcting capacity of generalized ¢ holds. Therefore if the condition €™) holds, then ‘any
convolutional concatenatecd codes, Problemy Peredachi Inlor-
; sets AL yees,ihs: OUtiof Apyeeesh have a s.d.r. However, the
matsii,,6 18 (1982), Ne. 1, 27-37. L Lo n
4. 0.D. Skopintsev, On decoding generalized convalutional con- thecorem of Ph.lall implies the existence of a s.d.r. of m sets

catenated codes, Abstracts of papers of International work- which are already known. An entircly different problem emerges
shop "Convolutional codes; multi-user communication', Sochi,
1983, 29-39.

5. k.L. Blokh, V.V. Zyablov, Gencralized concatenated codes, their representatives using only those sets whose representa-

it the sets appear one by one. In this case we have to choose

Sviaz, Moscow, 1970. tives are already determined. The problem is even more compli-
cated if some scts already considered are allowed to be deleted.
llere we have to continue our procedure using only the remain-
ing sets and their representatives. In this setting it is natu-
ral to ask under what conditions we control the procedure of
clionsing representatives such that the choise is always possible
for any m scts. Now let us ro over to precise statements.

Lt = IAl,....AnJ be a set of n sets. A subset BC is

13
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called a block of sets (in order te avoid the expression "a

set of sets"). Let § = {(A, ,a. ),...,(A; ,a. )} be a system
T o

of different representatives. We denote by l.’.(S)={.A‘l reeeaAy }
1 k

the block of related sets, and by b(S) = {ai ,...,ai} the set
1 k

of their representatives. A nonempty family D = {S} of s.d.r.
is called m-controlled if it satisfies the following two con-
ditions:

a) (SeD)&(S'CS) + (S'eD) (i.e. if a system is contained in
D, then its subsystems are also contained in DI);

b) (SeD)&(|S|<m)&(AeB(5)) -+ 45" ((S'eD)& (STS')E(ACB(5')))
(i.e. if the cardinality of an s.d.r. belonging to D is less
than m, and the system does not contain a set A, then this sys-
tem can be extended to a system belonding to D, which contains
A).

We would like to investigate under what conditions the
sets Apy...Ap have an m-controlled familyof s.d.r. An easy
example shows that the conditions ¢™) are no more sufficient.

Let Ay = {1}, Ay = 12,3}, Az = 11,3}, Ay = {1, 2} It is leasy

c®

0
to check that these four sets satisfy the condition and
they do not have not only a 3-controlled set of s.d.r., but
even a 2-controlled one. On the other hand, the same example
shows that the condition a) is essential in the definition of
an m-controlled family. Indeed, if this condition were omitted,
then there would exist a 2-controlled family of s.d.r. of the
sets AO,A1.A2,A3.

c(m

0f course, if Aq,... , then

'An satisfy the condition
there existsan m-controlled family of s.d.r. for any m (msn).
Thus for a given m we look for a condition which is stronger

than ™) and weaker than C[n). The first example of such a

4
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condition was obtained in [ 2] . One of the main results of that

paper (Assertion 6) can be interpreted as follows.

THEOREM 1. [ 2] Let t be a positive integer. The sets
AyseveyA, have an m-controlled family of s.d.r, provided that
the following condition M) po1dst The cardinality of the
union of any k out of n sets is at least k(1+m/t) for all k,

1 & kis2t;

In fact this gives a large class of sufficient conditions
depending on the parameter t. It is easy to see that the condi-
tion EM®) is non-trivial only if m < (n-2t)/2, otherwise it
lipiics the condition C[n). The latter one is certainly suffi-
cient, as was already mentioned. For m ¢ n/2 Theorem 1 gives
no non-trivial condition. This seemed strange to us. After
thinking over the proof we have understood that the condition
L) "Can be replaced by a weaker one, which is non-trivial

for m:< n' = 2ts

THEOREM 2. Let t be a positive integer. The sets kl,...,ﬂn
have an m-controlled family of s.d.r. if the following condi-
tion 1) jolds: The cardinality of the union of any k out
of n sets is at least k for all k, 1 < k < t, and is at least

ktm for all k, t < Kk = 2%,

REMARK, Theorem 2 remains valid for an infinite number of

arbitrary sets.

REFERENCES

1. Ph. llall, Combinatorial theory.

1 P

. Peldman, J. Friedman, N. Pippenger, Nonblocking networks,
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ENCODING OF ANALOG SIGNALS FOR BINARY DIGITAL CHANNEL
S.L. Bezrukov

ABSTRACT: We present here an encoding proce=
dure for ordered numbers in order to minimize
the mean magnitude error of a signal caused

by transmission through a binary channel where
only t s n fixed positions of n-words may be
disturbed. It is‘shown that our code is opti-
mal for the case when the probability of error
is small enough.

1, INTRODUCTION. Suppose we must send each of 2" numbers
kI""'kzn through a binary channel. For example, we may assume
that these nubers were taken from the output of an analog-to-
digital converter and so we must assign numbers ki to each vec-
tor of the n-cube. It is assumed that only single errors are
likely in a transmitted word, and that n-t fixed positions of
a word (0 St sn) are error-free and the other t positions may
be disturbed with probability p. If the vector assigned to Ky
was transmitted and the vector assigned to kj was recieved then
let ﬂij £ Iki—kj| denote the absolute value of the error. Our
main goal is to find the assignment so that the average absolute
error in transmission is minimized under the condition that the
choise of the 2" numbers k; 1s equally probable.

If t = n and {k1,...,k2n} = {1,...,2™} then such a problem
was solved in [3]. In [4] one can find a solution with t = n and

arbitrary k;. It was shown that if kys kzs ... sk  then in hoth
2

cases the number ki should be assigned with the hinary expansion
of i-1. It was shown in [ 1] that if p is small enouph then this

coding procedure is optimal. In our paper we have found the op-

16
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timal procedure for t < n.

2, COMPUTATION OF THE MEAN MAGNITUDE ERROR. Let us assume
that kysk;s...s k,n. Call the vector assigned to ii t-th vec-
tor and the t error-possible positions - admissible ones. Ana-
lopously to [ 3], [4] let ry be the number of vectors assipgned
to numbers k; which are neibours by admissible positions of the
the i-th vector when only the first i numbers have been as-
‘lgned. It follows that, in the computation of L
lilve a coefficient il (t-rj} = 2ri-t. Hence :ﬁé averapge value

aij, ki will

0l a single error equals

»N

JH=T1.=1

(s ) R S
i=1 : i

Lonscequently the mean magnitude error equals

n

1 N
el (it s K
1 1 1

B tpalicp &0 gttt

™~ ta

i
llsing in this sum enly the term which is of first degree in p
Wwo conclude that il p is sufficiently small then:
211

e} = =
_ET{uri 3 Li.

£, 2m (0 1)

Iherefore, the minimizing of £ is equivalent to the minimizing

2 2 2 m
St Bo T Tt ke = i s SN T w
fa] )y e AL oy BT gy TR
\n ) 5
where all a  (lsms2") are some nonnegative numbers. Since

n
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o =1 e A I ;
t = t.2""" then for minimizing S it is sufficient to
*) m # m
ey SR B ':I T for every m = e 52 R 2 rj equals
1= i=

er of admissible connections between nurhered vectors
rvctors have been numbered.
squently for minimizing E it is sufficient to number
Lut sirtices ot n-cube (1 to 2™) so that for cvery m, 1 ami2",
L Set consisting of the first m numbored vectors should
raximal number of admissible connections. Then in order
t tie optimal code we should assigpn Li to the n-tuple nun-

1

+ MAXIMIZING THE NUMBER OF ADMISSIBLE CONNECTIONS, It was
[ 5] that if t = n then we may use the natural nuvher-

n-tuples with respect to the lexicapraphic ordering.

saver o « aumbering is unmique up to isometric transf{orma-
tirns of the cube. Let us denote by FE (L;: the collection of
t ¢ first (the last) m vertices of the n-cubc B" in the lexico-

graptic ordering. Let AEEBH, let R(A) denote the number of
"interior" connections in A and let G(A! be the number of con-

nections between vertices of A and B™\A. Then
™) R(A) = n ¢ |A] - G(A) and G(A) = G(™\ A},

Let us present the integper m in the form m = p.?t+q,
0 sq <2t, and decompose B" into t-subcules by nonadmissible po-
sitions. Call these subcubes admissible. Denote by A the suh-
set, consisting of p arbitrary admissihle subcubes united with

the set La in the (p+1)-th subcube. Similar construction wis

used in [ 2] for the isoperimetric type prohlem.

THEOREM, A has the maximal possible number of admissihle

VARNA'88
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tonnections among all m-element subsets of B",

ACCT

ProoF, Let ACB" and 1et B; be an admissible subcube. le-

note Ai = Ar\Bi. Then the number of admissible interior connec--
Jn-t
nections in A equals £

t
! R(A;). Let us replace Ai by F|Ai,

1

In every admissible subcube. For the obtained subset C we get

yn=-t ah-t
I R(C) 2 I R(A). Let Bi and Bj be admissible subcube -
in i=1
2t $ e RN i) el
If |Ai! + |Aj| S 27, then we replace AJ by AJ L[Ajf en
Htﬁ}! = R(Aj} and we project A} into Bi‘ We get the subset A}
- 108 BT, g G2
nnd Airﬁnj =9, R{Ajj R[Aj]. Replacing Ai AJ by

L?Ail+|A§f we obtain the subset A; in the subcube Bi and by [ 3]

R(AD) > R(A) + RCA) .

If [A;] + |Aji > 2%, then we consider the complements of
Ay and Ij in the t-subcubes. Then |X;| + |Iji < 2% and after a
rojection of Ks into B, we establish in an analogous manner
that

t
4 ] < G(F .
G(A;) + G(KJ) ( Ixi{+rxj|l
Considering again the complements in By and Bj and bearing in
mind R(F;] = R(L;) and (#) we obtain
t
¥ ‘ " t).
R(Al] + R(AJ) < R(BJ} + R(P|Ai|*|ﬂjl‘2 )

After a finite number of the discribed operations we con-

struct A from A. The proof is completed.
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Now, in order to specify our numeration let us number ar-

bitrarily the admissible subcubes Bi' Let a,feB™ and ﬁrhi,

A CONSTRUCTION OF BINARY, BALANCED, ERROR-CORRECTING CODES

EiBj. We say that a preceeds £ if the subcube Bi preceeds the

subcube Bj or Bi = BT and o preceeds Foin Hi in the ordering

which is isometric to the lexicographical ene. Let us number

Mirio Blaum and Henk van Tilborg

the n-tuples in the ordering def{ined above. A binary word of length 2& is called balanced if it con-

It is clear that all numherings maximizing the number of tiuins exactly ¢ zeros and € ones. A concatenation of n balanced

admissible interior conncctions may be formed in such a way. hords 1s a balanced word of length 2 gn with maximum runlength

M. The maximal value of the Digital Sum Variation is t. Let

REFERENCES Uyslisy-ew,u be a numbering of all balanced words of length

: ™ CERE ) R
1. A.J. Bernstein, K. Steiplits, J.I. loperoft, Encoding of dhe S0 L= (). We consider codes defined by

analog siynals for binary symmetric channels, ILEL ‘lrans.

4

s R L :
5 1tgit,gi ,...Hjn],(1|,12,...,13rl],

on Information lheory, IT-12 (19006), 425-130.

(o]

5.L. Bezrukov, On the minimization of boundury in Hamming : : : i : A
where 1 is a L-ary code with minimum Hamming distance e+ 1.

space, Kombinatorno-algebraicheskie metody v prikladnoi

matematike, Gorky, 1985, 45-58 (in Russian| Since it takes an even number of errors to change a balanced
y A 3 ¥ as5li -

L.ll. Harper, Optimal assignments of numbers to vertices,

Ji. STAM, 11 (1964), 131-135;

4. K. Steiglitz, K.J. Dernstein, Optimal binary coding of orde-

Ted numbers, J. SIAM, 13 (1965), 441-443,

word of lenpth 26 into another one and since all other error

Ll

patterns change a balance word into a non-balanced word, it
lollows that e bit-errors in a word in C result in f non-balan-
ved components and g erroncous balanced components with f + 2g s e.
Since 1 has minimum distance ¢+ 1, all these errors can be cor-
rected.

By taking I = {(i,,i5,...,1 ]li]+i2+...+in £ 0 mod L/2} one
obtiains a very good l-error-correcting, balanced code.

A peneral construction of e-error-correcting, balanced codes

will be piven of which the above construction is a special case.
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ESTIMATION OF THE NUMBER OF LINEAR CODES ASYMPTOTICALLY
ACHIEVING THE GOBLICK BOUND FOR COVEKING RADIUS

V.M. Blinovsky

ABSTRACT: An estimation of the: quantity of
linear codes, asymptotically achieving the
Goblick bound is obtained.

Denote by Fg the binary Hamming space of n - tuples, d(.,.)-
the Hamming metric; B(y,r) = [azF?:d(a,y) < r} - the sphere with
a center yng and a radius r, Vi = |BCy,r)| = _g Ci. Any k-dimen=
sional vector subspase of Fg is called a k-dim;:;ional linear
code; R = k/n - the rate of the code; T = max min d(x,y) - the
covering radius of the code. Y‘F? %

The main result of the paper is formulated in the following

THEOREM, The asymptotic Goblick bound for the covering

radius
(1) r/n £ H-1[1 -R+0(1))

holds for at least 1 - z-no(n). o(n) + =of all linear codes.

The proof of the theorem is based on the next

LEMMA, Consider Lg(s,y) = |B(s,y) NG| - the element of the
coset spectrum. For more than 1 -Z'HD(n), o(n) + = of all linear

codes the following inequality is true
2) k/n s 1-H(s/n) + log,Lc(s,y) meo(1), yeFS.

In order to prove this lemma an upper bound on the coset
spectrum of the linear codes is obtained. Consider the ensemble
of the linear codes, generated by kxn matrices with uniformly

and independently distributed binary symbols. For arbitrary but

22

VARNA'88.

VARNA'88

{ixed point y:F? define the set of random variables
il = |B(y,s) NG|. The next incquality states the relation between

m

™ and (™

(3) L™ s (EM™(1 +0(1)), w = o(n).
I'rom the last estimation following asymptotic lower bound on
the quantity of linear codes tiCFg, for which @ Szotn)|G|VS/2n

can be olbtained

P s 2°00) Ly o og - 2mnotn)

For an arbitrary subset G Ci" the following equality holds

(4 LIBx,r) NG| o= jE]y

By
v T T

Sl

Using (5) and (4) 1t can be showed, that the number of points

il T R S S

Z, Iy EL = LB 8) ] Biate

»

0(n) = = is bounded as follows

(5) |z i O S DR )

lenote Zz M z - the &-bound of :n‘
The following result was proved in [1]:
El 1/2

(6) X |zD AU AT ¢|m'1(|:o] « 2™ + (#-1)const*n” 1s

wWhere #(.) is the normal distribution function with parameters
N(O, 1)

there exists zeZ_  which

2 i £
It 1s easy to see, that for fixed y:Z0 >

satisfies the inequality
(7) [Bly,s+1) NG| = |B(z,s)NG].

Under the conditions (6), (7) the inequality (5) holds provided

ACCT
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where & = n2/3, o(n) = log,n, m = nzfslcgln.

Accoding to the estimation (7) the number of code vectors in an

arbitrary sphere B(y,s+1), yezi is bounded as follows
(9) a 2 279Mep, sm) + .

As it was shown, the quantity of linear codes satisfying the

~-no(n)

inequality (8) is at least 1 -2 « Let us fix one of these

codes - G,, A, being the generator matrix of G,

¢}
ensemble of linear codes, generated by adding q ~ 1og:n vectors
with uniformly and independently distributed components to the
matrix G .

It can be shown, that the estimation of the number of sphe-
res, each containing at least 2 °(™ . || “Wg e 2™ code vectors
is given by

4 A U A B R, b

Accoding to ER = |G|V, * R

from (9) the estimation (2) is
obtained. Substituting LG(y,5+T) > 0 in (2) we establish (1).
This estimation of quantity of linear codes achieving the Gob-

lick bound is better than the one obtained in [2].
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ON DECONDING GENERALIZED CONCATENATED CODES OVER THE
EUCLIDEAN SPACE WITH BINARY LINEAR OUTER CODES

Martin Bossert

ABSTRACT: In [4] generalized concatenated
(GC) codes over the Euclidean space are stu-
died and it is proved that the known decod-
ing algorithm for GC codes can also be used
to decode those codes to half their minimum
distance. In case of binary linear outer co-
des a new decoding scheme is proposed based
on a soft decision decoding algorithm for
binary linear block codes [1] and [2]. The
proposed decoding scheme is compared with the
one given in [4] and gives a considerable
better decoding performance.

1. GENERALIZED CONCATENATED CODES
Let x(T)(nb,MéI),5(1)] be a code over the Euclidean space

mnb. Mé‘j is the number of codewords of the code and 6{1) is the
minimum distance, i.e. the squared Buclidean distance. For sim-
plicity we only consider the special case that all outer codes
ure binary codes. Then the partitioning of the inner code x(1)

is defined as

e e @

where xﬁzJ(nb,Méz),ﬁ[E)), i = 0,1 are two disjunct subcodes of

(h (@ Ly 2y )

X' * with M /2 and the minimum distance §

5

e R ) (3) [ANEy
Now %i = xiJOLJXi’1 and so on. Clearly we must have Mb = 2
and the complete partitioning is

25
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ur(3)

11.i2,...,ij_2,1

o A AR
Every blnary number 11,12,...,is,un1que1y determines one code
word of x(1}. Furthermore every number 11’12""’ij determ1n¢

a subcode. Let the minimum distances of the subcodes be G(i),

i S e S

i ! A , .
Let A( )[na,kgl),dél)), i=1,2,...,5 be s binary outer co

des. Given a matrix with columns a{iJegti), B i ia, 8 EhEN

any row of this matrix is a binary number which determines a

codeword of x(n. Thus we have constructed a GC code C(n Ty, k,68)

/ ! n Ty
which is a code over the Euclidean space R 2

meters:

§2 min {§4) ol

. and k = 3 k(i)-
=] e vy & ¥

For the proof we refer to [4].

2. THE NEW DECODING SCHEME

The inner codes over the Euclidean space are considered to

be MLD decodable, thus soft decision information is available.

na 1 n
Let ACGF(2) * be a binary code and 4 := {veGE(2) ®|¥ 3
I

<a,v> = 0} be the dual code, where <a,v> is the scalar product.

Define the set of decoding vectors as D := {wfﬁlfwt{wJ = dIJ

g kil s " 1
i.e. all minimum weight codewords of 4 . Assume r = a + [ i«

the received vector in case of a binary symmetric channcl,

aed and f the error. Then the syndrome weight is defined u:
WI(D,r) = I

(r,w)
weD

= WI(D,f)

The decoding algorithm is now as [ollows:

compute e; = NTLD,r+ci), i 1h2,eeayny

where r'] IETa @ R T

i-th unit vector.
20
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choose J as an error position 1F EJ ﬂlnl..['z

seseyly
Then r' = 1 hey and the procedure is continued until
WI(D,r') = 0.

A modified version of this decoding scheme (see [1]) is
uble to decode codes of different classes beyond half the mini-
mum distance in case of hard decision decoding. Also many
oxamples of BCH-, QR- and RM-codes are given. In addition soft
decision information can be included easily. Since the decision
\f an error occurred in position i depends only on the value Es
we can modify any value £y according to its reliability. In
tause a position i is very reliable we can add a suitable large

number to e, and make it difficult for the algorithm to declare

i
this position as an error and a suitable small number if the
position is unreliable.

Usually an additive white gaussian noise (AWGN) channel is
used in order to simulate soft decision deconding. The idea is
to exchange the decoding algorithm given in [4], which uses
error/erasure decoding, by the above described soft decision
decoding procedure. Moreover, in case of an AWGN channel at
practical signal to noise ratios an error/erasure decoder might
plve worse results than pure error decoding. We argument as
follows:

Let t be the expected number of errors, let Pe be the expect-
od number of erasures which are no errors in the hard decision
those which whould be errors, respectively. Obviously

case and Pe

and thus 2t + Pe * P. > 2t + Zpe.

Pg < Pe el

27
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In case of coded modulation systems which are a special
case of GC codes over the Euclidean space we give simulation
results, where QPSK modulation is used as the inner code. We

use BCH codes of length 31 and 63 as outer codes. In case of

N =aE
A M2; 31, 21% 12y ang Az, 2% 5
and  for N .= 53;
a2, 63,21%, 23) ana 408 (25 63, 2%, 7y

An approximation of the maximum likelihood estimation of the

reliability 4 received signal is the difference of the squar:
Euclidean nces of the two closest signal points to the
recived si. .l. Therefore this reliability measure is used in
the proposcd decoding scheme instead of taking just the Euclidean
distance as in [4]. Fig. 1 shows the block error probability
versus energy per information bit for the decoding algorithm
(BZZ) from [4]) and a modification of this algorithm. The modifi-
cation consists of the proposal to declare only decoding fail-
ures of the inner decoder as erasures in the first step of BIL.
In case of maximum likelihood decoding of the inner codes (as

for the described examples) no erasures are declared. Fig. 1
shows that the results obtained by the new decoding scheme are
considerable superior. Fig. 2 shows the symbol error probability
archived by the new decoding scheme where the BCH codes of lenpth
63 are uscd.

For a comparison we give also the results for uncod-

ed BPSK and yPSk (see [3]).

VARNA'88

Coded QPSK, Rate 1/2, N=31
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+
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Figure 1: Comparison of different decoding schemes
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Figure 2. Comparison of coded QPSK with uncoded QPSK and BPSK
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ZERO-ERROR CAPACITIES AND VERY DIFFERENT SEQUENCES

G. Cohen, J. Kbrner and G. Simonyi

Superimposed codes, perfect hash functions and many other
fashionable questions in random-access communication or c!.ﬁu-
ter science are special cases of early-day information theore-
tic models in the Zero-error case.

A new class of problems in asymptotic combinatorics ean be
formulated as the determination of the zero-error capacity of
il class of discrete memoryless channels. (This model is also
known as the compound channel). We solve an interesting class
0f these problems using recent results on graph entropy.

Initially, we will be trying to hide from the reader the
lnct that our general problem contains as a special case the
determination of the zero-error capacity of a single discrete
memoryless channel. For this sake, we start with a simple
puzzle in counting ternary sequences.

We shall say that the ternary sequences 52{0,1,2]t and
»'t{U,1,2]t are symmetrically different if for any two elements
ol {0,1,2}" there is a coordinate i for which the set {xi, x;}
sonsists of these two elements. Let us denote by N(t) the maxi-

mum cardinality of a set Cf{o,l,zlt in which any two sequences

nre symmetrically different. We prove
THEOREM 1, lor sufficiently large t
Rabd & 1At Log Nt s 243,
This puzele s similar to the classical problem of Rényi
[ ] about qualitatively indepemdent partitions.
Fhe lotlowing pencralization is inmediate.

Al
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ymusLEM 1, Let us be given the graph G = (V,E(G)). We
shall say that the sequences zcvt and 5':?‘ are G-metrically
different if for any (a,b)e¢E(G) there is a coordinate i such
that the set {x;, x;) equals the set {a,b}. (In other words,
X and x* differ in the i'th coordinate in the two endpoints of
the edge (a,b) of G). Let us denote by NG(t} the maximum car-
dinality of a set ¢ cyt in whi¢h any two sequences are G;notri-

cally different. We ask for a formula describing lin1/t105NG(tL
Tea

We will solve this problem for a class of graphs: G. (The
previous puzzle arises when G is the complete graph on 3 ver-
tices).

A seemingly different problem is our

PROBLEM 2, Once again, let us be given the graph G = (V,E(G))
We shall say that the sequences Etvt and E'GVt are G-separated
if there is a coordinate i in which txi, xiJeE(G). Let us de-
note by G the complement of G. Let us denote by Sg(t) the maxi-
mum cardinality of a set C cV® in which any two sequences are
both G-separated and T-separated. Clearly, 5,(t) = Sg(t). Let

us call

C(6,8) = lim 1/t log §5(1)
T+

the mixed capacity of the graphs G and G. The determination of
this quantity seems to be a particulary challenging mathemati-
cal problem that has many interesting connections with a new
area of research at the borderline of information theory and
polyhedral combinatorics, including the information-theoretic
characterization of perfect graphs [ 2]. In particular, it

might shed some light on the difference between the graph entro

pies introduced by Kérner [3] and Kérner-Longo [4]. We have

5
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THEOREM 2, C(G,B) s 1/2 log [V(G)|

and this bound is tight if G = G.

The most natural common generalization of these problems
|5 the question of determining the zero-error capacity of the
¢ompound channel. For a short description of the compound chan-
nel, cf< 5

The above covers part of the material from a forthcoming
paper of the authors in which the connections to information

theory will be explained in more detail.
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A cap in projective geometry is a set of points with no

three of which are collinear [1].

QUASI-PERFECT LINEAR BINARY CODES WITH A MINIMUM

A complete cap is a cap to which no point can be added.
DISTANCE 4 AND COMPLETE CAPS IN PROJECTIVE GEOMETRY

If we consider the column length r as a point of projec-

i QrIres-
A.A. Davydov, L.M. Tombak {ive geometry PG(r-1, 2), the complete cap of N points ¢

ponds to the parity check matrix of a quasi-perfect [N, N-1,

Abstract: Tn this paper we prove that if a Al 2-code.

linear binary code with a minimum distance DEFINITION, The parity check matrix H of an [n, n-r, 4}
d = 4 is quasi-perfect (i.e. has covering ra-
dius 2) and its length is N = Zr'2+2, where r
is the number of parity check symbols, then
the parity check matrix of the code is sym-

metric in the following sense: columns of

p-code is called symmetric if it can be represented in the

lollowing form

the parity check matrix can be partied into
N/2 pairs so that the sums of columns in each
pair are equal. As a consequence all possible
values of the length N of a linear binary
quasi-perfect code with d =4 are obtained for
N 2 25 %1, For N > 2P A0 these codes
are constructed.

(1) H o=l ==2aas ? ______ :

Where Hy is a parity check matrix of

In/2, n/2 = (r=1), d11p1-:ode.
The construction (1) is usually called the Plotkin construc-
The results are transfered to complete caps

fion.
in projective geometry PG(r-1,2).

Denote
The code with a minimum distance d =4 is quasi-perfect 1l 10001 00000 1111
. - ) ; g, = loioonll 5 Ls = ||10001 0000Q || 3
1ts covering radius is equal to two. 4 00101 01001 1001
00011 00101 0101
In this paper the parity check matrix structure and the 00011 0011

possible values of code lengths [or quasi-perlect codes with M_(v,i) is a matrix, consisted of i equal columns of length
™ »

d =4 are considerecd. ¢ cach of them being the binary form of the number v;

Denote a code with length n, with v parity chech symbols

)
miminum distance d, covering radiuns p hy [, 2=, d] p=code.

- ¥ : -r
(The cardinality o1 this code is 2" )

Quasi-perfect codes with d=4 arc "not lengthened®™ in thi
sence of impossibility to add any column 1o the Paiity eheod
matrix without reducing the code minimum dilsTane

'
o

al
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a parity check matrix of a quasi-perfect Ner, 4]2-codes is completely defined by the structure of the
[N =n, N-r, 4] 2-code, if n = 2, ne'5;

- : 3
e > mutrices Hf+2(2 +1).
nf‘n) 1s P4, if n=bd, r=4,

COROLLARY 3, If N > A 2"6, r 2 6, there exist exactly

01
”ITI‘J SE el ' nonequivalent quasi-perfect [N, N-r, 4]2-codes:

the [N = zr—l, N-r, 4] 2-Hamming code with a parity check matrix

r=2
THEOREM, If N z 2 * %, then the parity check matrix of a ghtained from (2) for £ = 0;
quasi-perfect [N,N-r,4] 2-code is always symmetric i.e. it can

be represented 'y t i (1)

Hy 1 (N/2).

Khe [N =28 % 20"

n

s N-1, 4] Z-code ﬂr with a parity check mat-
. Moreov i 1 . L i
2 H1 1s the matrix rix Pr obtained from (2) for £ = 2;

r=2 s 5 d : s S
4 - 2 - 2- wit y check matrix
The complete cups have a similar symmetry. Ay : G A G A L AL AL -

! 3
Lr obtained from (2) for f = 3 and H3+2{2 +1) = LS'

The resul' - ! Z] were used in the proof of this theorem. z
i The construction of all [ N > Rl B, N-r, 4] 2-codes is
COROLLA P U5 15 N e :
| ’ » then the length N of a intresting itself. In addition it can be used for other aims,
quasi-p v, N-1r, 4]2-code can be any i 3¢
3 Y integer from the sc¢t for example, to solve in the class of linear codes the extremal
N o= b Er-f—B

& PR S PR T PR IR ) tusk [ 31 - te minimize the number of minimal weight words.

and cannot have nther values.

=i
COROLLARY, 2. I£ N2 2524 2, 7 2 3, thest the parity. chock REFERENCES

matrix of g N L 2 .
iny [N, N-r, 4] 2-code can be presented in the follow- . R. Hill, Capes and codes, Discrete Math, 22 (1978), No 2,

ing form 111=137.
2 “{zr-z b ZFJ : oo JoHGRL Kemperman, On small sumsets in an abelian group,
Acta Math. Stockholm. 103 (1800); Na 1-2, 65-88.
‘JMF(U, PRE N M (1, o1y Mt D sy o AN, Jeune, -, oM U KGRIVECTHE EROR Setinyadanarg
= ‘ _______ ' ‘ weCa o dMoxonwx Koiax, Hpodon. nepepaun wadopm, 24 (1988, 8 1,
‘ ------------------ _ Bt
He 5027 +1) ”F+2[“ +1) Hpgala #00 H
where F - r-f-2; D - Er-r':-l' r EYo g ik 1 1
2 y g g thig gy v =iy,
the lower [+2 lines are a EL—ntd repetition o the some maly .
The Matrix (2) is built by an K=oty JppliEat oo ob tHe o
s Fo s s
As it follows from the Corollars B2 ' 4 I

structure of the parity check mary ic | N el
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Deleting the first row and the first column from the matrix

OH.THE UNIQUENESS OF SOME LINEAR SUBCODES U, we get a 23x11 matrix Uss which generates [23, 11, 8] cede

OF THE BINARY EXTENDED GOLAY CODE

i,4- In a similar manner we receive from U,z a 122, 10, 8]

tode Gyyy BtC. 0o, @ [19, 7, 8] code 519. The main purpose of

S.M. Dodunek B,
¥y S48, Eucheva this paper is to present the following result.

. EM 2, The codes G_, 19 s n £ 23, are unique up to
ABSTRACT: It is proved that the linear binary i R ; W

codes with parameters [n,n-12,8], 19 s n s 23
are unique up to equivalence

¢yuivalence. There exist exactly two nonequivalent [18, 6, 81

todes.

Let us consider the binary extended Golay code G SKETEH |QRMRUOR o UST SR IBRTER EVRIEIRAY clinal s ArEndbionty

could be defined by a generator matrix 24: 1t linear code. For all n, 18 s n s 23, Ch is optimal and we can
r o use some properties (see [5]) of the Hamming weight distribu-
EE E tion and of the structure of optimal codes. First we prove that
U24 112 ;ii _____ fl]__ i the weight enumerators of the codes Cn (19 s'n s 23) are:

il bl e 4 wt: 0 8 12 16
where I12 is the 12x12 identity matrix and All is an 11%11 bi- Cigt ] 78 48 1
nary matrix, obtained from a Hadamard matrix of Paley type. Cyot 1 130 120 5
This code was discovered by Golay [1] and is the most famous of C11: 1 210 280 21
all binary codes for both theoretical and practical reasons. L:,: 1 330 6lb 77
The code Gy4 has parameters [24, 12, 8] - [ length, dimension, C::: 1 506 1288 253

minimum distancel Deletlng the last column from the matrix U it i | n = 8
24 There are OII].}‘ two pos:‘-ibilxt les 1or = 18:

wWe get a matrix U which enerate h Y = =
4 g 5 the Gola code G with pa s
2 24 (1) /ORISR U W S A = 16, A

rameters [23, 12, 71. Pless [2] showed that G . a o 8 12 16
nd h
a4 R Hahca Gy CLIN U= Sl e 5 v ki 2 6

is the unique binary linear code with parameters [ 24, 125 8]

(t23, 12, 71 resp.). Later on Snover [ 31 and Delsarte and Note T RAa ot 8 iy = BRL g B L0810 SONRGE AN

Goethals [4] proved the following statement. pencrator matrix V, of €. a vector of weight 12, we show that
Lhe remaining part of V. can be determined uniquely (up to equi-
THEOREM 1, Let C be any binary code of length 24 and minimum i

] Wilence) Lok A i = 18 t tw onequi-
distance 8. Then Wilence) for okl mgo uI] 3. For ? we ge on qui
+ S i =" A 4
: nlent | 18, 6, 8] codes G and G ith weight enumerators
(i) Jc| s 212; vitlemt | , b, 8] codes (g and Gig W £

(ii 12 (1) and (1) respectively. Botl of them can be constructed by
i1) If [€| = 2'4, then € is equivalent to Gyye
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using an appropriate submatrix of the matrix Us4- The code
G%élj is projective and generates a strongly regular graph T
with parameters r (64, 45, 32, 30),
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MODULAR GROUP ALGEBRAS AND ERROR CORRECTING CODES

Vesselin Drensky

ABSTRACT: The purpose of this paper is to sur-
vey some results on the code properties of
the Jacobson radical of modular group algebras.

1. PRELIMINARIES

We fix a finite field K of characteristic p and a finite
group G = {gy,...,g }. The group algebra K[G] is a K-algebra
ipli i defined by the mul-
with a basis OIS and a mu1t1pllcat;0n e
{iplication in G. The mapping ¥:KIG] + K defined by
is an isomorphism of vec-
v(nlg1+...+angnJ = (81,...,an), aiéx, is j
for spaces. By v we identify K[G] with K™ and consider the sub-
spaces of KIG] as codes in K'. In particular, the Hamming weight

f the non-zero a.'s.
“(R|S1+---*ﬂngn) equals the number o i

DEFINITION 1.1, Every (left, right, two-sided) ideal C of
KIG] is called a group code; C is abelian, if G is an abelian
yroup. When C coincides with a power of the Jacobson radical of
KIG], € is called a radical code.

Classical examples of group codes are the cyclic codes
which are ideals of Klxl/(x"-1) = K[Cn]' Cn = (gign-l) being the
tyclic group of order n. |

PrROBLEM 1.2, What sort of properties have the group codes?
Which classical codes can be obtained in this way?

For earlier results on the group codes we refer to p. 594
[15); [6] and [16] are a good background for the representation

theory of finite groups and the structure theory of group algebras.

) 4
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Some properties of the group codes can be directly derived
from the general theory. For example, it is known that the grou

algebras are Frobenius algebras. This allows to describe easily

the dual code C! of the group code C.

THEOREM 1.3, [15] (see also [7]) Let C be a left ideal of

K[G]. Then the dual code Cl coincides with the left annihilator

AnnK!G]C‘ of C*, where * is the involution of K G defined by

AR |

B o L) geEl

It is well known that

KIGI = 04y (K)o oo M (KXKIKIGD),

where Mr[L) 1s the rxr matrix algebra over the extension L of K

and J(K[G]) is the Jacobson radical of K[G] (i.e. the maximal
nilpotent ideal of K[G]). Depending of the order n of G, three
completely different cases appear:

(1) pfn; then KI[G] is semisimple, i.e, J(KIG]) = (0). For
applications to coding theory one can successfully use the rep-
resentation theory and the theory of idempotents. Berman [2] Wi
the first who noted that the theory of abelian codes is richer
than that of the cyclic codes.

(2) n = p"q, pfa, m > 0, q > 1; then JEKIG]) # (0) but the
modular representation theory can be applied.

(3) n = pm, the modular case; then J(K[G]) coincides with
the augmentation ideal of K[G] and the only irreducible Tepre-
sentation of G is the trivial one.

The main purpose of this paper is to give a short survey of
some results on the codes obtained as powers of the Jiacobson

radical of modular group algebras. We fix some notation: ( - il

p-group of order n = pm, J = J(KIGI) - the radical of KL Gl Then

KIG] = K4&J and

VARNA'88 ACCT

Kiel = 2o B oGyl St eiety

Is a descending series of ideals; additionally we assume that

L)

2, THE RADICAL AND RELATED IDEALS

Berman [ 1] has initiated the investigation of the powers of
the radical in the abelian case and has obtained an explicit
{but complicated) formula for the minimum distance. In particu-
lur, for p = 2 and G being an elementary abelian group he has

proved:

THEOREM 2.1. Let K = GF(2) and let G = C?. Then the code
Jl{K[GI} is equivalent to the Reed-Muller (RM) code of order
Mmel=L.

Similar result has been obtained by Charpin for an odd p
{see [5] and ?he references there). She has established that
some generalized Reed-Muller (GRM) codes (introduced in [11])
tun be obtained analogously:

THEOREM 2.2, Let X = GE(p) and let G = CB. Then J*(KIG)) is
i GRM code.

Acturally, Charpin has investigated a more general case and
has proved that the primitive GRM codes are ideals of
GF (p™ILCRl -

Another description of the powers of J(GF(p]!C;]) has been
yiven by Poli [17] who has shown that these are the only linear
todes of GF(pJICE] invariant under the canonical action of the
jgeneral linear group. This is a restation in the language of
group algebras of a result of Delsarte [8] which claims that
uver GF(p) every linear code of length pm invariant under the

yencral affine group is a GRM code.
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The ring theoretic description of the powers of the radical

for an arbitrary finite p-group has been given in the classical

paper of Jemnings [10].

DEFINITION 2,3, [10, 16] The Brauer-Jennings-Zassenhaus M-

series G = M]>M2>...>Mu = (1) of the finite p-group G is defin-

ed by
.M.' tM1 (G) = G, MS =M5{G) = {h_]g‘]hg, hl‘l:'|g£ G’ heMs

It is known [10] that M= {geH g-1€J°} and the factors
MSIMH1 are elementary abelian p-groups. We fix a set

{gsieGis = st = T,...,ks] such that

M s
i o VTR LM R gsks s+

THEOREM 2,4, [10] (i) The vector space JY(KIG)) has a basis

I Hule..~13%si, where Zsat. b,
slasliG T f gt

k

- 5
(ii) Let f(z) = ﬂ(1+zs+zzs+...+z(p ')5) =
24’. f .+bt_1zt-1

1+b,z+b

ferigr . Then dim J* = b +b W

[ =

Landrock and Manz [13] were the first who applied the Jen-
nings results to coding theory giving new simple proofs of The:
rems 2.1 and 2.2 as well as of the formula for the minimum dis
tance of GRM codes over GF(p). By the way, as an immediate con

sequence of Theorems 1.3 and 2.4 one obtains:

COROLLARY 2,5, 1f 3% = (0), J* = (0), then (%! - gt-*

Using the idea of Landrocl and Manz and the results of Jen
nings [10], Drensky and Lakatos (91 have shown that for the de
cription of the radical codes of length pm it suffices to stud
only a special class of ideals of K{C$|. Now, we follow the ex

position of [9].

14

-1°0 Mgy
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. i
DEFINITION 2.6, Let R = KICT] = K Gx, [xBa1 0%, oxta [xpet) )

i i lled a mo-
M x],...,xm];{x§-1,...,x£-13. The ideal C of R is calle

nomial code, if C is generated by a set of "monomials"

b b
(=1 Lo (=1 Mlb=(by, .0 b eB).

The following proposition allows to calculate easily the

minimum distance of monomial codes. Actually, the proof is con-
tained in [1].

b b
1 A g
PROPOSITION 2,7, Let C = ((xy-1) "...(x =1) "|beB). Then

b.
d(C) = min{w(N(x;-1) *|beB} = min{N(b;+1) |beB}.

iti i . Then it
DEFINITION 2,8, Let h],...,hm be positive integers

it ol
g defined a filtration by degree of R:=LICD] by

3!
1 -
R = ROw) OR'(h) O..., where R*(h) = (N(x,-1) *|Zbsh, 2 8).

THEOREM 2,9, Let G be a finite p-group and let {gsi} be the

) : A}
¢lements of Theorem Z.4. Then, as a code, J (K[G]) is equiva

= = = A d
lent to R*(h), where hy=...=h, =1, by ea7 A hyc g F2osne s AR

1
the equivalence is given by the identification of g11,...,g1k1,

1 i S e ven
“31""32k2"“’ respectively with xl""’xk1'xk1+1' , K1+k2'

In particular [1, 5], for hy=...=h = 1 the GRM codes over

GE(p) coincide with R* = R¥(1,...,1),

COROLLARY 2.10, Let G and H be p-groups such that

L
3) = M H) {or all s. Then the codes J (KIG])
MHLG)/M5+1(L) MSLHJ/ (H)

und Ji(Kiﬁl) are equivalent lor & = 1,2,... . Hence for the in-

s4+1

vestigation of Ji[lel} it suffices to know only the factors of

the M-series of G.
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It is easy to see that for P = 2 any monomial code C is a Using this result Wolfmann [ 19] has constructed a class of

subcode of a RM code with the same minimal distance. Fortuna=- duibly even self-dual codes including the binary extended Golay

tely, in the case p > 2 there exist monomial codes with better tide and a (112,56) code (but not equivalent to the code relat-

parameters. For example, there exists a unique maximal monomia #il with the hypothetical projective plane of order 10).

B ' Discr. Math., 56 (1985), no. 2-3 contains a good
code, C; = (m(x;=-1) 1iﬂ[biHJ 2 d), with minimum distance 2 d. PARELY, WIEECE e ( 3 ;

; i f eral papers studying group codes.
For p = 2 and for every & 5 Mm/27 there exists a self-dusll thullection of sev pap

T orted in part by the Science Committee un-
monomial code of length n = 2™ and of minimum dixtance 25’ soft I'he work was supp P Y

i : ct No 876/1988,
of these codes have other interesting properties [9]. See alsolil] "' ‘ontra u /

[12] for some computer experiments.

In [9] another description of the GRM codes over GF(p) is REFERENCES

also obtained, as members of the lower central series of the |, &.D. Berman, On the theory of group codes, Kibernetika, 3

. 1, 31-39 (in Russian).
} £13?7;;r::n, ;emisimple cyclic and abelian codes. II, Kiber-
netika, 3 (1967), no. 3, 21-30 (in Russian). .4
{, S.D. Berman, l.I. Grushko, Code parameters of principal
‘ ideals in the group algebra of a (2,2,...,2)-type group over
a field of characteristic 2, Probl. Pered. Inf., 14 (1978),

wreath product Cp wrich,

3. PRINCIPAL MODULAR CODES

In this section we mention some results and papers on the

principal ideals of the group algebra no. 4, 3-13 (in Russian).

lami de codes binaires abeliens modulaires
3 et = & B p 4, P. Camion, Etude e
ML J[LP] H }[(XT|x1 1>x"'”<xm|xm'1)l- auto-duaux de petites longueurs, Rev. CETHEDEC 79(2) (1979),
3-24. . il
4, P. Charpin, A new description of some polynomial codes:

primitive generalized Reed-Muller codes, Preprint LITP,

First, interesting properties of the pincipal modular codes
have been established by Berman and Grushko [3] and Poli [18].

: : 4 CNR5, Paris, 1985. 5 S
For short lengths, Camion [4] has obtained a class of self dual e Eurth |. Reiner, Representation theory of finite
L - - i ]

binary codes with good parameters. Let p = ? and let YiseeesY

n proups and associative algebras, Wiley-Interscience, New
be elements of J(R) linearly independent modulo JZ(R). Then

yi = 0 and the mapping Xj * ¥;*1 can be extended to an auto-

York, London, 196.. . i
J. I. Damgard and P. Landrock, ldeals and codes in group a

gobras, Math. Inst., Aarhus Univ., Preprant no. Ty
morphism of R. As a consequence of Theorem 1.3 one proves: 1

1980 /87 . \ y A
4. I'. Delsarte, On cyclic codes that are invariant under
LY . +

THEOREM 3,1, (4] Let p = 2 and let yeJ(R)\J%(R). Then th i
. ; e . i sicd general linear group, 1EEL Trans. Info. Theory, 16 (1970,

principal ideal (y) is a self-dual code.
Jul=-Tb4,
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ON CORRECTING DEFECTS OF FIXED MULTIPLICITY

I.1. Dumer

ABSTRACT: We construct asymptotically otpimal
codes, correcting defects of fixed multipli-
city t = const in a block of length n, n + =
and with redundancy r(n,t) ~ log logzn. The
code construction requires o(loggn) opera-
tions and the coding and the decoding have a
complexity of order n.

We consider correction of defects of fixed multiplicity
{ = const in a block of length n, n + =. Transmitting through
the channel with defects (1] the coder knows a set

W= {1 8§ <eai<iy sn} of t defect positions and a binary vector

J
y = {rj1

y = (y1,...,yn) on the output. For an arbitrary matrix (or vec-

,...,yj ) of defect components of the vector
L

tor) H with n columns let us denote by HJ the submatrix consist-
ing of |J| columns with numbers j1,...,jt. For arbitrary m let
us denote ny m' the maximal even number 5 m and by m1 the

least integer 2 m, Further we apply the following well-known.

LEMMA, For arbitrary t integers 1 sj.lc...-cjt sn there exists
A satisfying

1) = [(t(t=-1)1Inn)/2]

8 = Mog,X 1 A
such that all residues j;(mod A) are differemnt, i = i Tl e
The proof is analogous to that of lemma 5 in [2].

For a given set J this A is found by looking through all con-
sequent numbers within the interval [6, A ]. Suppose that
fl =

H(t,A,6) is a parity-check matrix of a binary (shortened)
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BCH-code of length A s 26 with even distance t' +2

1 S
) H=H(t,A8) = |y, ooy

1. i

FEiTULY g

lsJ. The matrix

whgre YqreeesY, are A different elements of GF(2
H(t,A,8) has r = t'6/2 + 1 ~ (t'.lozz logzn)lz rows numbered
with z = [1032{r41J] digital numbers starting from 1.

The information message U contains k(n,t) = n=& - (t-1)k-1

binary digits, i.e. the redundancy

(3) r(n,t) = n-k(n,t) = 6§+ (t-I)k+1I~ log, log,n

is asymptotically optimal. The encoding is performed as follows
In the set P' of the first & digits of a block of length n we
write the binary presentation X of A. The set P" of the next
k(n,t) = k digits is written with the message U. The obtained
message U' = (X, U) of length L = § +k is encoded according to
the described belgw procedure with the linear additive code H

of length L with alganarnting matrix

4) e [ﬂ(t;a,d), H(tyA,8), .00, H(E,2,8), H(E,L',6) ]

consisting of [L/A] copies of the matrix (2) and the matrix
H(t,A",8) of length 0 5 A' < A, A' = L(modA). Let H,,...,H_ be
the rows of H, let Ha be the zero row, and let Jy €J be the
subset of all p S t defect positions within the interval [1, LI,
According to the choice of A all p columns uf.the matrix H “ are

linearly independent. Let us find a subset hi ,...,hi of p li-
1

nearly independent rows with numbers S r in the

7 e
set hl""'hr of the rows of the matrix H' T.

I ey e oy
P

The set P"' of the n-L = 1+ (t-1)z last positions of the

block of length n is used for writing down t numbers of rows

50

s
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Ho and for this purpose it is partitioned into t sequen-
finl subblock Jq,...,J, of length [I5] = |,|J21-...-[Jt| = z.
"' contains t-p defect positions in some m st - p subblocks

1 ""’JL . Let us write down in the defect subblocks arbit-
1 m 3 . ]
firy binary vectors Oy, ...,0p matching with the defect symbols

! J m
It these subblocks, Let us express the vector (U'+y) L, :l hy
! S= s
4% a linear combination of the rows hi1""’hi
P

P
arhio w3 h

(5) u'
4 k 1k k=1

m p
L, y L, L ha = I
s=1 s k=1

Ay
With coefficients akeGF(Z). In the p left defect-free subblocks
ol the set P"' let us write down the binary presentations E;T;
of the numbers a i, k = TS

Let us describe the transmitted vector. On the last n-L po-

sitions it consist of the vector F=( T],...,Ti) of the found

numbers,
Eﬁ, je{l],...,lm}
16) I, = ;
¢ EFESPINE CRG PETRREY R TPETReE M

coinciding with the vector y on the set J J;. On the first L

positions it consists of the vector

5
(7) A=U'+ I H(E)

J
coinciding with the vector y on the set JL' accerding to (5).
The vector F and the submatrix HP' = Htt,&.c) are known to
the decoder which allows, according to (7), to find the vector

o= AP 'i HP'[fj] and to construct the matrices (2) and (4).
J-] \ o

et
—

Then we computs the vectors g = H(fj) of length A and the

J
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t
vegtor G = I H(fj) obtained by repetition of the vector g. At

j=1
L1} L1
last, we compute the information vector U = AP - GP .

VARNA'88 : ACCT
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For constructing the code (4) it is sufficient to construct
the parity-check matrix H(t,X ,8) of a BCH-code of maximal
length A = 25, which requires o(loggn) operations for n + =,

t = const. It is easy to see that the complexity of the encod-
ing and the decoding is determined by (7) and is éf order n. We

have proved the following

STATEMENT. The encoding procedure (4-7) provides correction
of t = const defects on length n + = with asymptotically opti-
mal redundancy (3) and requires o(loggn} operations for the
code construction and a number of operations of order n for the
encoding anu tor the decoding.

Observe that a repeated application of the proposed proce-
dure can provide further decreasing of the remainder part
r(n,t)-t ~ (t-1)log, log, log,n of the redundancy. For this
purpose let us consider the integers j; = ji(mod A) and find the
least X4 providing different residues ji(modR1J. It allows to
use an iteration of matrices H(t,Ay,6;) with &, ~log, log, log,n
instead of H(t,A,6). It is easy to show that the m-fold itera-

tion of j;, 1 = 1,t, gives for the redundancy

m
(8) $(n,8) 85 o, (t-1log, ™Hn + o),

=1
and for the construction complexity of the code 0(10g£m)n)5

where logél]n means the i-fold logarithm, i = T,m+Z.
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A NEW LOOK AT THE VARSHAMOV-GILBERT BOUND

Thomas Ericson and Tommy Pedersen

ABSTRACT: The classical bound by Varshamov
and Cilbert is rederived in a fairly general
forn. The asymptotic form generalizes a re-
cent result by Piret.

1, INTRODUCTION

One of the fundamental results in coding theory is the fa-

mous existence bound discovered independently by Gilbert (1] an

Varshamov [2]. Although the underlying argument is extremely

simple, this bound remained the best known asymptotic result fo1

a very long time, and only fairly recently a certain improvemen
was reported in a celebrated paper by Tsfasman-Vladut-Zink [31.
This result also implied an improvement for constant weight co-
des (Ericson-Zinoviev, [41), but in most cases the original
Varshamov-Gilbert bound still remains the best result known.
The Varshamov-Gilbert bound was recently generalized in a
paper by Piret [5]. We derive here a further generalization

along the same line.

2, THE BOUND

Let X and Y be two arbitrary sets, finite or infinite, and
let d: X XY + & be an arbitrary function from the product space

X xY into the set of real numbers Q. Define
S(x,r) & {yeY: d(x,y) s r}
T(x,r) & (;fix: S(x,r) NS(x',r) = @}.

54

An r-code C from X to Y is a subset in X such that the various
gots S(x,r) corresponding to different elements (codewords) x

In C are disjoint. The code is maximal if

TEES P R Tk, 10 20X,
xe C

The coding problem is to construct as large a set C as possible,
§till maintaining the condition that the sets S{x,r) are dis-
joint. A code C containing the largest possible number of code-
words x is said to be optimal. Any optimal code is maximal, but
the reverse is not true.

Let u be any {inite measure on X. For any code C we have

ETCE, )Y & 6] max pCTOx,r)).
xeX

Thus, for any maximal code we have
cl = pix) 1
| Gl max Pl (X,7))

xtX

This is (a generalized form of) Gilbert's combinatorial argu-
ment.
Somect imes the sets T(x,r) can be difficult to determine. In

order to obtain a more easily calculable bound we define

Uex,x') 2 min {d(x,y) + d(x',y)}
yeY

R(x,r) 4 fxteXs Dty s v}
It is easy to see that
T(x,r) €R(x,2r).

As a corollary we have the following slightly weaker, but often

more useful, bound:
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[he maximization is over all probability distributions Q over

.

max PCR(X,2T
xe X

Notice that in case X = Y and if d is a metric we have
Di(x,x"') = d(x,x').

For the rest of the paper the sets X and Y are assumed to
be finite, and the measure y of a set ACX is taken as its car
dinality: p(A) = |A].

14
3, THE ASYMPTOTIC FORM

J‘
The Varshamov-Gilbert bound is most useful in its asympto=
tic form. Let X"(Y™) denote the n-th fold Cartesian product of
3
X(Y), and define
do¢ i’ e O by :

A n
d, G,y) = iEI dlx;,y5)5

X = (xi,xz,...,xn)lxn
Y. (yl ’Yzo”':)"'nJ'Yn-

The sets S(x,r) and T(x,r) are generalized in the natural way

to sets Sn(x,rjg_‘{n and T (x,r) s:_xn. We also define
n
A |X
Gn(r} T max X, T
xe X®

Ry (p) & ligf:p % logG (np).

THEOREM, Ryg(p) 2 log|X| —3n§{H(VIQJ= I _Q(a)V(a'|a)D(a,a"
’ (a,a'")eX s p}
where
HV|Q) ¢ - I, Qa)V(a'|a)logV(a'h). 1
(a,a")eX
56

X and all conditional distributions V: X » X;

This result generalizes & recent result by Piret [5]. It has

A potential application for deriving existence bounds for conca-

tenated codes [6].
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CELLULAR SUBRINGS UF CARTESIAN PRGDUCTS OF CELLULAR RINGS

I.A. Faradjev, A.V. Ivanoy, M.H. Klin, D.V. Pasetchnik

ABSTRACT: Let V@W be the Cartesian product of
the cellular rings V = &{A;}qcc. 42 and

W= C{Bj}USer—1>' If V and W have the same
intersection numbers then the matrices
{AiaBj+Aj°Bi}OSi,jir-1 form a basis of the

“cellular subring V@W of the ring VeW called

" a symmetrized Cartesian product of the rings
V and W. On the base of an algorithm for enu-
meration of the cellular subrings of a given
cellular ring a method for searching of the
ubrings in V@W was elaborated. This method
is realized for r = 3, and for r = 4 when

Ay, Ay Ay arte incidence matrices of strongly
regular graphs (s.r.g.). New s.r.g. found by
this method are described.

A ring of square matrices of order n having a basis
4= {Ai}oﬁiﬁr-1 is called a cellular ring V = (4 of degree n

and rﬁnk T &E

0) A is {0,1}- matrix, 031isr-1;

=1

105 L Shis where 1 is a matrix consisting of 1's only

i=0
2) A}td, where At is the transposed matriv of Aj

=1 k
3 i s = = Gl WL
) Ay AJ kEu ij Ay

The non-negative integers “?j are called intersection numbers

of the cellular ring V.
We shall consider cellular rings with an identity matrix B

in the basis supposing that A, = k. A cellular rinpg is called

58

VARNA'88 - ACCT

gynmetric (resp. antisymmetric) if AE f &1 (resp. Af "‘1] for
svery 1sisr-1. .

We say that a cellular ring W = (Ei- is a cellular subring
of a cellular ring V = (4} if every eli;*-nt of the basis ¢ is a
yum of some elements from A. The necessary and sufficient com-
ditions for existence of cellular subrings can be formulated
in terms of intersection mammbers (see [[1}).

The cellular rings were investigated in detail in [2], the
connections between the cellular rings and the centralized rings
of psrmutation groups, Hecke algebras, association schemes,
toherent configurations were cnnsidere# in [3]. As it was point-
sd out in the surveys [4], [ 51, [6] a search and an investiga-
tion of cellular subrings of known cellular rings (im particu-
lar, of centralizer rings of parnutltion groups) is a powerful
tool for construction of new combinatorial objects including
strongly regular graphs (s.r.g.) which are the basic elements of
the cellular rings of rank 3. Algoritﬂls for search of cellular
subrings based on the exhaustive examtﬁing of the partitions of
basic elements of cellular ring are presented in [1].

For the cellular rings V = ({Ai}u;isr_1) and W = ({Bj}OSjsq'1}
of degree n and m, respectively, we define a Cartesian (tensor)
product as a cellular ring V@W of degree nm and rank rq with a

basis {AiOBj} 1» Where A®B is the Kronecker product

0sisr-1,05i5q-
of the matrices A and B [2]. The intersection numbers of the
ring V@W can be easily counted by usiﬁ& the insersection numbers
of the rings V and W. The systematical search of cellular subr-
ings in the Cartesian products of cellular rings of small rank

leads to the construction of some new interesting graphs. One

problem of this type was observed for the first time by M.H.
BTl
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I.A. Faradjev [ B] have searched all subrings of the symmet-
rized square V8V (the subring of V@V with a basis
{AiﬁAj+ﬁj Ai}oﬁi,jﬁr-1] of a symmetric cellular ring V of rank
3. The prohlgm was reduced to the search by hand of the intepral
solutions for 29 systems of square equations depending on para-
meters k, £, X, p of the ring V. It turned out that nontrivial
subrings arise only if the basic elements of the initial ring
are s.r.g. of the following (modulo the complement) types: a
union of complete graphs, graphs having the same parameters as
Palev praphs, lattice graphs, graphs of latin and negative latin
squares of even orders.

[.V. Pasetchnik have observed that if V = ({E,A,A'} is an
antisymmetric ring of degree 4n-1 then V@V have a symmetric
subring of rank 3 with a basic element A@A+AYeAt which is a
s.T.g. with parameters
(v, k,2) = ((4n-1)%, (2n-1) (4n-2) ,4n%-4n-3)). In particular, in
this way a s.r.g. with parameters (225,98,43] was constructcd
for the first time.

A.V. Ivanov have elaborated a computer programme for a

search of subrings as for the greater Cartesian degrees as for

initial rings of greater rank. Using this programme he have car-

ried out the search of rank 3 subrings in Cartesian products

of amorphic cellular ring of rank 4. As it was shown in [9] the
intersection numbers of such rings may be expressed by 3 all po-
sitive or all negative integer eigenvalues of the basic matrices.
As a consequence of this investipation a new s.r.g. with inte-
resting properties was found [ 10] . Let V = ‘{L-“s'“z-“a” be an
amorphic cellular ring of degrec el et A= ARG,

Ay = As = LK, 4) (see [9]). Then V& contains a rank 3 subring

[H14

with a basic slement Aflk2+A5!A,Aail{B*Ar]+EB#AI)aAz. which is a
A.r,g. with parameters (256,120,56). This graph is not a rank 3
graph (its automorphism group has two orbits on monedges) but

It satisfies the 5-vertex condition [11]. The subgraphs of this
graph induced respectiwely by all vertices adjacent and nonadja-
tont to some vertex are also non ramk 3 s.r.g. with parameters
(120,56,28) and (135,64,28). They beth satisfy the 4-vertex con-
fition but the latter one even is not vertex-transitive. Graphs
with described properties were not known before (see Question 13
in [4]). An interpretation of A.V. Ivanov's graph with 120 ver-
tices in terms of the graph of the 8-dimensional cube was given
by M.H. Klin. The study of M.H. Klin's interpretation allows to
A.L. Brouwer to include the graphs constructed by A.V. Ivanov

Into infinite series of graphs with simular properties.
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ON THE CODING OF FINGERPRINT IMAGES

Gabor Fazekas

ABSTRACT: In this paper, an encoding method
for digitized fingerprint images is prasented.
This method has been installed in an automa-
tic person identification system'based on
fingerprint recognition.

1, INTRODUCTION

For a long time fingerprints have been considered as eoms of
the reliable ways of identifying individuals. The ancient Egyp-
tians and Chinese were already known to have used them to iden-
tify criminals and to record business transactioms, [ 1] Hundred
years ago F. Galton pointed out that the minutiae of finger-
prints remain unchanged throughout the 1ife of an individual.
[2] Since then, fingerprints have been used as one of the basic
means for the identification of criminals in law enforcement
and for allowing entry of persons into secutity systems. The
need to process large number of prints in a short time enchanc-
ed the role of digital computers. The use of computers in the
fingerprint matching process is highly desirable in many appli-
cations.

Recently we have developed a system for automatic person
identification based on fingerprint recognition which seems to
be well applicable in building security systems. The advantage
of our system is that it includes an inkless input device which
senses and digitizes the fingerprint immediately. The input

device produces a pixel array with 6-bit gray level representa-
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tion. The digit:iud fingerprint image will be processed by a
microcomputer. Ome of the mest important problem during the
proct;sing is the encoding of the input image in such a way
that the code sheuld contain enough information to decide
whether or not the actual fingerprint is exactly the same as a
previously encoded and stored one. In order to get efficient
codes, the encoding method utilizes both global and local fea-
tures of the fingerprints. Global features may be the shape of
ridge lines, the presence or absence of singular areas such as
loops, whorls and arches. The most typical and frequently used
local characteristics are the fingerprint minutise. These are
irregulazities such as ridge endings and joinings, whose types

and locations are unique for every individual.

2, PREPROCESSING

In the system described in this paper, a fingerprint is a
256x256 pixel array where each pixel is represented by a 6-bit
gray level value. The preprocessor includes the operations of
binarization and smoothing. The input image is thresholded
first into a binary image. The threshold is selected by the
help of gray level histograms to make the number of black pixels

equal to the number of white pixels. This process results good

binari images with little computation. A checking routine can be

inserted into the thresholding process for areas with less con-
trast. These areas are excluded during the further processing.
Moreover, in this way, we can measure the quality of the input
image and refuse it without any encoding and matching if too
many areas proved to be bad. This fact can be very useful in
the case of a building security system. The smoothing algorithm

removes "salt-and-pepper" noise, fills small isolated holes in
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the ridges and in the background and bridges small gaps.

3. DIRECTION CODING

The basic idea of direction coding is the following: A fin-
perprint image is divided into subregions (rectangles) of the
same size corresponding to an array system and the predominant
ridge direction in each of the subregions is determined and
represented by one of the basic direction patterns: |,-,/,\.

Ihe resulted direction code matrix or sampling matrix describes
the global features of the fingerprint excellently. Moreover,

It can help the proper positioning of fingerprint images before
matching. Generally, prints taken from the same finger at diffe-
rent instances are likely to differ in orientation and position.
In our system, the input device does not allow any significant
rotation of a finger during sensing. Consequently, the encoding
ind maching procedures have to solve only the problem of tran-
slation. The displacement can be determined by minimizing the
llamming distance introduced between the minors of the same size

of direction code matrices.

4, CODING OF MINUTIAE

The minutiae and their relative locations are so important,
that although each fingerprint pattern has about 100 minutiae,
ns few as 10-12 is cosidered sufficient to identify a pattern.

[ 3] In most existing fingerprint recognition system, the minu-
Liae locations, and possibly the corresponding ridge directionms,
ure recorded relative to an x-y grid that is superimposed on the
print. In our system, we use three intrinsic coordinate systems
cach of them corresponding to a characteristic minor of the di-

rection code matrix. In this way, the effect caused by deforma-
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tion can be reduced.

VARNA'88 ACCT

A BOUNDED-DISTANCE DECODING ALGORITHM FOR THE LEECH
LATTICE, WITH GENERALIZATIONS
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G. David Forney, Jr.

ABSTRACT: An algorithm is given that decodes
the Leech lattice with not much more than
twice the complexity of soft-decision decoding
of the Golay code. The algorithm has the same
effective minimum distance as maximum-1ikeli-
hood decoding, and increases the effective er-
ror coefficient by less than a factor of two.
The algorithm can be recognized as a member of
the class of multi-stage algorithms that are
applicable to hierarchical constructions. It
is readily generalized to decomposable latti-
ces that can be expressed in terms of "code
formulas", and in particular to "Construction
B"™ lattices.

I. INTRODUCTION

For many years it has been suggested that codes based on
dense lattices could be used on high-SNR, bandlimited channels
to achieve substantial coding gains, in principle approaching
thannel capacity. The success of trellis codes for just suchap-
plications and the recognition that essentially all such known
good trellis codes can be constructed as "coset codes" based on
lattice partitions (see [1] and the references therein) has had
the side effect of refocussing attention on lattices and lattice
codes, which are related to trellis codes as block codes are to
convolutional codes. Also, advances in microelectronics have

made it realistic to consider the "decoding" of lattices whose
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structures are quite complex.

VARNA'

The 24-dimensional Leech lattice has become a kind of ben-
chmark for decoding algorithms, because the Leech lattice is
the most prominent lattice in lattice theory [2], because it
has a high degree of structure that makes it amenable to sophis=
ticated decoding algorithms, and because it offers a nominal
coding gain of 6 dB [1]. Conway and Sloane [3] devised a maxi-
mum~1likelihood deccding algorithm requiring approximately
56,000 decoding operations, based on regarding the Leech lattice

12

as the union of 2'“ cosets of a much simpler lattice. Forney [4]

gave an algorithm requiring about 15,000 decoding operations,
using a 256-state trellis diagram to represent the lattice. Thisi
was improved by Longstaff [5] to about 10,000 operations, using
a Wagner-type decoding idea. The Longstaff algorithm has been
embodied in a commercial modem [6], with performance comparable
to that of the best trellis-coded modems [1]. The latest world
récord is held by Be'ery, Shahar, and Snyders [7], who have give
a maximum-likelihood decoding algorithm that involves about
8000 operations, or, in a furher refinement, an average of about
5000 operations (6000 worst case).

In this paper we give a suboptimum "bounded-distance' decod-

ing algorithm that decodes correctly whenever the rececived word

is within the guaranteed error-correction radius of the lattice,

so that it has the same "error exponent" as maximum-likelihood
decoding. The "error coefficient" is shown to increase from
196,500 to 293,712, which implies a performance loss ol only
about 0.1 dB. The decoding complexity is not much more that of
two soft-decision decodings of the Golay code, which, using the
latest algorithms of Be'ery and Snyders [8], is well below zuun‘

operations.
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The deconding algorithm is based on regarding the Leech
lattice as the union of two cosets of the Leech half-lattice,
which is a "decomposable lattice" with a "code formula" [1] of
the "Construction B" [9) type. The algorithm is immediately
extendable to all Construcion B and indeed to all decomposable
lattices. In fact, decomposable lattices are particular examples
of "hierarchical constructions" [10], which are multi-level co-
des on which there has been much recent work (e.g., [10-16]),
and our decoding algorithm can be recognized as a particular
case of the class of "multi-stage" decoding algorithms [11] to

which hierarchical constructions are naturally amenable.

11, DECODING THE LEECH LATTICE

One standard definition [2] for the Leech lattice A,, expres-
scs it as the union of a sublattice H,, and a coset H,,+a of
I, - Here Hy, is a lattice sometimes called the "Leech half-lat-
tice", which may be defined as the set of all integer 24-tuples
with coordinates such that the binary 24-tuple consisting of the
coordinate ones-coefficients in the standard binary representa-
tion is a codeword in the (24,12) binary Golay code, the coor-
dinate twos-coefficients are a codeword in the (24,23) binary
single-parity-check code, and the higher-order coefficients are
arbitrary. In other words [ 1] H,, is a decomposable mod-4 lat-
tice with code formula Hy, = 42%% +2(24,23) + (24,12), where 2%4
is the 24-dimensional integer lattice. The Golay code has mini-
mun Jdistance 8§, and 759 weight-8 codewords. The translation 24-
tuple a may be taken as a = (-3, 123)/2. The minimum squared

distance hetween points in A,, or Hy, in this representation is

S
[ i St |

== .4 has 98,256 lattice points of Euclidean norm 8;

namely (24+23/2)+4 = 1104 points with two coordinates of magni-

bhY
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tude 2 and 22 of magnitude 0, plus 759+128 = 97,152 points with
8 coordinates of magnitude 1 and 16 of zero. A24 has 196,560
points of norm 8, hamely those of H24 plus 24-4096 = 98,304
peints in H,,+a of with one coordinate of magnitude 3/2 and 23
of 1/2.

The Voronoi region IW(OJ of a lattice A is the set of
points that are at least as close to 0 as to any other point
in A; 1.0.,the'Vorbnoi region is essentially the decision re-
gion of a maximum-likelihood decoding algorithm for A, (up to
the ambiguity involved in resolving ties on the boundary).
The packing radius rmin(A}, or error-correction radius, is the
radius of the largest sphere that can be inscribed in Ry (0),
and is equal to d_. (A)/2, where d?

min
distance between points in A. The error coefficient ND{A) is

(A) is the minimum squared

the number of points on the boundary of Ry (0) with norm r2 w,

min
and is equal to the number of points in A of norm diinth) (the
"kissing number" of A). For Hyys diin[H24) = 8, r:in(H24) = 7.
and No(Hp,) = 98,256 (11. For Ay, a2, (A),) = 8, 12, () = 2,
and Ng(A,,) = 196,560 [2].

Let 624 be the "Construction A" [9] lattice consisting of
all integer 24-tuples that are congruent mod 2 to a codeword in
the (24, 12) binary Golay code: i.e., G,4 has the code formula

" 6y, = 22%* 4+ (24,12). Then Hyy is a sublattice of G,,, and in
fact Gz4 is the ugion of H24 and a coset H24+b of H24, where we
may take b » (2,023). H24 is thus the subset of 624 in which the
coordinate twos-coefficient 24-tuple has even parity, and H24+b
is the subset with odd parity.

Any soft-desision decoding algorithm for the Golay code may
be used as a decoding algorithm for Gy4s as follows. Given any
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real 24-tuple r, first find the closest even and odd integers
hjﬂ and kj1 to each coordinate rj of r. The differences in
squared distances, :[(rj-kjﬂ)z - (rj-kj1jzl = t[rj-[kjookj‘JIZI.
may be taken as the "metrics" for 0 and 1, respectively, for
that coordinate in any soft-decision decoding algorithm for the
Golay code. The decoded Golay codeword is then mapped back to
ij or kj1 at the jth coordinate, depending on whether the de-
coded codeword is 0 or 1 in that coordinate. Be'ery and Snyders
[8] have recently given a maximum~likelihood decoding algorithm
for the Golay code that requires only about 700 operations per
Z4-tuple on average (800 worst-case), and this can be used as a
maximum-likelihood decoder for Gz¢; i.e., this algorithm will
find the closest point in G24 to any given real 24-tuple r.

A decoding algorithm for H,, can then be specified as follows.
ALGORITHM 1 (Hp,): Given any real 24-tuple r, representing a
received word, first find the closest point x, in G,, to r. Check
the parity of the coordinate twos-coefficient 24-tuple of Xgi
if it is even, then it is in H,,, so accept it; if it is edd,
then change one coordinate of x, by £2 in the coordinate %50
where such a change will least incresse the squared distance
- i.e., where Irj-xj0| is greatest. (This is the "“Wag-
ner decoding" idea [17-18].) The resulting point xa has even twos-
coefficient parity and is thu; in Hyyge The additional complexity
beyond decoding G,4 merely involves a parity check and possibly
a computation and comparison of 24 magnitudes |rj-xjo|, and this
complexity is negligible.

Algorithm | always maps r into a point in H24' by construc-

ion, but not necessarily the closest point in H24. For example,

he 24-tuple r = (-1. 1?, 016)/2 is at squared distance Z frem

71



ACCT

of points r that Algorithm 1 maps into x. We first note that

VARNA'

both the origin.o, which is in all lattices, and the point
(-1, 17, 0'%), which is in G, but not in H,,. If the G,, deco=

7 glé

der resolves this tie by choosing (-1, 1 ), then the pari
check will fail; but changing one coordinate by 2 cannot re-
sult in the origin 0, which is the closest point in H24. but
must result in some other point in H24 of norm 8 that is at
squared distance 4 from r. However, Algorithm 1 does always map
r into the closest point x in Hyy when r-x is within the eroor-
correction radius of H24’ as we shall now show; i.e., Algorithm '

is a bounded-distance decoding algorithm with the same error

exponent as a maximum-likelihood decoder for Hyye

LEMMA 1, Given a 24-tuple r, if there is a point x in H,y
such- that ”r-x”z < 2, then Algorithm 1 decodes r to Xx.

PROOF, Let the decision region R1(x] be defined as the set

R.'(xl = R,(0) +x; i.e., the decision region R.' (x) is just the
translation of the set of points R,(0) that map to the origin
0 by x, as can be verified by supposing that r-x is the input
24-tuple to Algorithm 1, and using the fact that the translate
of any lattice point by x is a lattice point. Therefore, without
loss of generality, we may let x = 0, i.e,, we may suppose that
||rf|z < 2. Then, since the first step finds the closest point

xo in 824, X, must either be 0 or a point Xy in 624 of norm
||x0|[z < 8. The only points in G,, with norm less than 8 are 0
and the points with a single nonzero coordinate of magnitude 2.
But if X is any of the latter points, then parity will fail, I
and 0 will be one of the candidates for the modified point xé. In

fact, 0 must then be chosen, because any other candidate points

in H24 and therefore has norm at least 8, so cannot be closer
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o r than 0. Hence R,(0) contains all points r with ﬂrﬂz <%

QuD.

The number of points on the boundary of the decision region
M, (0) of Algorithm 1 with nom ||r||2 = 2 is its effective error
toefficient Ny egf® Lemma 2 shows that Algorithm 1 approxima-
»

toly doubles the effective error coefficient of H24‘

LEMMA 2, The effective error coefficient of Algorithm 1 is

Nﬂ,eff - 98,256 + 97.152 - 195.405.

PROOF, In addition to the 98,256 points in Hyy of norm 8, .
there are 759-128 = 97,152 points of norm 8 with 8 coordinates
of magnitude 1 and 16 of 0 that are in G,, but not in H,, (those .
with odd twos-coefficient parity), and if the G24 decoder deco-
des r to any of these points in the first step of Algorithm 1,
the second step cannot yield 16 = 0, QED.

To decode the Leech lattice Azys we may simply apply Algo-
rithm 1 twice to the two cosets of H24 of which hz‘ is the uniom.
ALGORITHM 2 (A24): Given any real 24-tuple r, apply Algorithm 1
to r to find a point Xg in H24; also, apply Algorithm 1 to r-a
to find a point X4 in Hyy whose translate X ta is in the coset
ll,4+a. Compute the squared distances Ilr-x0||2.and ||r-(x1+a)[tz,
and choose x, or x,+a according to which distance is smaller.

The complexity of Algorithm Z is not much more than twice that

of Algorithm 1, since the complexity of the translations of r

ond x; by a and the computation and comparison of the two squar-;
od distances is small compared to the complexity of Golay decod=
ing.

We now show that Algorithm 2 is a bounded-distance decoding
ilgorithm that achieves the error-correction radius of Ay and

ncreases the effective error coefficient by a factor of only

Eal
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about 1.5. Thus the effective signal-to-noise ratio required by
Algorithm 2 is only about 0.1 dB worse than that of maximum-
likulihood decoding, if the noise is gaussian and the desired

error rate is of the order of 10°° [1].

THEOREM 1, Given a 24-tuple r, if there is a point Xx in
A,, such that ||r-x||2 <2, then Algorithm 2 decodes r to x.

PROOF., If x is in H24, then by Lemma 1 Algorithm 1 applied
to r yields x; if x is in H24+a, then x-a is in H24’ so by Lem-
ma 1 Algorithm 1 applied r-a yields x-a. Since d:in(ﬂz4) =8,
there can be only one point x in A,, such that llr-x]|2 < 2, so"
that if either of the two trial decodings finds such a point,

it must be chosen as the closest point, QED.
THEOREM 2, The effective error coefficient of Algorithm 2

is Ny ogg = 196,560 + 97,152 = 295,712,

PROOF, The effective error coefficient is the number of
points on the boundary of the decision region Ry (0) of norm 2,

which is the same as the number of points x in G,, or G,,+a of

norm 8 that are in A,, or cannot be modified to 0 by a change o

+2 in one coordinate. This includes the 196,560 points in Aoy

of norm 8, and also the 97,152 points of norm 8 that are in (.,

but not Hoy that were mentioned in the proof of Lemma 2. Any
point in Gz4+8 = 624 +(1/2)24 can be modified to a point in
Hz4+s by a change of +2 in the first coordinate, so that there

are no further points of this type, QED.

IIT, GENERALIZATION: CONSTRUCTION B LATTICES

A "Construction B lattice" [9] may be defined as a decompo-
sable mod-4 binary lattice nc with code formula A o= azd .
2(N,N-1) + C, where N is the dimension of the lattice, 42N
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|y the lattice of all integer N-tuples whose coordinates are
multiples of 4, (N,N-1) is the binary single-parity-check code
uf length N, and C is a binary block code of length N with mini=
fun Hamming distance dy = 8. Any such lattice has diintﬂc) = 8.
Ihe Leech half-lattice H24 is a Construction B lattice, with C
leing the Golay code. Algorithm 1 generalizes immediately to

any Construction B lattice. Examples are:

1. The 16-dimensional Bames-Wall lattice Alﬁ may be defined
is a Construction B lattice, with C being the (16,5) first-order
Keed-Muller code ([1], [2], [9]). The corresponding modification
of Algorithm 1 involves a single decoding of the (16,5) code,
which has an B-state trellis diagram and a decoding algorithm
that requires 63 operations, which compares to a maximum-likeli=
livod decoding algrothm for Aig (which has a 16-state trellis
llagram) that requires 511 operations [5]. The effective error
toefficient increases from 4320 to 8160, a factor of about 1.9.

2. The 32-dimensional Barnes-Wall lattice ABZ may be defi-
ned as the union of two cosets of a Construction B lattice HSZ'
With C being the (32,16) second-order Reed-Muller code ({11, [2]1).
A modification of Algorithm 2 yields a decoding algorithm very
similar to that for Ayys which achieves the error-correction
radius riinchsz) = 2 and has an effective error coefficient of
Nﬂ,eff = 226,240} again, No,eff L NO’ where NO (ASZJ = 146,880

3. In general, if A, is a Construction B lattice and Ng is
the number of codewords of Hamming weight 8 in C, then the effec®
tive error coefficient is ND[ACJ = ZN(N-1) + 27NB with a maximum=
like-lihood decoder for Acs and Nn,eff = 2ZN(N-1) + ZENB with a
hounded-distance decoder similar to Algorithm 1. Here 2ZN(N-1)
|5 the number of norm-8 integer N-tuples with two magnitude-2

toordinates, all of which are in A, ZBNB is the number of norm-8
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points that are congruent mod 2 to a codeword in C, and 27N8 is
the number of such points that are in AC. Thus No(nc) < Nﬂ,eff <
ZNOGACJ-

IV, GENERALIZATION: LATTICES BASED ON HIERARCHICAL
CONSTRUCTIONS USING BINARY CODES

More generally, a decomposable binary lattice A with a code

formula A = 98 5 9% -+++C, is defined by a sequence of

q-1"

binary (N, Kk} codes Ck with Hamming distances d,, 0sksqg-1,

x?
where the codes Ck'are nested and satisfy certain other condi-
tions (some of which are discussed in [1]). This means that x is
in A if and only if it is an integer N-tuple whose st-coeffi-
cient N-tuple is a codeword in Cy for each k, 0sksq-1. We shall
say that a point x in A is at level k if its 7¥! s-coefficient

N-tuples are all-zero for k' <k, but nonzero for k' =k. A level

k-point thus has norm at least Zdek for k<q and 744 otherwise,

2

with equality holding for certain points; consequently dmin(ﬂ)=
linlzzq, 22(q-1}dq_1,....dol. Alternatively, we may say that Cq
is the universe (N,N) code, with d_ = 1; then a2, ) =

‘inD$k$q[22kdk]' (This is an instance of the general theory of

hierarchical constructions; see, e.g., [10-16].) Construction A

lattices represent the special case where q = 1, and Construc-
tion B lattices represent the special case where q = 2 and

d1.- 2, d0 = B. The following algorithm then generalizes Algo-
rithm 1, and the accompanying theorems give the effective riin

and ND,eff'
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ALGORITHM 3: Given any N-tuple r,

ACCT

{1) decode r into the closest point Xy in the lattice 22"*:.;
then replace r by Ty = (r=x4)/2;

(1) decode r, into the closest point x; in the lattice Zzuoet;
then replace I, by T, = (ry=x,)/2;

(q) decode rq_1 into the closest point xq_1 in the lattice
q-1° q-

(q+1) find the closest integer N-tuple xq to rq (the closest

in the lattice zz"+cq - 22N e NNy = 2N,

N 3
227+C then replace v _, by T " (rq_l-xq_IJIZ.

oint x L/
P q

Then the decoded lattice point is x = x, +2x1+...+2q'lxq_1 thxq-

THEOREM 3, Given an N-tuple r, if there is a point x im A

Z.(A)/4, then Algorithm 3 decodes T to x.

puch that Hr-x"z <d
PROOF, Again, if p is a lattice and Algorithm 3 decodes .

to x, and x' is any point in A, then Algorithm 3 decodes rex' to

x+x'; so the decision region Ryx) is R3[03+x, and it will suf-

fice to prove that if ||r“2‘t diin[ﬁ)/4, then r is in Ry(0).

Let us say that there is an error at step k if Xp.1 * 0,

| sksq+l. Assume that there have been no errors at step k' for

k' <k. Then at step k, r,_, = 2-(k'1)r, and ||rk_1|]2 -

.!'2“"”“1“z < Z'deiintlj § dy_,/4. Consequently r, , is wit-

hin the error-correction radius r:in = dk_1/4 of the Construc-

tion A lattice zqu.ck_i, and no error can occur at step k, QED.

THEOREM 4, The effective error coefficient of Algorithm 3 is
No efs ™ xk‘stzdk, where S is the set of indices k such that
Z

Jdkd =d . (A), and Nk is the number of codewords in Ck of

k
weight dk'

PrROOF, The effective error coefficient is the number of
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points on the béundary of the decision region R;(0) of norm
diinclll" If keS, then there are Nkde level-k points x of
norm ‘iin(A) in A, corresponding to all possible Ny weight-d,
codewaords with all de possible sign combinations; for each
such point x/2 is a point midway between x and 0 with nornm

mln(ﬂ)/d, and these are all of the boundary points of R (ﬂ)
with this norm, QED.
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CONYOLUTIONAL CODES OVER LARGE ALPHABETS

E.M. Gabidulin

ABSTRACT; Methods of construction of MDS
convolutional codes are presented for arbit-
rary permissible rates. The code distance
spectrum is also determined.

PFer the first :1u§'HDS convolutional codes were hascribed

in [ 1] for a rate R = 1/2 only and for an alphabet volume

q s 13, It was pointed ibid. that general methods of design of

MDS comvolutional codes are unknown.

Ne construct MDS convolutional codes for arbitrary rates

R = k.lno. Our approach allows also to find the weight spectrum

- of the codes by a recurrent procedure.

A general MDS convolutional code of rate R = koln0 is defi-

ned as fo_].lols..v,‘;.et
I= (10, 11. iz,- -'a)

be a semi-indefinite in‘~rmation sequence of ko-tuples. Let

Gy G Gl g AT

o S n
0 et daiiaky EaiNe, PR

(A M- DT VR <ol U

I R I S S R

1) G =

be a generating matrix of the time-invariant systematic convo-
lutienal code, where Gy = (E By), Gy = (0 2;), E is the identity

matrix of order kg3 Pj, j=0,1,...,m, are non-zero kyx(ng - kOJ.

matrices; O's are zero matrices. Then let

FAC I i L [gon!1:l23-v-]
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be the corresponding code sequence of n,-tuples, where
8j = iJ.G0 + 1j-l Gyt vos e 11_. Gn'
The code constraint length is equal to n, = (m+1)nﬁ. The coile
C = {g} is defined to be an MDS convolutional code, if for
= 00 el
(2) d_ = min [g08)| = (s+1)(nyk,) + 1,
s : QE =0
i,#0
0
l.e. the Singleton-Plotkin bound is reached for any shortened

tode. Therefore

d = de =i

fron. " YT Saet 0 nen T 1) (ngnke)) 8 1,

llere

(3) R TR
Gyldyenle,

e s S s G R R 7 R (6

DR R I N

0 0 ... G

g = 05T . byl

is a shortened code sequence.
MDS convolutional codes have an optimal distance profile
(dg,dysensde
What conditions for the matrix G(m} have to hold for the
equations of (2Z) to be true? Reordering the columns of this
matrix we obtain
B0 s D PU P

E(m] | L e TR R
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Po PT adl Pﬂ
) Q(!l] ¥ 2 PU T Pll-1
AR S Pn

be an upper block-traingular matrix associated with the code.

Consider a square submatrix of order B TR s g

nin{kon, (nu-kejm}. Such a submatrix can contain a rectangular

zero ixk-matrix (¢ + k = j + 1) and in this case this submatri

is evidently singular. If any submatrix not containing the

above-mentioned zero matrix is nonsingular, the matrix Q(m) if

defined to b strongly nonsingular.

THEOREM 1, A convolutional code is an MDS code iff the
associated matrix Q(m} is strongly nonsingular.

(Evident.)

THEOREM 2, If,Q(m} is associated with an MDS code of rate

R = kulnn then the matrix

g0 0 R
Py P1 ‘e Pm
o T T
(5) QLn] A o
T
L el "PU

is associated with an MDS code of rate R = (nowkﬂ)/nﬂ. (The
E](“'}

matrix is strangly nonsingular.)

THEOREM 3, If Q(m) is strongly nonsingular, then the mat-
rix obtained by deleting any block row or any block column is
also strongly nonsingular.

(Evident.)

VARNA'88 ACCT

The multiple use of Theorems 2 and 3 allows to construct

todes of all permissible rates.

EXAMPLE, Let R = kq/n, and let Q{m) be an associated matg@ix.
leleting all odd block rows we obtain a matrix associazted with
an MDS code of rate R = kn{(Zna—ko) = R/(2-R).

In general, if one can construct an MDS code of the rate
L = 1/2 then one can construct an MDS code ¢f an arbitrary rate
o= kofna.

For R = 1/2 the matrix Q(“} is an ordinary upper triangular
matrix (not a block matrix) and p; are simply elements of
GF(q). The problem of construction of a strongly nonsingular
matrix is a MacWilliams-Sloane problem for triangular matric;s
with nonsingular submatrices. Thés.problem is solved completely
in[2]: If ¢ is a primitive element of GF(q), then the matrix
Q(m] with elements P (= uq‘j—z}'1, 5 W =g N,
is strongly nonsingular. It gives us the possibility to con-
struct MDS convolutional codes of rate R = 1/2 for all code
constraint lengths n, S 2(q-2) (where q is a prime power), and
consequently of arbitrary rates.

For the MDS convokutional codes we can compute the weight
spectrum of the code recursively. We consider omly codes with
parameters: rate R = 1/2, code constraint length n, = 2(m+1),
free distance dfree = 2(m*1) *# 1; m 5 q-3. Let BitnA) = Bi(2n+2)
be the number of code words of weight i on the code constraint
length such that i, # 0 (these numbers form the weight spectrum
of the code). Let Ai[2m+2} be the number of words of weight i
for the block code with a generating matrix G(m:| and such that

iy # 0. Then

(6) B,

: ) = A, (2m+2) - A;(2m).
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For computing the numbers A;, one can obtain the following

equations using the MacWilliams formula and some manipulations:

An(2m42) = 1

Ai(2m+2) = Og & om 1,2 00w+l s

Y j PRI
&) Apguy Omed) = £ (132 I 2 HJupesmen,
b s A s M5
k - m+1 5
1-k (Zm+2-i Zm-1i
Uy (me1) = ™" I T S B ) [ JA,(Em]
k l teol k-1 } i P LU 5 i it
kom0 s
The initial conditions are ﬁa[zi = L AI(E] =0, AE[Z) = g=1;
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CODES WITH PARAMETERS (p2,p%-p,p), D = 4,5, OVER FIELDS
NITH A PRIMITIVE p-Tu ROOT OF UNITY

ACCT

I.I. Grushko

ABSTRAET: The code parameters of ideals in
the group algebra of a finite abelian group
of type (p,p) over a field with a primitive
p-th root of unity are analized. The seldom
sequence of good codes with parameters
[pz,pz-d,d], d = 4,5, is presented.

The problem of building nonbinary linear codes with small
d = 3,4,5 and optimal redundancy (for fixed d and growing block
length) has been considered in many publications, but is not yet
solved completely. See [ 1] for resent results and references.
This paper is devoted to the same problem.

By the definition given in [2] an abelian code is an ideal
in the group algebra KG of a finite abelian group G over a fi-
nite field K. We are interested in the case, when G = (a) x(b),

ul = pP = 1, and K contains a primitive p-th root of unity.

LEMMA [3]. There exists a unique nontrivial cyclis subgroup
0l G, such that any two idempotents of the algebra KG induce the
same character on it.

Any ideal I, €KG is determined by the set A of idempotents
of KG which satisfy the condition ue = 0 for every uel, and every
beA. A subgroup related to a pair of idempotents from A is cal-

led a subgroup associated with A.

THEOREM, If char K is a primitive root modulo p, then I, is
i sz.Pz‘d,d]-code for d = 4,5 iff all subgroups associated with

A are distinct.
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A SURVEY OF RECENT WORKS WITH RESPECT TO A CHARACTERIZATION
OF AN (N,K.D;Q)-CODE MEETING THE GRIESMER BOUND USING A
MIN-HYPER IN A FINITE PROJECTIVE GEOMETRY

Noboru Hamada and Michel Deza

1, INTRODUCTEON

Let F be a set of f points in a finite projective geometry
PG(t,q) of dimension t where t 2 2, £ 2 1 and let q be a prime
power. If (a) |FNH| 2 m for any hyperplane H in PG(t,q) and
(b) |[ENH| = m for some hyperplane H in PG(t,q), them F is said
to be an {f,m;t,q}-min-hyper (or an {f,m;t,q}-minihyper) where
mz 0 and |A| denotes the mumber of points in the set A. The con-
cept of a min-hyper (called a minihyper) has been introduced by
Hamada and Tamari [23), In the special case t = 2, an {f,m;2,q}-
min-hyper F is called an m-blocking set if F contains no 1-flat
in PG(2,q).

Let E(t,q) be the set of all ordered sets (‘0'°1"""t-1)

of integers €_ such that 0 5 €, §9-1 (a = 0,1,.v.,t=1) and

o
{:1,52,...et_13 # (0,0,...,0). Let U(t,q) be the set of all or-
dered sets [s,ul,uz,...,uh) of integers €, h and My such that

0 <esg-1,18h3s (t=1){g-1), 1 SHySuyS.uosyy 8 t-1 and

0 £n,(W) $q-1for £ =1,2,...,t-1 where n;(EJ denotes the num-
ber of integers Wy in p = (u1.u2,...,uh) such that My = & for
the given integer «. Note that there is a one-to-one correspon-

dence between the set E(t,q) and the set U(t,q) as follows:

(1.1)  e=¢p, n,(p) = Eps Np(R) = €pyenepny (@) = gy
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where y = (u1,u2,...,th and I By = h. For example, (2,4,0,2)
a=1

in E(4,5) corresponds to (2,1,1,1,1,3,3) in U(4,5). In what

follows, we shall use an ordered set in either E(t,q) or U(t,q)

as occasions demands.

ot k-2 4 TR
d = qk 8 I e qu (or d = qk LT (e T g l] there is a
a=0 u i=1 Y

one-to-one correspondence between the set of all (n,k,d;q)-codes

meeting the Griesmer bound (cf. References [11, 30, 32]) and

: ST k-2 k-2 \

the sét of all {ﬁED €aVas1? e£1 eava;k-lnq}-min-hypers (or the
h h

set of all {121 v”i*‘ + €, iE1 vni;t,q}-min-hypers, resp.) if

we introduce an equivalence relation between two (n.k.d;qJ—co&ef
as Definition 2.1 in Hamada [17] where [E°'£1""’Sk-z) E(k-1,4)
(€4bqaMgseve,bp)eU(k=1,q) and Vi = (q£-1)/(q-l) for any integer

£ 2 0. Hence in order to obtain a necessary and sufficient condi

tion for integers k, d and q that there exists an (n,k,d;q)-code

meeting the Griesmer bound in the case 1 s d s qk"1 - q and to

characterize all (n,k,d;q)-codes meeting the Griesmer bound in
the case 1 s d s qk“1

ing problem with réspact to a min-hyper. The purpose of this
paper is to survey recent works with respect to the following

problem.

PROBLEM A. (1) Find a necessary and sufficient condition for

an ordered set (50'51""'Bt—1j in E(t,q) (or an or?ered set
t=-
(esbqsHgyeveyby) in U(t,q)) that there exists a {uiu € ¥ aigr
t-1 h h
b S - v,it,ql-min-hyper (or a { £ v i M

a=1 ® i=1 Myt i

hyper).

v, ;t,q}-min-

88
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t=1 t-1

(2) Characterize all {afo EVoel? u£1 cuvm;t,q}-min-hypers
h h
for all { & Vst T Es 21 vy ;t,q}-min-hypers) in the case
i=1 i i= i

where there exist such min-hypers.

2, CONSTRUCTION OF SEVERAL MIN-HYPERS
Let F be a set of €p 0-flats, €4 I-flats,...,at_1 (t-1)-

Ilats mutually disjoint in PG(t,q); (eg,eq,+..,€, ;)EE(t,q). Then

t-1 t-1
= n i
|F| = aiﬂ G e |EMH| 2 afl eV, for any hyperplane H in
Ii(t,q) and the equality holds for some hyperplane H in PG(t,q).
t=1 t—1
llence F is a {u£0 € Vs u£1 € Vyits,ql-min-hyper.

Let F be a set of € points, a u1-flat, a uz-flat,...,a My =

{lat in PG(t,q) which are mutually disjoint where [aﬁﬁ.uz,n.,ﬁg:

h h

Uit,q). Then' E is a ( I Vi ay ok e I v“.;t,q}'min-hyper.
i=1 i i=1 i

llence we have the following

THEOREM 2.1, Let Jp(egseq,seers€y q3t,q) = ¢ and

ITU(E,H1,HI.--
in E(t,q) and [e,u1,u2,...,uh) in U(t,q), respectively, where

.,uh;t,q} e ¢ for given ordered sets (50,=1,...,:t_‘]

,fE[£0'51'°"’Et-l;t’q) denotes a family of all unions of €g.
O-flats, e; 1-flats,...,e. ¢ (t-1)-flats in PG(t,q) which are
mutually disjoint and(}u(e,u1,uz,...,uh;t,q) denotes a family of
ull unions of € points, a ui-flat, a uz-flat,..., a uhpflat in

PG(t,q) which are mutually disjoint.

(1) If Fej%(eo,t1,...,et_1;t,q), then F is a

t-1 £-1
luEU € Va1 ail suva;t,q}—mln-hyper.
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(2) 1f thﬁ(e.u1.Uz.-...uhit.QJ; then F is a (VWS)N'B = ¢ and ANB = ¢ where either (a) £ =0, 2 5 6 5 t-1,

R h L 20, Ez0andig +E<qor (b)1s2s (t-2)(q-1),
L5 v R ;t,q)-min- :
% Vg {1 v"i »q}-min-hyper 25057, 520, £20,5+E<qand (0,m,my,...,7,)eU(t,q).

Note that Jh(ﬁ,nl,wz,...,wl;t,q) = $ in the case £ = 0 and A = ¢

REMARK 2,1, If there exists a relation between a set
in the case £ = 0, The following theorem due to Hamada [17] gi-

(zD,EI,...Et_1J in E(t,q) and a set (c,u1,u2,...,uh) in U(t,q)

as (HT} thenJ'E(Eﬁ:Ela"-sﬁt_";ttq) ‘J‘U(G-Hpuzu---.uh;t-q}-
- REMARK 2,2, It is known (cf. Hamada and Tamari [25] for

ves another method of construction of a min-hyper.

THEOREM 2,2, Let 7L(8,e;t,q) = ¢ and WU(8,L5E,m , 7,00, Wy;

example) that (1) in the case h-!,cj"u(g,u.l;:,q) =¢ for any (e,uy) in t,q) = ¢ for given integers.
8-1
(1) If Fell(0,e;t,q), then F is a { T (a-1)v 4 * &,

U(t,q) and (2) in the case hQZ.}'U(e.LH sbgyeeesbyit,@ = ¢ if and only
a=1

if Hp_q * by 8 t-1. 91
L (q-1)vu;t,q}min—hyper.

PROBLEM B, Find a necessary and sufficient condition for an | Y
ordered set (50’51""’Et-1) in E(t,q) (or an ordered set

(£,ug0Hgsee by in UCE,q) that the converse of (1) (or (2)) ind (2) If Fell(8,238,71,Mp,- 44, Ty3t,q), then F is a

Theore .1 hel T . 8-1 ) 8=-1 1) ]
m 2.1 helds, i.e., Fe E(EG’ET""’Et-I’t’qJ for any 0. E [q-1)fa*1 TR Vi, W tkes s~ (q-1)\rd + I Ve st,q)-mins
t-1 t=1 ! a=1 i=1 i a=1 i=1 i
(I ev,,1o L €v ;t,q)-min-hyper F (or Fed (£ b, 0qye e il hyper,
DR T I jh IR Thi Helleseth [26] characterized all (n,k,d;q)-codes meeting the
g h Griesmer bound for the case k 2 3, q =2 and 1 §d s 25!, In

g

t,q) for any { I v
i=]

o W jt,ul-min-hyper F, resp.).
i=1 i i terms of a min-hyper, the results of Helleseth can be expressed

Let V be a -flat in PG(t,q) where 2 € 8 € t. A set S of m as follows.

points iv V is said to be an m-arc in V if no 6 + | points in & THEOREM 2.3, Let (E'“1’”2""’“h] be an ordered set in U(t,2)

are linearly dependent where m 2 6+1. In the special case @ = t. h h

S is said to be an m-arc in PG(t,q). For convenience sake, a set i 151 vui*1 Sy 151 ¥ i e h 21 g

S of 6 points in the 6-flat V is said to be a 6-arc in V il 6 any. tngeger &' & 0.

points in S are linearly independent. Letall(g, B tuu) welote a (1) In the case h=1, F is a {vu1’1+ € vul;t,Z}-ninehyper if and

family of all sets V\S of a @-flat V in PG(t 5 £ ) =i i
Y in PG(t,q) and a (g+b-¢) only if szU(s,m;t.Z).
5 in V where 2 s 6 < t and 0 S e < q.
(2) In the case h 2 2, p + ), St=1 and ( He) = (1,2), F is
W 7H(°’C'E”H'"Z"'“ Tgit,q) denote a family of all sets ¥ 2h=1) " h HyvHa 2eds
an {f,m;t,2}-min-hyper if and only if Pe oAl 3
{VASJUAUB of a set VNS in UL(8,%5t,q), a set A of £ points in R R y if Fegylesuqabpyeeniys
.1 | e
PG(t,q) and a set B in ;h(ﬁ,nz,nz,..,,“g;t.qJ such that VNA = ¢,

91
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(3) In the case h 2 2, Hpoq + 4y 2 t-1 and [u1,u2) = (1,2),
there is no {f,m;t,2}-min-hyper.

(4) In the case t 2 3, ("I'“Z""’“h} = (1,2,...,h) and
t/2 < h s t-1 (d.e., Hp-q * by > t=1), F is an {f,mjt,2]}-
min-hyper if and only if Fe B (h+1,e;t,2) where B (h+1,0;t,2)
= W(h+1,0;t,2) and B (h+1,1;t,2) = X (h+1,1;t,2)U
M(m+1,0;1;t,2).

(5) In the case t 2 4, (”1'u2""’”h} = (1,2,.+..3h) and
23 hst/2 (B.e) Upy + up S t-1), F is an {£,m;t,2}- min-
hyper if and only if either Fe}h(z,1,2,...,h;t,2) of
Fefith+1,e;t,2) or Fe Bi(&,556,2,2+41,...,h;t,2) for some inte-
ger &L in {2,3,...,h} and some nonnegative integers ¢ and §
such that ¢+t = g,

(6) In the case h z @, (ul,uz,...,ue_l) = (1,2,.5.6-1), Mg > g

and -9 * My = t-1 for some inteper 8 » 3, F is an {f,m;t,2}8

min-hyper if and only if either Fﬂ?U{E’UI'HZ""'uh;t'z) or
FEMKE,;;E,ui,u£+1,...,uh;t,zj for some integer & in
{2,3,...,8} and some nonnegative integers ¢ and £ such that
L+E = €.

(7) In the case h 2 8, {”}’”2""’”8-1J = (e 3 8=11), By > 8
and Hh-q * My > t-1 for some integer & 2 3, there is no

tf,m;t,2}-min-hyper.

REMARK 2.3, Theorem 2.3 shows that in the case q = 2, there
is no {f,m;t,2}-min-hyper except for tf,m;t,2}-min-hypers given
by Theorems 2.1 and 2.2 where f and m are integers given in

Theorem 2.3.

VARNA'88

3. CHARACTERIZATION OF CERTAIN MIN-HYPERS
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In what follows, we shall survey recent works with Tespect

h h

lo a characterization of a{ I v +1 * &, L v, ;t,ql-min-hyper
i=1 M4 i=1 M3

where t 2 2, q 2 3 and (a,u],uz,...,uh)autt,q].

THEOREM 3,1, (Tamari [35]) Let ¢ and u be any integers such
that €e{0,1} and 1 s y < t. Then F is a {vu+l +€, v, it,q}-min-
hyper if and only if Fl}h(s,u;t,g).

THEOREM 3,2, (Hamada and Deza [22]) Let ¢ and 4 be any inte-
jers such that 0 s € s q-1 and 1 s p < t.
(1) In the case 0 S € < vg, F is a {\.'m.I te, v it,a}-min-
hyper if and only if Fe u(s,u;t,u).

{2) In the case € 2 /q and q = er for a prime p and a posi-
tive integer r, there exists at least one {\.r‘“_l +E,

vu;t,q}wmin—hyper F such that F(jh(a,u;t.q).

REMARK 3,1, Let F be a square-root subplane (called a Baer
subplane) in PG(2,q) where q = p2r (cf. p. 81 in Hughes and Piper
[29]). Then |F| = q+vYq+1, 1 < |ENH| § /g + 1 for any 1-flat
Il in PG(2,q) and |FNH| = 1 for some 1-flat H in PG(2,q). Hence
I'is a {v, + /q,1;2,q}-min-hyper which contains no 1-flat in
PG(2,q) .

THEOREM 3,3, (Hamada [12]) Let (t.u1.u2,---.uh3 be any order-
ed set in U(t,q) such that ee{0,1}, 2 s h < t
lir.J1 <u2<...<uh<t.
h
(1) In the case Hp.y * Hp s t=1, F is a {121 vu.+ £,
= i

h

I it,ql-min-hyper if and only if
i=1 i

B (e s dss SHpsT,4) .
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(2) In the case Bp-q *Hy 2 t, there is no {i£1 v“i +E,
h
I v ;t,q}l-min-hyper F.
a1 M

"" In what follows, ci"_r(r:,l.l.[,j.lz,...,nh;t,o:[jl will be denoted by
ﬁlt,lz,...,ln;t,q) where n = h + g, Ay = U3 =1 52a0 a5 E) and
l“j = “j fen 1 20sa50)

COROLLARY 3,1, Let « and 8 be any integers such that
05 a<pc<t.

(1) In the case t 2 a+B+1, F is a Woe1 * Vaoro vy tVgit,als
min-hyper if and only if Fej[u,s;t.q).
(2) In the case t 5 a+B, there is no {vun * Ve ,vawa;t,q}-:
min-hyper F.

COROLLARY 3.2, Let o, B and y be any integers such that
0sasf<y«t,

(1) In the case t 2 B+y+1, F is a {Vuﬂ *Va41 +v“1,va+vs+

+ v,r;t,q}—ain.-hyper if and only if Fej’(a,s,v;t,qj.
(2).4#a the case t s B+y, there is no {\'a+1 Vo, ¥V

Vg t¥g* \'T;t,q -min-hyper. _

The: following proposition due to Hamada [17] plays an impor-

tant role in solving Problems A and B.

PROPOSITION 3,1, (Hamada [17]) Let (0,&1,12,...,2\]1] be an
ordsred set in U(t,q) such that h 2 2 and Mpet +A, $ t-1 and let

Lbes positive integer such that Ap t RS t-1. If F*ej‘(11,lz,..._
h i

St h

L.i,at,qé for any { I Yy Ay L E ) ;t,q}-min-hyper F*, then (1)
i=1 i i=T i :

in the case 1 s ¢ < (=2, =272, Fej‘(x1+z,;l\2+£,...,Ahhﬂ.;t,q)

h

h
for any { I vli”“"" .xT \rl._m;t,q}—min-hyper F
i= i

i

94
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and (2) in the case & 2 (t-2Xy 4 - xh]/z, there is no
h h

I v
i=1

ACCT

Afl‘.;t,q]-nin-hype'r F.
COROLLARY 3,3, If F*%}(1,1;t,q) for any {2v,,2v,;t,q}-min-

hyper F*, then (1) in the case t z 2u+1 2 5, FeP(u,u;t,q) for

any {Zvuﬂ.Zvu;t.Q}—nin-hypar F and (2) in the case 3s|+1sts2y,

there is no {2v ,2v_it,q}=-min-hyper F.
H+127Tp

COROLLARY 3.4, If F*-J’(1,1,1;t.q) for any {lvz.3v1;t.q}-lin-,
hyper F*, then (1) in the case t 2 2u+l 2 5, ch"(u,u.u;t,q) for
any {3vu”,3vu;t,q]-—lin'hyper F and (2) in the case 3swists2y,

there is no {3v 3vu;t,q}-min-hyper F where q 2 4.

u+l1?
COROLLARY 3,5, Let y be an integer such that 2 s y < t. If
I-"ej‘(I.l,v;t,q} for anylv

+2vy, ¥ +2v1;t,q}-nin-hypor ) L

y+1 Y _
then (1) in the case 1 s & < (t=-1-y)/2, FﬁT(L+1pl‘I:L*?;th; for

any {v A PIURLS + szﬂ;t,q.]—lin—hmr F and (2) in ¢

y+i+1 y+i

the case & 2z (t+1-y)/2, there is no {VT'£‘1 +2Vl‘2, vT*l + 2‘.+tl

t,qt-min-hyper F.

THEOREM 3.4, (Hamada [131) (1) In the case t 2 3, F is a
{2v,,2v43t,q}-min-hyper if and only if Fe}(1,1;t,q).
(2) In the case t = 2, there is no {2v,,2v,;t,q)}+min-hyper E.

THEOREM 3.5, (Hamada [14]) (1) In the case t22u+123, F is

a {2v 2vu;t,q}-nin'hypur if and only if Fel(u,u;t,q).

’
{2;1111 the case t & 2u, there is no {Zvuﬂ,hu;t.q}-lin'u
hyper F.
THEOREM 3.6, (Hamada [13]) (1) In the case t=2 and q=3, F
is a {2v, + vy, 2v; +v(;2,3}-min-hyper if and only if PRell(2,1;2,3)
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ACC%;'I; In the c.lse t23andq=3, Fisa {2v2+v¥%ﬁ§;t,3':-
min-hyper if and only if either Fe}(0,1,1;t,3) of F
Fell (2,1;¢,3).
(3) In the case t = 2 and q 2 4, there is no {2vyevy, 2v1+v%
2,q}-min-hyper F.
(4) In the case t 2 3 and q 2 4, F is a {2v2+v1,2v1+v0;t,q}f
min-hyper if and only if FeJ(0,1,1;5t,q).

THEOREM 3,7, (Hamada [15]) (1) In the case t 2 2 and q = 3,

F is a {v2+2v1. v1+2v0;t,3j-lin-hyper if and only if either
Fe}(0,0;t,3) or F = {(vT],(vole,(Zvﬂw.lJ,(vz),[v.ld»uz},

(cvu+291¢v2)) for some integer c in {1,2} and some noncollinear

points [vo), (v1) and (vzl in PG(t,3).

(2) In the case t 2 2 andq = 4, F is a {v2+2v1,v1+2v0;t,4}é=

min-hyper if and only if either Fﬂ}{O,ﬂ,1;t,4J or

F = {(uo+u1),(avo+u1).(a2v0+v1],(vzl,(cv0+u1+v2),

(ca2v0+uv1+v2],(cav0+u2u1+uz) for some element ¢ in :

{1,u,a2} and some noncollinear points (vg)» (vq) and (vj;

in PG(t,4) where o is a primitive element in GF(ZZ). |

(3) In the case t 2 2 and q 2 5, F is a {v +2v,, Vi+2Vp3t,ql=

min-hyper if and only if Fe}TO,B,l;t,q).

THEOREM 3,8, (Hamada [15, 16] and Hamada and Deza [21]) Let
+ @, B and y be any integers such that either 0 s « = B < Yi< L
or 0 S o < B =y < twhere t 22 and q2 5.
(1) In the case t 2 B+y+1, F is a {vu+1 F¥aenit st
VotV +vY;t,q]-min-hyper if and only if FeP(a,B,y;t,q).
(2) In the case t s B+y, there is no {Va4l Ve +v1+1.

Vg * Vg +vy;t,q}-min-hyper 18

96
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THEOREM 3.9, (Hamada [15, 18]) (1) In the case q 2 5, there
I8 no {2v, + 2v,, 2v, +2v4;2,q}-min-hyper. .
(2) In the case q = 3, F is a {sz +2vy, 2vy #2!0;2.3}-min-
hyper if and only if Fe 27(2,2;2,3) where v, = 0, v; =1
and Vo = 4.
(3) In the case q = 4, F is a {sz +2vy, 2vy {2?0;2,4}-uin~
hyper if and only if there exist some hoﬁz@llinenr
points (vg), (v;) and (v,) in PG(2,4) such that either
(a), (b) or (c) as follows:
(a) F = LUK{L1LK[c0vD+v1+v2).(c1v0+uv1+uz?,(c2v0+a2v1+v21ff
for some elements €gs €y and c, in {Q.i,u,uz}. ;
(b) F = LDLHEUZ),(u1+u2),(cvo+u1+v2},(cvo+-v1+uz},
(cuvovcv1+v2],(cv0+a2v1+v2),(ca2u0+u%gl+sz} for
some element c¢ in [1,a,az}.

() F = (Le\{vH ULy (v, 1) UMM (gw +v,) 1) U

{[cmv1+v2},[cuzvtiszJfor some element c in {T,u,az}.

Where vy = 0, vy = 1, v, =5, Ly =(vg) ®(v{) #lg = (vg) @ (v,),
2 = (vp) @(cvy+v,) and (w;) ®(w,) denotes a I-flat in PG(2,4)
(1ssing through two points (ui) and (w,) in PG(2,4) and a is a

rimitive element in GE(2%) such that a® = o +1 and o> = 1.

THEOREM 3,10, (Hamada and Deza [19, 20]) Let w and B be any
integers such that 0 s a < B < t where t 2 2 and?§'2 5
(1) In the case t 22B+1, B is a {Zvu+1 +2v34ie 2v, +2vB;t,q}-
min-hyper if and only if F;}(u,a,s,e;t,q}__,
(2) In the case t £ 28, there is no {2v,,, +2}ﬁ+1’ 2v, +2vg;
t,ql-min-hyper F.
REMARK 3,2, It is conjectured by Hamada (cf.-Rsnark 4,1 in
[17]) that (I} in the case h 2 2, € = 0, p, 22 and Py _, +jy 2 t,8
1 h=1 h 3

)
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h h
there is no { I v » L v ;t,ql-min-hyper F and (II) in the
+1
£ M7 duia iy

case h 2 2, e = 0, By 2 2 and Mpoq * ¥y 8 t-1, F is a

h h 1
{iETV“‘*" ;£1vu_;t.q}-min-hyper if and only if F'JT”I'”Z""'“h?
= a b i= b 1 2

t,q) where t 2 3, q 2 3 and [G'HI'UZ""'”h)éutt’Q)‘

Finally, we shall give the following example in order to

h

show a connection between a { I v + By

;k-1,q} -min-
j=1 M3t I8

v
i=1 Mi
hyper and an (n,d,d;q)-code meeting the Griesmer bound in the

k-1 nw By
- (e + _21 q ) where (E,u1,p2,...,uh}¢ U(k=1,q)
1.

case d = q

h
and n = vy - (e + I bu +1) (cf. Theorem 5.2 and Example 5.1 in
) [
Hamada [17] ir detail).
EXAMPLE 3,1, Consider the case k = 3, d = 4 and q = 3. In

13. Let

this case, h = 1, e = 2, y; = 1 and v; = (3°-1)/(3-1)

<5 (i =1,2,...,13) be 13 vectors given by

£1 S2 53 &4 S5 Z6 £7 SS9 E10 &1 S22 Si3
0,0 A ol B il Tt SEL R

1
1 1
1 1 1 0 0 0 1 1 1 2 2
0 1 2 0 1 2 0 1 2 0 1

Then any two vectors in (c,,C,,...,Cq7) are linearly independent"
Y SR ) S13

over GF(3). Hence 13 points in PG(2,3) can be expressed by
(E1)|(E_2)l"',(£13]- Let E = {(ET)J{EzJ)(23)1(2431(9_5)){56)}1

G* = [cq €5 .. ¢] and G = [€¢9 €g --- €13]+ Let C* be a subspace

in V(6;3) generated by 3 row vectors of G* and let C be a subspace

in V(7;3) generated by 3 row vectors of G where V(n;3) denotes an
n-dimensional vector space consisting of row vectors over GF(3).

Then it is easy to see that F is a {6,1;2,3}-min-hyper such that

F.j(o,o,1;2,3] (i.e., F is a set of a 1-flat {(c,),(c;),(c5),(c )l

8
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and two 0-flats [Es) and (56} in PG(2,3) which are mutually dis=
joint) and C* is a 3-ary anticode with length 6 and maximum
distanc; 5 and C is a (7,3,4;3)-code meeting the Griesmer bound.
In this case, C is said to be a (7,3,4;3)-code cqnstructad by
using a p-flat {(511,(52),(53),(54}} and two 0-flats (gg) and
(cg) in PG(2,3).

4, A CONNECTION BETWEEN A MIN-HYPER AND A LINEAR
PROGRAMMING DERIVED FROM A BIB DESIGN

It is well that.there are Vi points and Vit hyperplanes
in PG(t,q) where Vol = {qt+1-1)/(q-l). After numbering Ve
hyperplanes and Virt points in PG(t,q) respectively in some way,
let us denote Vil hyperplanes and Vit points in PG(t,q) by
Hi (i = 1'2"“’"t+1) and Qj (G = 1,2,..;,vt+1j, respectively,
and let N = (nij) where nij = 1 or 0 according to whether or not
the jth point Qj in PG(t,q) is contained in the ith hyperplane
Iy in PG(t,q). Then N is the incidence matrix of a BIB design
(denoted by PG(t,q):t-1) with parameters [Vt+1'vt+1’vt"t'vt-1j'
consider the following integral linear programming derived from

the BIB design PG(t,q):t-1.

PROBLEM C, Find a vector [yl,y'z,...,)‘r“r ) of integers b

Ll Vil
(j = 1,2,...,v ,4) that minimize the summation L b subject
to the following inequalities: g
(4.0 el y; S w (3= 102s0ees¥y,q)
Visd [
(4.2) jfi nijyj Z m (i = 1,2,...,vt+1)

for given integers t, w, m and q where t 2 2, w 2 1y m 2 0 and
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Voo = @-1/0-1).

It is known that if there exist nonnegative integers yj

t-1
given integers t, w, q and m = -I € _v_, then
aoqlrae
Vesl 1]
(RSN Ly e (RS ey
3=1 i e o+

whef? 0 = €y S y-i for w = 1,2,...,t=1. Hence we shall conside

the following

PROBLEM D, (1) Find a necessary and sufficient condition fog
an integer w and an ordered set (50,51,...,at_1) in E(t,q) thaﬁ

there exists a vector (y1,y2,...,yv ) of integers Yj which
t+1

satisfy the following conditions:

(4.4) UiS yj 2w (j = 1’2""’Vt+])’
A& t-1
(4.5) By me e e
L J=1 1 Uaen &Sl 2
Vet t-1
4.6 I il Uiy v 7 LA 3
( ) jul nlJyJ e Ea¥a (i L Vt+1J

(2) Find all vectors (yl,yz,...,yv
t+1

tions (4.4), (4.5) and (4.6) in the case where there exists suci

a vector for given integers.

DEFINITION 4,1, Let F be a set of points in PG(t,q) and let

_ W be a mapping of F into Z© where t z 2 and Z% denotes the sot
of all positive integers. Let J? be the set of all hyperplancs

in PG(t,q). If F and w satisfy the following condition:

(4.7 I w(P) = f and min{ =

w(P) [llef} = m
PeF Pe PN

for given integers f . 1 and m 2

oo

) which satisfy condi- |

0, then (F,w) is said to be any

| VARNA'88 ACCT

(f,m;t,q}-min-hyper. In the special case w(P) = 1 for any point

I'in F, a min-hyper (F,w) is denoted simply by F.

REMARK 4,1, In the special case w(P) = 1 for any point P in

I'y condition (4.7) can be expressed as follows:
(4.8) |F| = £ and min{|FNH||He} = m.

llence a min-hyper F in Sections 1-3 is a min-hyper (F,w) such

that w(P) = 1 for any point P in F.

THEOREM 4,1, (Hamada [12]) Let B (t,u,g,q) be the set of

ull vectors (y1,y2,...,yv ) of integers y. which satisfy con-
t+1 J

ditions (4.4), (4.5) and (4.6) and let BF{t,m.E.Q) be the set of

t=1 t-1
ull {“EU € Vas1? ufi eavu;t.q}-min-hypers (F,w) such that

| £ w(P) & w for any point P in F where t 2 2, w 2 1,
0 s €, S q-1 (¢ = 0,1,...,t-1) and g = (ED,:1,...,ct_1). Then
there is a one-to-one correspondence between the set Eﬁy(t,w,g,q]

and the set B.(t,w,e,q) in the case g = 0.
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ON THE DECOMPOSITION OF SELF-DUAL CODES AND APPLICATIONS

W. Cary Huffman

ABSTRACT: Suppose a self-dual code C over a
finite field Fq has a permutation automor-
phism o of prime order r. We describe a ge-
neral decomposition theorem for C based on
the existence of o. We also consider circum-
stances under which two such codes are equi-
valent. Several applications are discussed.

Let C be an [n,k] linear code over the finite field Fq of
order q and characteristic p. Let M (q) denote the set of nxn
monomial matrices over Fq, and let H;[q] be Nn(qj extended by
the Galois group of Fq over Fp. We say that C' is equivalent
to C if €' = CM for some MeM (q). G(C) = {MeM (q)|CM = C} is
the automorphism group of C ; the diagonal elements of G(C) will
be denoted D(C).

Let r be a prime with r = p, Let R = FqIXT/<T -Xx") where X
is an indeterminate. Let 1-X% = mu(X)m](X)...mg{X] where mj(X)
is irreducible over Fq for 0 £ j & g. Choose m;(X) = 1-X. Let
I.j = K -Xr)/mj[X]). Then R = 100110...9Ig, where each lj is a
[ield, 1, = F‘_1 and Ij : th for 1 & j s g with h = (r-1)/g.
let o be a permutation automorphism of C with c r-cycles and f
fixed points. Let Dyaveasfle denote the r-cycles of o and

IiL.'+I""’ c+f

2,, the fixed points. If x¢Fy, let x|, be the res-
i
triction of x to 9. Let C(¢) = {xeC|xo = x}, and for 1 5 j s g,

let Ej(c} = {xeC|x Ij for f's 18 ¢ and xlﬂ = 0 for
i

€
(Y
¢c+1 s isc+f}. By Lemma 2 of l6l], C ='C(c)oﬁ1(a)o...eﬁg(u),
C(o) and Ej(c) are g-invariant. Let Ej(o)* be the code Ej(o}
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g is odd or if = is the identity, c is even.

St PO

There are several applications of Theorem 1 or special ca-
ses of it. I mention four of them.

First, this decomposition has been used by the author to
generalize a decoding scheme of Pless [11]. Second, Theorcm 1
gives a natural decomposition of certain I'less symmetry codes
into quadratic residue codes originally described by Calderbank
[1)]. This work is found in [(5]. \

The next two applications invoelve questions of when two

codes are equivalent. There is a condition in which it can be

shown that if ¢ and €' have ¢ as an automorphism, then they arg
equivalent i{f and only if €' = €M for some MGH;(q) which prcscl
ves the dec position structure of Theorem 1. The condition uns

der which this is true is essentially the following: the jmugaﬂ
of (o) in G(C)/D(C) is a Sylow r-subgroup in G(C)/D(C). Cases ;
in which this condition is easy to verify have been examinecd in
the binary case by Yorgov in [141 and gencralized by the autle
to arbitrary fields in [71.
The third application uses both Theorcem 1T and the above ro=
sults on equivalence. It is possible to construct and count the
inequivalent codes of length 2r and 2r + 2 which are sclfl-=dual
under Lhe ordinary inner product and have a permutiation auto-
morphism of order r where rfq-1 and qt = -1 (mod T). This work
is found in l6l and [71.
Finally, Theorem 1 and the results on ecquivalence have been
used to classify extremal self-dual codes. Using a special
case of Theorem I, in 41, it was shown that the only cxtreml
binary self-dual code of length 48 with an odd order autonur-

phism is un extended quadratic residue code. In (121, 1141,

(N
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where the fixed points are deleted and their codewords are
iewed as c-tuples from I;-
Suppose we have the inner product ¢.,.) on F: given by

m

n
1) Cuswv) = X uivP
R s

where u,vlﬁg with u = (u1,...,un) and v = {v1,...,vn3. Define

1
ol {ung‘](u,v) = 0 for all veC}. C is self-orthogonal if

cccl and self-dual if C = ', Define 1 , :R + R by
b

ab. P

r=-1 i T~
rp:1 b(ti=1 aix ) = Eis] ag X ! where ged(r,b) = 1. It turns out
that Tpa 2 fixes ID'and permutes the fields 11,...,18.
]

The following theorem generalizes work in [6]; it will be
published elsewhere and provides a general decomposition theo-

ren for self-dual codes.

THEOREM 1, Let s, t be nonnegative integers with s s m.
Choose an integer w such that psqtm = -1 (mod r). Suppose that
€ is a self-dual [n, n/2] code under the inner product (1).

Define A by Tpm_s,w(Ij) = Ih(j)' Then C(9) is a self-orthogonal

In, (c+f)/2] code under (1) and for 1 < j s g, = (Ej(o)*)

m=-s
P W

and El(j}(cjt are duals under the inner product (.,.) given by
c £ ot
(2) (u,v) = £ uxvbd
T
where u = (u1,...,ch and v = (v],...,ch with uj, Vi'IA[jJ‘
The converse also holds.
We remark that we can choose w = +1 by an appropriate choice

of t. In the applications below s can also be chosen so that

1 has a "nice" form. Also if the orbit size of some orbit
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[13], and [ 8] extremal binary self-dual codes of length 40,
56, 64, and 72 possessing automorphisms of certain order. .ie
classified. For example, in [ 8] it is shown th-- there is no
binary self-dual [72, 36, 16] code with ar —worphism of or-
der T1. This combined with [21, [9], an. .uv], which used tech-
niques other than Theorem 1, shows that the largest prime order
of an automorphism of such . code is 7. In [2] whd [3] aguin
using othey techniques, it was shown that nc quaternary |24,
12, 10] seli-dual code exists with an automorphism of odd prime
order p > 3. The prime v=3 was clininated in |6l using Theorem
in this casc, no computcer assistunce was required because of
the strengtn of the special case o) Theorem | used.

Current.y, the author is attempting to classily the incqui-
valent extremal sc¢lf-dual codes of lengths between 18 and 30
having odd ordcr automorphisms. Theorem 1 together with the
results o1 equivalence make this computationally feasible. A

similar attempt will be made to classify the analogous ternary

codes.
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CONSTRUCTION AND DECODING OF A CLASS OF ALGEBRAIC GEOMETRY C__

J. Justesen, K.J. Larsen, H. Elbr¢nd Jensen, A. Havemose,

T. Hgholdt

ABSTRACT: We construct a class of codes deri-
ved from algebraic plane curves. The concepts
and results used from algebraic geometry are
explained in detail, and no further knowledge
of the heavy machinery of algebraic geometry
is needed to understand the construction and
the results. Parameters, generator and pari-
tycheck matrices are given. The main result
is a decoding algorithm, which turns out to
be a generalization of the Peterson algorithm
for decoding BCH codes.

In 1977 V.D. Goppa wrote a seminal paper [ 1] describing the
connection between coding theory and algebraic geometry. This
connection was further developed by Goppa in [2] and [3], and
the point of view of Goppa has led to remarkable results, in
particular the paper by Tsfasman, Vladut and Zink [4].

Since then, a number of papers dealing with algebraic geo-
metry codes has appeared [5, 6]. These papers require a good
knowledge of algebraic geometry. One of the motivations for the
present paper was to use the ideas of Goppa without the heavy
machinery of algebraic geometry. The aim has been to construct
codes, based on algebraic curves, in a rather elementary way and
further to find possible simple decoding procedures for these
codes.

The code construction uses only polynomials and points of a
plane curve, and many good codes are constructed in this way.

Moreover, it turns out that for these codes it is possible
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to derive a simple decoding algorithm, which conceptually only
involves the solution of a system of linear equations, and the
nlgorithm contains the Peterson algorithm for decoding of Reed-
Solomon codes, as a special case.

The decoding algorithm is the main result of the paper, and
the idea behind this has recently been generalized by A.N. Sko-
robogatov and S.G. Vladut [7] to cover codes from arbitrary
algebraic curves. Details of the comstructions and decoding al-

porithms will appear in [8].
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of order two acting on the points and the blocks of D a;}

ACCT VARBNA'’

follows:

2-(10,4.4) DESIGNS WITH AUTOMORPHISMS OF ORDER 2

FIXING NO POINT OR BLOCK £ = (1,2)(3,4)(5,6) (7,8)(9,10) - on the points,
f = (1,2)(3,4)...(29,30) - on the blocks.

Stojan N. Kapralov The orbit matrix of D with a respect to f is a 5x1§ matrix

M = (mij] where ‘ij is the number on points from the i—thr
ABSTRACT! There are exactly 900 non-isomor-
phic 2-(10,4,4) designs possessing an auto-
morphism of order 2 without fixed points and
blocks.

point orbit contained in a block from the j-th block orbit,
The matrix M satisfies the following conditions:

s s s lion 2

ij
15 !
INTRODUCTION jf1 ot i L 12, 1 =0 12,3,4,5;
The concepts and notations in this paper are in accordance 15 g
with those in Tonchev's book [31. ) Gl 1= 1.2,3,4,5;
It is shown in the survey of Mathon and Rosa [2] that there; 15
are known at least 15 non-isomorphic designs with parameters i jEI Myi™gj = 8, 1 &0 &85 5

t=2, v=10, k=4, A =4, b=30, r=12. They are obtained
Consequently every row of M is a permutation of:
by combining of two 2-(10,4,2) designs. There are exactly 3
221111111100000.

such designs and each of them is a residual design of a
2 3 Using a computer we found 53 possible permutationaly non-

2-(16,6,2) design.
A equivalent orbit matrices.
i ig i et a 2={22,8 4% o) ;

il e Cal helcwan eony BEs hevher ' U l2 € UBTAINING THE 2-(10.4.4) LESIGNS FKOW GRBIT HATRICES
design exist. It is proved by Langev and Tonchev [1] that
: A search based on three of the 53 orbit matrices did
2-(22,8,4) design cannot possess any nontrivial automorphisms
yield all solutions. Hense there are exactly 50 orbit structu-
of an odd order.
's for the automorphisms of order two of a 2-(10,4,4) design.
In the investigation of 2-(22,8,4) designs with automor-
The first row of the all matrices is:
phisms of order two an incidence matrix of a 2-(10,4,4) design
R1 = 2217111111100000.
arise as part of the possible incidence matrix of a 2-(10,4,4)
¢ are 27 matrices with R2 = 2011110000271111, 20 matrices
design, This fact explain our attemp to study 2-(10,4,4)
RZ2 = 11211000021111, 2 matrices with R2 = 111111000022110

designs.
one matrix with-R2Z = 102111100021110.

ORBIT MATRICES

| To obtain a design from an orbit matrix we must to replace
Supose D is a 2-(10,4,4) design and i is an automorphism
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all elements of M equal to 1, by + or - so that the scalur pr

ducts of every two rows to be 4, according to the following

table:
(R R
0 [ 1 R 1 1
* ()R A
“ pRapt At
2 g 1 il

For example onc of the solutions ol the matrix

223111 rp00n0
1o2111100021) 10
[UTH ) i ORI I B W

L0 R R U U O R
LB e R L

is the matnix
A e e S R L LR N Y
40 +==40002+++0
it ULl w4+
Lo =U=002+0+-2+
Uall=slel-+l-#+2

and 1f we replace by circulant matrices as lollows:

0 4l S ok w e g 2 by 0" g BT
0o 01 ) T L

we get the incidence mutrix of the known 2-(10,4,4) desipi
which is also a 3-(10,4,1) design.
Rejecting some ohviously isomorphic solutions we tound 15

2-(10,4,4) designs some of them possibly isomorphic.
R g 1 I

To distinguish these desipns we compute the following inv

riants:

for every point x - the number of puirs of points dillerent

from x such that they are not vontained together iy any blogky

for every bloch B - the number of hlochs that have ne conmon

points with B.

Thus the set of 1380 designs was devided nte 5537 ¢lisnseay

259 of them containing only onc design,

VARNA'88 ACCT

Finally, using a design isomorphism computer program we
ichieved the result: there are exactly 900 non-isomorphic

1-(10,4,4) designs with automorphisms of order 2, fixing no
=

-]

point or block.

We compute also the orders of the full automﬁ;ﬁhisﬁ;gfoups
of these designs: = s
sroup order 20406 BiecTon Mo LATHER ek 9192 1440
number of Jdesigns 8210 45 14 6 5 1 0 1 1 i
The largest full automorphism group has the design already
ment ioned above.

This work was supported in part by the Science Committee un-

der Contract No 37/1987.
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LOWER BOUNDS ON DIFFERENCE TRIANGLE SETS

VARNA'88 ACCT
g = j%ﬂ b1, 1c4s 1.

Torleiy Kigve The code generated is an (I+1,I,m) CSOC with dnin = J+ 2, where

m=m(A) = nax{aijli sisI}).

ABSTRACT: We prove a lower bound on the size
of difference triangle sets. The bound is a
generalization of bounds by Lindstrém,
Atkinson et al., Chen, and myself,

Let
M(1,J) = min{m(A)|A is an (I,J)-DTS}.
Lindstrom [7] (in another notation) gave a lower bound on
M(1,J) and Atkinson et al. [3) used the same method to give a

1. INTRODULTION sharper lower bound on M(1,J). The same method has been used by

An 61,0501 Erebence! ardancie et (DT9) 45 2 kst Chen Wende [9] and myself [8] to give lower bounds on M(I,J) in

T AL general. In this paper I give a new lower bound. The bounds of
4 = el et

Chen Wende and myself are special cases of the new bound. More-
where
i over, the new bound is sharper in many cases.

2, THE NEW GENERAL BOUND

1 Let {{a, [0sjsJ}|[1sis1) be an (1 J)-DTS. Let
0 = 810 € ByqSese<ayy ij z

for all i, and such that all the integers uij TR with- S t“i,k+] _“iifn bbbkl s U S 0
Fedisland s j" < da Jdare distinct. I J-k
i ; y A Sk = E‘ 3 - L [ni 1o -ailJ,
DTSs have a number of different applications. (1,J)=-bT8ss dthk 1=1 £=0 !
were uscd by Babcock [1] to construct a radio system without a .
certain kind of intermedulation interference. (1,J)-D1Sss frum; Tt J ; 5;'
this point of view was further studied by Fang and Sandrin [2] k=]
and Atkinson et al. [3]. ] further, deg
A nother application is in spacing of radio antennas, sce dil i e 1 Bl R

Blum et al. [4). g, = {di£]l= is I]U{di J-]-glj sl

Convolutional self-ortegonal codes (CSOC) were introduced bnid .;!

by Massey [S5]. A construction based on 'TSs was introduced iy - d
x :

b
140N ! o i A L\ i del]
Robinson und Pernstein lol. The €s0C corresponding to the L

(1,d)-bT8 has pencrator polynomials
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Since u;_1 S, contains U, = IJ+I(J-1)+,..+1(J=t+1) =
= I[tJ<-E£§:ll) distinct positive integers, we get

U (U, +1)
el i
ST T

On the other hand, rearranging the terms we sec that

1 k-1
S =T DO Sl ) (WSl 2y
and
! k-2
Sp = k8, - ££0(k- T-2)g,.
Let G algyene, 0y be real numbers such that E;=I kuk =

= t(t+1)/2. Then

¥ t-2
Toi= 0 wis I B,g
S o R LT
where
t
it il s
B, = [ ) - B k=1 - 8w
o & k=1+2 k

Let Qg slioyens, Oy be choosen such that Gy =0y R e eut < 0 and

BpzByz...z Biope If 2 2 % = 1y then gy is the sum of II

distinct elements. Hence, if t s % + 1, then

t-2 t-2 :
D Befy 2 Vo= I B 0(208% 1)k eotlZils D)1 =
) e Sl e
« 4T, s artanycy + TEEBL ¢ 2 g2, 2Pk,
4 3 6 oA ¢ RV e 2
t+1 o ab r .
where Cr = ( = ) and Ar = Ek:l k oy - Note that LZ | AI'

Further, Sp = SJ+I—k which is the sum of Ik distinct element.

Hence

t t

Sy skf1ak{m-I54%§ll) + (m-1 Ktko1) - 14. . owqu-r KKHD

= 1C,m - Va
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where
= I
Vi * "5 Meteiy Ay
llence
lf:m 5 Xu + \E + lt ; \u + \S + \U.

Ihis gives the following bound en M(I1,J):
N ] AT WA 8
THECREM, M(1,4) “li,u!,mg,..-,at] TE:(¥a+VS+VD].

I this notation, Chen's bound [9] is T%TCVB*VUJ- with N

by o= Gy und @y = oo, = oy = 0, whereas:my pr;vious bound [8] is
<10 In the follewing table a few examples are given
showing the bounds obtained if we choose t optimally in the modi-
fied Chen bound (UW = Bitit,,0,...,0)), in my previous bound

(1K) and the hounds obtained if we choose t and PP R P

optamdlly an the theoren (New):

| 1 o 3 B 5 10 20 100
o 5000 100 s AR 35
(n W7 .. b 4 318, | 41020, 5795 18325 | 9isez
Ik 860 Blae . 46z | 320 . 41603 . WTes.  1%aii | S1ted
Svu 97 —_5“5 3405 o] 47021 ERE 183;1 91531
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The free distance and the sequence of row
distances are bounded. We obtain binary codes
by replacing each gq=ary symbol by r or r+1
bits. The parity check is used in the last
case. Some of such codes are comparable with
the best codes found by computer searching.

1. INTRODUCTION

It is known that each word T(x) of the g-ary convolutional
ctodes with rate R = k/m and generator polynomials gij(xj,
i = 1,000,k, j = 1,...,m, over GF(q) can be written in the form
(1 T(x) = _§ I g g PRI
i=1 j=1
where 1.(x) are information polynomials over GF(q). The value

v = I max {deg{gij)} is called a coder memory and ny, = (s+1)m,
17
where s = max deg[gijJ, is called a constraint length; ny is
i,]
the duration of the pulse response of the coder.

Let J(%,s) be a set of information polynomials Ii(xJ e
: s s
P HISETER L R By g F LR 5B O Wiy T PO
some i and there are no s consequent zero coefficients
Bigsee ooy (tes-1) for each Ii(xJ from J(£,s). The value
(2) dif = min WITCOL, &= 1,2,
4l Gl ign )
where W is the ilamming weight is called a row distance of order
[lie [ree distance df is defined as min d;r].

]
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Theére is a little knﬁkn about algebraic means of convolu-
tional codes analysis. Seme code constructions based on cyclic
codes were proposed by_ﬁissey, Costello and Justesen [1, 2]. g

Here we follow them and Gise the pext result.

LEmMAa 1 [1, 2]. The inequality

(3) WP =M 2 Wi xec) VN INIP(x) mod (xP-¢) )

is valid for any polynomial P(x), any c#0 over GF(q) and non-
negative integers n and N. In the binary case, q = 27,
Wi (x-0)N) = 2" yhere w(N) is the weight of the binary expal

sion of .

Z, SOME NONBINARY CONVCGLUTIONAL CODES

Let d (4) be the minimum distance of a cyclic code of
length n with a generator g{x]/{xn—1]N, where N is the greatest

integer for which such division can be done.

LEMMA 2, Let g](x) and g,(x) generate cyclic codes of

length n over GE(2") and gILx}gz{x) = 0 mod (x"-1). Then g1(x'u

gz(x) generate a convolutional code over GE(2") of rate 1/2 and

i
free distance !

(4) dp 2 min{2d, (hihy) +2d; (hy),2d, (hihy) + 24, Chy),d, (ghol

+ 2,d (g h1) +2,d (g;) +d.(g,),2d (hy) +2d_(h,)],

where h. (x) = (xn-l]/gi(xJ. If (gq(x), g;(x)) = 1 then the codg
is noncatastrofical and df z min{4dn(ﬂ]2),dn(h1) + 2, dn(th LE
d (gy)*+d, (g,)} where H;p = GCD(hy, hy). If gy(xX) = x=ag, ]
oy * 0, Gy * oy then df = 4 and dér) = 3+ 8.

LEMMA 5, Let g1{x), ngx], g3lX] generate cyclic codes el

length n oever Gr(2%y and let they be pairwise prime. Then these

polynomiuals generate a noncatastrofical convelutional code over

VARNA'88

GF(2T) of rate 1/3 and free distance

ACCT

(5) dg 2 min{6d (H,5),2d (h{) +2,.2d_(h,) + %zan(hﬂ:\,-z,
: d(gy) +d,(g;) +dy(gg)),

where Hy,s = GCDChy, h,, hg) and hy = (x"-1)/g;(x). If g;(x) =
X-0;, 1 = 1.3, where o; are different nenzero elements then

de = 6 and d{™) = 4 + 21.

3, SOME BINARY CONVOLUTIONAL CODES

Assume that all initial cyclic codgg are RS-codes of length
n = 27-1 over GE(2T). We obtaiﬁubinary‘todes by raplacing each
symbol of GF(2%) by a block of r or r+1 bits. In the latter
case the first bit in each block is a parity check bit. We as-
sume that the stream of binary digits is formed by interleaving
of m binary streams from m outputs of a nonbinary coder. These
assumptions are useful for the constraint length calculation.

Therefore the convolutional code over GF(2') of rate R and
coder memory v produces a binary convolutional code of rate
Ry = R or Ry = r/R_](r+1) and coder memory T, = vr. In the first
case the free and row distances are bounded by the same dis-
tances as for nonbinary codes. In the second case all bounds may

be doubled.

THEOREM 1, Let the different polynomials g1(x), gZ(xJ,
deg(g;) s (n-1)/2Z, be generators of two RS cyclic codes over
CF(2%) and deg GCD(g1,g2) = s,- Then g,(x), g,(x) generate a
binary convolutional code with Rb =1/2, df z min{2[5+1],_
n-s+so+3} and n, = 2rs + 2. The same polynomials generate a
binary convolutional code with Ry = 1/2(r+1), df zmin{4(s+1),

1

3(n-s+s°+3)] and Ty = 2s(r+1) + 4.
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The table presents the parameters of some binary codes de= REFERENCES
rived from Theorem 1. The value dgpt is the best free distan
1. J.L. Massey, D.J. Costello, J. Justesen, Polynomial weights
and code constructions, IEEE Trans. on Inform. Th. IT-19
(1973), no. 1, 101=110.

2. J. Justesen, New convolutional code constructions and a
class of asymptotically good time-varing codes, IEEE Trans.
on Inform. Th., IT-19 (1973), no. 2, 220-225,

3. R.E. Blahut, Theory and practice of error control codes,

from [3] for the pointed rates and the constraint length of
codes which were found by computer searching. In the case of

rate 3/8 d?pt is the best free distance for codes of rate 1/32

2010 2 6 4 5 1/3 10 8 8 1984, Transl. in Russian, M., Mup, 1986.
R ST 3 B 4 6 3/8 12 8 10

PAR 6 14 6 10 /820 [laz 15

sy G0 LR 7 12 2y Eg e e 18

3wt 9 20 8 12 3/8 28 16 18
A L R 26 8 16 0s4 34 16

LR R 3418 gy 0,4 44 20

BAAM 0Ty 2D it raanidnd |y 5o 0,4 54 24

M S e 0,4 64 28

g R 58 16 054 76 132

THEOREM 2, Let the three pairwise prime polynomials g1[x]33
82(x), £3(x), deg g.(x) & (n-1)/3 be generators of RS cyclic
codes over GF(2T). Then gq(x), g5(x), gz(x) generate a hjnarya
convolutional code with Ryl = 1735 de = 3(s+1) and n, = 3rs + ool
The samc polynomials generate a binary convelutional code wiiﬁ 
Rb = 1/3(r+1), df < 6(s+1) and ny = 3s(r+1) + 6.

For example ome can find two binary cedes of rate 1/4 deriy

ed {rom Theorem 2: m, = 18, dg-12, afFt = 13 and n, - 350,

Jopt
dg <"18] 1afP - 120,
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TO MODULAR ABELIAN GROUP CODES

P. Lakatos

Let K be a finite field of the characteristic p,

G =0 x.,,xcp-c; and K{x1,...xm]/([x1; = 1),...,(x£ - 1)) =KIG]

P

By [1] the monomial code I, is defined as an ideal in KLG] witl
generators
o ey m

[(x1-1J e (X =1) |iEi(ai+1) 2 d}.
This codes are linear codes with block length n = pm and code
distance 2 d. For p 2 3 and d 2 pm'1
Iy is greater than the dimension of GRM - code of the same
length and code distance. For example, if d=4 and p 2 5, the
parameters of GRM - codes of order m(p-1)-2 are equal to 3

(pm’pm_2m_1__m(m—!)

, 4), as the parameters of the monomial codi
I, are (pm,pm-Zm—1,4). Monomial codes over GF(3) contain linea
(27,20,4) and (9,4,4) codes with good parameters. We describe

the construction and the weight distribution of these codes.

We assume, that for every d < [Eglg there exists an abelian

group of order 2™ such that some power of the radical of the

group algebra of this group over K is selfdual (Zm, ;

zm-1 zdl

- code, This assumption is verified by computer for m < 30,

REFERENCES
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ON NORMAL AND SUBNORMAL CODES

Antoine Lobstein

ABSTRACT; We generalize the notion of binary
normal and subnormal codes to q-ary codes.

Let C be a code (resp. linear code) of length n over a fi-

nite alphabet, F with q elements. That is, C is a subset

q’
(resp. a vectorial subspace) of Fg. The covering radius of C is
the maximum Hamming distance, over F:, to C. Bquivalently, the
covering radius can be defined as the least integer t such that
the union of the spheres of radius t (with respect to the Ham-
ming distance), centered at the codewords, is equal to F. Let

q
X(q,n,t) be the minimum size of a code C with length n over F

q!
having t as covering radius (in other words, K(q,n,t) is the
least number of spheres of radius t such that their union is
rg).

In the binary case, Graham and Sloane [1] introduced the no-
tion of linear normal codes, and the amalgamated direct sum of
two codes. These concepts were extended to binary nonlinear co-
des by Cohen, Lobstein and Sloane |21, and the amalgamated di-
rect sum of two codes, applied to normal codes, gave construc-
tions improving upper bounds for K(2,n,t). Also of interest are
binary subnormal (linear or nonlinear) codes, defined by Honkala
|

llere we extend these notions to g-ary (linear or nonlinear)

codes.

|l
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EXISTENCE BOUNDS FOR CONCATENATED CODES
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Tommy Pedersen and Thomas Ericson

ABSTRACT; An existence bound for concatenated
codes using various fixed inner codes is pre-
sented. The bound is a generalization of the
bound given by Piret [1] for codes over the
unit circle. The existence of concatenated
codes meeting the Varshamov-Gilbert bound is
demonstrated.

INTRODUCTION

The best previous bound for concatenated codes is the one
given by Katsman et al. [2], which improves on the bound by
Blokh-Zyablov [3] and uses generalized concatenated codes of
infinite order. However, the technique used in both of these
papers for estimating the minimum distance of the concatenated
code is based on the product between the minimum distances of
the inner and outer codes. In general this gives a weak lower
bound on the true minimum distance. Our approach utilizes the
entire weight distribution of the inner code.

The Blokh-Zyablov bound on the achievable rate of a binary

concatenated code is:

R 24 SR - B 1-?(6] dx 06 s 1/2
2 i~ = 5 s
I T T )
where § is the normalized minimum distance, h(§) = —Blogqé e

(1-6)1ngq[!-6) and q is the size of the alphabet, i.e. q = 2
in this case. 1

Cne advantage of the construction of Katsman et al., and

Blokh-Zyablov is that the complexity of the construction is

129
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polynomlal in the codeword length. Unfortunately our constru

VARNA'88 ACCT

EXAMPLE. When C is a simple binary parity check code,

tlun-ﬂs exponential. Hohever, it is superior to the prev10us
<
bouﬁﬂs. In fact, for some inner codes with rate close to one,

then n = k+1 and

W
A, = (i] TR )T

bound) [4], [5], which for binary codes is L AN
For large n, the bound simplifies to
RIS e DB FOENEs 1 F2e
R21-h(8), 0F s 63 172
We calculate the bound for the inner codes Hamming(7,4),

i This shows that the VG bound is reached by concatenated codes
Hamming (15,11) , Hamming(63,57) and a simple rarity check code R 5 5

o using inner codes of rate one.
of length 7.

NOTE. In order to reach the VG bound, it is sufficient that

THE BOUND the inner code is linear and has a weight distribution propor-

) L 5 4 tional to the Bernoulli distribution. It is indicated in Mac
THEOREM, For any linear code CCGF(q)" with dimension k

5 . ; : n ! Williams-Sloane [7] that such codes are likely to exist also
and weipglt distribution {ﬁw}w=ﬂ there exists a concatenated

J | . Ny for codes with rates strictly less than one.
code using C as the inner code and having rate R and normali

minimun distance § related by the non-negative parameter u as
NUMERICAL EVALUATIONS OF THE BOUND FOR CERTAIN INNER CODES

3 Ll W L =W L e ]
R n(k i logq ED Awq ), (in g-ary units) We have evaluated the bound for some Hamming codes and for

w=
n 4 simple parity check code. The results are given in graphical
uw
1 wio wAq form in the figure below and compared with both the VG bound,
2 2 A q H¥ the bound of Katsman et al. and the Bloch-Zyablov bound, deno-
W
w=0

ted as RVG’ RKTV and RB: respectively. Our bound is denoted

; | E b, T 5 A 4 | .
The proof is based on Piret's peneralization of the VG buund RC’ where C is the inner code used:

[11, sce also [6]. When comparing the bounds, it should be noted that our

EXAMPLE, When C = GF(q)n, then k = n and hound utilizes a fixed inner code while the bound of Katsman

et al. and the Blokh-Zyablov bound utilizes different inner co-
n W
dois G ta=1)

iz des for different rates of the concatenated code.

Then, the bound simplifics to

A ) Slog, (=10, 8 4 - iu-1¥ /s,

which is the VG bound for q-ury codes (in Yy Ot
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Figure. Lower bounds on the rate of concatenated codes.
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R. Pellikaan

Skorobogatov and Vlddut [2], following ideas of Justesen @
all (1] give a decoding algorithm of algebraic-geometric cod}g
which decodes up to [SLE)-B=1] errors, where d(C) is the de-
signed minimum distance of C and g the genus of the curve.

We shall give a decoding algorithm which decodes up to
[gigl:ll errors, by applying the above algorithm a number oﬁ,ﬁ
times. i

This decoding algorithm works in case the class number h
(= number of divisors of degree zero modulo principal divisors)

is sufficiently greater than a (= number of effective divi-

g-1
sors of degree g-1).

We show how h and ag_t can be computed by means of the I¢H

function of the curve, in particular for maximal curves, i
for curves for which the Hasse-Weil upperbound is in fact an

equality: Ny = q+1 + 2gv/q.
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DUADIC CODES

Vera Pless*

ABSTRACT: We describe a recent, new approach
to the old subject of cyclic codes [1, 3, 4,
5, 6] . We define duadic codes over GF(q),
give their basic properties and conditions
for existence.

We show that any self-orthogonal, cyc-
lic (n, Eill code is duadic. It is easy to
tell from the cyclotomic cosets when duadic
codes exist and when they are self-orthogo-
nal. Their idempotents can be readily con-
structed when q = 2. The minimum odd-like
weights of duadic codes satisfy a square root
bound. The proofs of these theorems are short
and not difficult.

In this paper we will only be concerned with cyclic or ex-
tended cyclic codes. Our notation 1s comsistent with [2]. Cyclic
codes over GF(g) are defined of length n when (n,q) = 1. Label

the coordinate positions 0,1,...,n-1. The code C is cyclic if

the coordinate permutation i + i+ 1 (mod n) is in the group of
G st Rn be the ring ol all polynomials in x of degree less

than n with the usual delinition ol addition of polynomials and
multiplication modulo (x“ - 1), We let a vector c=(c0,c1,”.,c _ﬂ

n-1

correspond to the polynomial ¢ +0 x+...+C X « Then it is

n-1

welt-known |21 that any cyelic code i1s an ideal in R and an
n

wiedd in K, corresponds to a cyelic code. As is usual we will

Clent ify vectors in cyel it codes with polynomials in R .
n

Nocommon way ol deseribing a cvelic code € is by its gene-

k..

Wot ko wWas supperted dn part by NSA Grant No. MDA S04-85-H-0016.
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rator polynomial f(x) which is a factor of x* -1 over GF(q) -
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then 54 and S2 are called a splitting given by (I

Another way to describe a cyclic code is by its idempotent gene Suppose C; = (e1> and C, = (ez) are odd-like cyclic codes

rator denoted by either e(x) or e. This is an idempotent of length n with the following two properties.

[az =e) in C which is a multiplicative unit for C. We denote 1) There is an a with (a,n) = 1, u (Cy) = cz and H, (C5) =Cy.

this by C = (e} . If we let u_; denote the coordinate permuta- 2) e; +e; =1+ 1/n h.

1
tion i + =i (mod n), then if C = (e}, C = (1 = u_1(e)). Then ¢ and C, are odd-like duadic codes.

Ope type of coordinate permutation which is pnrticuiirly 1f ¢y = <e1> and C, = (e2> are odd-like duadic codes, then

important for cyclic codes are the permutations My i+ ai C; = (1-e,) and Cé = (] —el) are even-like duadic codes. Fur-

(mod n) where (a, n) = 1. When a = -1, we have Hoqe ther ua(c;) - Ci, uﬂ(cé) = C; and if e; =1-e, and eé *=leq;
L 1
FACT 1, Let C, = ¢e)) . Then u (C,) = C, is a cyclic code. thente,s + e nil= /o b,

Further C2 = (ez) if and only if ua(e13 = e THEOREM 1, Let Cy = (e1> and c, = (ez) be odd-like duadic

1 t 3 3
FACT 2, Two cyclic codes of prime length are equivalent by codes and €y = (1-e)), C, = (1 =€y} be even-like duadic codes.
A

a coordinate permutation if and only if they are equivalent by Then the following hold.

1) CIn ¢, = {1/n h) and Bt (Cai= W
'
i
1

1 1 '
3) C1r\CZ = 0 and C1 i C2 = E,

a IJa.

We let h = (1,...,1) denote the all one vector. If h is of ZYNEy S = (/nh), i 0=1,2.

length n, then 1/n h is an idempotent where 1/n is computed in

GF(q). The following concepts originated in the study of duadkg- COROLLARY, dim £ = LA dim C; _ n-1 )
codes. A vector v = [Vﬂ,...,vn_1} is called even-like if
n-1 )
Z vy =0 in GF(q). Otherwise it is called odd-like. A code is
i=0
called even-like if all its vectors are even-like, otherwise i

THEOREM 2, Duadic codes exist if and only if a splitting

exists.

is called odd-like. The space E of all even-like vectors has Thus we can see by just examining the cyclotomic cosets

dimension n=1. Further, E = {1-1/n h). whether splittings, and hence duadic codes, exist. Facts | S=d

2 tell us when the duadic codes of prime lengths are inequiva-
lent. For fields of characteristic 2, we can actually construct

the idempotents of duadic codes directly from a splitting [1,3].
0 g i < n, then the cyclotomic coset of i is the set

| The binary case is especially simple. Here the four idempotents
Gy = 1i,91,9%i,.4 4}, Suppose 5; and 5, are each uniouns of non- : .
i are e + £ xJ, i =1,2, € =0,1. For many examples see [3].

zero cyclomic cosets. If §;N0S, = ¢, S, US, = {1,2,...,n-1}, i€ sy

and there exists an a such that (a,n) =1 and “a(51}=52“%(52)'51;l The next theorem gi&es numerical conditions for the existence of

duadic codes.
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THEOREM 3, [1,4 S‘ﬁ] Duadic codes of langth n exist é_ ¢
GPfgq) if and only if q is a square (mod n).

All quadratic re;§ﬂue-codes of prime length over GF(q) are
deadic codes. Many Re@ﬁ-Solomon'and punctured Reed-Muller co
are duadic codes [3,6f. As the next theorems show all exf%nd
cyclic self-dual codes over fields of characteristic 2 are
duadic. - . r ;m

Self-dual codes are a very important class of cudés which
include many algebraiéally interesting codes. Many of these co-
des have relations to combinatorial designs and even unimndufﬁ@
;attices so it is interesting to be able to determine when ex-
tended cyclic, self-dual codes exist and, in certain cases, tol}

be able to onstruct their idempotents.

THEOREM 4, C' is a self-orthogonal, cyclic (n, Eil) code if

and only if C' and (C')l = C are even-like and odd-like duadic
codes with spliting given by Hoqe

THEOREM 5, € of length n+1 is an extended cyclic, self-dual
code over GIF(q), (q = Pr) if and only if C is an odd-like dua-
dic code with spliting given by u_, and n = -1(mod p).

THEOREM 6. 1f € is an odd-like duadic code of length n,
then d? 2 n.

If, further, the spliting is given by p_;, then
d%r- d[) +F B

. THEOREM 7, If C is an odd-like duadic code of length n

whose spliting is given by Mg and dg -dB +1 = n, then d0 is
the-minimum weight of € and the supports of the vectors of

wéight dn constitute a4 projective plane of order dU-I.

138
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CODES FOR DETECTION OF NON-TRADITIONAL ERROR CLASSES

Yu.L. Sagalovich

ARSTRACT, Error classes arising under tech-
‘nical diagnostic are considered. Cyclic codes
for a detection of such errors are studied
too.

Constructing the error-correcting codes we suppose usually
three kinds of errors: independent errors, burst errors and com- 1-
binations of these errors. These kinds of errors are close to
the reality, as well as allow a compact description. Quite
other properties are typical for the errors, arising under the
discret circuit testing. Let us restrict our consideration to
the circuits, which realize the Boolean functions of m variah-
les. All n = 2™-1 nonzero vectors of lenght m come to the m in-
put of this combinational circuit. These vectors are generated
by a maximal length sequence generator. On the output of the
normally functioning one, we get the so called standard sequence.
In the case of internal faults of the circuit errors appear in
its output sequence. The comparison of the real and standard se-

quences solves the problem of detection for small n. For large

n one applies usually a convolution, i.e. a circuit output, which

comes to the input of a shift register with feedback. This shift

. I§
register realizes a division by some polynomial g(x) of degree T

When the real and standard sequenses give the same residue we
suppose no errors, othnrwise we have errors. The problem is to
construct a polynomial g(x), generating a cyclic code for the

output sequense errors detection. It is clear, that such errors
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There are 2 Boolean functions of m variables. Hence there

: 2 1
exist more than 2° = 2™ <ets of errors induced by faults of

the circuits. Therefore, only a very small part of all the zzn
sets of errors really take place in the output sequences.

It is also well known, that only a very small part of all
the boolean functions are realized in practice by combinational
circuits. The practical functions have a regular structure and
belong to classes, which have a compact description. For in-
stance, such are the functions with a nontrivial inertia group,
the functions with a small number of units, the separate func-
tions and the monotone ones.

The faults in the circuit having a regular structure induce
in the output sequence such sets of errors, which also have a
regular structure. It means, that the error sets are not random,
but may be at least approximated by sets with a compact descrip-
tion. That is why the real error sets are sets having a nontri-
vial inertia group, sets with a small number of units, separate
sets and monotone ones. These classes of error sets are new. The
list of classes may be extended. The generating polynomial of
the c¢yclic codes for the detection of these error classes must
have special properties.

Let us consider monotone error sets., It is not hard to show,
that the problem is reduced to the construction of a cyclic code
with a given information component set. Let for simplicity, the
nmonotone set has not noncomparable error pattern of minimal
weipht. Let us assume that all k zero components of the error
pattern of minimal weight n-k = r are information ones. If a cyc

li¢ (n,k)-code with the piven information set exists, then the
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maximal nusber of errer patterns undetected is no more than
22K B (+ jenetes the permited difference). If n> 2k, then al
errors, except at mest two, belong to different cosets, and
then are localized. Further we can always find an irreducible
polynomial p(x) such that after its multiplication by g(x) all
errors are localized. Im the case when there are several non-
comparable minimal weight sequences, we construct for each one
its own polynomial gtcx}. and common generating poiynonial G
is the least common multuple of gi(x). i '

In connection with the monotone sets there are twe problem
The first is: Does there exist a cyclic code for each informa-
tion component set. The second is: How many information sets
have a cyclic code .xé-pt those, which are obtained from the
trivial set 1,2,...,k by a cyclic code automorphism group. Thei

is also a special cyclic coding for other mentioned error sets,
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ON THE SUBCODES OF ONE CLASS BINARY GOPPA CODES

N.A. Shekhunova and S.V. Bezzateev

ABSTRACT: Goppa codes which form a family of
embedded subcodes of the separable codes from
one class are discussed. It is shown that
among these subcodes there are codes lying
on the Griesmer bound.

The q-ary Goppa code of length n ((L,G)-code) is set by two
vbjects: by a Goppa polynomial G(x) of degree t over the Galois
field GF(q™ and by a set of code position numerators L -{a1}2_1,
LCGF(q™, Ga;) = 0, a; = oy, 1,5 = T,m.

The g-ary vector a = (a1,12,...,an3 is a8 codeword of

(L,G)-code if an only if the following congruence is valid

0 mod G(x).

The code determined in this way has a minimum distance at
least t+1 and a dimension (number of information symbols)
kz n-mt.
For binary (L, G)-codes (q=2) and if Goppa polynomial
G(x) has no multiple irreducible factors (called a separable
code), then the minimum distance is defined by dz2t+1 [1].
In [ 2] we have discussed a class of binary separable (L,G)-

codes which have a codeword length
(1) i W

where m = 24, t = A 1, & - a positive integer and the dimen-

sion is difined by

(2} kK «n - m(t-5/2).
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The codes from this class are determined by the Goppa quﬁ

nomial

t

(3) Golx) =1 + gx + (gx)®71 4 &F,

41, and n, ¢ were determined &

where g eGF(2™, gt =1, t = 2
above. .
It should be noted that representatives of this class of

codes have parameters better than those of [3].

mial G,(x) is given by

21+1

ui(x} = GotxJ(x-BJ ’

where GO[B) =l vo=ado2 5L ke, and G,(x) was determined by (3)
Obviously, these (L, Gi)-codes for different values of i
and B are subcodes of the separable (L, Go}-code defined abowfé
All this indicates convincingly that (L, Gi}-codes forn‘ail
family of embedded subcodes of the separable (L, G,)-code fur%f
fixed value of R and different values of i, where Go[xJ is de-
dined by (3).

The minimum distance of (L, GiJ-code is at least

(4) d; = 2t + 2 + 1.
As to the dimension of (L, Gi)~code one may prove the

following

ASSERTION, The dimension k; of the (L, G;)-code satisfies

the following relation for i = 1,2,3,...

by (Bg-1)

2 n-ml (t+i) - 4 "‘z"“"":‘_' 11 + &,

(5) ki
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{ 1, if 2i+1 = 0 mod ¢,
5-
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Bl g [2is1],

where

0, in the other cases.

The proof is based on the fact that the parity check mat-
rix of the (L, G;)-code containing t +i rows may be presented
as a combination of the parity check matrices of the (L, GOJ—

i ﬂJ(A3—1)
code and of some BCH-code so that A = 4y * Az H o ol
rows of this matrix may be presented as linear combinations of
remaining rows of the parity check matrix of the (L, Gi)-code.

As an example, the following table shows the parameters of
a family of embedded subcodes obtained from the (55, 16; 19)-~
code with a (oppa polynomial

9

GD(X} = TSy

56

and L€ (6FC2"01% 07 0"t . 080 143,

Table

Parameters of embedded subcodes of the (55, 16, 19)-code

Estimations The computer-aided true
i estimations
d; kg di k,
1 21 10 23 10
2 23 10 23 10
3 25 6 27 6
4 » 27 6 27
5 29 1 31 3
6 1 31 1 31 3

In the left part of the table there are estimations of di

and k; which were respectively computed from formulas (4) and
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mations of these pirameters.
The codes (55, 6, 27) and (55, 3, 31), lying on the Gri

mer bound are worthy of notice.
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THE DECODING OF ALGEBRAIC-GEOMETRIC CODES

ACCT

A.N. Skorobogatov and S5.G. Vlgdug

ABSTRACT: We present two decoding algorithms
for algebraic-geometric codes. In the case
of hyperelliptic curves it is possible to
correct any number of errors up to the half
of the designed distance. We construct a

good family of binary codes endowed with a
deconding algorithm of polyvnomial complexity.

Algebraic-geometric codes (or AG-codes) have been discover-
ed by V.D. Goppa in 1981 [1]. Soon after that Tsfasman, Vlﬁdu;
and Zink [ 2] showed that g-ary AG-codes based on modular curves
lie above the Gilbert-Varshamov bound, q being an even power of
a prime, q = 49. It should be mentioned that these codes have
a construction algorithm, polynomial in the length of a code
[ 31 . However, until recently almost nothing was known about de-
coding of AG-codes. In 1987 J. Justesen and his colleagues [ 4]
found a decoding algorithm for AG-codes on plane curves, which
is a peneralization of Peterson's decoding algorithm for Reed-
Solomon codes. This work is a vesult of thinking over the ideas
of [ 4],

Let X be a smooth absolutely irreducible algebraic curve
of genus g over Fq. and let E be a divisor on X of degree e.

Let C be an AG-code over Fq constructed from a curve X, a divi-
sor D = aE, and a set of Fqﬂpaints J}. {F1,...,Pn} on X outside
the support of E, 2g-2 <ae <n-g. Recall that C has parity check
matrix [|fi(PjJ|},whgre f1,...,fp form a basis of the space

L(D). The code C has length n, dimension @n-ae+g-1, and the

designed distance d(C) = ae-2g+2.
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THEOREM 1, Let t and T be non-negative integers such that Anc  version of ] is obtained if one takes F of the
el Y ;e el Lo e o o ' form iE, but . > 1 this gives a slightly weaker estimate
Y _ . ] . than (1). In the cas. v E reduces to an Fq-point (and F is
There exists a decoding algorithm J, which corrects any configu- e Lo I i apinibatiy phoveding SoTE,

2 ) 3 g
ration '6f t errors and 1 erasures. ] requires O(n™) elementary

Krachkevskii [5].
operations in the field bq'

; G ; COROLLARY, Let q be a squarc.  ‘re exists a family
Let us call points of T corresponding to pesitions of

of lincar q-ary codes cndowed with a decondin, 'morithm cor-
recting [(d-1)/2] errors, whose complexity is polynow.. .n

_ the length of a code, with parameters asymptotically satisty.
r. Then j werks in the foellowing way. let I = (t+14+g)P. Let

_ R+d8.1=-2/(7G=1). (Starting with q = 361 an interval of this
{gqs0v0sg, ) and thyy..o, by lie buses of the spaces L(F) and

line lies above the Gilbert-Varshamov bound.)

LiD=F). Let us cheese 8 basiz 1I|,...,si! of the subspace ol :
s Il the genus g of X is preater than 1, then in general the
LE{F}y which tonsgists ol functions vanishing on erasure loca-
. alyorithm J corrects ITess than [ (d(C)=1)/2] errors., We can
tors. Let w = la],...,an] be & reccived vector. Let us conside

improve on (1) by medifying the deconding algorithm. To this

the syndromes p

cnd let us consider s(l) = max{i( (ie+e+1)/2] = dimL(iE)},
n

sij“” Liji arkjil‘rlhj(i’rj Uis si(h) & [ipred)/2).

and the following system of linear cquations: THEOREM 2, There exists a deconding algorithm € of the

vode (*, which corrects any configuration of [(d(C)-1)/2] - s(E)

LU e

(2) sij(alxi =05 T RAS L

errors. € requires D(ndl clementary operations in the field Fq.

i=1

Assume that (1) holds. Then we prove that (2) has a non-triviall e algorithm € consists of solving systems of the form (2)

solution, and if (Y];--.sYIJ is a solution of (2), then tor I = E,2L,...,bE, where b is the least integer for which (2)

i

= ¥
gy o

hits @ montrivial solution. Then € works in the same way as J .
yjki vanishes on all error locators und erasurce locua-

1

(n P val ! EXAMPLE 1, ELLIPTIC AND HYPERELLIPTIC CURVES, Let X be a

t + Let .y e thie sot "of “zerces of govin B CValoes: 6

2t s R ) _ - curve over b cndowed with a map to P ot degree 2. (Such a

errors and erasures satisfy the following lincar system in 1 . g

vurve can be given by the equation Yy #p(x)y+q(x) = 0, where
ST

212 iy pLx) and q(x) are polynomials.) X is called elliptic it g = 1

_Z] fj(Qij:i = s(a,fi], 8 S and hyperelliptic if g » 1. Let L be a hyperelliptic divisor
o ‘
- on A, i.c. the sum of inverse images of a point of r'. Then
where s[a,fj} = iE1 Hifjipj) are the syndromes of a. s(l) = U, Note that curves with a hyperelliptic divisor exist
148 Lo
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for all genera.g, in fact, each curve of genus £2 has one.

EXAMPLE 2, PLANE CURVES, Let X be a smooth plane curve
over Fq, XCJPZ is given by a homogeneous equation f£(x,y,z) = 'tﬁ'
Let E be a hyperplane section divisor om X, i.e. a sum of int
section points of X witﬁ a line in Pz taken with proper multi
plicities. Then e equals the degree of £. If e is even, then
s(E) = e(e-2)/8, whereas the genus g of X equals (e-I](e-é){Z;{“
Thus the gap between [ (d(C)-1)/2] and the number of corrected Ff
errors for € is approximately twice less than the one forJ; 1f

of course, the same phenomenon occurs for odd e. [

AG-codes arising from plane curves and their decoding werg

as a variant of the algorithml , where F is a multiple of E.

EXAMPLE 3. FERMAT CURVES, Let X be a Fermat curve over Fq,?%

with q. Let P = (1,0,1). If m is a multiple of ¢, then

s(P) = m(m=-4)/8+1, which is somewhat better than for an arbitrﬁ{

ry plane curve. The situation for other values of m is similar
The following theorem is cbtained from Theorem 1 using confi

catenated codes (cf. [6]1) and the method of [71.

bound [8] on the whole interval (0,1/2).
The detailed statements and proofs of the above results will
appear in our forthcoming paper. We wish to express our grati-

tude to J. Justesen for communicating to us the results of [ 4
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ON CODES HAVING DUAL DISTANCE D’ z K

Ludwig Staiger

ABSTRACT: We derive a formula for the weight
distribution and some bounds on the parame+
ters of a linear[n,k]l- code over GF(q) whose
dual code has minimum distance d' 2 k, and
we draw a connection to MDS-codes.

One of the bounds on linear [n,kl-codes over a Galois
il

field GF(q) establishes that their minimum distance d satislies

the Singleton bound

(1) dsn-k+1.

Codes with equality in (1) are called maximum distance se-
parable (MDS). They have many fascinating properties (cf. Ch. 1
of [1]). One of these properties is that their weight distribu-

tion is uniquely determined by n, k and q:

1 o AEE =10,
(2) AP .
7[n,k,n-1), otherwise,
k=1 j-s jaens caked
where 9 (n,k,s) = I (-137% « (DM 7-n.
3=0 2

Moreover, the dual C' of an [n,k]-MDS-code C is also MDS, i.e.
is an [n,n-k,k+1]-code. But MDS-codes do not exist for arbitra-
rily large code lengths n (if we fix the alphabet size g). It
is conjectured that the maximum length m(k,q) of a nontrivial
(i.e. 2 s k s n-2) [n,k]-MDS-code over GF(q) satisfies

q+l, if 2 sk 5 q;
(3) m(k,q) = !
k+1, if q < k

except for
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This conjecture is proved for k = 5 or q s 11 or q > {4k—5)2,

otherwise one has the bound
mik,q) s q + 'k -4,

In this paper we consider the class of codes which come close
to MDS-codes in that their dual codes have distance d' = k.
These codes do not fully enjoy the above mentioned properties
of MbS-codes, but as we shall see below their weight distribu-
tion resembles the weight distribution of MDS-codes.

The following examples of [5,3,di!~codes Ci over GF(q) with
q = 3 all of whose dual codes C; have distance d' = 3 show that
for (d' = k)-codes neither their distance nor their weight dis-

tribution is uniquely specified.

Let
(1001t 10011
Gy = |01011 and Gy = 01011
00100 30118

with t = 0,1 and B8 = | be the generator matrices of the codes
Ci, where i€GF(q). Then the code CI has d1 = 1 whereas dg = 2 -

for all g = 1. For the weight distribution of the codes C, we

20(9=-1), if B = 0,
obtain Az =

(q~t) , ifE g = 0,1. 8
llowever, the weight distribution of an [n,k]-code C over

B

GF(y) satisfying d' 2 Kk can be calculated by the principle of

in¢lusion and exclusion [2]: For i 2 n-k+ 1 we have

: -k Al
= : k+i-n .n S A e e

(5) Ai Q(n,k,n-l) + {=1) 21 Aj (n-i)(n—k—j)'

J

sSince A

PN implies the following bound on the

0, eq. (3)

parameters af a (J' . k) -code

AR ¢
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1 8 S L | X
(6) ) q .
Moreover, we obtain the following bounds on (d' K)-codes:
(7) n - d £ m(k-1,q), and
2
(8) TS goE k= 2

Equality in (6), (7) and (8) is achieved for the binary [8,4]

extended lamming-code and for the ¢-ary simplex codes of dimen-

7
sion 3. (These ave In = 4 +4+1,3,4 |-codes whose dual codes

dre the [n,n-5,5]

Hatua b g =copes. )

Fipally, we Bwention & new characterization of linear MbDS-

codes which 1ullows frow eg. (H):

PROPUSTT | v An In,kl-cade € over GhGy) is an MRS-code i

d' « k and A = g(n,K,n-1) for some i . n-h+l.
In connection with this proposition the lollowing guestion
arises: Which combination eof weight cquations

A. =0 (n,k,n-1), and
1 q ] » 3

(9) . i
Aj = q(n,n-k,n-J]

for an [n,;k]-code € and its dual code C" is necessary and sul Li

cient to specify the code C as an MlS-code?
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THE COVERING RADIUS PROBLEM AND CHARACTER SUMS

A. Tietdvidinen

ABSTRACT: Let R(t,M,m) be the covering radius
of the binary BCH code of length (2™-1)/M and
with designed distance 2t+1. It is known [8]
that for large m
2t-1 s R(t,M,m) =
Using a deep result of Lang and Weil, Skorobo-
gatov und Vladut [7] showed that for large m
R(t,1,m} = 2t-1.
Now we shall see that some cyclic codes can

2t

be considered by means of elementary charac-
ter sum methods.
Let t and M be fixed positive intey .d let m be a posi-
tive integer such that ‘1/(2'-/). Denote 2" oy q. Assume that
.ary BCH code of length n = (2™-1)/M and
arce I. Denote the covering radius of C

vl gonsider = g Homuds | LOREE M omdl

Juoblem relat-. “n ,: tions over finite fields be-
targe m) R(t,M,m) is also the smallest s such that,

Jor cach (h1,...bt}eF;, the system

5 (b
C _21 x§31"]“ o G = A
J =

is solvable in Fq.-Considering the case where (b1,...,ht) =

(0,.:.,0,1) one can see that

$2) 2t-1.

R(t,M,m) 2
turther [ 31,

(3) R(t,1,m) 2E=T whienit == 1,205 tandom & 4.

"
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Using exponential sums for polynomials of one variable and thes

Carlitz-Uchiyama bound [1], Helleseth [4] showed that

(4) R(t,M,m) € 2t+1 if 2"

In fact, a system of equations, where the degrees of cqua#f
tions are not depending on the size of the field, is solvable

in large finite fields if the number of variables is greater

that two times the number of

that we are ahle to use the Carlitz-Uchiyama bound or some
other bounds which are approximately as good as the Carlitz-
Uchiyama beund. Thus in orde:

increase the numbher of variables, or to decrease the number ef?
L |

variables by opne in such a

tions will

We may increase the number of variables by observing that

nit,M,m) is also the smallest integer s such that, for cach

(b1,...,btJ!F;; the system

(5) _; R e bt Lt R
i=1
has a solution [xl,...,xs,z] RETE g e T o MR TR & T Earli1:j
Uchiyama bound, we may prove [8&] that
a3 TR, M) 4 2t 02T S (R

Now it is naturdl to ask: For which values of t ol N
R(t,M,m} = 2t-]1 when m is ldrge?

Thus assume that 5 = 2t~1. Consider Tivst the case o [
Then we can show that in (5) it is sulficient to cansider the
case where h1 = 0. Solving Xae 4 { rms eyt 40 ot e an
substituting it to the others, wy ot

21 ol S
B PRI e
31| k&

Wiy

decreased by one.

VARNA'’

2 reat-1)M-13 Y82,

cquations and the system is such

to improve (4) we could try to

thit also the number of equn-

VARNA'88 ACCT

Now we have decreased both the number of variables and the
number of equations by one, but because we are not able to se-
parate the variables, we can not use the Carlitz-Uchiyama bound.
However, if t is of the form %41 then it is possible to use a
deep theorem of Deligne [ 2] and (after complicated calcula-

tions) to get the following result 19]:

(7 Ret, ) = dt=1

if (i) m is large and (ii) t is of the form 2"+1. Further,
using a deep theorem of Lang and Weil [5] Skorobogatov and Via-
dut showed [7] that the result (7) can be proved without using
the assumption (1) but the corresponding result for M > 1 is
not truae.

This result and the results (2) and (6) are in a sence the
solution of the asymptotical covering radius problem of binary
BCH codes. However, the theorems of Deligne and of Lang and
Weil are really very deep and they do not give good estimates
[or acceptable m's when R = Zt-1 or R = 2t, or for R when t,

o oand M ate given and m is not very large. Therefore it is
«till natural to consider this covering radius problem by using
more elementary methods, cven more clementary than the Carlitz-
Uehavama bound.

Fhese kinds of results are very modest, because there are
very few o pood elementary estimates on character sums. In this
tallt | aleal with

some cascs. First, consider the cyclic code

o ted Ty ml(x]mtlx}. where t 41 & 3, and ask whether

G, the covering radius of this code €, is equal to 3. In

e deviads, e ask whetloy
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(8)

is

ch-

Fortunately, thesc kinds of character sums can be calculated
exactly (see e.g., [6]). Thus we can calculate the precise vi-

lue of the number of solutions of (8) and see for which wvalues

of
of

£ 2 a3 )

the generator polynomial is m1{x)mt (x)...m
1
However, for large k the estimates for acceptable m's are not

good.

. P. Deligne, La conjecture de Weil, I, Inst. Hautes Etudes

. S. Lang and A. Weil, Number of points of varieties in finite

o 18
Xy & x; ¥ xz = by
X4 + X, * Xg o= b1

2
solvable for all (bl,bz)qu.
¥hen we use the character sum method, we must consider
1acters with the polynomial arguments of the form

u u ,Zu
Pl i R T

m this pair of equations is solvable. The very special case

this example, where u = 1, gives another proof for the case

This elementary method can be extended to the case where
u.

()t = 2 2a1 5
ty i
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ON TURAN 3-GRAPHS

D.T. Todorow

ABSTRACT; The Turan numbers T(n,k,3),

n < 9(k-1)/4+1/2 were determined in [5]. The
corresponding optimal 3-graphs were described
for n< 9(k-1)/4, n # 9(k=1)/4-1/4 in [4].
Here it is given a classification of the op-
timal 3-graphs in the remaining cases

(n = 9(k-1)/4+q, q = 1/4, 1/4, 1/2,

(n,k) * (11,6)). The value of T(n,k,3),n

= 9(k-1)/4+q, q = 3/4,1 is also obtained.

Let X be #« et of n elements, i.e. |X| =nand n 2 k & t

be positive ir‘ zers Denote by X° the set of all s-subsets of

X. A hypergran' r¥.- is ca ,ed (n,k,t)-grapl (Turan t-
graph) if EC .nd fo aver 4e¥" there exists BE such that
"C§S. The minimal number of edges i X Nt is
deii. VedTien ks i Hids calile atimal i S |
problem ot “terminatinm af Ti1 | v

(n,k,t)-graphs was posed solve too

1941 [1]. For n s 9(k=1)/4+1/:,1(n,. J \'s

A description of all optimal (n,k, -grapi

n # 9(k-1)/4-1/4 was given in [4]. In the present uote w 4°
a classification of the optimal (n,k,3)-graphs, n=9(k-1)/4+q
q=-1/4, 1/4, 1/2, (n,k) ¢ (11,0). Using this classification
it is obtained the value of T(m,k,3) for n = 9(k-1) + q,

q = 3/4,1.

Let H = (X,E) be an (n,k,t)-graph, X;CX,X; = X\X, amd for

3
every Be¢E we have either BeX? or Bexg. Denote E1 = Er1x1,

E, = Elﬁxg. Let Hy = (X{,E;) be an (ny,ky,t)-graph, I, = l\;rhff
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be an Ln;,kz,t)-graph, ny+n, = n. It is easily shown that H is
an (n,k;+k,=1,t)-graph: if ST X contains no t-tuple from E then
isnax; s k=1, |Sr1x2[ s ky-1, i.e. |S| s k +k,-2 and every
1L1+k2-1)atuple of X contains an edge from E. H1 is called
{n1,k1,1)—camponent of H (H2 being an [nz,kz,t)—cumponent3 and
wo say that H is a sum of Hy and Hy,. H is called connected
tn,k,t)-graph if it contains no pontrivial components. Using

that
T[n|+n2,k1+k2-l,t) 5 T(n1,k1,t) + T(nz,kz,t)

it is easy to prove

PROPOSITION 1, Every gnj,k1,t)—component of an optimal

(n,k,t)-graph is an optimal {n1,k1,t)-graph.

Now let aeX. Denote E(a) = {BeE: a¢B}. Clearly He = (x\{a},
Efa)) is an (n-1,k,t)-graph. H is called an extension of H, .

Belew it is given a brief description of some Turan 3-graphs
which are components in the optimal 3-graphs in the admissible
range.

Let A,BCX, ANB =¢. Denote by AB the set of all triples
containing two elements from A and one from B. Now consider

A],...,Akf1J Air‘Aj =%, i,j = 1,...,k-1, |A;| = 2 and denote

k-1 k-1
il 181 Ai’ E = 181 ﬁiAi+i (Ak =A1] .Ck_1 = (X,E) is a

(2k-2,k,3)-graph which is called a (k-1)-cycle. Removing a point
{from Apq and the corresponding 3 triples from E we obtain a

(2k-3,k,3)-graph Proq which is called (k-1)~-chain. Let

Ag-p = Layb), Ay 4 = {cl. Consider By,...,B. _,,B ., where

B _5 = {a,c}, Bl

b I R Biﬂ B

= {b}, ByNA; =8, i =1,...,0°3,

il T ¢J i:j = T,...,m-v'[. lBi' = 2,
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. k-1 m=1 k-2 m-2
= o 1 = = . : = 4
Danotg 11 Y Ai’ XZ itﬂ Bi' E1 1UI A1A1‘1, EI i81 Blslf

= {x]u X, Bqu EZ) is a (2k+2Zm-9, k+m-3,3)-graph which

Pro1,m-1 22
is called a (k-1,m-1)-chain. It is known that T(9,5,3) = 12
[2], [ 31 . The corresponding optimal (9,5,3)-graph is the
affine plane of order 3 (Steiner triple system of 9 points).
This is the only optimal (9,5,3)-graph [ 5] which will be denot-
ed by GAG. Removing cne or two points from it one obtains an
optimal (8,5,3)-.raph and an optimal (7,5,3)-graph denoted by
GAG1 and GAG,, respectively. These graphs do not depend on the

removed points. About T(n,k,3) the following result holds [ 5] :

i
THE"REM L1, (A) If kgns3(k-1)/2 then T(n,k,3) =n-k+1j

(B) If 3(kL /2<nsg 2(k-1) then Ten,k,3) = 3n-d4k+4;
(C) If 2(k-1)<n=9(k-1)/4, n=9(k-1)/4-1/4 then
T(n,k,3) = 4n-6k+6;
(D) If n = 9(k=1)/4+q, q = =1/4,1/4,1/2 then
T(n,k,3) = 4n-6k+8.
The structure of the optimal 3-graphs in the cases (A), (B)

and (C) of Theorem 1 was given in [4]:

THEOREM 2, (A) If ksns 3(k-1)/2 then every optimal (m,k,3)=
graph consists of n-k+1 disjoint triples.
(B) If H is an optimal (n,k,3)-graph, 3(k-1)/2<n< 2(k-1) then
every connected component of H is CE’ Pm' Pr,g'
In particular, if n = 2(k-1) then every connected component of

GAU1 or GAGZ.

H is C, or GAG,.

(C) If 2(k-1) <ns9(k-1)/4, n=9(k-1)/4~1/4 then every optimal
(n,k,3)-graph is a sum of n-2(k-1) GAG's and an optimal
(2x-2,x,3)-graph, where x = 9(k-1)-4n+1.

The description of the optimal 3-graphs in range (D) of
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Theorem 1 is based on the following proposition

ACCT

PROPOSITION 2, If H = (X,E) is a (2k-2,k,3-graph, |E| = 2k-1
and H contains no GAG1 component then there exists no extension
H' = (X u{a},E') of H with |E'| = 2k+3, |E'(b)| 2 Zk-1, beX.

Further, we have

THEOREM 3, If n = 9(k-1)/4+q, q = -1/4,1/4,1/2 then every
optimal (n,k,3)-graph is a sum of n-2k+1 GAG's and an optimal
(2x-1,x,3)-graph, x = 5-4q.

According to Theorem 3 the classification will be complete
if we know all optimal (5,3,3), (7,4,3) and (11,6,3) graphs.
The first case is trivial. The optimal (7,4,3)-graphs were
described in [5]. So, it remains the case (11,6,3).

As a consequence of Theorem 3 it is obtained

THEOREM 4, If n = 9(k-1)/4+q, q = 3/4,1 then T(n,k,3) =
= 4n-6k+10.
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EXTREMAL DOUBLY-EVEN SELF-DUAL CODES DERIVED FROM
COMBINATORIAL DESIGNS

Viadimir D. Tonthev

ABSTRACT: A general method unifying the
known censtructions of binary self-orthogonal
codes from combinatorial designs is describ-
ed. As an application more than 80 inequiva-
lent extremal doubly-even self-dual codes of
length 40, 56 and 64 arec constructed {rom
Hadamard matrices of order 20 and 28, and

< mmetric 2-(31,10,3) designs. Many of these
codes do not admit nontrivial automorphisms
of odd orders, and there arc codes with tri-
vial automorphism groups.
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COVERING RADIUS OF SOME CYCLIC CODES

Evguenia D. Velikova

ABSTRACT: In this paper we consider binary
cyclic codes of length n = u.v obtained by
the factorization x“v-I-[x-1][(xu-i)/(x-l)]
[(xv-l}/(x-1)]f1[x} where u, v are odd inte-

» gers with (u,v) = 1. We find out upper and
lower bounds on their covering radius. When
u = 3 the exact value of the covering radius
of these codes is established.

In this paper we study the problem of finding the covering
radius of some binary cyclic codes. Let u and v be odd integers
such that ged(u,v) = 1 and u < v. We consider binary cyclic co-
des of length n = uv obtained by the following factorization

el il Ib(x).f1{x].fu{x)¢fv(x},

where
FAAINY gt

iR = L0 e PRSI (x"+1)/(x+1),

£o0x) = (xV+1)/ (x+1).

some of these codes are composed of certain repetition of
etk Fi [s=u or s=v) or E [Es is the [s,s-1,2] even weight
coude o and using [ 3] we can calculate their covering radius and
the coverine radius of their dual codes. In that way we obtain
the vovering radius of the codes with generator polynomials
C ey Y )L () Ty () G f () £(x), £y ()L F (X)),

1l .fiix'.!”{xl, ﬂ][x].f1[xl.fvfxl.
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The niniiun distance of each of the rest four codes is

given by the following theorem.

THEOREM 1, Let C be a cyclic code with length n = uv
(u < v) and a generator polynomial g(x). Then:

(1) If g(x) = fl(x) then C is a [uv,u+v-1,u] code and C has

(u-1)/

2 kT
a weight enumerator A(z) = L (gi}(izl*zu 21]“1
i=0

(i1) If g(x) = ﬁa(x).fi(x] then C is a [uv,u+v-2,2u)] code;
(iii) If g(x) = fu(x).fv(x] then C is a [uv,uv-u-v+2,4] °°dﬁf

(iv) If g(x) = fu(x).fu(x].fv(x] then C is a [uv,uv-u-v+1,4]

code.

ProorF of (1), The code C with a generator polynomial £q0x)
contains the code C' with a generator polynomial f1(x).fv(x]
which is v times repeated Fg, as well as the code C" with a
generator polynomial fj(x).fu(x) which is u times repeated
7.
x; = {i, i*u,...,i*(v-1)u} and C" is generated by words y

C' is generated by words X i=1,...,u, with a support

J‘,
j = 1,...,v, with a support Yj = {j, j¥V,vea,j*(u-1)v}. We can

arrange the coordinates {1,2,...,n} in a uxv matrix

(111 S5 11v)
e

. h
such that ist L (mod u) and ist =l (mod v). Then the

words X5 fom o aeg s and Yj' j =1,...,v, are presented as

(1 0 s @
eavianns ” 0 jainili mine) 0
xye w3 ges A0l d=th pow: ¥ = N S i
i
assrans . 0l s 1 el
(TR A j-th

column
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The word, which is a sum of t words of {xili e
and s words of {yjlj = 1,...,v} has a weight t(v-s)+s(u-t). In
this way we calculate the weight enumerator A(z) of the code
and d = u.

The minimum distance of the other codes is obtained using

A(z).

THEOREM 2., (1) The code C with a generator polynomial
g(x) = fu{x}.fv(x) has a covering radius R satisfyind the ine-
quality

(v-1)/2 < R £ (v-1)/2+(u-1)/2.
(ii) The code with a generator polynomial
g(x) = fD(xJ.fu{x).{v(x} has a covering radius R = v.

The upper bound on the covering radius of these codes is

obtained applying the bound with a generator polynomial of a

cyclic code [2]; the lower bound is established using Supercode

Lemma [ 1] .
THEOREM 3. (i) Llet vy = v - [v!zu"j.zu" and

Je e
i-u(i) + t, where O

11,8

v, = I t < (rfl}. Then the code C with a

generator polynomial g(x) = f1(x] has a covering radius R4,

where
(u=1)/2 r (u=1)/2
¥ p Mir 1 (Mi+ () £ RS |y I (P
Lz“"J i=0 * i=0 S Lz"' jsg T J

(ii) The code C, with a generator polynomial

g(x) = fﬂ[x}.fz(x} has a covering radius Rz. where
Ry + 1 £Ry g Rl o oo 2,

R, being the covering radius of the code from (i).
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ProoF oF (1}: 1f we arrange the coordinates in a uxv matrix
(see the proof of Theorem 1) then the words Xi9 IS AU N
and yj, j =1,.,..,v, from (1) generate the code C. We obtain
the upper bound on the covering radius using the bound on cover-
ing radius of self-complementary codes [2].

Let us consider the word aeF"Y, We take vazu'1J copies of
each column of length u and weight no exceeding (u-1)/2 and the
other v{ = v - Lv!Z“-IJ.Zu'1 columns are distinct and have the
minimum possible weight. The word a has a weight

w = l;%:TJ(u;%;/z(;)i * igo(?}i + gfrel)
and it is the leader of the coset a+C. Hence R 2 w.
When u = 3 we can obtain exact value of covering radius of

these codes.

THEOREM U4, Let v be an odd integer and gcd(v,3) = 1. Then:

(i) The code with a generator polynomial f;(x) has a co-
vering radius R = L3v/41 and the code with a generator polyno-
mial fﬂtx).f1(x) has a covering radius R = L3v/4d + 1.

(ii) The code C with a generator polynomial fs(x).fv[x] has
a covering R = 3, when v = 5 and R = (v-1)/2, when v > 5.

The proof of (ii) follows from the fact that a parity check

matrix of C is equivalent to

VARNA'88 |

143 4800 hiae 2000

1 PR, B 1 AR Ll

Giaw s (GO v e H1
H= meh | e taarent | O = T

400 D00 aws A1 2

n I e ) RS AR

(o7 (AN o g s [y |

and when v > 5 the covering radius of C is equal to the covering

radius of a code with a parity check matrix H.
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EXTREMAL CODES OF LENGTH 40 WITH AN AUTOMORPHISM OF ORDER 5

V.Y. Yorgov and N.P. Ziapkov

ABSTRACT: It is known that only the primes
19, 7, 5, 3, and 2 can divide the order of
the group of a doubly-even [40,20,8) code.
The codes which have an automorphism of order
19 or 7 are known. In this paper all such
codes with automorphism of order 5 are con-
structed.

1. INTRODUCTION

A doubly-even self-dual code of length 40 is called extremal
if its minimum distance is 8. The first known example is the
double-circulant code by the terminology of [3]. This code has
an automorphism of order 19 with two cycles and two fixed
points. It is known [ 7] that if an extremal }ode of lenpth 40

" has an automorphism of odd prime order r with ¢ r-cycles and f
fixed points in its cycle decomposition then one of the follow-
ing possibilities holds for r-(c,f): a) 19-(2,2); b) 7-(5,5};

c) 5-(4,20); d) 5-(8,0); e) 3-(6,22); f) 3-(8,16); g) 3-(10,10);
h) 3-(12,4). All extremal codes are known in each of the first
three cases [7] . There are three codes in case a), five in case
b), and only one in case c).

More than B0 inequivalent extremal codes of lenpgth 40 are
constructed in [8] and [5] from Hadamard designs and lladamard
matriccs of order 20. One of these codes is with a trivial

automorphism group.
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2, EXTREMAL CODES WITH AN AUTOMORPHISM OF ORDER 5 oF Type (8.0)
We will use the techniques devtlopqd 05 2] 5 T and
[6]. To the end of this work let C be a doubly-even self-dual
[40,20,8] cade which has an automorphism ¢ = (1,2,3,4,5)...
{36,37,38,39,40). The action of ¢ on a vector v = (v1,v2,...,v

is determined by the equalities (va]i n vy where j = 15-1,

40}

i=1,2,...,40. Denote o = {!,2,3,4,5},...,03 = {36,37,38,39,40},
and let vini be the restriction of the vector v on 2. It is

known [ 2] that C = F(C)®E(C) where F(C) = {veC :
E(C) = {yeC :

vo=v},
wt(v|niJ =0 (mod 2), i = 1,2,...,8}. Every vec-
tor v of F(C) is constant on each cycle. Denote by =(v) the vec-
tor obtained from v by choosing one coordinate of each cycle of
v. It is known [ 2] that the code »(F(C)) is a self-dual doubly-
even code of length 8. Only two such codes exist and only one
of them (the exended Hamming code) is doubly-even [4]. Thus
n(F(C)) is equivalent to the extended Hamming code H of length 8.
Let P be the cyclic code of length 5 generated by x-1. The
code P is a field of 16 elements. Nonzero elements of P are
powers of a« = 1+x in the factor-ring Fz[x]/(xs+1]. For v from
E(C) we replace v|ﬁi = aja,a,aza, by the polynomial
au+a|x+...a4x4 from P, i = 1,2,..,.,8., Denote the result by ¢(v).
Then ¢ (E(C)) is a length 8 code over the field P [2]. It is
known [ 2,7] that C is self-dual if and only if »(F(C)) is self-

dual and ¢ (E(C)) is self-dual under the inner product
)] (u,v) = u,v1‘+uzv;+...+usv;.

As w(E(C)) is completely determined we have to obtain all possi-

bilities for ¢ (E(C)). Every product of the transformations:

.

(2) a permutation of the cycles of C;
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(3) a multiplication of the j-th coordinate of ¢ (E(C))
3t

by « 7 where 0 stysdoand § = 1,2,3,4,5;

(4) the substitution x + x° in ¢ (E(C))

leads to a code equivalent of C [ 2,6] . We use these trans{orma-

tions to obtain equivalence classes of all (&, 4, d.3] self-

dual P-codes under the innmer product (1). ke consider two cases,
The first case deals with all such codes which do net have
a weight 5 vectnr. These codes are divided inte two classes

with representatives the codes generated by the matrices

i1 Ao 0, 08 W a? ol

P L Rg =F || where A = 10 5 |land the
|

L oo gl A VR LS

blocks are 7xZ matrices over P.
All other codes are discussed in the second case. It turns
out that there is a code in each equivalence class which is pe-

nerated by a matrix with e 0 0 0 n5n5u5u1n

as a first row.

Fixing the first row of such generator matrix we obtain 27 and
55 candidates for the second and third row. A computer surch was
made in order to determine all matrices of the given type and to
divide the corresponding codes inte classes under the transfor-
mations (2), (3) and (4). It was found that there are 7 classes y
which are fixed by the codes with pgenerator matrices Bj aver I

A - 3 5
of the form [ I, Qi] where Qi is 4x4 matrix with a ususn]n

H B
first row, i = 1,2,...,9. We give the powers of o in the next
rows of Q1: 7 i PR UL s A s RO % 0 e B | I Qz: i R L
S,=w=.0,55 5,0,-=,5; Qs 10505055 =%,5;0,55 e == 00 520

Qg 5,5,10,5; 5,10,5,55 1035;5:53 Qct 7,15,0,==5 13,7,0-s=;

O B | IR

10,10,10,5; Qg2 7,15,0,-=; 3,2,7,0; 9,14,5,10; Qy:

10,8,6,05 10,11,13,10; Qgz 7,13,0,-=; 12,3,==,05 6,9.,5,10;

VARNA'88 ACCT

Q: 15,14,15,0; 0,7,11,0; 10,5,5,5 where -= means that the cor-
responding element is the zero of P.

Let 1 be a permutation in Sy and D be some of the determined
11 matrices Ai’ Bi' Denote HtD the [ 40,20] binary code fixed by
:_](H1] and ¢_][D}. Consider the products of transformations
(2}, (3), and (4) which keep invariant the code generated by D.
The permutation parts of all such products form a subgroup of
Sg which we will denote by C(D)). The next two lemmas are immi-

diate.

LemMA 1, If t, and v, arc permutations from S, and

8

Ggr (D) = G, ,G(D) then the codes lir,D and Hi,D are equivalent.
LEMMA 2. The code HTD is extremal if and only if there are

not a weight four vector in i and a weight four vector in D with

nonzero components ol the form & which have a common support.
hemote wy = (17)(46), u, = (35)(4678), ug = (345),

y = (2358)(47), ug = (1532)(47), ug = (28), uy = (28), ug = (37),

and yg = (14378265). Let R; be the result of the action of u, on

colunns of B. and M, = {(123),(132),(13),(23)},

Mot = e iCE2o0  (132),1012) (130, (231,

Moo= {e,(243),(234),(23),(34),(24),(14),(14) (23),(15), (15) (23) 1,

g = L3, (23) 0, M = (e, (13),(25)), Mg = {e,(13),(23)1,

My = e, (125),(132),(12),(13),(23)), and Mg = M, be a right tran-

versal to the proup K4={e.[12]{34},{!3)[24},(14)(23}} in S.. Now

5

we are ready to formulate the main result of the work.
THEOREM. lvery extremal code of length 40 which has an auto-

morpitism of order 5 is equivalent to some of the following codes:

s BT, 2045, H[E,B‘A:, “Tini where tieMi, il e S Y
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A RATE 3/8 BINARY (1.,3) CONSTRAINED TRELLIS CODE WITH FREE
HAMMING DISTANCE 3

@yvind Ytrehus*

ARSTRACT: A 4-state non-catastrophic encoder
is presented for a rate 3/8, (1,3) runlength
limited trellis code. The code is shown to
have a minimum free Hamming distance of 3.

INTRODUCTION

Runlength limited (RLL) codes are commonly used as modula-
tion codes on digital communication channels with intersymbol
interference. A sequence of binary bits is (b,2) - RLL if and
only if

1) every pair of 1's in the sequence is separated by at
least b 0's, and

Z) every subsequence of consecutive O's is at most & bits
long.

A (b,t)=RLL code is a set of (b,2)-RLL sequences. In the case
of a trellis code, these code sequences are referred to as
paths in the code trellis.

Since conventional RLL codes generally behave poorly with
respect to error correction and -detection, on noisy channels
it has been necessary to use such codes in concatenation with an
outer code for error correction purposes. Recently, RLL codes

lWave been investigated that also can be used for error control

*
This paper was written while visiting Center for Magnetic
Recording Research, University of San Diego.
This work was sponsored by the Royal Norwegian Council.for
Scientific and Industrial Research (NTNF).
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([ 11-[5]1). This paper presents a non-catastrophic encoder for
a (1,3) RLL trellis codewith free Hamming distance 3 and code
rate 3/8.

ENCODER DESCRIPTION

Table 1 presents all the 32 (1,3)-RLL sequences of length 8.
These 32 sequences will, in two ways, be divided inte four
disjunct subsets corresponding to four encoder states, labeled
I, II, III and IV. In the context of this paper, these 8-bit
sequences will be referred to as trellis branches, and the
trellis paths are (restricted) concatenations of trellis
branches.

The subset QutOf(i), i = I,...,IV, consists of the trellis
branches that will be used for encoding 23 data messapges when
the encoder is in state i. Within these constraints, the actual
mapping of 3-bit data to 8-bit trellis branch can be chosen ar-
bitrarily and is irrelevant to the aspects of code performance
discussed below.

The subset Into(j), j = I,...,IV, consists of the trellis
branches that, when used, bring the encoder into state j.

The rows and columns, respectively, of Table 2 give the sub-

sets OutOf(i) and Into(j), i,j = I,...,IV, where trellis branches

‘are represented by the number attached to them in Table 1.

THEOREM 1, The code is (1,3)-RLL.

VARNA'88"
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PrRooF. By Table 2,...

every sequence leading into state... ...ends with:

I +..10,.,.180 or ...1000
11 e
111 e, Lo

IV et on LoDl

and

every sequence coming out of state... ...begins with:

I el as

11 0 B0liaa ox: 000115«
III Qs s o 00
IV lig Do 0

THEOREM 2. The encoder permits no error propagation and,

in particular, is noncatastrophic...

PrRoor, ...because every trellis branch uniquely identifies
the 3-bit data associated with it (and the corresponding state

transition]}.
THEOREM 3, The code has minimum free Hamming distance 3.

ProoF, Distinct paths in the code trellis with Hamming
distance 3 are easy to find - consider, for example, the set
Into(II) NOutof(1) = {8, 13}, corresponding to the sequences
(10010101) and (10001001}, respectively; the two parallel
trellis branches from state I to state II.

On the other hand, no pair of distinct paths in the trellis
have tlamming distance less than 3:

Let dH(x,y] denote the Hamming distance between the two
8-hit sequences x and y.

If x # y and {x,y} = Into(i) NOutof(j), note that .
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: dH(x,yJ ¢ 3. Thus, distinct paths that differ in at most one
trellis branch have free distance & 3.

The following facts can also easily be verified:

For every j = I,...,IV, if x¢Into(i) N OutOf(j) and
ye Into (k) N OutO£(j), then, if x # ¥, du(x,y] 2 - unless, for
some J5 if {ahk) dsone of (1 (EITY, {11, EILh, or 41T TVl
in which case dy(x,y) - 1.

Similarly, for every i = I,...,IV, if xeInto{i) N Out0r(j)
and yeInto(i) nOutOf(k), then, if x # y, d“{x,y1 2 - unless;
for! someql G b ltds . one of (L, 10 Y S TVE; foeed AL T TVG,
in which case d”[a,yl 1.

Hence, two distinct paths in the trellis that differ in
exactly two _onsecutive trellis branches have a Hamming dis-
tance of at least min(2+1, 1+2) = 3.

Finally, the Hamming distance between any two paths is at
least as large as the number of pairwise different branches in
the two paths, so paths that differ at some time instant and
then do not remerge within two time clicks have Hamminpg dis
tance at least 3. (Note: This property also permits the decader
to perform with a maximum Viterbi decoding delay of two time

clicks),

EvALUATION

While the rate of the code is not unrivalled, this author
know of no other trellis encoder of a code with comparative
rate (b,t) constraints and Hamming distance, that is so simple. .
For instance, a concatenated encoder of the commonly used Miller '
code and the "best'" rate 3/4 convolutional code with frec lam-
ming distance 3, would have 2(3*1] = 1 states, and a much lon-

ger decoding delay. On the other hand, there exists a nonl incar
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(1,3)-RLL block code with Hamming distance 3 and 65 codewords;
this code probably needs a 1argé lookup table fof:afiicient

decoding.
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Table 1. The binary (1,3) constrained vectors of length 8

1 103101000 17 01010001
2 10101010 18 01001000
3 10101001 19 01001010
4 10100100 20 01001001
5 10100101 21 01000100
6 10100010 22 01000101
7 10010100 23 00101000
8 10010101 24 00101010
8 10010010 25 00101001
10 10010001 26 00100100
11 10001000 27 00100101
12 10001010 28 00100010
15 10001001 20  noo10100
14 01010100 50 00010101
15 01010101 A1 papronio
1o 01010010 32 00010001
Table 2. Encoder table
Into(I) Into(I1) Into(II1)
Outof(I) 1,9 8,13 5,6
Cutof (II) 23,51 20,30 25,52
Outof (III) 14,18 17,27 22,24
Outof (IV) 4,11 3,10 15,19
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ON RECURRENT RELATIONS FOR THE CARDINALITY
OF EQUAL-WEIGHT CODES

ACCT

V.A. Zinoviev, S.N. Litsyn

ABSTRACT; Recurrent relations for the cardi-
nality of equal-weight codes are obtained.
These relations lead to some new equal-weight
codes of finite length with the best known
parameters.

Let we have a binary equal-weight code V = (n,2d,w,N) of
length n, with minimal distance 2d, of constant weight w and
ciardinality N. Let F = {1,...,n} be the set of positions of the
code V and let K,LCF, KNL =¢, [K|] =k, |[L| = ¢ (here |X]
means the cardinality of the finite set X). For an arbitrary set
XCl and a binary vector ¢ of length n let us denote by Cx the
restriction of the vector c on the set X. Let wt(x) denote the
llamming weipht of the binary bector x, Let H = KUL. Consider
the set of codes V(II,1,j):

VO, E,5) = (vgixeVowt(vy) = i,wtlvy) = j, X = RH},

whore iel(p) = {k,k-1,...,k=-p1, jed(s) = {0,1,...;8) and
Dagpak/2, 0 =s=2/2,

Let us transform the code V(H,i,j) in the following way: if
itj * k-gts then in every vector of V(H,i,j) we change arbitrary
k=g+s5-i-) nonzero positions to zeros and if i+j > k-g+s then
in every vector of V(li,i,j) we change arbitrary i+j-k+g-s zero
jnsitions to ones. ke denote the resulting code by V (H,i,j).
now we construct a new code V = (n, 2d, w, N) by the union of
all codes V7(ll,i,j), where i runs over the set I(g) and j runs

over J(s).
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THEOREM, Let we have a code V = (n,2d,w,N) and let ny, dg,
W, be arbitrary positive integers such that n, <n, d, <d, Wy S WL
Then the code V = (n1,2d1,w1.N1) exists and its cardinality Nl

may be bounded by the next expression:

(G D

Ny : max (max{l g P> b2 g At
K,LCF k,2 fh) ieI(g) (i+'
jed(s) J

where h = k+2 = n-n;, g = (d—dl-w+w1+k)/2, s = {d-d|+w*w1-k]/2
and ]Jal is the minimal integer that is more or equal to a.

The case & = s = 0 coincides with the construction obtained
independently in [ 1-3]. The case £ = s =0 and g = k or g = 0

coincides with the well known Johnson recurrent relations [4].

ExAMPLE, Let V = (24,8,12,2576) (the code words of weight
8 from the binary extended Golay code). Choosing k = 5, ¢ = 1,
g=4, s =0, we derive from Theorem the existence of a code
V= (18,6,8,239) with the best known parameters (it has been
obtained in [2]). If we choose for H any 6 positions which do
not belong to the nonzero positions of code words of weight 8
from the same Golay code, we can obtain a new code V= (18,6,8,240),

which improves the lower bound.
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EXAMPLES OF CONSTRUCTIONS OF CONCATENATED
CODES WITH INNER CONVOLUTIONAL UNIT MEMORY CODE

V.V. Zyablov, S.A. Shavgulidze, J.M. Jensen

ABSTRACT: Various concatenated constructions
are developed and investigated. They are ba-
sed on the same inner convolutional unit me-
mory code. Examples of these constructions
are given and their code distances are esti-
mated.

We consider the following two constructions of concatenated

codes.

CONSTRUCTION 1 is the scheme of first order concatenated
coding (Fig. 1a). Information sequence of binary symbols is
written as two equal L xkb matrices. Each of the matrices is
represented as a vector of length k, over GF[ZL] and the vec-
tors are encoded by (nb, kb) outer Reed - Solomon (RS) code.
Each of RS codewords is divided into two binary ka X ny submatri-
ces and columns of obtained binary sequences are encoded (from
top to bottom and from left to right) by the same inner convolu-
tional unit memory code (UM-code) with parameters ("a' kaJ. As
the result of encoding we obtain a word of a first order conca-
tenated code with length n = 4nanh, number of information sym-
bols k = 4kakb and transmission rate R = Rst, where R, and Ry
are the transmission rates of inner and outer codes respecti-

vely.

CONSTRUCTION 2 is the scheme of second order concatenated

coding (Fig. 1b). Information sequence of binary symbols is
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written as two different LXkb = and Lthﬂz - matrices. These
L] 2

matrices are represented as vectors of length ky, ¢ and kb 2

» »
over GF(ZL) and they are encoded by outer RS codes uith‘parana-
ters (nb,kb’1) and {nb’kb,z)' Then each of RS codewords is di-
vided into four equal binary submatrices and the submatrices
from different codewords are combined (this procedure is shown.
by arrows in Fig. 1b). The inner encoding is fulfiled identi-
cally in Constructions 1 and 2. As the result of encoding we
obtain a word of a second order concatenated code with length
ns= 4“anb’ number of information symbols k = Zka(kb,1+kb,2) and
transmission rate R = Ra.][ﬂb’1+nb’23/2, where Ra,l’ Rb,1 and

Ry , are the transmission rates of the inner and outer codes,
"2

respectively.
L[ ----kh—_... LI oy kh.z' e s
_'kh,'i""l
]--—-_nb__.-_._f ]--—-—nb-_._..

—

Fig. la Fig. 1b

Later on we consider the case when L = 8.
We use two different UM-codes as inner codes:

- full unit memory code - FUM(6,4) with generater matrices

18KE
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101110 1111171
! 1 1 0001711
6, 101011 srd. o Gy il oo 09790

011110 101100

free distance d, = 5 and minimum average weight of a loop in
the stat; diagram of the code a = 3/4;
- partial unit memory code - PUM(6,4). The generator matrices
of this code are vhtained from the generator matrices of the
FUM(6,4)~code by substitution ot the iasi twWe CoME in ﬂi with
all-zero rows. The remaining parameters of the PUM(6,4)-code
are da =4 andyai= 1.

It should be noted that the first two rows: in the matrices
G“ and U1 are the same in both codes. They form the embedded

subcode F1 (b,2) with da = '8 dand w = 2,

THEOREM 1, The minimum distance of the first order concate-

nated code (Construction 1) satisfies the equation
(1) 3
dCc 2 min{dadb, dadb}’
and the minimum distance of the second order concatenated code
(Construction 2) satisfies the equation
(2} ; :
dCC ¢ min  min {4“idb,i’db,i}’
i=T,2
where oy, d1 and Gy, d2 are the parameters of the main inner
code and its subcode, respectively.
Examples of first and second order concatenated codes buse:
of Constructions | and 2 are given in Table 1. The examples
are given for a wide range of codeword length (frem 600 to
6120) and various rates of transmission (0.6, 0.5, 0.4 bit per

symbol). The estimations of minimum code distance are alseo pre-

sented.
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Table 1
3 (1 (2)
n R ny kb kb,T kb,z Inner code dcc dcc
600 0.587 25 22 21 23 FUM(6,4 12 15
600 0.507 25 19 16 22 FUM(6,4) 21 28
600 0.4 25 15 11 19 FUH(&,‘) 33 45
600 0.587 25 22 21 23 PUM(6,4) 16 20
600 0.507 25 19 17 21 PUM(6,4) 28 35
ot TV T R SR L TR S PUM(6,4) _____ L S6_
1008 0.603 42 38 36 40 FUM(6,4) 15 21
1008 0.492 42 31 26 36 FUM(6,4) 36 49
1008 0.397 42 25 18 32 FUM(6,4) 54 75
1008 0.603 42 38 37 39 PUM(6,4) 20 24
1008 0.492 42 k4| 28 34 PUM(6,4) 48 60
1008__0.397___42 __ 25___.20 ____ U PUMC6,4) -T2 . 91_
1704 0.601 71 64 61 67 FUM(6,4) 24 33
1704 0.498 71 53 46 60 FUM(6,4) 57 78
1704 0.394 71 42 30 54 FUM(6,4) 90 126
1704 0.601 71 64 62 66 PUM(6,4) 32 40
1704 0,498 71 53 48 58 PUM(6,4) 76 96
1708 (0304, Gl 4z )l 30 O BF o Ll PUM(6,4)____ 120 ___152_
2016 0.603 84 76 72 80 FUM(6,4) A 35
2016 0.5 84 63 54 72 FUM(6,4) 66 91
2016 0.397 B4 50 36 64 FUM(6,4) 105 147
2016 0.603 84 76 74 78 PUM(6,4) 36 44
2016 0.5 84 63 57 69 PUM(6,4) 88 112
2016 003970 084 50, 41 o is Slde 1y PUM(6,4) . 140 ___176_
3408 0.601 142 128 e 134 FUM(6,4) 45 63

PUM(6,4) 60 76
PUM(6,4) 148 188

FUM(6,4) 81 112
FUM(6,4) 185 273
FUM(6,4) 509 432
PUM(6,4) 108 136

PUM(6,4) 260 329
PUM(6,4) 412 524

The results of computation allow us to do the following con-
clusions:

1. The other parameters being fixed Construction 2 ensures
better code distance, i.e. the code error-correction capability,

than Construction 1.
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Z, In comparision with the construction based on the
FUM(6,4) -codes, the constructions based on the PUM(6,4)-codes
allow to obtain better distance properties for considered
length of codewords and simultaneously they have lesser decod-
ing complexity. The latter is due to the fact, that after the
first tier the trellis of the FUM(6,4) -code contains 16 nodes
on each tier and 256 branches betwecs tiers, whereas the trell
of the PUM(6,4)-code ¢unisins 4 nodes on each tier and 64 bran

ches between tiers.
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