Conjectural upper bounds on the smallest size of a complete cap in $\operatorname{PG}(N, q), N \geq 3$

Daniele Bartoli* Alexander A. Davydov ${ }^{\circledR}$ Giorgio Faina* Stefano Marcugini* Fernanda Pambianco*

© Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Science, Moscow, Russia

* Department of Mathematics and Informatics, Perugia University, Perugia, Italy

XV International Workshop on Algebraic and Combinatorial Coding Theory, ACCT2016,Albena, Bulgaria, June 18-24, 2016

Outline

(1) Introduction
(2) Iterative process
(3) Conjecture \& Bounds
(4) Reasonableness of conjectures

INTRODUCTION NOTATION

$\mathrm{PG}(N, q) \Leftrightarrow$ projective space of dimension N over Galois field \mathbb{F}_{q} n-cap \Leftrightarrow a set of n points no three of which are collinear tangent \Leftrightarrow a line meeting a cap in one point bisecant \Leftrightarrow a line intersecting a cap in two points
a point A of $\operatorname{PG}(N, q)$ is covered by a cap \Leftrightarrow the point A lies on a bisecant of the cap
complete cap \Leftrightarrow all points of $\operatorname{PG}(N, q)$ are covered by bisecants of the cap
\Leftrightarrow one may not add a new point to a complete cap

CONNECTIONS with CODING THEORY

complete n-cap in $\operatorname{PG}(N, q) \Leftrightarrow[n, n-(N+1), 4]_{q} 2$ code point of the cap
§
column of a parity-check matrix of the code

LOWER BOUND

$t_{2}(N, q) \Leftrightarrow$ the smallest size of a complete cap in $\operatorname{PG}(N, q)$
exact values of $t_{2}(N, q)$ are known only for small q, N
LOWER BOUND: $t_{2}(N, q)>\sqrt{2} q^{\frac{N-1}{2}}$
results close to lower bound are known only for even q
$q=2, N$ odd \& N even:
E.M. Gabidulin, A.A. Davydov, L.M. Tombak 1991
$q=2^{h}, N$ odd: F. Pambianco, L. Storme 1996; M. Giulietti 2007
A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco 2010

PROBLEM: UPPER BOUND

$t_{2}(N, q) \Leftrightarrow$ the smallest size of a complete cap in $\operatorname{PG}(N, q)$
HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(N, q)$

$$
t_{2}(N, q)<c q^{\frac{N-1}{2}} \ln ^{300} q
$$

c - constant independent of q
D. Bartoli, S. Marcugini, F. Pambianco ACCT2014 \& http://arxiv.org/pdf/1406.5060.pdf 2014 probabilistic methods based on J.H. Kim, V. Vu for plane $\operatorname{PG}(2, q)$ 2003

GOAL and RESULT

GOAL \Rightarrow analytical (non-computer) bound $t_{2}(N, q)<c q^{\frac{N-1}{2}} \sqrt{\ln q} . \quad c$ - constant independent of q

RESULT \Rightarrow Under some reasonable probabilistic conjecture :(

$$
t_{2}(N, q) \sim \sqrt{N+1} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q}
$$

WAY and BASE

WAY \Rightarrow analysis of step-by-step greedy algorithms
A greedy algorithm is an algorithm that makes the locally optimal choice at each stage with the hope of finding a global optimum or, at least, a global "good" solution.
"From the first day to this, sheer greed was the driving spirit of civilization" (F. Engels)

BASE D. Bartoli, A.A. Davydov, G. Faina, A.A. Kreshchuk, S. Marcugini, F. Pambianco bounds for PG(2, q) ACCT2014, Problems of Information Transmission 2014

Ensemble of random w-caps

The w-th step of Algorithm forms a w-cap W.
$U_{w} \Leftrightarrow$ the number of points not covered by W
$\mathbf{S}\left(U_{w}\right) \Leftrightarrow$ the set of all w-caps in $\operatorname{PG}(N, q)$ each of which does not cover exactly U_{w} points.
Starting cap of the $(w+1)$-th step $\Leftrightarrow w$-cap \mathcal{K}_{w} randomly chosen from $\mathbf{S}\left(U_{w}\right)$.
For every cap of $\mathbf{S}\left(U_{w}\right)$ the probability to be chosen $=\frac{1}{\# \mathbf{S}\left(U_{w}\right)}$.
$\mathbf{S}\left(U_{w}\right) \Leftrightarrow$ an ensemble of random objects with the uniform probability distribution.

Uniform distribution of uncovered points

$$
\# \operatorname{PG}(N, q)=\theta_{N, q}=\frac{q^{N+1}-1}{q-1}=q^{N}+q^{N-1}+\ldots+q+1
$$

Lemma

Every point of $\mathrm{PG}(N, q)$ may be considered as a random object that can be uncovered by a randomly chosen w-arc \mathcal{K}_{w} with some probability p_{w}. The probability p_{w} is the same for all points:

$$
p_{w}=\frac{U_{w}}{\# \operatorname{PG}(N, q)}
$$

the proportion of uncovered points $=$ the probability that a point is uncovered

One step of a greedy algorithm

the number of new covered points on the $(w+1)$-th step

cap $\mathcal{K}_{w}=\left\{A_{1}, A_{2}, \ldots, A_{w}\right\} . \quad A_{i}$ - point of $\operatorname{PG}(N, q)$.
point A_{w+1} will be included in the cap on the ($w+1$)-th step
A_{w+1} defines a bundle $\mathcal{B}_{w}\left(A_{w+1}\right)$ of w tangents to \mathcal{K}_{w} $w(q-1)+1$ points of $\mathcal{B}_{w}\left(A_{w+1}\right) \backslash\left\{A_{1}, \ldots, A_{w}\right\}$ are candidates to be new covered points at the ($w+1$)-th step
$\Delta_{w}\left(A_{w+1}\right)$ - the number of new covered points on $(w+1)$-th step
U_{w} uncovered points $\Rightarrow U_{w}$ distinct bundles
tools $->$ estimates of $\Delta_{w}\left(A_{w+1}\right)$

the main idea for bounds

if events "a point is uncovered" are independent the expected value of the number of new covered points among $w(q-1)+1$ random points is

$$
\mathrm{E}=p_{w} \cdot(w(q-1)+1)=\frac{U_{w}}{\theta_{N, q}}(w(q-1)+1)
$$

MAIN IDEA \Rightarrow there exists an uncovered point A_{w+1} providing
$\Delta_{w}\left(A_{w+1}\right) \geq \frac{\mathrm{E}}{\mathrm{D}}, \quad D$ - constant independent of q
RIGOROUS PROOF CONJECTURE
a part of steps of the iterative process the rest of the steps

CONJECTURE

Conjecture

(i) (the generalized conjecture) In $\mathrm{PG}(\mathrm{N}, q)$, for q large enough, for every $(w+1)$-th step of the iterative process, there is a w-cap $\mathcal{K}_{w} \in \mathbf{S}\left(U_{w}\right)$ such that there exists an uncovered point A_{w+1} providing

$$
\begin{equation*}
\Delta_{w}\left(A_{w+1}\right) \geq \frac{E}{D} \tag{1}
\end{equation*}
$$

where $D \geq 1$ is a constant independent of q. (ii) (the basic conjecture) In (1) we have $D=1$.

new upper bound (under Conjecture)

Theorem

(i) Under Conjecture (i), in $\operatorname{PG}(N, q), N \geq 3$, it holds that

$$
\begin{gathered}
t_{2}(N, q)<\frac{\sqrt{D}}{q-1} \sqrt{q^{N+1}(N+1) \ln q}+\frac{\sqrt{q^{N+1}}}{q-3} \\
t_{2}(N, q) \sim \sqrt{D(N+1)} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q}
\end{gathered}
$$

where $D \geq 1$ is a constant independent of q.
(ii) Under Conjecture (ii), the bound above holds for $D=1$, i.e.

$$
t_{2}(N, q) \sim \sqrt{N+1} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q} .
$$

\sim for q large enough

Estimate of average of $\Delta_{w}\left(A_{w+1}\right)$: tool for rigorous proof

$\Delta_{w}^{\text {aver }}$ - the average value of $\Delta_{w}\left(A_{w+1}\right)$ over all U_{w} uncovered points A_{w+1}

$$
\max _{A_{w+1}} \Delta_{w}\left(A_{w+1}\right) \geq \Delta_{w}^{\text {aver }}=\frac{1}{U_{w}} \sum_{A_{w+1}} \Delta_{w}\left(A_{w+1}\right) \geq 1
$$

Lemma

$$
\Delta_{w}^{\text {aver }} \geq \max \left\{1, \frac{w U_{w}}{\theta_{N-1, q}+1-w}-w+1\right\}
$$

equality holds if every tangent contains:
the same number of uncovered points; at most one uncovered point

rigorous proof for a part of the iterative process

Theorem

Let one of the following conditions hold:

$$
\begin{gathered}
\frac{D(w-1) \theta_{N, q}\left(\theta_{N-1, q}+1-w\right)}{D w \theta_{N, q}-\left(\theta_{N-1, q}+1-w\right)(w(q-1)+1)} \\
\frac{D \theta_{N, q}}{w(q-1)+1} \geq U_{w}
\end{gathered}
$$

Then there exists an uncovered point A_{w+1} providing the inequality

$$
\Delta_{w}\left(A_{w+1}\right) \geq \frac{\mathrm{E}}{D} .
$$

$D \geq 1$ - constant independent of q.

RIGOROUS proof vs CONJECTURE

the number of uncovered points on tangents

Thank you Spasibo
 Premnogo blagodarya

Mille grazie
!'Muchas gracias
Toda raba
Merci beaucoup
Dankeschön
Dank u wel
Domo arigato

