CHARACTERIZATION OF HIGHLY DIVISIBLE ARCS

Assia Rousseva
Sofia University

(joint work with Ivan Landjev)

- ACCT-XV, Albena, 18.06.-24.06.2016 -

1. $(t \bmod q)$-Arcs

\diamond A multiset in $\mathrm{PG}(r, q)$ is a mapping

$$
\mathcal{K}:\left\{\begin{array}{lll}
\mathcal{P} & \rightarrow & \mathbb{N}_{0} \\
P & \rightarrow & \mathcal{K}(P)
\end{array}\right.
$$

$\diamond \mathcal{K}(P)$ - multiplicity of the point P.
$\diamond \mathcal{Q} \subset \mathcal{P}: \mathcal{K}(\mathcal{Q})=\sum_{P \in \mathcal{Q}} \mathcal{K}(P)$ - multiplicity of the set \mathcal{Q}.
$\diamond \mathcal{K}(\mathcal{P})$ - the cardinality of \mathcal{K}.
$\diamond a_{i}$ - the number of hyperplanes H with $\mathcal{K}(H)=i$
$\diamond\left(a_{i}\right)_{i \geq 0}$ - the spectrum of \mathcal{K}

Definition. (n, w)-arc in $\operatorname{PG}(r, q)$: a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P})=n$;
2) for every hyperplane H : $\mathcal{K}(H) \leq w$;
3) there exists a hyperplane $H_{0}: \mathcal{K}\left(H_{0}\right)=w$.

Definition. (n, w)-blocking set in $\operatorname{PG}(r, q)$
(or (n, w)-minihyper): a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P})=n$;
2) for every hyperplane H : $\mathcal{K}(H) \geq w$;
3) there exists a hyperplane $H_{0}: \mathcal{K}\left(H_{0}\right)=w$.

Definition. Let $t<q$ be a positive integer.
An arc \mathcal{F} in $\operatorname{PG}(r, q)$ is called a $(t \bmod q)$-arc if
(1) every point P has multiplicity at most $t: \mathcal{F}(P) \leq t$;
(2) every subspace S of positive dimension has multiplicity

$$
\mathcal{F}(S) \equiv t(\bmod q)
$$

Remark. It is enough to require (2) only for the lines.

2. General Constructions for $(t \bmod q)$-Arcs

Theorem A. Let $t_{1}<q$ and $t_{2}<q$ be positive integers. The sum of a $\left(t_{1} \bmod q\right)$-arc and a $\left(t_{2} \bmod q\right)$-arc in $\operatorname{PG}(r, q)$ is a $(t \bmod q)$-arc with $t=t_{1}+t_{2}(\bmod q)$ provided the multiplicities of all points do not exceed t. In particular, the sum of t hyperplanes in $\operatorname{PG}(r, q)$ is a $(t \bmod q)$-arc.

Theorem B. Let \mathcal{F}_{0} be a $(t \bmod q)$-arc in a hyperplane $H \cong \operatorname{PG}(r-1, q)$. of $\Sigma=\mathrm{PG}(r, q)$. For a fixed point $P \in \Sigma \backslash H$, define an $\operatorname{arc} \mathcal{F}$ in Σ as follows:
$-\mathcal{F}(P)=t ;$

- for each point $Q \neq P: \mathcal{F}(Q)=\mathcal{F}_{0}(R)$ where $R=\langle P, Q\rangle \cap H$.

Then the arc \mathcal{F} is a $(t \bmod q)$-arc in $\operatorname{PG}(r, q)$ of size $q\left|\mathcal{F}_{0}\right|+t$.

Definition. $(t \bmod q)$-arcs obtained by Theorem B are called lifted arcs.

Lemma. Let a $(t \bmod q)$-arc \mathcal{F} be lifted from the points P and $Q, P \neq Q$. Then \mathcal{F} is also lifted from any point on the line $P Q$. In particular, the lifting points of a \mathcal{F} form a subspace.

Theorem C. Let \mathcal{F} be a $(t \bmod q)$-arc in $\operatorname{PG}(r, q)$ such that the restriction $\left.\mathcal{F}\right|_{H}$ to every hyperplane H of $\operatorname{PG}(r, q)$ is lifted. Then \mathcal{F} is also a lifted arc.

Corollary. If all $(t \bmod q)$-arcs in $\operatorname{PG}\left(r_{0}, q\right)$ are lifted then so are all $(t \bmod q)$ arcs in $\mathrm{PG}(r, q)$ for all $r \geq r_{0}$.
$\mathcal{F}:$ an arc in $\Sigma=\operatorname{PG}(r, q)$
\mathcal{H} - the set of all hyperplanes in Σ
σ - a function such that $\sigma(\mathcal{F}(H))$ is a non-negative integer for all $H \in \mathcal{H}$.
The arc \mathcal{F}^{σ} in $\widetilde{\Sigma}$

$$
\mathcal{F}^{\sigma}:\left\{\begin{array}{ccc}
\mathcal{H} & \rightarrow & \mathbb{N}_{0} \\
H & \rightarrow & \sigma(\mathcal{F}(H))
\end{array}\right.
$$

is called the σ-dual of \mathcal{F}.

Theorem D. The arc \mathcal{F} is a $(t \bmod q)$-arc in $\operatorname{PG}(2, q)$ of size $m q+t$ if and only if the arc \mathcal{F}^{σ} with $\sigma(x)=(x-t) / q$ is an $((m-t) q+m, m-t)$-blocking set in the dual plane with line multiplicities $m-t, m-t+1, \ldots, m$.

3. $(1 \bmod q)$ and $(2 \bmod q)$-Arcs

An $(1 \bmod q)$-arc in $\mathrm{PG}(r, q)$ is either a hyperplane, or the complete space.

A $(2 \bmod q)$-arc in $\operatorname{PG}(2, q), q$ odd, is one of the following (Maruta, 2003)
(1) A lifted arc from a 2 -line.
(2) A lifted arc from a $(q+2)$-line.
(3) A lifted arc from a $(2 q+2)$-line.
(4) An exceptional $(2 \bmod q)$-arc: an oval plus a tangent plus twice all internal points of the oval.
(4) The exceptional $(2 \bmod q)$-arc

- 2-points
- 1-points

Lemma. Let \mathcal{F} be a $(2 \bmod q)$-arc in $\operatorname{PG}(3, q), q$ odd. Let there exist a plane π such that the restriction $\left.\mathcal{F}\right|_{\pi}$ is of type (4). Then \mathcal{F} is a lifted arc.

Theorem E. Every $(2 \bmod q)$-arc in $\mathrm{PG}(r, q), r \geq 3, q$ odd, is lifted.

Corollary. Every $(2 \bmod q)$-arc in $\operatorname{PG}(r, q), r \geq 3, q$ odd, contains a hyperplane in its support.

4. $(3 \bmod 5)$-arcs in $\operatorname{PG}(2,5)$

(18, \{3, $8,13,18\})$-arcs

$\mathcal{F}:(23,\{3,8\})$-arc
$\mathcal{F}^{\sigma}:$

$\mathcal{F}^{\sigma}:(9,1)$-blocking set
with line multiplicities $1,2,3,4$
$\mathcal{F}:(28,\{3,8\})$-arc
\mathcal{F}^{σ} : $(15,2)$-blocking set with line multiplicities $2,3,4,5$
\mathcal{F}^{σ} : the complement of the unique $(16,4)$-arc without external lines

The (23, $\{3,8\}$)-arc

The (28, $\{3,8\}$)-arc

$\mathcal{F}:(33,\{3,8,13\})$-arc
$\mathcal{F}^{\sigma}:(21,3)$-blocking set with line multiplicities $3,4,5,6$
\mathcal{F}^{σ} is one of the following:
(1) the complement of the seven non-isomorphic $(10,3)$-arcs; $\Lambda_{2}=0$
(2) the complement of the $(11,3)$-arc with four external lines; a point not on an external line is doubled; $\Lambda_{2}=1$
(3) one double point which forms an oval with five of the 0-points; the tangent in the 2-point is a 3-line; $\Lambda_{2}=1$
(4) $\mathrm{PG}(2,5)$ minus a triangle with vertices of multiplicity $2,2,1 ; \Lambda_{2}=2$
(2) The first (33, $\{3,8,13\})$-arc with one 13 -line

(3) the second $(33,\{3,8,13\})$-arc with one 13 -line

(4) $(33,\{3,8,13\})$-arc with two 13 -lines

$\mathcal{F}:(38,\{3,8,13\})$-arc
\mathcal{F}^{σ} : $(27,4)$-blocking set with line multiplicities $4,5,6,7$
There exist at least twenty non-equivalent $(3 \bmod 5)$-arcs of size 38 .

Theorem F. Every $(3 \bmod 5)$-arc \mathcal{F} in $\operatorname{PG}(3,5)$ with $|\mathcal{F}| \leq 168$ is a lifted arc (obtained by Theorem B). In particular, $|\mathcal{F}|=93,118,143$, or 168.

Conjecture. A $(t \bmod q)$-arc in $\mathrm{PG}(r, q), r \geq 3$, is a lifted arc or the sum of lifted arcs.

Remark. We have no example of a $(t \bmod q)$-arc in $\operatorname{PG}(r, q), r \geq 3$ which is not the sum of lifted arcs.

5. Recent Developments

Definition. Let $0 \leq t<q$ be an integer.
An arc \mathcal{F} in $\operatorname{PG}(r, q)$ is called a $(t \bmod q)$-arc if
(1) every point P has multiplicity at most $q-1$:

$$
\mathcal{F}(P) \leq q-1
$$

(2) every subspace S of positive dimension has multiplicity $\mathcal{F}(S) \equiv t(\bmod q)$.

Lemma. Every $(0 \bmod p)$-arc in $\mathrm{PG}(3, p), p$ prime, is a sum (over $\left.\mathbb{F}_{p}\right)$ of at most p lifted arcs.

Sketch of proof.
A - the points-by-lines incidence matrix of $\operatorname{PG}(3, p)$, (Hamada, 1968)

$$
\mathrm{rk}_{p} A=\frac{1}{6}\left(5 p^{3}+3 p^{2}+4 p+6\right)
$$

Each $(0 \bmod p)$-arc is represented as a vector:

$$
\begin{gathered}
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{p}^{n}, n=p^{3}+p^{2}+p+1, \\
\boldsymbol{x} A=\mathbf{0} .
\end{gathered}
$$

The $(0 \bmod p)$-arcs form a vector space of dimension

$$
\frac{1}{6}\left(p^{3}+3 p^{2}+2 p\right)=\binom{p+2}{3}
$$

On the other hand:

$$
P_{1}, P_{2}, \ldots, P_{p} \text { - points in general position }
$$

$$
V_{i} \text { - the vector space of }(0 \bmod p) \text {-arcs lifted from } P_{i}
$$

$$
\operatorname{dim} V_{i}=\binom{p+1}{2}, \quad \operatorname{dim} V_{i} \cap V_{j}=p, \quad \operatorname{dim} V_{i} \cap V_{j} \cap V_{k}=1
$$

$$
\operatorname{dim}\left(V_{1}+\ldots+V_{p}\right)=\frac{1}{6}\left(p^{3}+3 p^{2}+2 p\right)
$$

Theorem G. Every $(t \bmod p)$-arc in $\mathrm{PG}(r, p), r \geq 1$, is a sum of lifted arcs (over \mathbb{F}_{p}).

