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INTRODUCTION NOTATION

PG(N , q)⇔ projective space of dimension N over Galois �eld Fq

n-cap ⇔a set of n points no three of which are collinear

bisecant ⇔ a line intersecting a cap in two points

a point A of PG(N , q) is covered by a cap ⇔
the point A lies on a bisecant of the cap

complete cap ⇔ all points of PG(N , q)
are covered by bisecants of the cap
⇔ one may not add a new point to a complete cap
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CONNECTIONS with CODING THEORY

complete n-cap in PG(N , q) ⇔ [n, n − (N + 1), 4]q2 code

point of the cap
m

column of a parity-check matrix of the code
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LOWER BOUND

t2(N , q) ⇔ the smallest size of a complete cap in PG(N , q)

exact values of t2(N , q) are known only for small q,N

LOWER BOUND: t2(N , q) >
√
2q

N−1
2

results close to lower bound are known only for even q

q = 2,N odd & N even:
E.M. Gabidulin, A.A. Davydov, L.M. Tombak 1991

q = 2h, N odd: F. Pambianco, L. Storme 1996; M. Giulietti 2007
A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco 2010



Introduction Algorithms for small caps Computer results Upper bounds

PROBLEM: UPPER BOUND

t2(N , q) ⇔ the smallest size of a complete cap in PG(N , q)

HARD OPEN CLASSICAL PROBLEM: 1950 →
upper bound on t2(N , q)

t2(N , q) < cq
N−1
2 ln300 q

c - constant independent of q

D. Bartoli, S. Marcugini, F. Pambianco ACCT2014 &
http://arxiv.org/pdf/1406.5060.pdf 2014

probabilistic methods based on J.H. Kim, V. Vu for plane PG(2, q)
2003
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directions using computer for combinatorics

EXACT ANSWERS: Extremal and critical (or close to them)
values and objects; classi�cation; existence and nonexistence of
objects with special properties or parameters; exhaustive search...
Usually this is investigated for relatively small �elds and rings.

TRENDS, BOUNDS, ORDER of VALUES ...
This is studied for LARGE REGIONS of sizes of �elds and rings.
Results can be represented in graphical forms.
Results are not the best or exact, but the results are "good",
reasonable, they show "behavior" of values that we investigate...
This direction is developing in recent years, in particular, due to
cluster-computers.
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Randomized greedy algorithms

A greedy algorithm is an algorithm that makes the locally optimal

choice at each stage with the hope of �nding a global optimum or,
at least, a global �good� solution.

A randomized greedy algorithm executes some stages in a random
manner without the local optimum.

D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco

J. of Geometry, Discrete Mathematics, OC2013, arXiv.org 2005-2016

Greedy algorithms give good results but take many computer time.

For PG(N, q) greedy algorithms are useful for relatively small q.
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Algorithm FOP � �xed order of points

Algorithm FOP. We �x a particular order of points of PG(N, q).
Algorithm FOP builds a complete cap iteratively, step-by-step.
In the k-th step the �rst uncovered point in the �xed order is added
to the (k − 1)-cap obtained in the previous step. As the result we
have a new k-cap. And so on ...
Lexicographical order of points. q � prime. The elements of
the �eld Fq = {0, 1, . . . , q − 1} are integers modulo q.
The homogeneous coordinates of a point Ai are treated as its

number i written in the q-ary scale of notation: x
(i)
j ∈ Fq,

Ai = (x
(i)
0 , x

(i)
1 , . . . , x

(i)
N ), i = x

(i)
0 qN + x

(i)
1 qN−1 + . . .+ x

(i)
N

FOP with lexicographical order forms LEXICAP.
Size of a complete lexicap in PG(N , q) is uniquely given by
N , q. (unfortunately, we are able to �nd this size only by computer)
D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco

Journal of Geometry, ENDM, ACCT2012, OC2013, arXiv 2012-2016
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Region for computer search

FOP-caps ⇔ Lexicaps. Sets LN
PG(3, q) L3 = {all prime q ≤ 4673 without gaps &

q = 5003, 6007, 7001, 8009}
PG(4, q) L4 = {all prime q ≤ 1301 without gaps &

q = 1409}
for greedy algorithms the sets are smaller
#PG(N, q) = qN + qN−1 + . . .+ q + 1 bit
#PG(3, 8009) ≈ 60GB #PG(4, 1409) ≈ 460GB
parallel computations; up two months computer time for big q's
Resources of Multipurpose Computing Complex of National
Research Centre �Kurchatov Institute� are used
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Forms of bounds

For expressive graphical representation we write t2(N, q) as follows:

t2(N , q) < q
N−1
2 lnf q

t2(N , q) < βq
N−1
2

√
ln q

t2(N , q) < dq
N−1
2 ln q

q
N−1
2 - the main term; ln q to a small power; β, d small factor

we �nd upper bounds on f , β, d

A) f , β, d are constants
B) f , β, d are decreasing functions of q
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Analysis of �gures

Greedy algorithms provide bounds for small q.

The nature and behavior of the curves for Lexi-caps
are similar for PG(3, q) and PG(4, q).

The curves for lexicaps have a clearly expressed
decreasing trend.
The curves for lexicaps are relatively "smooth".
The curves for lexicaps give us the con�dence that
bounds with constant parameters hold for all q.

Bounds with decreasing parameters seem to be similar to the truth;
but these bounds need additional investigations



Introduction Algorithms for small caps Computer results Upper bounds

Upper bounds with constant parameters. N = 3, 4

Theorem

t2(N , q) < q
N−1
2 ln

N+1

4 q, q ∈ LN .

t2(N , q) <
N + 1

4
q

N−1
2 ln q, q ∈ LN .

t2(N , q) <
√
N + 2 · q

N−1
2

√
ln q, q ∈ LN .

Conjecture. In PG(N , q), N = 3, 4, the bounds with
constant parameters written above hold for all q.
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Upper bounds with decreasing parameters. N = 3, 4
Theorem

t2(N , q) < q
N−1

2 lnfN(q) q, q ∈ LN ,

f3(q) = 0.7+
1.15

ln(0.3q)
,

f4(q) = 0.75+
1.3

ln(0.4q)
;

t2(N , q) < βN(q) · q
N−1

2

√
ln q, q ∈ LN ,

β3(q) =
√
3+ 1+

1.1

ln(2q)
,

β4(q) =
√
4+ 1+

1.1

ln q
.
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FOP vs lexicographical codes (greedy codes, lexicodes)

A (rare and insu�ciently studied) variant of the lexicodes: a
parity check matrix (PCM) of an [n, n − r , d ]q code is created
step-by-step. All q-ary column r -vectors are written in a list in
some order. On every step we include to PCM the 1-st column
from the list which cannot be represented as a linear combination
of d − 2 or smaller columns already included to PCM.

A point of PG(N, q) ⇔ a column N-vector.
FOP algorithm creates a PCM of [n, n − (N + 1), 4]q lexicode.

But in Coding Theory, for given r , d the aim is to get a long
code while our goal is to obtain a short complete cap.

For r = N + 1, d = 4, FOP algorithm gives �bad� codes that
are essentially shorter than the known �good� codes.
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