S-Boxes from Binary Quasi-Cyclic Codes

Dusan Bikov, Iliya Bouyukliev, Stefka Bouyuklieva

Faculty of Mathematics and Informatics, Veliko Tarnovo University Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

ACCT

June 20, 2016

Outline

(1) S-box (vectorial Boolean function)

- S-box criteria
(2) Summarized results for good S-boxes
(3) Quasi-Cyclic Codes
(4) Constructions of S-boxes from Quasi-Cyclic Codes
(5) Example, Algorithm, Results

S-box (or vectorial Boolean function)

Vectorial Boolean function with n inputs and m outputs is

$$
S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}
$$

It can be represented by the vector $\left(f_{1}, f_{2}, \ldots, f_{m}\right)$, where f_{i} are Boolean function in n variables, $i=1,2, \ldots, m$.
The functions f_{i} are called the coordinate functions of the S-box.

S-box (or vectorial Boolean function)

$$
S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m} .
$$

$S=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$, where f_{i} are Boolean function in n variables.
The functions f_{i} can be represented by their Truth Tables (TT) and then we can consider the S-box S as a matrix

$$
G(S)=\left(\begin{array}{c}
T T\left(f_{1}\right) \\
T T\left(f_{2}\right) \\
\ldots \\
T T\left(f_{m}\right)
\end{array}\right)
$$

Fact.

An S-box S is invertible $\Longleftrightarrow m=n$ and the matrix $G(S)$ generates the simplex code S_{n} with a zero column.

S-box, linearity and nonlinearity

In order to study the cryptographic properties of an S-box related to the linearity, we need to consider all non-zero linear combinations of the coordinates of the S-box, denoted by:

$$
S_{b}=b \cdot S=b_{1} f_{1} \oplus \cdots \oplus b_{m} f_{m}, \text { where } \quad b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{F}_{2}^{m}
$$

These are the component function of the S-box.

The linearity and nonlinearity of S are defined as:

$$
\operatorname{Lin}(S)=\max _{b \in \mathbb{F}_{2}^{M} \backslash\{0\}} \operatorname{Lin}(b \cdot S), \quad n l(S)=\min _{b \in \mathbb{F}_{2}^{m} \backslash\{0\}} n l(b \cdot S)
$$

S-box, linearity and nonlinearity

- Linearity $\operatorname{Lin}(f)$ of a Boolean function f is the maximum absolute value of an Walsh coefficient of f :

$$
\operatorname{Lin}(f)=\max _{a \in \mathbb{F}_{2}^{n}}\left|f^{W}(a)\right| \geq 2^{n / 2}
$$

An Walsh coefficient is defined by

$$
f^{W}(a)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x) \oplus f_{a}(x)}=2^{n}-2 d_{H}\left(f, f_{a}\right)
$$

where $f_{a}(x)=a_{1} x_{1} \oplus a_{2} x_{2} \oplus \cdots \oplus a_{n} x_{n}$.

- The nonlinearity of a Boolean function f is given by

$$
n l(f)=\min \left\{d_{H}(f, g) \mid g-\text { affine function }\right\}=2^{n-1}-\frac{1}{2} \operatorname{Lin}(f)
$$

Obviously, the minimum linearity corresponds to maximum nonlinearity.

Nonlinearity and Walsh spectrum of f from linear codes

$$
n l(f)=\min \left\{d_{H}(f, g) \mid g-\text { affine function }\right\}
$$

The set of the TT of all affine functions coincides with the set of the codewords of Reed-Muller code $\operatorname{RM}(1, n)$, with a generator matrix

$$
\begin{aligned}
& G(R M(1, n))=\left(\begin{array}{c}
T T(1) \\
T T\left(x_{1}\right) \\
\vdots \\
T T\left(x_{n}\right)
\end{array}\right) \\
& \Rightarrow n l(f)=d_{H}(T T(f), R M(1, n))
\end{aligned}
$$

This means that to find $n l$ and Lin of f we can use algorithms for calculating:

- distance from a vector to a code;
- minimum distance of a linear code.

S-box, differential uniformity

The differential uniformity δ of an $(n \times m)$ S-box S with $n \geq m$, is defined by:

$$
\delta=\max _{\alpha \in \mathbb{F}_{2}^{n} \backslash\{0\}, \beta \in \mathbb{F}_{2}^{m}}\left|\left\{x \in \mathbb{F}_{2}^{n} \mid S(x) \oplus S(x \oplus \alpha)=\beta\right\}\right|
$$

It is the largest value in its difference distribution table (DDT) not counting the first entry in the first row.
S should have a differential uniformity as low as is possible. It is known that $2^{n-m} \leq \delta \leq 2^{n}$.

For bijective S-boxes $(n=m) \delta \geq 2$.

Summarized results for good 8-bit S-boxes

S-box	NL	DU	AD	Techniques
AES (Daemen et al., 2002)	112	4	7	$*$
Camellia(Aoki et al., 2001)	112	4	7	$*$
ARIA (Kwon et al., 2004)	112	4	7	$*$
HyRAL (Hirata, 2010)	112	4	7	$*$
Hierocrypt-HL(Ohkuma 2001)	112	4	7	$*$
CLEFIA-S1(Shirai et al., 2007)	112	4	7	$*$
Tran et al., 2008	112	4	7	Gray S-Box
Hussain et al., (2013)	112	4	7	Lin. Fractional Trans.
Li et al., 2012	112	4	5	Conversion $\mathbb{F}_{2}^{9} \rightarrow \mathbb{F}_{2}^{8}$
GA2 (Ivanov, Nikolov, Nikova	112	6	7	Reversed Genetic AI-
2016)				gorithms
Yang et al., 2011	112	6	7	$* *$
Yang et al., 2011	110	4	7	$* *$

* Base on Multiplicative Inverse, x^{-1} in \mathbb{F}_{2}^{8}
** Theorem of Permutation Polynomials

Quasi-Cyclic Codes

A code is said to be quasi-cyclic if every cyclic shift of a codeword by s positions results in another codeword ($s \geq 1$).
$K=\mathbb{F}_{2^{n}}$ - a finite field, $2^{n}-1=m \cdot r$
α - a primitive element of $K, \beta=\alpha^{r}$
$\Rightarrow G=\langle\beta\rangle<K^{*}$ is a cyclic group of order m,
$G, \alpha G, \alpha^{2} G, \ldots, \alpha^{r-1} G$ are all different cosets of G in K^{*}.
For $a \in \mathbb{Z}_{r}$ we define the circulant $m \times m$ matrix:

$$
C_{a}=\left(\begin{array}{cccc}
\operatorname{Tr}\left(\alpha^{a}\right) & \operatorname{Tr}\left(\alpha^{a} \beta\right) & \cdots & \operatorname{Tr}\left(\alpha^{a} \beta^{m-1}\right) \\
\operatorname{Tr}\left(\alpha^{a} \beta^{m-1}\right) & \operatorname{Tr}\left(\alpha^{a}\right) & \cdots & \operatorname{Tr}\left(\alpha^{a} \beta^{m-2}\right) \\
& & \vdots & \\
\operatorname{Tr}\left(\alpha^{a} \beta\right) & \operatorname{Tr}\left(\alpha^{a} \beta^{2}\right) & \cdots & \operatorname{Tr}\left(\alpha^{a}\right)
\end{array}\right) .
$$

The matrices C_{a} correspond to the different cosets of G in K^{*}.

Quasi-Cyclic Codes

The code $C(M)$ whose nonzero codewords are the rows of the matrix

$$
M=\left(\begin{array}{cccc}
C_{0} & C_{1} & \ldots & C_{r-1} \tag{1}\\
C_{r-1} & C_{0} & \ldots & C_{r-2} \\
& & \vdots & \\
C_{1} & C_{2} & \ldots & C_{0}
\end{array}\right)
$$

is equivalent to the simplex $\left[2^{n}-1=m r, n, 2^{n-1}\right]$ code S_{n}.
We consider the $\left(2^{n}-1\right) \times 2^{n}$ matrix $\bar{M}=(0 M)$ and its corresponding $\left[2^{n}, n, 2^{n-1}\right]$ code $C(\bar{M})=\left(0 S_{n}\right)$.

Constructions of S-boxes

$$
\bar{M}=\left(\begin{array}{cc}
0 & \\
\vdots & M \\
0 &
\end{array}\right), \quad M=\left(\begin{array}{cccc}
C_{0} & C_{1} & \ldots & C_{r-1} \\
C_{r-1} & C_{0} & \ldots & C_{r-2} \\
& & \vdots & \\
C_{1} & C_{2} & \ldots & C_{0}
\end{array}\right) \sim S_{n}
$$

Any generator matrix of $C(M)$ can be considered as an invertible S-box.
Since all these S-boxes generate the same code $C(\bar{M})$, they have the same linearity and nonlinearity.

Constructions of S-boxes

First construction:

- We take the first $m l$ rows of the matrix \bar{M} such that the obtained matrix G_{m} has rank n, with one zero column in the beginning.
- Then we investigate all S-boxes $G_{m} \pi$ where $\pi \in S_{r}$ is a permutation of the circulants $C_{0}, C_{1}, \ldots, C_{r-1}$.

This construction is natural but the second one is more important for us because it gives better results.

Constructions of S-boxes

Second construction:

- Now we consider the matrix:

$$
M R=\left(\begin{array}{c|c}
1 & 11 \ldots 1 \tag{2}\\
\hline 0 & G_{m}
\end{array}\right)
$$

This matrix generates a code which is equivalent to $R M(1, n)$ but has the structure of a quasi-cyclic code.

- We again use the matrices $G_{m} \pi$ but now we compute the minimum distance d of the code generated by the matrix:

$$
\left(\begin{array}{c|c}
1 & 11 \ldots 1 \\
\hline 0 & G_{m} \\
0 & G_{m} \pi
\end{array}\right)
$$

- If σ is a permutation which maps the Reed-Muller code $R M(1, n)$ to the code with a generator matrix $M R$ then d is the nonlinearity of the S-box represented by the matrix $\sigma^{-1}\left(G_{m} \pi\right)$.

Example - 4 bit S-box $(n=4, m=5, r=3)$

We take the first ml rows of the matrix M (1) such that the obtained matrix G_{m} has rank $n=4$:

							1111111111111111
							0000000011111111
						RM	$=0000111100001111$
30	12	18	1111	0	0010		0011001100110011
		9	0111	11	1001		0101010101010101
$G_{m}=12$	3	20	1011	01	100		
27	17	10	1101	00	010		-
5	-	-	\checkmark	\square	\checkmark		1111111111111111
c_{0}	C_{1}	c_{2}	c_{0}	C_{1}	C_{2}		$\underline{1111111111111111}$
						$M R=\stackrel{1}{1 . . .1}$	$\begin{array}{r} 0111100110010010 \\ =0011110011001001 \end{array}$
						$0 G_{m}$	0101110001110100
							0110111000101010

If σ is a permutation which maps $R M(1,4) \leftrightarrow \sigma(M R)$, then d is the nonlinearity of the S-box represented by the matrix $\sigma^{-1}\left(G_{m}\right)$.

Algorithm 1. The linearity Lin of the S-box

Algorithm 1 Linearity of an S-box
Input: STT - $m \times 2^{n}$ matrix of $T T$, coordinate f of $\left(G_{m} \pi\right), \sigma^{-1}\left(G_{m} \pi\right)$
Output:Lin of S-box, or exit if Lin > BorderLin
for i from 1 to m do $t[i] \leftarrow i+1$;
for j from 0 to $2^{n}-1$ do $T T[j] \leftarrow 0$ end for;
$i \leftarrow 1 ;$ Lin $\leftarrow 0$;
while $(i \neq m+1)$ do
for j from 0 to $2^{n}-1$ do
$T T[j] \leftarrow T T[j] \oplus S T T[j][j] ;$
if $(T T[j]=1)$ then $P P T[j] \leftarrow-1$ else $P P T[j] \leftarrow 1$ end if;
end for;
FastWalshTransform (PTT);
Lin=FindMaxElementFWT(PTT);
if(Lin > BorderLin) then return; end if;
$t[0] \leftarrow 1 ; t[i-1]=t[i] ; t[i] \leftarrow i+1 ; i=t[0] ;$
end while

The second construction

Using the cyclic structure of the matrices, we can fasten the algorithm for computing the linearity.

Proposition.

Consider the matrices $A=\left(A_{0}, A_{1}, \ldots, A_{r-1}\right)$ and $B=\left(B_{0}, B_{1}, \ldots, B_{r-1}\right)$, where A_{i} and B_{i} are $m \times m$ circulant matrices, $i=0,1, \ldots, r-1$. If $a_{0}, a_{1}, \ldots, a_{m-1}$ are the rows of A, and $b_{0}, b_{1}, \ldots, b_{m-1}$ are the rows of B, then $d\left(a_{i}, b_{j}\right)=d\left(a_{i+1}, b_{j+1}\right)$ for $0 \leq i, j \leq m-1$ (we consider $i+1$ and $j+1$ modulo m).

Corollary.

The first m coordinate functions of the S-box $\sigma^{-1}\left(G_{m} \pi\right)$ from the second construction have the same Walsh distributions.

Our result

Algorithm $1-2^{n} \times n \times 2^{n}$ operation Algorithm $2-\frac{2^{n}}{m} \times n \times 2^{n}$ operation

For 4 bit S-box ($n=4, m=5, r=3$) we obtain three optimal S-boxes (according the definition of an optimal S-box[Leander, Poschmann 2007], S is a bijection, $\operatorname{Lin}=8, \delta=4$).

We have done the exhaustive search for $n=8, m=17, r=15$, the results are presented in the table:

Number of S-box	NL	DU	AD
15	112	4	7
601	108	4,6	7

Our result

Walsh distribution of the constructed S-box $(n=8, m=17, r=15)$

32	28	24	20	16	12	8	4	0	-4	-8	-12	-16	-20	-24	-28
	-32														
1275	2040	5100	4080	4080	4080	5100	4080	4591	8160	4080	6120	4590	2040	4080	2040

Also we get S-box for $n=8, m=15, r=17$ with $n l=112$ they other properties are not optimal $\delta=16, A D=5$.
Walsh distribution ($n=8, m=15, r=17$):

32	16	0	-16
10200	4080	30600	20400

For 16 -bit S-box we obtain S-box with $l i n=512, n I=2^{16-1}-\frac{l i n}{2}=32512$

Thank you

