Nonexistence of $(9,112,4)$ and $(10,224,5)$ binary orthogonal arrays

Tanya Marinova, Maya Stoyanova
Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria

$15^{\text {th }}$ International Workshop on Algebraic and Combinatorial Coding Theory, ACCT - 15, June 18-24, 2016, Albena, Bulgaria

Orthogonal arrays

For any two points x and y of the binary Hamming space $H(n, 2)$ by $d(x, y)$ we denote the Hamming distance and by $<x, y\rangle=1-\frac{2 d(x, y)}{n}$ their inner product.
Definition 1. A $M \times n$ matrix C with elements from $H(n, 2)$ is orthogonal array with strength $\tau(0 \leq \tau \leq n)$, if every $M \times \tau$ submatrix of C contains each ordered τ-tuple of $H(n, 2)$ exactly $\lambda=M / 2^{\tau}$ times. he value λ is called index of C.
We denote the orthogonal array C by (n, M, τ).
τ - strength, n - length, M - cardinality.

Distance distribution of C with respect to a point

Definition. Let $C \subset H(n, 2)$ be a $(n, M, \tau) \mathrm{BOA}$ and $y \in H(n, 2)$ be fixed. The $(n+1)$-tuple $\left(w_{0}(y), w_{1}(y), \ldots, w_{n}(y)\right)$, where

$$
w_{i}(y)=\left|\left\{x \in C: d(y, x)=i \Longleftrightarrow\langle x, y\rangle=t_{n-i}=1-\frac{2 i}{n}\right\}\right|
$$

for $i=0,1, \ldots, n$, is called distance distribution of a point y (distance distribution of C with respect to a point y).

Denote by
$\boldsymbol{P}(n, M, \tau)$ the set of distance distributions of any internal point $y \in C$,
$\boldsymbol{Q}(n, M, \tau)$ the set of distance distributions of any external point $y \in H(n, 2), y \notin C$.
Denote also $\boldsymbol{W}(n, M, \tau)=P(n, M, \tau) \cup Q(n, M, \tau)$.

Computing distance distribution of a BOA

Theorem. Let $C \subset H(n, 2)$ be an orthogonal array of parameters (n, M, τ) and $y \in H(n, 2)$ be fixed. Then

- if $y \in C$, then the distance distribution $p(y)$ of C satisfies

$$
\sum_{i=0}^{n} p_{i}(y)\left(1-\frac{2 i}{n}\right)^{k}=b_{k}|C|, k=0,1, \ldots, \tau
$$

- if $y \notin C$, the distance distribution $q(y)$ of C satisfies

$$
\sum_{i=1}^{n} q_{i}(y)\left(1-\frac{2 i}{n}\right)^{k}=b_{k}|C|, k=0,1, \ldots, \tau
$$

where b_{k} is the first coefficient in the expansion of t^{k} in terms of the normalized Krawtchouk polynomials, Krawtchouk polynomials are the zonal spherical functions of the $H(n, 2)$.

Connections between (n, M, τ) and its derivates

Theorem. Let $\tau<n$ and C be a (n, M, τ) orthogonal array with distance distribution $W=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$. Removing any column of C yields an orthogonal array C^{\prime} of parameters $(n-1, M, \tau)$. Let $W^{\prime}=\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n-1}^{\prime}\right)$ be the distance distribution of C^{\prime}.

$$
\left\lvert\, \begin{align*}
& x_{i}+y_{i}=w_{i}, i=1,2, \ldots, n-1 \\
& x_{i+1}+y_{i}=w_{i}^{\prime}, i=0,1, \ldots, n-1 \\
& y_{0}=w_{0} \tag{1}\\
& x_{n}=w_{n} \\
& x_{i}, y_{i} \in \mathbb{Z}, x_{i} \geq 0, y_{i} \geq 0, i=0, \ldots, n
\end{align*}\right.
$$

with variable $\left\{x_{i}, y_{i}\right\}, i=0, \ldots, n$. If the orthogonal array
$C \subset H(n, 2)$ of parameters (n, M, τ) and distance distribution W exists then this system has a solution.

Connections between (n, M, τ) and its derivates

Theorem (continuation). Furthermore, let
$\left(x_{0}^{(r)}=0, x_{1}^{(r)}, \ldots, x_{n}^{(r)} ; y_{0}^{(r)}, y_{1}^{(r)}, \ldots, y_{n-1}^{(r)}, y_{n}^{(r)}=0\right), r=1, \ldots, s$, be all s solutions for the system for all possible C^{\prime}, obtained from C when removing an arbitrary column. If the orthogonal array $C \subset H(n, 2)$ of parameters (n, M, τ) and distance distribution W exists then the system

$$
\left\lvert\, \begin{array}{lllll}
k_{1} & +k_{2} & +\ldots & +k_{s} & =n \tag{2}\\
k_{1} x_{1}^{(1)} & +k_{2} x_{1}^{(2)} & +\ldots & +k_{s} x_{1}^{(s)} & =w_{1} \\
k_{1} x_{2}^{(1)} & +k_{2} x_{2}^{(2)} & +\ldots & +k_{s} x_{2}^{(s)} & =2 w_{2} \\
\vdots & & & & \\
\vdots & & & & \\
k_{1} x_{n}^{(1)} & +k_{2} x_{n}^{(2)} & +\ldots & +k_{s} x_{n}^{(s)} & =n w_{n} \\
k_{j} \in \mathbb{Z}, & k_{j} \geq 0, & j=1, & \ldots, s &
\end{array}\right.
$$

has a solution with respect to the unknowns $k_{1}, k_{2}, \ldots, k_{s}$.

Connections between (n, M, τ) and its derivates

The construction is as follows:

	$W^{\prime}=\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n-1}^{\prime}\right)$ $C^{\prime}=(n-1, M, \tau)$
0	
0	$Y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$
\vdots	$C_{0}=(n-1, M / 2, \tau-1)$
0	
1	$X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
1	$X=(n-1, M / 2, \tau-1)$
\vdots	$C_{1}=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$
1	$C=(n, M, \tau)$
	W

	$C^{\prime}=(n-1, M, \tau)$
1	$C_{0}=$
1	$(n-1, M / 2, \tau-1)$
\vdots	
1	
0	$C_{1}=$
0	$(n-1, M / 2, \tau-1)$
\vdots	
$\widehat{W}=\left(\widehat{w}_{0}, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)$	
$C^{1,0}=(n, M, \tau)$	

Connections between (n, M, τ) and its derivates

- Condition. $Y \in W(n-1, M / 2, \tau-1)$.
- Condition. $\bar{Y} \in W(n-1, M / 2, \tau-1)$.
- Condition. $X \in W(n-1, M / 2, \tau-1)$.
- Condition. $\bar{X} \in W(n-1, M / 2, \tau-1)$.
- Condition. If the distance distribution of C with respect to $c=\mathbf{0} \in H(n, 2)$ is $W=\left(w_{0}, w_{1}, \ldots, w_{n-1}, w_{n}\right)=$ $\left(y_{0}, x_{1}+y_{1}, \ldots, x_{n-1}+y_{n-1}, x_{n}\right)$, the distance distribution of $C^{1,0}$ with respect to the same point is $\widehat{W}=\left(x_{1}, x_{2}+y_{0}, \ldots, x_{n}+y_{n-2}, y_{n-1}\right)$, i.e. $\widehat{W} \in W(n, M, \tau)$.

Further Connections between (n, M, τ) and its derivates

Let n, M and $3 \leq \tau<n+1$ be fixed.
After applying the main algorithm for every $W \in W(n, M, \tau)$ we know all remaining couples (W, W^{\prime}) and for every such couple we have an uniquely determined corresponding couple (Y, X).

We see that $X, Y \in W(n-1, M / 2, \tau-1)$ but $W^{\prime} \in W(n-1, M, \tau)$, i.e. W^{\prime} has strength τ which is bigger than the strengths of X and Y.

The natural continuation is to remove a column in C^{\prime} and investigate when the condition above is possible.

Further Connections between (n, M, τ) and its derivates

$\begin{aligned} & C^{\prime}-(n-1, M, \tau), \quad W^{\prime} \\ & { }^{\prime} C^{\prime \prime}-(n-2, M, \tau), W^{\prime \prime} \end{aligned}$			
0 \vdots 0	0 \vdots 0	$\begin{gathered} R=\left(r_{0}, r_{1}, \ldots, r_{n-2}\right) \\ A_{0}-(n-2, M / 4, \tau-2) \end{gathered}$	C_{0}, C_{0}^{\prime}
$\overline{0}$ \vdots 0	$\overline{1}$ \vdots 1	$\begin{gathered} Z=\left(z_{1}, z_{2}, \ldots, z_{n-1}\right) \\ A_{1}-(n-2, M / 4, \tau-2) \end{gathered}$	Y, Y^{\prime}
$\overline{1}$	$\overline{0}$ \vdots 0	$\begin{gathered} U=\left(u_{0}, u_{1}, \ldots, u_{n-2}\right) \\ B_{0}-(n-2, M / 4, \tau-2) \end{gathered}$	C_{1}, C_{1}^{\prime}
$\overline{1}$ \vdots 1	$\overline{1}$ \vdots 1	$\begin{gathered} V=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right) \\ B_{1}-(n-2, M / 4, \tau-2) \end{gathered}$	X, X^{\prime}

Fig. 1

Further Connections between (n, M, τ) and its derivates

- For every $W \in W(n, M, \tau)$ we know the all remaining triples (W^{\prime}, Y, X) and for every such triple we have the sets $\left\{\left(Y, Y^{\prime}, R, Z\right)\right\}$ and $\left\{\left(X, X^{\prime}, U, V\right)\right\}$ of all possible distance distributions of the relatives BOAs which can be obtained from the considering BOA C with this distance distribution $W \in W(n, M, \tau)$.
- Note $R, \bar{R} \in W(n-2, M / 4, \tau-2)$.
- Note $Z, \bar{Z} \in W(n-2, M / 4, \tau-2)$.
- Note $U, \bar{U} \in W(n-2, M / 4, \tau-2)$.
- Note $V, \bar{V} \in W(n-2, M / 4, \tau-2)$.

Further Connections between (n, M, τ) and its derivates

- Note $C_{0}^{1,0}$ is a $(n-1, M / 2, \tau-1) \mathrm{BOA}$. Its distance distributions with respect to $\mathbf{0}$ is $\widehat{Y}=\left(z_{1}, z_{2}+r_{0}, \ldots\right.$ $\left., z_{n-1}+r_{n-3}, r_{n-2}\right) . \widehat{Y}, \widehat{\widehat{Y}} \in W(n-1, M / 2, \tau-1)$.
- Note $C_{1}^{1,0}$ is a $(n-1, M / 2, \tau-1) \mathrm{BOA}$. Its distance distributions with respect to $\mathbf{0}$ is $\widehat{X}=\left(v_{1}, v_{2}+u_{0}, \ldots\right.$, $\left.v_{n-1}+u_{n-3}, u_{n-2}\right) . \widehat{X}, \bar{X} \in W(n-1, M / 2, \tau-1)$.
- Note The obtained BOA $C^{\prime \prime}$ of parameters $(n-2, M, \tau)$ has distance distribution $W^{\prime \prime}=\left(w_{0}^{\prime \prime}, w_{1}^{\prime \prime}, \ldots, w_{n-2}^{\prime \prime}\right)=$ $\left(r_{0}+u_{0}+z_{1}+v_{1}\right.$,
$\left.r_{1}+u_{1}+z_{2}+v_{2}, \ldots, r_{n-2}+u_{n-2}+z_{n-1}+v_{n-1}\right)$
$\in W(n-2, M, \tau)$.

Further Connections between (n, M, τ) and its derivates

- To obtain new relations we reorder the rows of C^{\prime} (simultaneously reordering the rows of the whole C) as we first take the rows with first coordinate 0 , then we put the rows with first coordinate 1 , respectively and remove that first coordinate.
- The resulting $C^{\prime \prime}$ has the same distance distribution $W^{\prime \prime}$, but the derived BOAs with parameters $(n-1, M / 2, \tau-1)$ are new.
- Let we denote them by $D_{0}, D_{1}, D_{0}^{\prime}$ and D_{1}^{\prime} and let their distributions be G, H, G^{\prime} and H^{\prime}, respectively.

Further Connections between (n, M, τ) and its derivates

	$\begin{aligned} & C^{\prime}, W^{\prime} \\ & 1 C^{\prime \prime}, W^{\prime \prime} \end{aligned}$		
0	0	R	
\vdots	\vdots	A_{0}	
0	0		D_{0}, D_{0}^{\prime}
$\overline{1}$	$\overline{0}$	U	G, G^{\prime}
\vdots	:	B_{0}	
1	0		
$\overline{0}$	$\overline{1}$	Z	
\vdots	:	A_{1}	
0	1		D_{1}, D_{1}^{\prime}
$\overline{1}$	$\overline{1}$	V	H, H^{\prime}
\vdots	:	B_{1}	
1	1		

Fig. 2

Further Connections between (n, M, τ) and its derivates

- Theorem. D_{0} and D_{1} are BOAs of parameters ($n-1, M / 2, \tau-1$) and distance distributions $G=\left(g_{0}, g_{1}, \ldots, g_{n-1}\right)=\left(r_{0}, r_{1}+u_{0}, \ldots, r_{n-2}+u_{n-3}, u_{n-2}\right)$ and $H=\left(h_{1}, h_{2}, \ldots, h_{n}\right)=\left(z_{1}, z_{2}+v_{1}, \ldots, z_{n-1}+v_{n-2}, v_{n-1}\right)$, i.e. $G, H \in W(n-1, M / 2, \tau-1)$.
- Condition. G, \bar{G}, \widehat{G} and $\overline{\widehat{G}} \in W(n-1, M / 2, \tau-1)$.
- Condition. H, \bar{H}, \widehat{H} and $\overline{\widehat{H}} \in W(n-1, M / 2, \tau-1)$.

Further Connections between (n, M, τ) and its derivates

- Theorem. D_{0}^{\prime} and D_{1}^{\prime} are BOAs of parameters
($n-2, M / 2, \tau-1$) and distance distributions with respect to $c^{\prime \prime}=\mathbf{0}^{\prime \prime} \in H(n-2,2)$ are $G^{\prime}=\left(g_{0}^{\prime}, g_{1}^{\prime}, \ldots, g_{n-2}^{\prime}\right)=\left(r_{0}+u_{0}, r_{1}+u_{1}, \ldots, r_{n-2}+u_{n-2}\right)$ and $H^{\prime}=\left(h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{n-1}^{\prime}\right)=\left(z_{1}+v_{1}, z_{2}+v_{2}, \ldots, z_{n-1}+v_{n-1}\right)$, respectively, i.e. $G^{\prime}, H^{\prime} \in W(n-2, M / 2, \tau-1)$.
- Condition. $G^{\prime}, \overline{G^{\prime}}, \widehat{G^{\prime}}$ and $\widehat{\widehat{G}^{\prime}} \in W(n-2, M / 2, \tau-1)$.
- Condition. $H^{\prime}, \overline{H^{\prime}}, \widehat{H^{\prime}}$ and $\widehat{H^{\prime}} \in W(n-2, M / 2, \tau-1)$.

Further Connections between (n, M, τ) and its derivates

- Removing the second column of C to obtain a BOA C_{2}^{\prime} with parameters $(n-1, M, \tau)$. Let \tilde{W}^{\prime} be the distance distribution of C_{2}^{\prime} with respect to c^{\prime}.
- Theorem. $\tilde{W}^{\prime}=\left(r_{0}+z_{1}, u_{0}+r_{1}+v_{1}+z_{2}, \ldots, u_{n-3}+\right.$ $\left.r_{n-2}+v_{n-2}+z_{n-1}, u_{n-2}+v_{n-1}\right) \in W(n-1, M, \tau)$.
- Theorem. The distance distribution of $\left(C_{2}^{\prime}\right)^{1,0}$ with respect to c^{\prime} is $\tilde{W}^{\prime}=\left(u_{0}+v_{1}, r_{0}+u_{1}+z_{1}+v_{2}, \ldots, r_{n-3}+u_{n-2}+\right.$ $\left.z_{n-2}+v_{n-1}, r_{n-2}+z_{n-1}\right) \in W(n-1, M, \tau)$.
- Condition. $\tilde{W}^{\prime}, \overline{\tilde{W}^{\prime}}, \widehat{\tilde{W}^{\prime}}, \overline{\tilde{W}^{\prime}} \in \mathrm{W}(\mathrm{n}-1, \mathrm{M}, \tau)$.

Further Connections between (n, M, τ) and its derivates

- We consider the effect of the permutation $(0 \rightarrow 1,1 \rightarrow 0)$ in the first two columns (simultaneously). Denote the new BOA with \tilde{C}.
- Theorem. The distance distribution of \tilde{C} with respect to c is

$$
\begin{aligned}
& \tilde{W}=\left(v_{1}, u_{0}+z_{1}+v_{2}, r_{0}+u_{1}+z_{2}+v_{3}, \ldots, r_{n-4}+u_{n-3}+\right. \\
& \left.z_{n-2}+v_{n-1}, r_{n-3}+u_{n-2}+z_{n-1}, r_{n-2}\right) \in W(n, M, \tau) .
\end{aligned}
$$

- Condition. $\tilde{W}, \overline{\tilde{W}}, \widehat{\tilde{W}}$ and $\overline{\overline{\tilde{W}}} \in \mathrm{~W}(\mathrm{n}, \mathrm{M}, \tau)$.

Further Connections between (n, M, τ) and its derivates

After all above checks, for every survival $W \in W(n, M, \tau)$ we have attached triples $\left(W^{\prime}, Y, X\right)-\left(Y, Y^{\prime}, R, Z\right)-\left(X, X^{\prime}, U, V\right)$.
We now free the cut of the second column and thus consider all possible $n-1$ cuts of columns of C^{\prime}. These cuts produce all possible pairs $\left\{\left(Y, Y^{\prime}, R, Z\right)\right\}-\left\{\left(X, X^{\prime}, U, V\right)\right\}$. Let
$\left(z_{0}^{(i)}=0, z_{1}^{(i)}, \ldots, z_{n-2}^{(i)}, z_{n-1}^{(i)} ; r_{0}^{(i)}, r_{1}^{(i)}, \ldots, r_{n-2}^{(i)}, r_{n-1}^{(i)}=0\right), \quad i=1, \ldots, s$,
$\left(v_{0}^{(j)}=0, v_{1}^{(j)}, \ldots, v_{n-2}^{(j)}, v_{n-1}^{(j)} ; u_{0}^{(j)}, u_{1}^{(j)}, \ldots, u_{n-2}^{(j)}, v_{n-1}^{(j)}=0\right), j=1, \ldots, t$,
are all solutions of system (1) for $\left(Y, Y^{\prime}\right)$ and $\left(X, X^{\prime}\right)$. If $\left(Z^{i}, R^{i}, V^{j}, U^{j}\right)$ satisfy all the conditions above then we denote them with $Z^{i, j}, R^{i, j}, V^{i, j}, U^{i, j}$.

Further Connections between (n, M, τ) and its derivates

Theorem. The nonnegative integers $k_{i, j}, i=1, \ldots, s ; j=1, \ldots, t$, satisfy the following system of linear equations

$$
\begin{array}{ll}
\sum_{i, j} k_{i, j} & =n \\
\sum_{i, j} k_{i, j} r_{0}^{(i, j)} & =y_{1} \\
\sum_{i, j} k_{i, j} r_{1}^{(i, j)} & =2 y_{2} \\
\vdots & \\
\sum_{i, j} k_{i, j} r_{n-2}^{(i, j)} & =n y_{n-1} \\
\sum_{i, j} k_{i, j} u_{0}^{(i, j)} & =x_{2} \\
\sum_{i, j} k_{i, j} u_{1}^{(i, j)} & =2 x_{3} \\
\vdots & \\
\sum_{i, j} k_{i, j} u_{n-2}^{(i, j)} & =n x_{n} \\
k_{i, j} \in, k_{i, j} \geq 0, & i=1, \ldots, s ; j=1, \ldots, t
\end{array}
$$

Results of the algorithm

Let $C=(n, M, \tau)$ be a BOA of targeted parameters, where $\tau \geq 3$.

- For every $W \in W(n, M, \tau)$ we have the sets of all feasible triples $\left(W^{\prime}, Y, X\right)$. For every such triple we find the corresponding sets $\left\{\left(Y, Y^{\prime}, R, Z\right)\right\}$ and $\left\{\left(X, X^{\prime}, U, V\right)\right\}$ - part one of the algorithm.
- For every fixed $W-\left(W^{\prime}, Y, X\right)-\left(Y, Y^{\prime}, R, Z\right)-\left(X, X^{\prime}, U, V\right)$ we check the required conditions - part 2.
- On every step we try to reduce the sets $P(n, M, \tau)$, $Q(n, M, \tau)$ and $W(n, M, \tau)$. The algorithm stops when no new rulings out are possible.
- If one of the set becomes empty this means nonexistence of the corresponding BOA.

Results of the algorithm

- For $(8,56,3) \mathrm{BOA}$ the row with the distance distributions for $(3,56,3),(4,56,3),(5,56,3),(6,56,3),(7,56,3),(7,56,3)$ is:

$$
1,8,19,54,110 \text { (112), } 248 \text { (264). }
$$

- For $(9,112,4)$ BOA the row with the distance distributions for $(4,112,4),(5,112,4),(6,112,4),(7,112,4),(8,112,4),(9,112,4)$ is

$$
1,8,16,18,34,0(33)
$$

- Theorem. There exist no binary orthogonal arrays of parameters $(9,112,4)$ and $(10,224,5)$.

Results

Minimum possible index λ of binary orthogonal array of length n, $7 \leq n \leq 13$, and strength $\tau, 4 \leq \tau \leq 10$ up to MS results (2016)

n / τ	4	5	6	7	8	9	10
7	${ }^{s z} 4$	2	1	1			
8	4^{c}	${ }^{s z} 4$	2	1	1		
9	$8^{m s}$	4^{c}	4	2	1	1	
10	$8^{b m s}$	$8^{m s}$	$8^{k h}$	4	2	1	1
11	$8^{b m s}$	$8^{b m s}$	8^{c}	$8^{k h}$	4	2	1
12	$8^{b k m s}$	$8^{b m s}$	$12-16$	8^{c}	$8^{k h}$	4	2
13	8	$8^{b k m s}$	16	$12-16$	$16^{k h}$	$8^{k h}$	4

Thank you for your attention!

The research was supported, in part, by the Science Foundation of Sofia University under contract 57/2016.

