# On Ryabko and Ryabko asymptotically optimal perfect steganographic scheme in a noisy channel

### Valeria Potapova

Institute for Information Transmission Problems Russian Academy of Science

ACCT, 2016



### Outline



### Asymptotically Optimal Perfect Steganographic Scheme

### 3 The Model of Errors for the Ryabko and Ryabko Scheme



## The Idea of Steganography



RUSSIAN ACADEMY OF SCIENCES

## Formal Definition

### Definition

An embedding scheme of quality T is a pair of mappings  $E: V \times X \rightarrow S$  and  $D: S \rightarrow X$  such that for any message  $x \in X$ and any container  $v \in V$  the stegoword s = E(v, x) possesses the following properties: (1) D(s) = x(2)  $d(v, s) \leq T$ 

RUSSIAN ACADEMY OF SCIENCES

## Ryabko and Ryabko Scheme

There is a source  $\mu$  of containers v. Containers are generated as strings of symbols which are i.i.d. random variables from some finite alphabet A. Secret binary messages are independent and generated equiprobably by a source  $\omega$ . In the channel the warden can intercept and then reads all messages.



## Ryabko and Ryabko Scheme. Construction for the Binary Case

The binary message  $x = x_1x_2x_3...$  is embedded into the container  $v = v_1v_2v_3v_4..., v_i \in \mathbb{A} = \{a, b\}.$ 

• The symbols of *v* are divided into pairs and renamed in the following way:

$$aa = u$$
,  $bb = u$ ,  $ab = y_0$ ,  $ba = y_1$ .

 The pairs, corresponding to u, are idle, but the pairs y<sub>i</sub> are changed into pairs associated with y<sub>x1</sub>y<sub>x2</sub>y<sub>x3</sub>... in the following way:

$$\begin{aligned} (s_{2i-1},s_{2i}) &= (\min\{v_{2i-1},v_{2i}\},\max\{v_{2i-1},v_{2i}\}) \text{ if the} \\ &= \text{mbedded } x_k = 0 \text{ and} \\ (s_{2i-1},s_{2i}) &= (\max\{v_{2i-1},v_{2i}\},\min\{v_{2i-1},v_{2i}\}) \text{ if the} \\ &= \text{mbedded } x_k = 1. \end{aligned}$$



# Ryabko and Ryabko Scheme. Construction for the Binary Case

#### Example

Let the secret message be x = 0110... and the container v = aababaaaabaaaabb... By renaming pairs we get  $v = uy_1y_1uy_0y_1uuu...$  We embed x and end up with the stegoword  $s = uy_0y_1uy_1y_0uuu... = aaabbaaabaabaabaababb...$ 

RUSSIAN ACADEMY OF SCIENCES

## Single Errors on a Pair of Symbols of the Stegoword

### With a single error pairs

- aa and bb turn to pairs ab or ba
- *ab* and *ba* turn to pairs *aa* or *bb*

#### Example

Let the secret message be x = 0110... and the container v = aababaaaabaaaabb... By renaming pairs we get  $v = uy_1y_1uy_0y_1uuu...$  We embed x and end up with the stegoword  $s = uy_0y_1uy_1y_0uuu... = aaabbaaabaabaaaabb...$ Assume that two errors have occurred during the transmission and s' = baaabaaabaabaaaabb... The decoding algorithm extracts x' = 1110...

## Generalized Scheme for Non-binary Case

Symbols of the container are from the alphabet  $\mathbb{A} = \{0, 1, 2, ..., q - 1\}$ , which symbols are ordered as integers. The two stages of embedding are the same as for the binary case.

• The symbols of *v* are divided into pairs and renamed in the following way:

$$\begin{aligned} \alpha \alpha &= u \text{ for all } \alpha \in \mathbb{A} \\ \alpha \beta &= y_0 \text{ if } \alpha < \beta \\ \alpha \beta &= y_1 \text{ if } \alpha > \beta. \end{aligned}$$

• The pairs, corresponding to *u*, are idle, but the pairs *y<sub>i</sub>* are changed into pairs associated with *y<sub>x1</sub>y<sub>x2</sub>y<sub>x3</sub>...* in the following way:

$$(s_{2i-1}, s_{2i}) = (\min\{v_{2i-1}, v_{2i}\}, \max\{v_{2i-1}, v_{2i}\}) \text{ if the } \\ \text{embedded } x_k = 0 \text{ and } \\ (s_{2i-1}, s_{2i}) = (\max\{v_{2i-1}, v_{2i}\}, \min\{v_{2i-1}, v_{2i}\}) \text{ if the } \\ \text{embedded } x_k = 1.$$

## The Model of Errors for the Non-binary Case

- With a single error pairs  $\alpha \alpha$  turns to  $\alpha \beta$  or  $\beta \alpha$
- If α < β, a pair αβ contains 0. With the conditional probability <sup>2</sup>/<sub>q-1</sub> the pair turns into αα. If α turns into α' and α' > β or β turns into β' such that α > β', the regular reversal happens. The probability of reversal depends on the pair! Say α is k-th symbol in the alphabet and β is *I*-th symbol (k < I). The conditional probability of the reversal is <sup>q-1-I</sup>/<sub>q-1</sub> + <sup>k</sup>/<sub>q-1</sub>.



## Conclusion

We have investigated the universal perfect steganographic system and its behavior during the transmission via a noisy channel or, the same, a channel with an active warden. If an error in transmitted stegoword happens during the transmission, an insertion/deletion takes place in the embedded secret message.

Thank you for your attention!

RUSSIAN ACADEMY OF SCIENCES