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Definitions

The automorphism group (the isometry group) Aut(GF (2m)) of
the binary vector space GF (2m) with respect to the Hamming
metric is the group of all transformations (x , π) fixing GF (2m)
with respect to the composition

(x , π) · (y , π′) = (x + π(y), π ◦ π′).

The automorphism group Aut(C ) of a binary code C is the setwise
stabilizer of C in Aut(GF (2m)).

The symmetry group Sym(C ) of a code C is defined as
Sym(C ) = {π ∈ Sn : π(C ) = C}.
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Definitions, transitive and propelinear codes

A code C is called transitive if there is a subgroup H of Aut(C )
acting transitively on the codewords of C .

If we additionally require that for any x , y ∈ C , x 6= y there is a
unique element h of H such that h(x) = y , then H acting on C is
called a regular group [Phelps, Rifa, 2002] and the code C is called
propelinear (for the original definition see [Rifa, Basart and
Huguet, 1989])
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Definitions, propelinear codes

In this case the order of H is equal to the size of C .

Each regular subgroup H < Aut(C ) naturally induces a group
operation on the codewords of C defined in the following way:
x ∗ y := hx(y), such that the codewords of C form a group with
respect to the operation ∗, isomorphic to H: (C , ∗) ∼= H, which is
called a propelinear structure on C .
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Perfect codes

A code with minimum distance 3 is called perfect (sometimes
called 1-perfect) if it attains the Hamming bound, i.e.

|C | = 2n/(n + 1).

These codes exist for length n = 2r − 1, size 2n−r and minimum
distance 3 for any r ≥ 2.

A Hamming code is a perfect code which is a linear subspace of F n
2 .
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Steiner triple systems and perfect codes

Recall that a Steiner triple system (briefly STS) is a collection of
blocks (subsets) of size 3 of an n-element set such that any
unordered pair of distinct elements is exactly in one block.

The set of codewords of weight 3 of a perfect code C that
contains the all-zero word is a Steiner triple system, which we
denote by STS(C ).
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Steiner triple systems and perfect codes

The set supp(x) = {i : xi = 1} is called the support of the vector
x . The set {supp(x + y) : x ∈ C , d(x , y) = 3} for a codeword
y ∈ C we denote by STS(C , y).

A code C is called homogeneous if for any codeword y ∈ C the
system STS(C , y) is isomorphic to STS(C , 0n), i.e. there exists a
permutation π ∈ Sn such that π(STS(C , y)) = STS(C , 0n). It is
easy to see that any transitive code is homogeneous.
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Propelinear perfect codes: existence

Linear codes [Hamming, 1949]
Z2Z4 - linear perfect codes [Rifa, Pujol, 1999], Z4 - linear perfect
codes [Krotov, 2000]
Transitive Malyugin perfect codes of length 15, i.e. 1-step
switchings of the Hamming code are propelinear [Borges,
Mogilnykh, Rifa, S., 2012]
Vasil’ev and Mollard can be used to construct propelinear perfect
codes [Borges, Mogilnykh, Rifa, S., 2012]
Potapov transitive extended perfect codes are propelinear [Borges,
Mogilnykh, Rifa, S., 2013]
Propelinear Vasil’ev perfect codes from quadratic functions
[Krotov, Potapov, 2013]
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Transitive nonropelinear perfect codes: existence

Theorem [Mogilnykh, S., 2014]

For any admissible length there exist transitive nonpropelinear
perfect codes.
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Problem statement

Does there exist a homogenious nontransitive perfect code?
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More definitions

The dimension of the linear span of a code C is called its rank.

Define the translator Tr(C ) of a code C :

Tr(C ) = {y ∈ C | ∃π ∈ Sn : (y , π) ∈ Aut(C )}.

The linear span over codewords of weight 3 of a code C of length
n containing i , i ∈ {1, 2, . . . , n} is called the linear i-component (in
what follows i -component) and denoted Rn

i . If C is the Hamming
code of length n than Rn

i is its linear subcode.
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More definitions

Let C be any perfect code of length n, n = 2k − 1, λ : C → {0, 1}
be any function satisfying λ(0n) = 0.

Cλ = {(y , λ(y), 0n) | y ∈ C},
R2n+1
n+1 = {(x , |x |, x) | x ∈ F n}, where |x | = x1 + . . .+ xn(mod 2).

Both codes have length 2n+ 1 and R2n+1
n+1 is an (n+ 1)-component.

Vasil’ev code:

V λ
C = Cλ + R2n+1

n = {(x + y , |x |+ λ(y), x) | x ∈ F n, y ∈ C}.
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Transitivity criterion for perfect codes of small rank

Theorem

Let λ be a nonlinear Boolean function on the Hamming code H of
length n.Then the vector (y ′ + x , λ(y ′) + |x |, x) belongs to Tr(V λ

H)
of the Vasil’ev code V λ

H of length 2n + 1 for any x ∈ F n if and only
if there exist πy ′ ∈ Sym(H) and u ∈ F n such that for all y ∈ H we
have

λ(y ′) + λ(y) + λ(y ′ + πy ′(y)) = u · y ,

where u · y is a scalar product of the vectors u and y in F n.
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Homogenious nontransitive perfect code of length 15:
algebraic property

Let H be the Hamming code of length 7 generated by the vectors

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}.
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The code V 221 is the Vasil’ev code V λ
H such that

λ(07) = λ({1, 6, 7}) = λ({1, 3, 5, 7}) = λ(17) = 0,

for other codewords in H the value of λ is 1. Here 17 is the all-one
vector of length 7.

The code V 311 is the Vasil’ev code V λ
H where

λ(07) = λ({1, 6, 7}) = λ({2, 4, 6}) = λ({4, 5, 6, 7}) = 0,

and λ is equal to 1 for other codewords from H.
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Homogenious nontransitive perfect code of length 15:
algebraic property

Proposition

The codes V 221 and V 311 are nonequivalent homogeneous
nontransitive perfect codes of length 15.

Exploiting the Vasil’ev’s construction with the function λ ≡ 0 we
obtain

Theorem

If C is any homogeneous perfect code than the Vasil’ev code V λ
C

with λ ≡ 0 is homogeneous.
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Main result

In order to separate the class of homogeneous perfect codes from
transitive for any lengthy n > 15 we iteratively apply appropriate
times the Vasil’ev’s construction with the Boolean function λ ≡ 0
to these homogeneous nontransitive Vasil’ev codes V 221 and V 311
of length 15.
As the result we get

Theorem

For any n ≥ 15 there exist perfect binary homogeneous
nontransitive codes for any admissible length n > 7.
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L ⊂ Prl ⊂ Tr ⊂ Hom,

here
L is the class of linear codes,
Prl is the class of propelinear codes,
Tr is the class of transitive codes,
Hom is the class of homogeneous codes.
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