On some properties of PRNGs based on block ciphers in counter mode

Alexey Urivskiy, Andrey Rybkin, Mikhail Borodin JSC InfoTeCS, Moscow, Russia alexey.urivskiy@mail.ru

2016

Pseudo Random Number Generators

G: $\{0,1\}^m \to \{0,1\}^M$ for $M \gg m$

Typical assumptions for a cryptographic PRNG:

- **G** is efficiently computable
- the seed is uniformly distributed on $\{0,1\}^m$
- G is 'random-like': no polynomial statistical test can distinguish G from a truly random generator with uniform distribution (informally)

Pseudo Random = Unpredictable

Predictability problem: predict the next output bit for **G** with probability better than ½ if all previously output bits are known

Next-bit test: G passes the test if the next bit cannot be predicted by any polynomial predictor.

Theorem [Yao'82] : if **G** passes the next-bit test it will pass any polynomial statistical test.

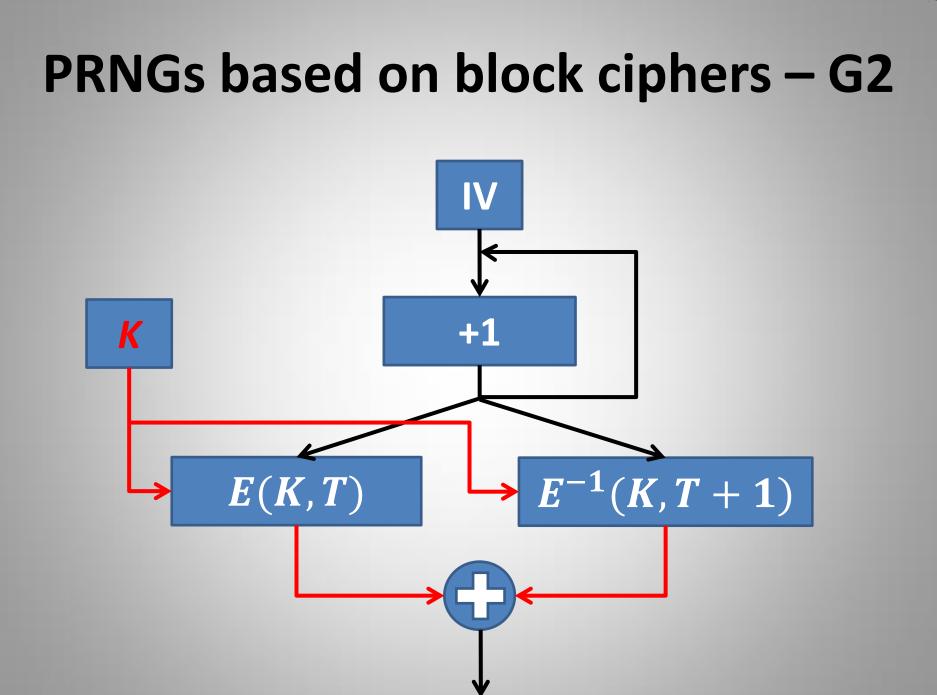
E(K,T) – block cipher $K \in V_k - \text{key}$ $T \in V_n$ – message **G1**: for *i*=0 to M do $count \coloneqq (IV + i) \mod 2^n$ $a_i \coloneqq E(K, count)$

Consider the case $M < N = 2^n$.

G1 is highly appreciated and widely used – ISO/IEC 18031 **CTR_DRBG.**

However, if **G1** has output a symbol, it will never output it again \rightarrow For $M \sim \sqrt{N}$ due to the **birthday paradox** becomes distinguishable from a truly random uniform generator.

G2: for i = 0 to M do $count \coloneqq (IV + i) \mod 2^n$ $a_i \coloneqq E(K, count) \bigoplus E^{-1}(K, count + 1)$



G2: for i = 0 to M do $count \coloneqq (IV + i) \mod 2^n$ $a_i \coloneqq E(K, count) \bigoplus E^{-1}(K, count + 1)$

Will a second cipher help? and how?

A. Urivskiy, ACCT 2016

Idealized model for PRNGs

Assumption 1: encryption (decryption) procedure of an *n*-bit block cipher with a random key is a random permutation on V_n

0
 1
 2

$$2^n-2$$
 2^n-1
 $\sigma(0)$
 $\sigma(1)$
 $\sigma(2)$
 $\sigma(2^n-2)$
 $\sigma(2^n-1)$

Typical to cryptanalysis: a 'good' block cipher with a random key must be indistinguishable from a random permutation.

Idealized model for PRNGs

Assumption 2: encryption and decryption procedures of a block cipher with the same random key are independent so they are the two random and independent permutations on V_n .

G1I:
$$E(K,T) \rightarrow \sigma(T)$$

G2I: $E(K,T) \bigoplus E^{-1}(K,T+1) \rightarrow \sigma_1(T) \bigoplus \sigma_2(T+1)$

A. Urivskiy, ACCT 2016

Does IV matter ?

$$\sigma'(i) = \sigma((i + IV) \mod 2^n)$$

$$\bigcup$$

Another choice of IV leads to a different σ' given σ , however from the same set: IV = 0

G1I:
$$E(K,T) \rightarrow \sigma(T)$$

G2I: $E(K,T) \bigoplus E^{-1}(K,T+1) \rightarrow \sigma_1(T) \bigoplus \sigma_2(T)$

Output sequences

G1I: $a_0, a_1, a_2, \dots, a_{N-2}, a_{N-1}$

 $N \cdot (N-1) \cdot (N-2) \cdot \dots \cdot 2 \cdot 1 = N!$

G2I:
$$\bigoplus_{i \in V_n} \sigma(i) = 0 \implies \bigoplus_{i=0}^{N-1} a_i = \bigoplus_{i \in V_n} (\sigma_1(i) \oplus \sigma_2(i)) = 0$$

 $a_0, a_1, a_2, ..., a_{N-2}, a_{N-1}$ $N \cdot N \cdot N \cdot ... \cdot N \cdot 1 \le N^{N-1}$

Output sequences

Theorem (*Hall'52*). For any sequence $a_0, a_1, \dots, a_{N-1}, a_i \in V_n, i = 0, 1, \dots, 2^n - 1,$ satisfying the condition N-1 $\bigcap a_i = 0$

there exists at least one pair of permutations σ_1 , σ_2 on V_n such that $a_i = \sigma_1(i) \bigoplus \sigma_2(i)$.

$$a_0, a_1, a_2, ..., a_{N-2}, a_{N-1}$$

 $N \cdot N \cdot N \cdot ... \cdot N \cdot 1 = N^{N-1}$

i=0

Output sequences: summary

	G1I	G2I			
	$\sigma(count)$	$\sigma_1(count) \oplus \sigma_2(count)$			
Туре	all elements are different	any fixed $N - 1$ elements are arbitrary			
Number (of length N)	N!	N^{N-1}			

$$\frac{N!}{N^{N-1}} = \frac{\sqrt{2\pi N} \cdot N^N}{e^N} \frac{N}{N^N} = e^{-(N-\ln N\sqrt{2\pi N})}$$

\oplus		0	1	2	3		<i>N</i> − 1
0	ſ	0	1	2	3		N-1
1		1	0	3	2		N-2
2	3.6	2	3	0	1		<i>N</i> – 3
3	M =	3	2	1	0		N-4
:		:	:	:	:	•.	:
N-1		N-1	N - 2	<i>N</i> – 3	N-4		0

Definition. A sequence of pairs of indices

 $(i_0, j_0), (i_1, j_1), \dots, (i_{N-1}, j_{N-1}), i_l, j_l \in \{0, 1, \dots, N-1\},\ i_k \neq i_t, j_k \neq j_t \text{ for any } t \neq k \text{ is called a trajectory on } \mathbf{M}.$

Definition. The sequence $\mathbf{M}(i_0, j_0), \mathbf{M}(i_1, j_1), \dots, \mathbf{M}(i_{N-1}, j_{N-1})$ is called **the output** of the trajectory $(i_0, j_0), (i_1, j_1), \dots, (i_{N-1}, j_{N-1})$

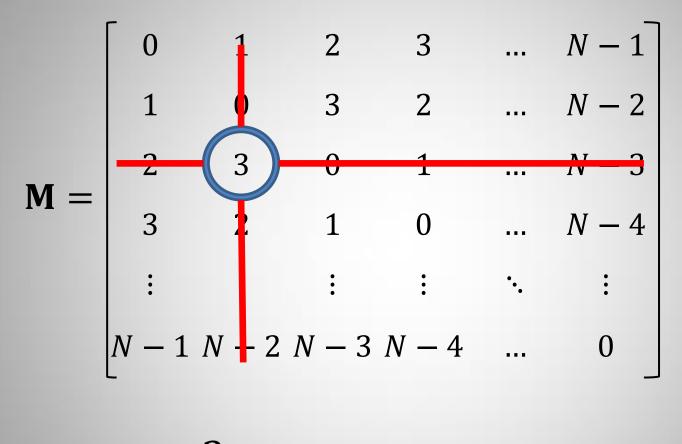
Proposition. Between the set of ordered pairs of permutations on V_n and the set of trajectories on matrix **M** a **one-to-one correspondence** can be defined so that the sum of the pair of permutations will coincide with the output of the corresponding trajectory.

Corollary. The generation process is: the s-th output symbol a_s is chosen randomly from M. After that the row and the column containing a_s are struck out from M.

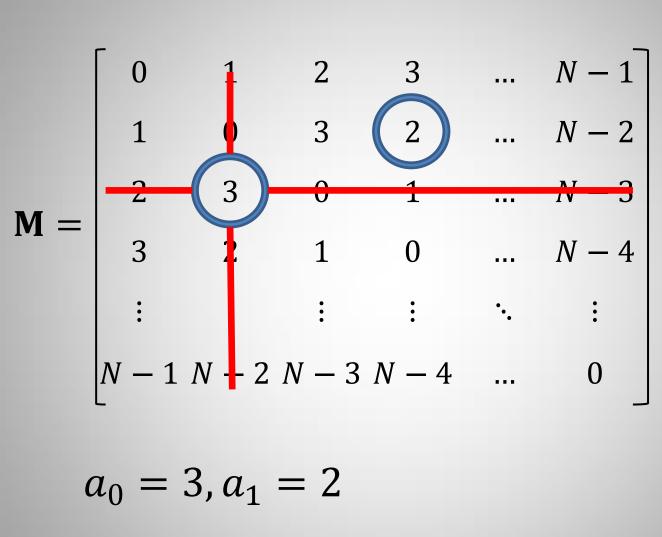
$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 2 & 3 & \dots & N-1 \\ 1 & 0 & 3 & 2 & \dots & N-2 \\ 2 & 3 & 0 & 1 & \dots & N-3 \\ 3 & 2 & 1 & 0 & \dots & N-4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ N-1 & N-2 & N-3 & N-4 & \dots & 0 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 2 & 3 & \dots & N-1 \\ 1 & 0 & 3 & 2 & \dots & N-2 \\ 2 & 3 & 0 & 1 & \dots & N-3 \\ 3 & 2 & 1 & 0 & \dots & N-4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ N-1 & N-2 & N-3 & N-4 & \dots & 0 \end{bmatrix}$$

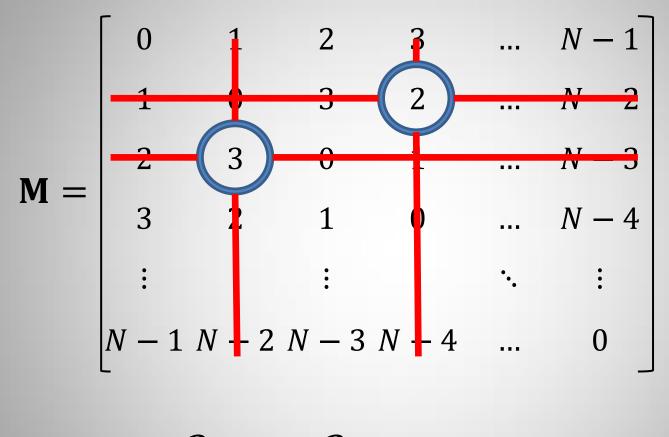
 $a_0 = 3$ (2,1),



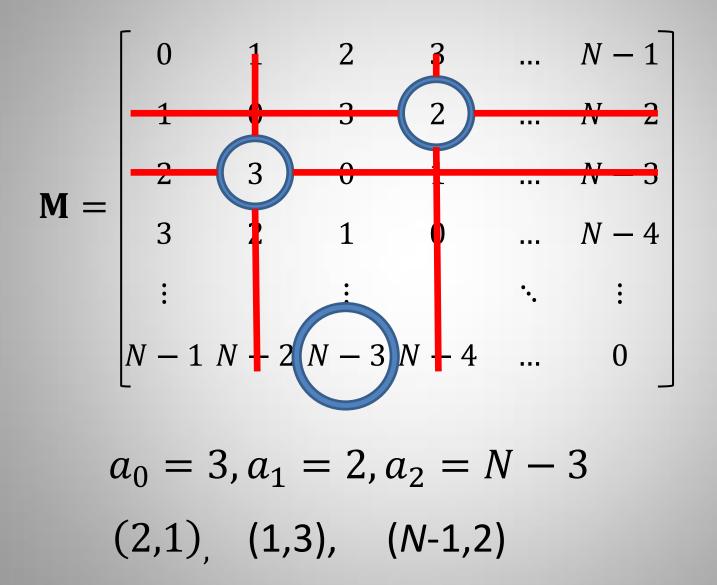
 $a_0 = 3$ (2,1),



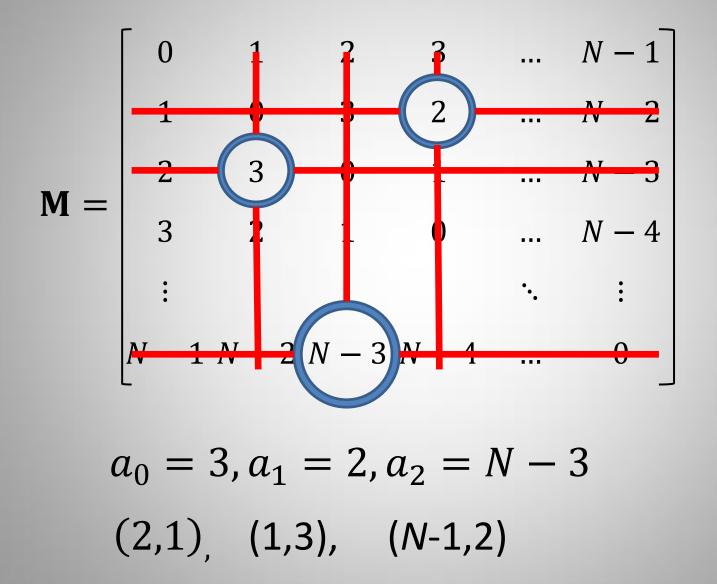
(2,1), (1,3)



 $a_0 = 3, a_1 = 2$ (2,1), (1,3)



A. Urivskiy, ACCT 2016



A. Urivskiy, ACCT 2016

Conditional probability

Conditional probability $P(a_s | a_{s-1}, a_{s-2}, ..., a_0)$ is the probability for a generator to output a_s provided $a_{s-1}, a_{s-2}, ..., a_0$ were output before.

To estimate $P(a_s | a_{s-1}, a_{s-2}, ..., a_0)$ for **G2I** it suffices to estimate how many a_s are left in **M** after *s* rows and columns were struck out.

Conditional probability

G1I

$$P(a_{s}|a_{s-1}, a_{s-2}, \dots, a_{0}) = \begin{cases} 0, & \text{if } a_{s} \in \{a_{s-1}, a_{s-2}, \dots, a_{0}\}; \\ \frac{1}{N-s}, & \text{otherwise.} \end{cases}$$

G2I

$$P_1 = \frac{N-2s}{(N-s)^2} \le P(a_s | a_{s-1}, a_{s-2}, \dots, a_0) \le \frac{N-s}{(N-s)^2} = P_2$$

$$P_1 < \frac{1}{N} < P_2$$

Conditional probability: summary

	G1I σ(count)	G2I $\sigma_1(count) \oplus \sigma_2(count)$	Ideal
Lower bound	0	$\frac{N-2s}{(N-s)^2}$	$\frac{1}{N}$
Number of symbols	S	$\leq N-s$	N
Upper bound	$\frac{1}{N-s}$	$\frac{1}{N-s}$	$\frac{1}{N}$
Number of symbols	<u>N – s</u>	≤ <i>s</i>	N

Thank you! Questions?