CHARACTERIZATION OF HIGHLY DIVISIBLE ARCS

Assia Rousseva Sofia University

(joint work with Ivan Landjev)

- ACCT-XV, Albena, 18.06.-24.06.2016 -

1. $(t \mod q)$ -Arcs

 \diamond A multiset in $\mathrm{PG}(r,q)$ is a mapping

$$\mathcal{K}: \left\{ \begin{array}{ccc} \mathcal{P} & \to & \mathbb{N}_0, \\ P & \to & \mathcal{K}(P). \end{array} \right.$$

 $\diamond \mathcal{K}(P)$ – multiplicity of the point P.

♦ $\mathcal{Q} \subset \mathcal{P}$: $\mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P)$ – multiplicity of the set \mathcal{Q} .

 $\diamond \mathcal{K}(\mathcal{P})$ – the cardinality of \mathcal{K} .

 $\diamond a_i$ – the number of hyperplanes H with $\mathcal{K}(H) = i$

 $\diamond (a_i)_{i \geq 0}$ – the spectrum of \mathcal{K}

⁻ ACCT-XV, Albena, 18.06.-24.06.2016 -

Definition. (n, w)-arc in PG(r, q): a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P}) = n;$

2) for every hyperplane $H: \mathcal{K}(H) \leq w$;

3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking set in PG(r, q)

(or (n, w)-minihyper): a multiset \mathcal{K} with

1)
$$\mathcal{K}(\mathcal{P}) = n;$$

- 2) for every hyperplane $H: \mathcal{K}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

⁻ ACCT-XV, Albena, 18.06.-24.06.2016 -

Definition. Let t < q be a positive integer.

An arc \mathcal{F} in $\operatorname{PG}(r,q)$ is called a $(t \mod q)$ -arc if

(1) every point P has multiplicity at most $t: \mathcal{F}(P) \leq t$;

(2) every subspace S of positive dimension has multiplicity $\mathcal{F}(S) \equiv t \pmod{q}$.

Remark. It is enough to require (2) only for the lines.

2. General Constructions for $(t \mod q)$ -Arcs

Theorem A. Let $t_1 < q$ and $t_2 < q$ be positive integers. The sum of a $(t_1 \mod q)$ -arc and a $(t_2 \mod q)$ -arc in PG(r,q) is a $(t \mod q)$ -arc with $t = t_1 + t_2 \pmod{q}$ provided the multiplicities of all points do not exceed t. In particular, the sum of t hyperplanes in PG(r,q) is a $(t \mod q)$ -arc.

Theorem B. Let \mathcal{F}_0 be a $(t \mod q)$ -arc in a hyperplane $H \cong \mathrm{PG}(r-1,q)$. of $\Sigma = \mathrm{PG}(r,q)$. For a fixed point $P \in \Sigma \setminus H$, define an arc \mathcal{F} in Σ as follows:

 $-\mathcal{F}(P) = t;$

- for each point $Q \neq P$: $\mathcal{F}(Q) = \mathcal{F}_0(R)$ where $R = \langle P, Q \rangle \cap H$.

Then the arc \mathcal{F} is a $(t \mod q)$ -arc in PG(r,q) of size $q|\mathcal{F}_0| + t$.

Definition. $(t \mod q)$ -arcs obtained by Theorem B are called lifted arcs.

Lemma. Let a $(t \mod q)$ -arc \mathcal{F} be lifted from the points P and Q, $P \neq Q$. Then \mathcal{F} is also lifted from any point on the line PQ. In particular, the lifting points of a \mathcal{F} form a subspace.

Theorem C. Let \mathcal{F} be a $(t \mod q)$ -arc in $\operatorname{PG}(r,q)$ such that the restriction $\mathcal{F}|_H$ to every hyperplane H of $\operatorname{PG}(r,q)$ is lifted. Then \mathcal{F} is also a lifted arc.

Corollary. If all $(t \mod q)$ -arcs in $PG(r_0, q)$ are lifted then so are all $(t \mod q)$ -arcs in PG(r, q) for all $r \ge r_0$.

 \mathcal{F} : an arc in $\Sigma = \mathrm{PG}(r,q)$

 ${\cal H}$ – the set of all hyperplanes in Σ

 σ - a function such that $\sigma(\mathcal{F}(H))$ is a non-negative integer for all $H \in \mathcal{H}$. The arc \mathcal{F}^{σ} in $\widetilde{\Sigma}$

$$\mathcal{F}^{\sigma}: \left\{ \begin{array}{ccc} \mathcal{H} & \to & \mathbb{N}_{0} \\ H & \to & \sigma(\mathcal{F}(H)) \end{array} \right.$$

is called the σ -dual of \mathcal{F} .

Theorem D. The arc \mathcal{F} is a $(t \mod q)$ -arc in PG(2,q) of size mq + t if and only if the arc \mathcal{F}^{σ} with $\sigma(x) = (x-t)/q$ is an ((m-t)q + m, m-t)-blocking set in the dual plane with line multiplicities $m - t, m - t + 1, \ldots, m$.

3. $(1 \mod q)$ and $(2 \mod q)$ -Arcs

An $(1 \mod q)$ -arc in PG(r, q) is either a hyperplane, or the complete space.

- A $(2 \mod q)$ -arc in PG(2,q), q odd, is one of the following (Maruta, 2003)
- (1) A lifted arc from a 2-line.
- (2) A lifted arc from a (q + 2)-line.
- (3) A lifted arc from a (2q + 2)-line.

(4) An exceptional $(2 \mod q)$ -arc: an oval plus a tangent plus twice all internal points of the oval.

⁻ ACCT-XV, Albena, 18.06.-24.06.2016 -

(4) The exceptional $(2 \mod q)$ -arc

o 1-points

Lemma. Let \mathcal{F} be a $(2 \mod q)$ -arc in $\mathrm{PG}(3,q)$, q odd. Let there exist a plane π such that the restriction $\mathcal{F}|_{\pi}$ is of type (4). Then \mathcal{F} is a lifted arc.

Theorem E. Every $(2 \mod q)$ -arc in PG(r,q), $r \ge 3$, q odd, is lifted.

Corollary. Every $(2 \mod q)$ -arc in PG(r,q), $r \ge 3$, q odd, contains a hyperplane in its support.

4. $(3 \mod 5)$ -arcs in PG(2,5)

 $(18, \{3, 8, 13, 18\})$ -arcs

$$\mathcal{F}: (23, \{3, 8\})$$
-arc

 \mathcal{F}^{σ} :

 \mathcal{F}^{σ} : (9,1)-blocking set

with line multiplicities 1, 2, 3, 4

 $\mathcal{F}: (28, \{3, 8\})$ -arc

 \mathcal{F}^{σ} : (15, 2)-blocking set with line multiplicities 2, 3, 4, 5

 \mathcal{F}^{σ} : the complement of the unique (16,4)-arc without external lines

⁻ ACCT-XV, Albena, 18.06.-24.06.2016 -

The $(23, \{3, 8\})$ -arc

The $(28, \{3, 8\})$ -arc

 \mathcal{F} : (33, {3, 8, 13})-arc

 \mathcal{F}^{σ} : (21,3)-blocking set with line multiplicities 3,4,5,6

 \mathcal{F}^{σ} is one of the following:

(1) the complement of the seven non-isomorphic (10,3)-arcs; $\Lambda_2 = 0$

(2) the complement of the (11, 3)-arc with four external lines; a point not on an external line is doubled; $\Lambda_2 = 1$

(3) one double point which forms an oval with five of the 0-points; the tangent in the 2-point is a 3-line; $\Lambda_2=1$

(4) PG(2,5) minus a triangle with vertices of multiplicity 2, 2, 1; $\Lambda_2 = 2$

(2) The first $(33, \{3, 8, 13\})$ -arc with one 13-line

(3) the second $(33, \{3, 8, 13\})$ -arc with one 13-line

(4) $(33, \{3, 8, 13\})$ -arc with two 13-lines

 \mathcal{F} : (38, {3, 8, 13})-arc

 \mathcal{F}^{σ} : (27,4)-blocking set with line multiplicities 4,5,6,7

There exist at least twenty non-equivalent $(3 \mod 5)$ -arcs of size 38.

Theorem F. Every (3 mod 5)-arc \mathcal{F} in PG(3,5) with $|\mathcal{F}| \leq 168$ is a lifted arc (obtained by Theorem B). In particular, $|\mathcal{F}| = 93, 118, 143$, or 168.

Conjecture. A $(t \mod q)$ -arc in PG(r,q), $r \ge 3$, is a lifted arc or the sum of lifted arcs.

Remark. We have no example of a $(t \mod q)$ -arc in PG(r,q), $r \ge 3$ which is not the sum of lifted arcs.

5. Recent Developments

Definition. Let $0 \le t < q$ be an integer.

An arc \mathcal{F} in $\operatorname{PG}(r,q)$ is called a $(t \mod q)$ -arc if

(1) every point P has multiplicity at most q-1: $\mathcal{F}(P) \leq q-1$;

(2) every subspace S of positive dimension has multiplicity $\mathcal{F}(S) \equiv t \pmod{q}.$ Lemma. Every $(0 \mod p)$ -arc in PG(3, p), p prime, is a sum (over \mathbb{F}_p) of at most p lifted arcs.

Sketch of proof.

A – the points-by-lines incidence matrix of PG(3, p), (Hamada, 1968)

$$\operatorname{rk}_p A = \frac{1}{6}(5p^3 + 3p^2 + 4p + 6)$$

Each $(0 \mod p)$ -arc is represented as a vector:

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n) \in \mathbb{F}_p^n, \ n = p^3 + p^2 + p + 1,$$

$$\boldsymbol{x}A = \boldsymbol{0}.$$

The $(0 \mod p)$ -arcs form a vector space of dimension

$$\frac{1}{6}(p^3 + 3p^2 + 2p) = \binom{p+2}{3}.$$

On the other hand:

 P_1, P_2, \ldots, P_p – points in general position V_i – the vector space of $(0 \mod p)$ -arcs lifted from P_i

$$\dim V_i = \binom{p+1}{2}, \ \dim V_i \cap V_j = p, \ \dim V_i \cap V_j \cap V_k = 1.$$

- ACCT-XV, Albena, 18.06.-24.06.2016 -

dim
$$(V_1 + \ldots + V_p) = \frac{1}{6}(p^3 + 3p^2 + 2p).$$

Theorem G. Every $(t \mod p)$ -arc in PG(r,p), $r \ge 1$, is a sum of lifted arcs (over \mathbb{F}_p).