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Construction Description // Information Matrix

I We consider a block code that uses terminated
convolutional codes as component codes.

Let us start with information matrix:

I =

kB

kA
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Construction Description // Encoding Outer
I At first it is read in row-wise order and encoded by the

outer convolutional coder, I =

kB

kA

I The resulting matrix is written in row-wise order too,
IA = EncB(I) =

nB

kA
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Construction Description // Encoding Inner
I Then IA is read in column-wise order by inner

convolutional code encoder, IA =

nB

kA

I And written in the same column-wise order to a matrix
that is a codeword, C = EncA(IA) = EncA(EncB(I)) =

nB

nA

Igor Zhilin, Victor Zyablov, Dmitry Zigangirov A binary block concatenated code based on two convolutional codes



Construction Description // Codeword

I The result is a codeword:

C = EncA(EncB(I)) =

nB

nA

Shaded cells correspond to parity-check symbols.
Red cells schematically depict minimal-weight codeword.

I Note: a single encoder is used for encoding all rows. Then
a single encoder is used for encoding all columns.
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Notations

RA = bA/cA — rate of inner code,
dA — free distance of inner code (in binary symbols),
fA — maximum length of word (packet) of inner code that has
weight dA, measured in cA-tuples,

RB , bB , cB , dB , fB — the same for outer code.

Let us consider code construction where nA ≥ fAcA,
nB ≥ fBcB . That means that the longest word of minimal
weight of outer/inner code fits in a single row/column
(probably with wrapping).
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Code Distance

Theorem
There exist such sizes n′A and n′B that binary block
concatenated code based on two convolutional codes with
nA ≥ n′A and nB ≥ n′B has minimum Hamming distance
d = dAdB , where dA and dB are free distances of inner and
outer codes respectively.
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Upper Bound

I To prove d ≤ dAdB we can just provide an example of
codeword of weight w = dAdB

I Since we’ve chosen nB ≥ fBcB , we can place a sequence
of weight w ′ = dB in any rows of IA. These rows would
be independent since such sequence has length fBcB that
is less than row width nB .

I We should place that sequences in rows of IA in a such
way that nonzero symbols would form information
sequences of smallest weight dA in columns of C.

I This encoding procedure yields a codeword that has dA
rows of weight dB , or, alternatively, dB columns of weight
dA, thus its weight w = dAdB .
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Lower Bound

I Let us prove it from the encoding standpoint.

I Encoding of the outer code is just a plain encoding of the
convolutional code with arbitrary input. Its output
sequence has at least dB nonzero symbols. Since we’ve
chosen nB ≥ fBcB , all these bits would be in different
columns of IA yielding at least dB nonzero columns.

I Now we should consider two options:
1. In case the columns would be encoded by the inner code

independently from column to column, the result is
straightforward: it yields a codeword similar to the one
considered for upper bound (probably with wrapped rows or
columns). Encoding of each column by the inner encoder gives
a word of weight at least dA, so in this case d ≥ dAdB .

2. Counting for dependencies in columns-to-column encoding
requires use of active distances of inner code.
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Active Distances

I A concept of active distance was introduced in 1999 by
Host et. al.1.

I Active distances lower bound weight of a code sequence
generated by a coder that does not pass through two
consequent zero states.

I Authors1 proved that convolutional codes with active
distances that grow with sequence length and are
lower-bounded by a linearly increasing function exist . . .

I and also showed a couple of examples of known codes
where increasing active distances are seen.

1S. Host, R. Johannesson, K. Sh. Zigangirov, V. V. Zyablov, “Active
Distances for Convolutional Codes,” IEEE Transactions on Information Theory,
Vol. 45, No. 2, March 1999.
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Active Distances

I Example of active column distance curve from 1:HÖST et al.: ACTIVE DISTANCES FOR CONVOLUTIONAL CODES 661

Fig. 2. The active distances for the encoding matrix in Example 2.

Theorem 2: Let be a generator matrix of memory .
Then its active segment distance satisfies the inequality

(24)
where and the sum of the lengths of the paths to the
right of the inequality is

(25)
i.e., equal to the length of the path to the left of the inequality.

The active segment distance is a nondecreasing function
of but, as we shall show in Section V, in the ensemble
of convolutional codes encoded by periodically time-varying
generator matrices there exists a convolutional code encoded
by a generator matrix such that its active segment distance can
be lower-bounded by a linearly increasing function.
The start of the active segment distance is the largest for

which and is denoted .
The th-order active row distance is characterized by a fixed

number of almost freely chosen information tuples, ,
followed by a varying number, between and , of zero-
state driving information tuples (“almost” since we have to
avoid consecutive zero states for
and assure that ). Sometimes we find it useful to
consider a corresponding distance between two paths of fixed
total length, , but with a varying number of almost freely
chosen information tuples. Hence, we introduce the following
(final) active distance.

Definition: Let be a convolutional code encoded by a
rational generator matrix of memory . The th-order
active burst distance is

(26)

where .

For a polynomial generator matrix we have the following
equivalent formulation:

(27)

where is given in (16).
The active row and burst distances are related via the

following inequalities:

(28)

Clearly, when , we have

undefined
. (29)

For a noncatastrophic generator matrix we have

(30)

From the definition it follows that the active burst distance
satisfies the triangle inequality.

Example 2: In Fig. 2 we show the active distances for the
encoding matrix

. Notice that the
active row distance of the zeroth order, , is identical to the
row distance of the zeroth order, , which upper-bounds

, and the start .

From the definitions follow that the active distances are
encoder properties, not code properties. However, it also
follows that the active distances are invariant over the set
of minimal-basic [4] (or canonical if rational) [5] encoding
matrices for a code . Hence, when we in the sequel consider
active distances for convolutional codes it is understood that

I Let us write a bound on the active column distance arj in
simplified form:

arj ≥ uj + v (1)

where u > 0 is a constant that depends on code
properties, j is a sequence length in cA-tuples.
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Lower Bound (continues)

I Since we need two consequent columns to have weight of
at least 2dA, three columns to have weight 3dA and so on,
we need to choose such nA that active column distance

arj ≥ sdA, s ∈ 1, nB , (2)

where j = snA/cA.

I and (after a couple of transformations)

nA ≥ dAcA/u = const (3)

I This ends the proof of d ≥ dAdB and thus d = dAdB .
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Conclusion

I We proved that code distance of binary block
concatenated code based on two convolutional codes
equals d = dAdB — the product of free distances of
component codes for large enough nA and nB .

I This construction differs from other constructions of
concatenated codes based on convolutional codes:

I It is not a convolutional code like the one proposed in 2

I It doesn’t use separate codes for each row and each column
like in, i.e., 3

2M. Bossert, C. Medina, V. Sidorenko, “Encoding and distance estimation
of product convolutional codes,” Proceedings. International Symposium on
Information Theory, 2005. ISIT 2005., Adelaide, SA, 2005, pp. 1063-1067

3O. Gazi, A. O. Yilmaz, “Turbo Product Codes Based on Convolutional
Codes,” ETRI Journal, Volume 28, Number 4, August 2006
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Thank you for your attention.
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