うして ふゆう ふほう ふほう うらつ

Conjectural upper bounds on the smallest size of a complete cap in PG(N, q), $N \ge 3$

Daniele Bartoli* Alexander A. Davydov[@] Giorgio Faina* Stefano Marcugini* Fernanda Pambianco*

- @ Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Science, Moscow, Russia
 - * Department of Mathematics and Informatics, Perugia University, Perugia, Italy

XV International Workshop on Algebraic and Combinatorial Coding Theory, ACCT2016, Albena, Bulgaria, June 18-24, 2016

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

INTRODUCTION NOTATION

 $\mathrm{PG}(N, q) \Leftrightarrow$ projective space of dimension N over Galois field \mathbb{F}_q *n*-**cap** \Leftrightarrow a set of *n* points no three of which are collinear tangent \Leftrightarrow a line meeting a cap in one point bisecant \Leftrightarrow a line intersecting a cap in two points

a **point** A of PG(N, q) is **covered** by a cap \Leftrightarrow the point A lies on a **bisecant** of the cap

complete cap \Leftrightarrow all points of PG(N, q)are covered by bisecants of the cap \Leftrightarrow one may not add a new point to a complete cap

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CONNECTIONS with CODING THEORY

complete *n*-cap in $PG(N,q) \Leftrightarrow [n, n - (N+1), 4]_q 2$ code

point of the cap \$ \$ column of a parity-check matrix of the code

LOWER BOUND

 $t_2(N, q) \Leftrightarrow$ the smallest size of a complete cap in PG(N, q)exact values of $t_2(N, q)$ are known only for small q, NLOWER BOUND: $t_2(N, q) > \sqrt{2}q^{\frac{N-1}{2}}$ results close to lower bound are known only for even qq = 2, N odd & N even: E.M. Gabidulin, A.A. Davydov, L.M. Tombak **1991**

q = 2^h, N odd: F. Pambianco, L. Storme 1996; M. Giulietti 2007
A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco 2010

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

PROBLEM: UPPER BOUND

 $t_2(N,q) \Leftrightarrow$ the smallest size of a complete cap in $\mathrm{PG}(N,q)$

HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow upper bound on $t_2(N, q)$

$$t_2(N,q) < cq^{rac{N-1}{2}} \ln^{300} q$$

c - constant independent of \boldsymbol{q}

D. Bartoli, S. Marcugini, F. Pambianco ACCT2014 & http://arxiv.org/pdf/1406.5060.pdf 2014

probabilistic methods based on J.H. Kim, V. Vu for plane PG(2, q)**2003**

うして ふゆう ふほう ふほう うらつ

GOAL and RESULT

$GOAL \Rightarrow$ analytical (non-computer) bound

 $t_2(N,q) < cq^{rac{N-1}{2}}\sqrt{\ln q}$. c - constant independent of q

 $\mathsf{RESULT} \Rightarrow \mathsf{Under some reasonable probabilistic COnjecture :}($

$$t_2(N,q) \sim \sqrt{N+1} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

WAY and BASE

$WAY \Rightarrow$ analysis of step-by-step greedy algorithms

A greedy algorithm is an algorithm that makes the *locally optimal choice* at each stage with the hope of finding a global optimum or, at least, a global "good" solution.

"From the first day to this, sheer greed was the driving spirit of civilization" (F. Engels)

BASE D. Bartoli, A.A. Davydov, G. Faina, A.A. Kreshchuk, S. Marcugini, F. Pambianco bounds for PG(2, *q*) ACCT2014, Problems of Information Transmission 2014

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Ensemble of random *w*-caps

- The w-th step of Algorithm forms a w-cap W.
- $U_w \Leftrightarrow$ the number of points not covered by W
- $S(U_w) \Leftrightarrow$ the set of all *w*-caps in PG(N, q) each of which does not cover exactly U_w points.
- Starting cap of the (w + 1)-th step \Leftrightarrow w-cap \mathcal{K}_w randomly chosen from $S(U_w)$.

For every cap of $S(U_w)$ the probability to be chosen $=\frac{1}{\#S(U_w)}$. $S(U_w) \Leftrightarrow$ an ensemble of random objects with the uniform probability distribution.

うして ふゆう ふほう ふほう うらう

Uniform distribution of uncovered points

$$\# \operatorname{PG}(N,q) = \theta_{N,q} = \frac{q^{N+1}-1}{q-1} = q^N + q^{N-1} + \ldots + q + 1$$

Lemma

Every point of PG(N, q) may be considered as a random object that can be uncovered by a randomly chosen w-arc \mathcal{K}_w with some probability p_w . The probability p_w is the same for all points:

$$p_w = \frac{U_w}{\# \mathrm{PG}(N,q)}$$

the **proportion** of uncovered points = the **probability** that a point is uncovered

・ロト ・個ト ・モト ・モト

æ

One step of a greedy algorithm

the number of new covered points on the (w+1)-th step

 $\begin{array}{ll} {\rm cap} \ \mathcal{K}_w = \{A_1, A_2, \ldots, A_w\}. & A_i - {\rm point \ of \ PG}(N, q). \\ {\rm point \ } A_{w+1} \ {\rm will \ be \ included \ in \ the \ cap \ on \ the \ (w+1)-th \ step} \\ A_{w+1} \ {\rm defines \ a \ bundle \ } \mathcal{B}_w(A_{w+1}) \ {\rm of \ } w \ {\rm tangents \ to \ } \mathcal{K}_w \\ w(q-1)+1 \ {\rm points \ of \ } \mathcal{B}_w(A_{w+1}) \setminus \{A_1, \ldots, A_w\} \ {\rm are \ candidates \ to \ be \ new \ covered \ points \ at \ the \ (w+1)-th \ step} \\ \Delta_w(A_{w+1}) \ {\rm - the \ number \ of \ new \ covered \ points \ on \ } (w+1)-th \ step \ \end{array}$

 U_w uncovered points $\Rightarrow U_w$ distinct bundles

tools \rightarrow estimates of $\Delta_w(A_{w+1})$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

the main idea for bounds

if events "a point is uncovered" are independent the expected value of the number of new covered points among w(q-1) + 1 random points is

$$\mathsf{E} = \mathsf{p}_w \cdot (w(q-1)+1) = \frac{U_w}{\theta_{N,q}}(w(q-1)+1)$$

MAIN IDEA \Rightarrow there exists an uncovered point A_{w+1} providing

 $\Delta_w(A_{w+1}) \geq \frac{\mathsf{E}}{D}, \quad D- ext{constant}$ independent of q

RIGOROUS PROOFa part of steps of the iterative processCONJECTUREthe rest of the steps

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

CONJECTURE

Conjecture

(i) (the generalized conjecture) In PG(N, q), for q large enough, for every (w + 1)-th step of the iterative process, there is a w-cap $\mathcal{K}_w \in \mathbf{S}(U_w)$ such that there exists an uncovered point A_{w+1} providing

$$\Delta_w(A_{w+1}) \ge \frac{\mathsf{E}}{D},\tag{1}$$

where $D \ge 1$ is a constant independent of q. (ii) (the basic conjecture) In (1) we have D = 1.

new upper bound (under Conjecture)

Theorem

(i) Under Conjecture (i), in $\mathrm{PG}(N,q)$, $N\geq 3$, it holds that

$$t_2(N,q) < rac{\sqrt{D}}{q-1} \sqrt{q^{N+1}(N+1) \ln q} + rac{\sqrt{q^{N+1}}}{q-3}, \ t_2(N,q) \sim \sqrt{D(N+1)} \cdot q^{rac{N-1}{2}} \sqrt{\ln q},$$

where $D \ge 1$ is a constant independent of q.

(ii) Under Conjecture (ii), the bound above holds for D=1 , i.e.

$$t_2(N,q) \sim \sqrt{N+1} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q}.$$

 \sim for q large enough

Estimate of average of $\Delta_w(A_{w+1})$: tool for rigorous proof

 Δ^{aver}_w - the average value of $\Delta_w(\mathcal{A}_{w+1})$ over all U_w uncovered points \mathcal{A}_{w+1}

$$\max_{A_{w+1}}\Delta_w(A_{w+1})\geq\Delta_w^{\mathsf{aver}}=rac{1}{U_w}\sum_{A_{w+1}}\Delta_w(A_{w+1})\geq 1$$

Lemma

$$\Delta_w^{aver} \geq \max\{1, rac{wU_w}{ heta_{N-1,q}+1-w}-w+1\}$$

equality holds if every tangent contains: the same number of uncovered points; at most one uncovered point

うして ふゆう ふほう ふほう うらつ

rigorous proof for a part of the iterative process

Theorem

Let one of the following conditions hold:

$$rac{D(w-1) heta_{N,q}(heta_{N-1,q}+1-w)}{Dw heta_{N,q}-(heta_{N-1,q}+1-w)(w(q-1)+1)},$$

$$rac{D heta_{N,q}}{w(q-1)+1}\geq U_w.$$

Then there exists an uncovered point A_{w+1} providing the inequality $\Delta_w(A_{w+1}) \geq \frac{\mathbf{E}}{D}$.

 $D \ge 1$ - constant independent of q.

RIGOROUS proof vs CONJECTURE

the number of uncovered points on tangents

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Thank you Spasibo Premnogo blagodarya Mille grazie !'Muchas gracias Toda raba Merci beaucoup Dankeschön Dank u wel Domo arigato