S-Boxes from Binary Quasi-Cyclic Codes

Dusan Bikov, Iliya Bouyukliev, Stefka Bouyuklieva

Faculty of Mathematics and Informatics, Veliko Tarnovo University Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

ACCT

June 20, 2016

Dusan Bikov, Iliya Bouyukliev, Stefka Bouyuk

S-Boxes, from QC Codes

S-box (vectorial Boolean function) S-box criteria

2 Summarized results for good S-boxes

- Quasi-Cyclic Codes
- Constructions of S-boxes from Quasi-Cyclic Codes
- 5 Example, Algorithm, Results

S-box (or vectorial Boolean function)

Vectorial Boolean function with n inputs and m outputs is

 $S: \mathbb{F}_2^n \to \mathbb{F}_2^m.$

It can be represented by the vector $(f_1, f_2, ..., f_m)$, where f_i are Boolean function in *n* variables, i = 1, 2, ..., m.

The functions f_i are called the coordinate functions of the S-box.

$$S:\mathbb{F}_2^n\to\mathbb{F}_2^m.$$

 $S = (f_1, f_2, ..., f_m)$, where f_i are Boolean function in *n* variables. The functions f_i can be represented by their Truth Tables (TT) and then we can consider the S-box S as a matrix

$$G(S) = \begin{pmatrix} TT(f_1) \\ TT(f_2) \\ \dots \\ TT(f_m) \end{pmatrix}$$

Fact.

An S-box S is invertible $\iff m = n$ and the matrix G(S) generates the simplex code S_n with a zero column.

Dusan Bikov, Iliya Bouyukliev, Stefka Bouyuk

S-Boxes, from QC Codes

June 20, 2016 4 / 20

In order to study the cryptographic properties of an S-box related to the linearity, we need to consider all non-zero linear combinations of the coordinates of the S-box, denoted by:

$$S_b = b \cdot S = b_1 f_1 \oplus \dots \oplus b_m f_m$$
, where $b = (b_1, ..., b_m) \in \mathbb{F}_2^m$

These are the component function of the S-box.

The linearity and nonlinearity of S are defined as:

$$Lin(S) = \max_{b \in \mathbb{F}_2^m \setminus \{0\}} Lin(b \cdot S), \qquad nl(S) = \min_{b \in \mathbb{F}_2^m \setminus \{0\}} nl(b \cdot S).$$

S-box, linearity and nonlinearity

• Linearity *Lin*(*f*) of a Boolean function *f* is the maximum absolute value of an Walsh coefficient of *f*:

$$Lin(f) = \max_{a \in \mathbb{F}_2^n} |f^W(a)| \ge 2^{n/2}.$$

An Walsh coefficient is defined by

$$f^{W}(a) = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f(x) \oplus f_{a}(x)} = 2^{n} - 2d_{H}(f, f_{a}),$$

where $f_a(x) = a_1 x_1 \oplus a_2 x_2 \oplus \cdots \oplus a_n x_n$.

• The nonlinearity of a Boolean function f is given by

$$nI(f) = \min\{d_H(f,g) \mid g - \text{affine function}\} = 2^{n-1} - \frac{1}{2}Lin(f).$$

Obviously, the minimum linearity corresponds to maximum nonlinearity.

-1

$$nl(f) = \min\{d_H(f,g) \mid g - \text{affine function}\}.$$

The set of the TT of all affine functions coincides with the set of the codewords of Reed-Muller code RM(1, n), with a generator matrix

$$G(RM(1, n)) = \begin{pmatrix} TT(1) \\ TT(x_1) \\ \vdots \\ TT(x_n) \end{pmatrix}$$

$$\Rightarrow nl(f) = d_H(TT(f), RM(1, n))$$

This means that to find nl and Lin of f we can use algorithms for calculating:

- distance from a vector to a code;
- minimum distance of a linear code.

The differential uniformity δ of an $(n \times m)$ S-box S with $n \ge m$, is defined by:

$$\delta = \max_{\alpha \in \mathbb{F}_2^n \setminus \{0\}, \beta \in \mathbb{F}_2^m} |\{x \in \mathbb{F}_2^n | S(x) \oplus S(x \oplus \alpha) = \beta\}|$$

It is the largest value in its difference distribution table (DDT) not counting the first entry in the first row.

S should have a differential uniformity as low as is possible. It is known that $2^{n-m} \leq \delta \leq 2^n.$

For bijective S-boxes $(n = m) \delta \ge 2$.

Summarized results for good 8-bit S-boxes

S-box	NL	DU	AD	Techniques
AES (Daemen et al., 2002)	112	4	7	*
Camellia(Aoki et al., 2001)	112	4	7	*
ARIA (Kwon et al., 2004)	112	4	7	*
HyRAL (Hirata, 2010)	112	4	7	*
Hierocrypt-HL(Ohkuma 2001)	112	4	7	*
CLEFIA- S_1 (Shirai et al., 2007)	112	4	7	*
Tran et al., 2008	112	4	7	Gray S-Box
Hussain et al., (2013)	112	4	7	Lin. Fractional Trans.
Li et al., 2012	112	4	5	Conversion $\mathbb{F}_2^9 o \mathbb{F}_2^8$
GA2 (Ivanov, Nikolov, Nikova	112	6	7	Reversed Genetic Al-
2016)				gorithms
Yang et al., 2011	112	6	7	**
Yang et al., 2011	110	4	7	**

* Base on Multiplicative Inverse, x^{-1} in \mathbb{F}_2^8 ** Theorem of Permutation Polynomials

Dusan Bikov, Iliya Bouyukliev, Stefka Bouyuk

Quasi-Cyclic Codes

A code is said to be quasi-cyclic if every cyclic shift of a codeword by s positions results in another codeword ($s \ge 1$).

$$\begin{split} & \mathcal{K} = \mathbb{F}_{2^n} \text{ - a finite field, } 2^n - 1 = m \cdot r \\ & \alpha \text{ - a primitive element of } \mathcal{K}, \ \beta = \alpha^r \\ & \Rightarrow \ \mathcal{G} = \langle \beta \rangle < \mathcal{K}^* \text{ is a cyclic group of order } m, \\ & \mathcal{G}, \alpha \mathcal{G}, \alpha^2 \mathcal{G}, \dots, \alpha^{r-1} \mathcal{G} \text{ are all different cosets of } \mathcal{G} \text{ in } \mathcal{K}^*. \end{split}$$

For $a \in \mathbb{Z}_r$ we define the circulant $m \times m$ matrix:

$$C_{a} = \begin{pmatrix} Tr(\alpha^{a}) & Tr(\alpha^{a}\beta) & \cdots & Tr(\alpha^{a}\beta^{m-1}) \\ Tr(\alpha^{a}\beta^{m-1}) & Tr(\alpha^{a}) & \cdots & Tr(\alpha^{a}\beta^{m-2}) \\ & & \vdots \\ Tr(\alpha^{a}\beta) & Tr(\alpha^{a}\beta^{2}) & \cdots & Tr(\alpha^{a}) \end{pmatrix}$$

The matrices C_a correspond to the different cosets of G in K^* .

The code C(M) whose nonzero codewords are the rows of the matrix

$$M = \begin{pmatrix} C_0 & C_1 & \dots & C_{r-1} \\ C_{r-1} & C_0 & \dots & C_{r-2} \\ & & \vdots & & \\ C_1 & C_2 & \dots & C_0 \end{pmatrix}$$
(1)

is equivalent to the simplex $[2^n - 1 = mr, n, 2^{n-1}]$ code S_n .

We consider the $(2^n - 1) \times 2^n$ matrix $\overline{M} = (0 \ M)$ and its corresponding $[2^n, n, 2^{n-1}]$ code $C(\overline{M}) = (0 \ S_n)$.

Constructions of S-boxes

$$\overline{M} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \quad M = \begin{pmatrix} C_0 & C_1 & \dots & C_{r-1} \\ C_{r-1} & C_0 & \dots & C_{r-2} \\ & & \vdots \\ C_1 & C_2 & \dots & C_0 \end{pmatrix} \sim S_n.$$

Any generator matrix of $C(\overline{M})$ can be considered as an invertible S-box.

Since all these S-boxes generate the same code $C(\overline{M})$, they have the same linearity and nonlinearity.

First construction:

- We take the first *ml* rows of the matrix \overline{M} such that the obtained matrix G_m has rank *n*, with one zero column in the beginning.
- Then we investigate all S-boxes G_mπ where π ∈ S_r is a permutation of the circulants C₀, C₁,..., C_{r-1}.

This construction is natural but the second one is more important for us because it gives better results.

Constructions of S-boxes

Second construction:

• Now we consider the matrix:

$$MR = \left(\begin{array}{c|c} 1 & 11 \dots 1 \\ \hline 0 & G_m \end{array}\right) \tag{2}$$

This matrix generates a code which is equivalent to RM(1, n) but has the structure of a quasi-cyclic code.

• We again use the matrices $G_m \pi$ but now we compute the minimum distance d of the code generated by the matrix:

$$\begin{pmatrix} 1 & 11\dots 1 \\ \hline 0 & G_m \\ 0 & G_m\pi \end{pmatrix}$$

• If σ is a permutation which maps the Reed-Muller code RM(1, n) to the code with a generator matrix MR then d is the nonlinearity of the S-box represented by the matrix $\sigma^{-1}(G_m\pi)$.

Example - 4 bit S-box (n = 4, m = 5, r = 3)

We take the first *ml* rows of the matrix M(1) such that the obtained matrix G_m has rank n = 4:

If σ is a permutation which maps $RM(1,4) \leftrightarrow \sigma(MR)$, then d is the nonlinearity of the S-box represented by the matrix $\sigma^{-1}(G_m)$.

Algorithm 1. The linearity Lin of the S-box

Algorithm 1 Linearity of an S-box

```
Input: STT - m \times 2^n matrix of TT, coordinate f of (G_m \pi), \sigma^{-1}(G_m \pi)

Output: Lin of S-box, or exit if Lin > BorderLin

for i from 1 to m do t[i] \leftarrow i + 1;

for j from 0 to 2^n - 1 do TT[j] \leftarrow 0 end for;

i \leftarrow 1; Lin \leftarrow 0;
```

```
while (i \neq m+1) do
```

```
for j from 0 to 2^n - 1 do
```

```
TT[j] \leftarrow TT[j] \oplus STT[i][j];
```

```
if (TT[j] = 1) then PPT[j] \leftarrow -1 else PPT[j] \leftarrow 1 end if;
end for;
```

```
FastWalshTransform(PTT);
```

```
Lin=FindMaxElementFWT(PTT);
```

if(*Lin* > *BorderLin*) then return; end if;

$$t[0] \leftarrow 1; t[i-1] = t[i]; t[i] \leftarrow i+1; i = t[0];$$

end while

Using the cyclic structure of the matrices, we can fasten the algorithm for computing the linearity.

Proposition.

Consider the matrices $A = (A_0, A_1, \ldots, A_{r-1})$ and $B = (B_0, B_1, \ldots, B_{r-1})$, where A_i and B_i are $m \times m$ circulant matrices, $i = 0, 1, \ldots, r-1$. If $a_0, a_1, \ldots, a_{m-1}$ are the rows of A, and $b_0, b_1, \ldots, b_{m-1}$ are the rows of B, then $d(a_i, b_j) = d(a_{i+1}, b_{j+1})$ for $0 \le i, j \le m-1$ (we consider i+1 and j+1 modulo m).

Corollary.

The first *m* coordinate functions of the S-box $\sigma^{-1}(G_m\pi)$ from the second construction have the same Walsh distributions.

イロト 不得下 イヨト イヨト 二日

Our result

Algorithm 1 - $2^n \times n \times 2^n$ operation Algorithm 2 - $\frac{2^n}{m} \times n \times 2^n$ operation

For 4 bit S-box (n = 4, m = 5, r = 3) we obtain three optimal S-boxes (according the definition of an optimal S-box[Leander, Poschmann 2007], S is a bijection, Lin = 8, $\delta = 4$).

We have done the exhaustive search for n = 8, m = 17, r = 15, the results are presented in the table:

Number of S-box	NL	DU	AD
15	112	4	7
601	108	4, 6	7

Walsh distribution of the constructed S-box (n = 8, m = 17, r = 15)

32	28	24	20	16	12	8	4	0	-4	-8	-12	-16	-20	-24	-28	-32
1275	2040	5100	4080	4080	4080	5100	4080	4591	8160	4080	6120	4590	2040	4080	2040	0

Also we get S-box for n = 8, m = 15, r = 17 with nl = 112 they other properties are not optimal $\delta = 16$, AD = 5. Walsh distribution (n = 8, m = 15, r = 17):

32	16	0	-16
10200	4080	30600	20400

For 16-bit S-box we obtain S-box with lin = 512, $nl = 2^{16-1} - \frac{lin}{2} = 32512$

Thank you

- < A

æ