Mac Williams identities for linear codes as Riemann-Roch conditions Azniv Kasparian, Ivan Marinov ${ }^{1}$

${ }^{1}$ Partially supported by Contract $57 / 12.04 .2016$ with the Scientific Foundation of Kliment Ohridski University of Sofia.

The genus of a linear code

Let C be an \mathbb{F}_{q}-linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$-code.
The genus of C is the deviation $\mathrm{g}:=\mathrm{n}+1-\mathrm{k}-\mathrm{d}$ from the equality in the Singleton bound $n+1-k-d \geq 0$.

Let us denote by $\mathrm{g}^{\perp}=\mathrm{k}+1-\mathrm{d}^{\perp}$ the genus of the dual code $C^{\perp}=\left\{a \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \mid\langle a, c\rangle=\sum_{i=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=0\right.$ for $\left.\forall c \in \mathrm{C}\right\}$

The genus of a linear code

Let C be an \mathbb{F}_{q}-linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$-code.
The genus of C is the deviation $\mathrm{g}:=\mathrm{n}+1-\mathrm{k}-\mathrm{d}$ from the equality in the Singleton bound $n+1-k-d \geq 0$.

Let us denote by $\mathrm{g}^{\perp}=\mathrm{k}+1-\mathrm{d}^{\perp}$ the genus of the dual code $\mathrm{C}^{\perp}=\left\{\mathrm{a} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \mid\langle\mathrm{a}, \mathrm{c}\rangle=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=0\right.$ for $\left.\forall \mathrm{c} \in \mathrm{C}\right\}$.

If $\mathcal{W}_{\mathrm{C}}^{(\mathrm{w})}$ is the number of the words $\mathrm{c} \in \mathrm{C}$ of weight $1 \leq \mathrm{w} \leq \mathrm{n}$ then $\mathcal{W}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathrm{n}}+\sum_{\mathrm{w}=\mathrm{d}}^{\mathrm{n}} \mathcal{W}_{\mathrm{C}}^{(\mathrm{w})} \mathrm{x}^{\mathrm{n}-\mathrm{w}} \mathrm{y}^{\mathrm{w}}$ is called the
homogeneous weight enumerator of C .

enumerator of an MDS-code with parameters $[\mathrm{n}, \mathrm{n}+1-\mathrm{s}, \mathrm{s}]$.

The homogeneous weight enumerator of a linear code

If $\mathcal{W}_{\mathrm{C}}^{(\mathrm{w})}$ is the number of the words $\mathrm{c} \in \mathrm{C}$ of weight $1 \leq \mathrm{w} \leq \mathrm{n}$ then $\mathcal{W}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathrm{n}}+\sum_{\mathrm{w}=\mathrm{d}}^{\mathrm{n}} \mathcal{W}_{\mathrm{C}}^{(\mathrm{w})} \mathrm{x}^{\mathrm{n}-\mathrm{w}} \mathrm{y}^{\mathrm{w}}$ is called the homogeneous weight enumerator of C .

Denote by $\mathcal{M}_{\mathrm{n}, \mathrm{s}}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathrm{n}}+\sum_{\mathrm{w}=\mathrm{s}}^{\mathrm{n}} \mathcal{M}_{\mathrm{n}, \mathrm{s}}^{(\mathrm{w})} \mathrm{x}^{\mathrm{n}-\mathrm{w}} \mathrm{y}^{\mathrm{w}}$ with
 enumerator of an MDS-code with parameters $[\mathrm{n}, \mathrm{n}+1-\mathrm{s}, \mathrm{s}]$.

The ζ-polynomial and the ζ-function of a linear code

Theorem (Duursma - 1999): For any linear code C of genus $\mathrm{g} \geq 0$ with dual C^{\perp} of genus $\mathrm{g}^{\perp} \geq 0$ there is a unique
ζ-polynomial $\mathrm{P}_{\mathrm{C}}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}} a_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \in \mathbb{Q}[\mathrm{t}]$ with
$\mathcal{W}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}} \mathrm{a}_{\mathrm{i}} \mathcal{M}_{\mathrm{n}, \mathrm{d}+\mathrm{i}}(\mathrm{x}, \mathrm{y})$ and $\mathrm{P}_{\mathrm{C}}(1)=1$.

The quotient $\zeta_{\mathrm{C}}(\mathrm{t})=\frac{\mathrm{P}_{\mathrm{C}}(\mathrm{t})}{(1-\mathrm{t})(1-\mathrm{qt})}$ is the ζ-function of C .

The ζ-polynomial and the ζ-function of a linear code

Theorem (Duursma - 1999): For any linear code C of genus $\mathrm{g} \geq 0$ with dual C^{\perp} of genus $\mathrm{g}^{\perp} \geq 0$ there is a unique
ζ-polynomial $\mathrm{P}_{\mathrm{C}}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}} \mathrm{a}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \in \mathbb{Q}[\mathrm{t}]$ with
$\mathcal{W}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}} \mathrm{a}_{\mathrm{i}} \mathcal{M}_{\mathrm{n}, \mathrm{d}+\mathrm{i}}(\mathrm{x}, \mathrm{y})$ and $\mathrm{P}_{\mathrm{C}}(1)=1$.

The quotient $\zeta_{\mathrm{C}}(\mathrm{t})=\frac{\mathrm{P}_{\mathrm{C}}(\mathrm{t})}{(1-\mathrm{t})(1-\mathrm{qt})}$ is the ζ-function of C .

Algebro-geometric Goppa codes

Let $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ be a smooth irreducible curve of genus g , $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}}\right), \mathrm{D}=\mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{n}}$ and $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{h}}$ be a complete set of representatives of the linear equivalence classes of the divisors of $\mathbb{F}_{\mathrm{q}}(\mathrm{X})$ of degree $2 \mathrm{~g}-2<\mathrm{m}<\mathrm{n}$ with $\operatorname{Supp}\left(\mathrm{G}_{\mathrm{i}}\right) \cap \operatorname{Supp}(\mathrm{D})=\emptyset$ for $\forall 1 \leq \mathrm{i} \leq \mathrm{h}$.

Algebro-geometric Goppa codes

Let $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ be a smooth irreducible curve of genus g , $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}}\right)$,
$\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{h}}$ be a complete set of representatives of the linear equivalence classes of the divisors of $\mathbb{F}_{\mathrm{q}}(\mathrm{X})$ of degree $2 \mathrm{~g}-2<\mathrm{m}<\mathrm{n}$ with $\operatorname{Supp}\left(\mathrm{G}_{\mathrm{i}}\right) \cap \operatorname{Supp}(\mathrm{D})=\emptyset$ for $\forall 1 \leq \mathrm{i} \leq \mathrm{h}$.

Algebro-geometric Goppa codes

Let $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ be a smooth irreducible curve of genus g , $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}}\right), \mathrm{D}=\mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{n}}$ equivalence classes of the divisors of $\mathbb{F}_{\mathrm{q}}(\mathrm{X})$ of degree $2 \mathrm{~g}-2<\mathrm{m}<\mathrm{n}$ with $\operatorname{Supp}\left(\mathrm{G}_{\mathrm{i}}\right) \cap \operatorname{Supp}(\mathrm{D})=\emptyset$ for $\forall 1 \leq \mathrm{i} \leq h$.

Algebro-geometric Goppa codes

Let $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ be a smooth irreducible curve of genus g , $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}}\right), \mathrm{D}=\mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{n}}$ and $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{h}}$ be a complete set of representatives of the linear equivalence classes of the divisors of $\mathbb{F}_{\mathrm{q}}(\mathrm{X})$ of degree $2 \mathrm{~g}-2<\mathrm{m}<\mathrm{n}$

Algebro-geometric Goppa codes

Let $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ be a smooth irreducible curve of genus g , $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}}\right), \mathrm{D}=\mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{n}}$ and $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{h}}$ be a complete set of representatives of the linear equivalence classes of the divisors of $\mathbb{F}_{\mathrm{q}}(\mathrm{X})$ of degree $2 \mathrm{~g}-2<\mathrm{m}<\mathrm{n}$ with $\operatorname{Supp}\left(\mathrm{G}_{\mathrm{i}}\right) \cap \operatorname{Supp}(\mathrm{D})=\emptyset$ for $\forall 1 \leq \mathrm{i} \leq \mathrm{h}$.

Algebro-geometric Goppa codes

The evaluation maps $\mathcal{E}_{\mathrm{D}}: \mathrm{H}^{0}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\left(\left[\mathrm{G}_{\mathrm{i}}\right]\right)\right) \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$, $\mathcal{E}_{\mathrm{D}}(\mathrm{f})=\left(\mathrm{f}\left(\mathrm{P}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{P}_{\mathrm{n}}\right)\right)$ of the global sections f of the line bundles on X , associated with G_{i} are \mathbb{F}_{q}-linear.

Their images $\mathrm{C}_{\mathrm{i}}=\mathcal{E}_{\mathrm{D}} \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}_{\mathrm{X}}\left(\left[\mathrm{G}_{\mathrm{i}}\right]\right)\right) \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ are \mathbb{F}_{q}-linear codes of genus $\mathrm{g}_{\mathrm{i}} \leq \mathrm{g}$, known as algebro-geometric Goppa codes.

Algebro-geometric Goppa codes

The evaluation maps $\mathcal{E}_{\mathrm{D}}: \mathrm{H}^{0}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\left(\left[\mathrm{G}_{\mathrm{i}}\right]\right)\right) \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$, $\mathcal{E}_{\mathrm{D}}(\mathrm{f})=\left(\mathrm{f}\left(\mathrm{P}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{P}_{\mathrm{n}}\right)\right)$ of the global sections f of the line bundles on X , associated with G_{i} are \mathbb{F}_{q}-linear.

Their images $\mathrm{C}_{\mathrm{i}}=\mathcal{E}_{\mathrm{D}} \mathrm{H}^{0}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\left(\left[\mathrm{G}_{\mathrm{i}}\right]\right)\right) \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ are \mathbb{F}_{q}-linear codes of genus $\mathrm{g}_{\mathrm{i}} \leq \mathrm{g}$, known as algebro-geometric Goppa codes.

The ζ-functions of X and C_{i}

If $\left|\mathrm{X}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{r}}}\right)\right|$ is the number of the $\mathbb{F}_{\mathrm{q}^{r} \text {-rational points }}$ $\mathrm{X}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{r}}}\right):=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{r}}}\right)$ of X then the formal power series $\zeta_{\mathrm{X}}(\mathrm{t}):=\exp \left(\sum_{\mathrm{r}=1}^{\infty}\left|\mathrm{X}\left(\mathbb{F}_{\mathrm{q}^{r}}\right)\right| \frac{\mathrm{t}^{r}}{\mathrm{r}}\right)$ is called the ζ-function of X .

Duursma's considerations imply that the ζ-functions of X and C_{i} satisfy the equality $\zeta_{X}(t)=\sum_{i=1}^{h} t^{g-\rho_{i}} \zeta_{C}(t)$.

The ζ-functions of X and C_{i}

If $\left|\mathrm{X}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{r}}}\right)\right|$ is the number of the $\mathbb{F}_{\mathrm{q}^{r} \text {-rational points }}$ $\mathrm{X}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{r}}}\right):=\mathrm{X} \cap \mathbb{P}^{\mathrm{N}}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{q}}}\right)$ of X then the formal power series $\zeta_{\mathrm{X}}(\mathrm{t}):=\exp \left(\sum_{\mathrm{r}=1}^{\infty}\left|\mathrm{X}\left(\mathbb{F}_{\mathrm{q}^{r}}\right)\right| \frac{\mathrm{t}^{r}}{\mathrm{r}}\right)$ is called the ζ-function of X .

Duursma's considerations imply that the ζ-functions of X and C_{i} satisfy the equality $\zeta_{X}(t)=\sum_{i=1}^{h} \mathrm{t}^{\mathrm{g}-\mathrm{g}_{\mathrm{i}}} \zeta_{\mathrm{C}_{\mathrm{i}}}(\mathrm{t})$.

Divisors on curves

The absolute Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$ acts on any smooth irreducible curve $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ with finite orbits and $\operatorname{deg} \operatorname{Orb}_{\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{\mathrm{q}}\right)}(\mathrm{x}):=\left|\operatorname{Orb}_{\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{\mathrm{q}}\right)}(\mathrm{x})\right|$.

The \mathbb{Z}-linear combinations $\mathrm{D}=\mathrm{a}_{1} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \nu_{\mathrm{s}}$ of $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$-orbits $\nu_{\mathrm{j}} \subset \mathrm{X}$ are called divisors on X .

The degree of D is $\operatorname{deg} \mathrm{D}=\mathrm{a}_{1} \operatorname{deg} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \operatorname{deg} \nu_{\mathrm{s}}$.

Divisors on curves

The absolute Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$ acts on any smooth irreducible curve $X / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ with finite orbits and $\operatorname{deg} \operatorname{Orb}_{\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{\mathrm{q}}\right)}(\mathrm{x}):=\left|\operatorname{Orb}_{\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{\mathrm{q}}\right)}(\mathrm{x})\right|$.

The \mathbb{Z}-linear combinations $\mathrm{D}=\mathrm{a}_{1} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \nu_{\mathrm{s}}$ of $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$-orbits $\nu_{\mathrm{j}} \subset \mathrm{X}$ are called divisors on X .

The degree of D is $\operatorname{deg} \mathrm{D}=\mathrm{a}_{1} \operatorname{deg} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \operatorname{deg} \nu_{\mathrm{s}}$.

Divisors on curves

The absolute Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$ acts on any smooth irreducible curve $X / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ with finite orbits and $\operatorname{deg} \operatorname{Orb}_{\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{\mathrm{q}}\right)}(\mathrm{x}):=\left|\operatorname{Orb}_{\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{\mathrm{q}}\right)}(\mathrm{x})\right|$.

The \mathbb{Z}-linear combinations $\mathrm{D}=\mathrm{a}_{1} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \nu_{\mathrm{s}}$ of $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$-orbits $\nu_{\mathrm{j}} \subset \mathrm{X}$ are called divisors on X .

The degree of D is $\operatorname{deg} \mathrm{D}=\mathrm{a}_{1} \operatorname{deg} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \operatorname{deg} \nu_{\mathrm{s}}$.

Effective divisors of fixed degree

A divisor $\mathrm{D}=\mathrm{a}_{1} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \nu_{\mathrm{s}}$ is effective if all of its non-zero coefficients $\mathrm{a}_{\mathrm{j}}>0$ are positive.

There are finitely many $\operatorname{Gal}\left(\mathbb{F}_{\mathrm{q}} / \mathbb{F}_{\mathrm{q}}\right)$-orbits on X of fixed degree and, therefore, a finite number $\mathcal{A}_{\mathrm{m}}(\mathrm{X}) \in \mathbb{Z}^{\geq 0}$ of effective divisors on X of degree $m \in \mathbb{Z}^{\geq 0}$.

The ζ-function of X is $\zeta_{\mathrm{X}}(\mathrm{t})=\sum_{\mathrm{m}=0}^{\infty} \mathcal{A}_{\mathrm{m}}(\mathrm{X}) \mathrm{t}^{\mathrm{m}}$

Effective divisors of fixed degree

A divisor $\mathrm{D}=\mathrm{a}_{1} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \nu_{\mathrm{s}}$ is effective if all of its non-zero coefficients $\mathrm{a}_{\mathrm{j}}>0$ are positive.

There are finitely many $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$-orbits on X of fixed degree and, therefore, a finite number $\mathcal{A}_{\mathrm{m}}(\mathrm{X}) \in \mathbb{Z} \geq 0$ of effective divisors on X of degree $m \in \mathbb{Z}^{\geq 0}$.

The ζ-function of X is $\zeta_{\mathrm{X}}(\mathrm{t})=\sum_{\mathrm{m}=0}^{\infty} \mathcal{A}_{\mathrm{m}}(\mathrm{X}) \mathrm{t}^{\mathrm{m}}$.

Effective divisors of fixed degree

A divisor $\mathrm{D}=\mathrm{a}_{1} \nu_{1}+\ldots+\mathrm{a}_{\mathrm{s}} \nu_{\mathrm{s}}$ is effective if all of its non-zero coefficients $\mathrm{a}_{\mathrm{j}}>0$ are positive.

There are finitely many $\operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{q}}\right)$-orbits on X of fixed degree and, therefore, a finite number $\mathcal{A}_{\mathrm{m}}(\mathrm{X}) \in \mathbb{Z}^{\geq 0}$ of effective divisors on X of degree $m \in \mathbb{Z}^{\geq 0}$.

The ζ-function of X is $\zeta_{\mathrm{X}}(\mathrm{t})=\sum_{\mathrm{m}=0}^{\infty} \mathcal{A}_{\mathrm{m}}(\mathrm{X}) \mathrm{t}^{\mathrm{m}}$.

Riemann-Roch Conditions for a curve

Immediate consequences of the Riemann-Roch Theorem on a smooth irreducible curve $\mathrm{X} / \mathbb{F}_{\mathrm{q}} \subset \mathbb{P}^{\mathrm{N}}\left(\overline{\mathbb{F}_{\mathrm{q}}}\right)$ of genus g are the Riemann-Roch Conditions

$$
\mathcal{A}_{\mathrm{m}}(\mathrm{X})=\mathrm{q}^{\mathrm{m}-\mathrm{g}+1} \mathcal{A}_{2 \mathrm{~g}-2-\mathrm{m}}(\mathrm{X})+\left(\mathrm{q}^{\mathrm{m}-\mathrm{g}+1}-1\right) \operatorname{Res}_{1}\left(\zeta_{\mathrm{X}}(\mathrm{t})\right)
$$

for $\forall \mathrm{m} \geq \mathrm{g}$ and the residuum $\operatorname{Res}_{1}\left(\zeta_{\mathrm{x}}(\mathrm{t})\right)$ of $\zeta_{\mathrm{x}}(\mathrm{t})$ at $\mathrm{t}=1$.

Definition: Formal power series $\zeta(\mathrm{t})=\sum_{\mathrm{m}=0}^{\infty} \mathcal{A}_{\mathrm{m}} \mathrm{t}^{\mathrm{m}}$ and $\zeta^{\perp}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\infty} \mathcal{A}_{\mathrm{m}}^{\perp} \mathrm{t}^{\mathrm{m}}$ satisfy the Polarized Riemann-Roch
Conditions PRRC($\mathrm{g}, \mathrm{g}^{\perp}$) for some $\mathrm{g}, \mathrm{g}^{\perp} \in \mathbb{Z}^{\geq 0}$ if

$$
\begin{gathered}
\mathcal{A}_{\mathrm{m}}=\mathrm{q}^{\mathrm{m}-\mathrm{g}+1} \mathcal{A}_{\mathrm{g}+\mathrm{g}^{\perp}-2-\mathrm{m}}^{\perp}+\left(\mathrm{q}^{\mathrm{m}-\mathrm{g}+1}-1\right) \operatorname{Res}_{1}(\zeta(\mathrm{t})) \text { for } \forall \mathrm{m} \geq \mathrm{g}, \\
\mathcal{A}_{\mathrm{g}-1}=\mathcal{A}_{\mathrm{g}^{\perp}-1}^{\perp} \text { and }
\end{gathered}
$$

$$
\mathcal{A}_{\mathrm{m}}^{\perp}=\mathrm{q}^{\mathrm{m}-\mathrm{g}^{\perp}+1} \mathcal{A}_{\mathrm{g}+\mathrm{g}^{\perp}-2-\mathrm{m}}+\left(\mathrm{q}^{\mathrm{m}-\mathrm{g}^{\perp}+1}-1\right) \operatorname{Res}_{1}\left(\zeta^{\perp}(\mathrm{t})\right) \text { for } \forall \mathrm{m} \geq \mathrm{g}^{\perp},
$$

where $\operatorname{Res}_{1}(\zeta(\mathrm{t})), \operatorname{Res}_{1}\left(\zeta^{\perp}(\mathrm{t})\right)$ are the residuums at $\mathrm{t}=1$.

Riemann-Roch Conditions imply rationality

Note that $\operatorname{PRRC}\left(\mathrm{g}, \mathrm{g}^{\perp}\right)$ imply the recurrence relations
$\mathcal{A}_{\mathrm{m}+2}-(\mathrm{q}+1) \mathcal{A}_{\mathrm{m}+1}+\mathrm{q} \mathcal{A}_{\mathrm{m}}=\mathcal{A}_{\mathrm{m}+2}^{\perp}-(\mathrm{q}+1) \mathcal{A}_{\mathrm{m}+1}+\mathrm{q} \mathcal{A}_{\mathrm{m}}^{\perp}=0$ for $\forall \mathrm{m} \geq \mathrm{g}+\mathrm{g}^{\perp}-1$, which hold exactly when

$$
\zeta(\mathrm{t})=\frac{\mathrm{P}(\mathrm{t})}{(1-\mathrm{t})(1-\mathrm{qt})}, \quad \zeta^{\perp}(\mathrm{t})=\frac{\mathrm{P}^{\perp}(\mathrm{t})}{(1-\mathrm{t})(1-\mathrm{qt})}
$$

for polynomials $\mathrm{P}(\mathrm{t}), \mathrm{P}^{\perp}(\mathrm{t}) \in \mathbb{C}[\mathrm{t}]$.

Mac Williams identities as PRRC

Theorem: Mac Williams identities for an \mathbb{F}_{q}-linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$-code C of genus $\mathrm{g}:=\mathrm{n}+1-\mathrm{k}-\mathrm{d} \geq 0$ and its dual $\mathrm{C}^{\perp} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ of genus $\mathrm{g}^{\perp}=\mathrm{k}+1-\mathrm{d}^{\perp} \geq 0$ are equivalent to the Polarized Riemann-Roch Conditions $\operatorname{PRRC}\left(\mathrm{g}, \mathrm{g}^{\perp}\right)$ on their ζ-functions $\zeta_{\mathrm{C}}(\mathrm{t}), \zeta_{\mathrm{C}^{\perp}}(\mathrm{t})$.

Definition of Duursma's reduced polynomial

Proposition (KM - 2014): Let C be an \mathbb{F}_{q}-linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$-code of genus $\mathrm{g}=\mathrm{n}+1-\mathrm{k}-\mathrm{d} \geq 1$, whose dual C^{\perp} is of genus $\mathrm{g}^{\perp}=\mathrm{k}+1-\mathrm{d}^{\perp} \geq 1$. Then there is a unique Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{\mathrm{g}+\mathrm{g}^{\perp}-2} \mathrm{c}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \in \mathbb{Q}[\mathrm{t}]$, such that $\mathcal{W}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=$ $\mathcal{M}_{\mathrm{n}, \mathrm{n}+1-\mathrm{k}}(\mathrm{x}, \mathrm{y})+\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}-2}(\mathrm{q}-1) \mathrm{c}_{\mathrm{i}}\binom{\mathrm{n}}{\mathrm{d}+\mathrm{i}}(\mathrm{x}-\mathrm{y})^{\mathrm{n}-\mathrm{d}-\mathrm{i}} \mathrm{y}^{\mathrm{d}+\mathrm{i}}$.

D_{C} and $\mathrm{D}_{\mathrm{C}^{\perp}}$ are determined by $\mathrm{g}+\mathrm{g}^{\perp}-1$ parameters

Corollary: The lower parts $\varphi_{\mathrm{C}}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\mathrm{g}-2} \mathrm{c}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}}, \varphi_{\mathrm{C}^{\perp}}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\mathrm{g} \perp} \mathrm{c}_{\mathrm{i}}^{\perp} \mathrm{t}^{\mathrm{i}}$ of Duursma's reduced polynomials $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i}$,
$\mathrm{D}_{\mathrm{C}^{\perp}}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}-2} \mathrm{c}_{\mathrm{i}}^{\perp} \mathrm{t}^{\mathrm{i}}$ and the number $\mathrm{c}_{\mathrm{g}-1}=\mathrm{c}_{\mathrm{g}^{\perp}-1}^{\perp} \in \mathbb{Q}$ determine uniquely

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{C}}(\mathrm{t})=\varphi_{\mathrm{C}}(\mathrm{t})+\mathrm{c}_{\mathrm{g}-1} \mathrm{t}^{\mathrm{g}-1}+\varphi_{\mathrm{C}}\left(\frac{1}{\mathrm{qt}}\right) \mathrm{q}^{\mathrm{g}^{\perp}-1} \mathrm{t}^{\mathrm{g}+\mathrm{g}^{\perp}-2} \\
& \mathrm{D}_{\mathrm{C}^{\perp}}(\mathrm{t})=\varphi_{\mathrm{C}^{\perp}}(\mathrm{t})+\mathrm{c}_{\mathrm{g}-1} \mathrm{t}^{\mathrm{g}^{\perp}-1}+\varphi_{\mathrm{C}}\left(\frac{1}{\mathrm{qt}}\right) \mathrm{q}^{\mathrm{g}-1} \mathrm{t}^{\mathrm{g}+\mathrm{g}^{\perp-2}} .
\end{aligned}
$$

The coefficients of Duursma's reduced polynomial

Corollary: If C if an \mathbb{F}_{q}-linear code of genus $\mathrm{g} \geq 1$ with
Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{\mathrm{g}+\mathrm{g}^{\perp}-2} c_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \in \mathbb{Q}[t]$, then

$$
\mathrm{c}_{\mathrm{i}}\binom{\mathrm{n}}{\mathrm{~d}+\mathrm{i}} \in \mathbb{Z}^{\geq 0} \quad \text { for } \quad \forall 0 \leq \mathrm{i} \leq \mathrm{g}+\mathrm{g}^{\perp}-2 .
$$

A linear code $\mathrm{C} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ is non-degenerate if it is not contained in a coordinate hyperplane $\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}\right)=\left\{\mathrm{a} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \mid \mathrm{a}_{\mathrm{i}}=0\right\}$ for some $1 \leq \mathrm{i} \leq \mathrm{n}$.

The coefficients of Duursma's reduced polynomial

Corollary: If C if an \mathbb{F}_{q}-linear code of genus $\mathrm{g} \geq 1$ with
Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]$, then

$$
\mathrm{c}_{\mathrm{i}}\binom{\mathrm{n}}{\mathrm{~d}+\mathrm{i}} \in \mathbb{Z}^{\geq 0} \quad \text { for } \quad \forall 0 \leq \mathrm{i} \leq \mathrm{g}+\mathrm{g}^{\perp}-2 .
$$

A linear code $\mathrm{C} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ is non-degenerate if it is not contained in a coordinate hyperplane $\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}\right)=\left\{\mathrm{a} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \mid \mathrm{a}_{\mathrm{i}}=0\right\}$ for some $1 \leq \mathrm{i} \leq \mathrm{n}$.

An averaging interpretation of the coefficients of Duursma's reduced polynomial

Proposition: Let C be a non-degenerate \mathbb{F}_{q}-linear code with Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]$ and

$$
\mathbb{P}(\mathrm{C})^{(\subseteq \beta)}=\left\{[\mathrm{a}] \in \mathbb{P}(\mathrm{C}) \subset \mathbb{P}\left(\mathbb{F}_{\mathrm{q}}^{\mathrm{n}}\right) \mid \operatorname{Supp}([\mathrm{a}]) \subseteq \beta\right\}
$$

for $\beta=\left\{\beta_{1}, \ldots, \beta_{\mathrm{d}+\mathrm{i}}\right\} \subset\{1, \ldots, \mathrm{n}\}$ with $0 \leq \mathrm{i} \leq \mathrm{g}-1$. Then

$$
\mathrm{c}_{\mathrm{i}}=\binom{\mathrm{n}}{\mathrm{~d}+\mathrm{i}}^{-1}\left(\sum_{\beta=\left\{\beta_{1}, \ldots, \beta_{\mathrm{d}+\mathrm{i}}\right\} \subset\{1, \ldots, \mathrm{n}\}}\left|\mathbb{P}(\mathrm{C})^{(\subseteq \beta)}\right|\right)
$$

is the average cardinality of an intersection of $\mathbb{P}(\mathrm{C})$ with $\mathrm{n}-\mathrm{d}$ - i coordinate hyperplanes in $\mathbb{P}\left(\mathbb{F}_{\mathrm{q}}^{\mathrm{n}}\right)$.

Probabilistic interpretations of the coefficients of Duursma's reduced polynomial

Proposition: Let C be an \mathbb{F}_{q}-linear code with Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{\mathrm{g}+\mathrm{g}^{\perp}-2} \mathrm{c}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \in \mathbb{Q}[\mathrm{t}]$. If $\pi_{\mathbb{P}(\mathrm{C})}^{(\mathrm{w})}$, respectively, $\pi_{\mathbb{P}\left(\mathrm{C}^{\perp}\right)}^{(\mathrm{w})}$ is the probability of $[\mathrm{b}] \in \mathbb{P}\left(\mathbb{F}_{\mathrm{q}}^{\mathrm{n}}\right)$ with $\mathrm{wt}([\mathrm{b}])=\mathrm{w}$ to belong to $\mathbb{P}(\mathrm{C})$, respectively, to $\mathbb{P}\left(\mathrm{C}^{\perp}\right)$, then

$$
\begin{gathered}
c_{i}=\sum_{\mathrm{w}=\mathrm{d}}^{\mathrm{d}+\mathrm{i}} \pi_{\mathbb{P}(\mathrm{C})}^{(\mathrm{w})}\binom{\mathrm{d}+\mathrm{i}}{\mathrm{w}}(\mathrm{q}-1)^{\mathrm{w}-1} \text { for } \forall 0 \leq \mathrm{i} \leq \mathrm{g}-1 ; \\
\mathrm{c}_{\mathrm{i}}=\mathrm{q}^{\mathrm{i}-\mathrm{g}+1}\left[\sum_{\mathrm{w}=\mathrm{d}^{\perp}}^{\mathrm{n}-\mathrm{d}-\mathrm{i}} \pi_{\mathbb{P}\left(\mathrm{C}^{\perp}\right)}^{(\mathrm{w})}\binom{\mathrm{n}-\mathrm{d}-\mathrm{i}}{\mathrm{w}}(\mathrm{q}-1)^{\mathrm{w}-1}\right], \forall \mathrm{g} \leq \mathrm{i} \leq \mathrm{g}+\mathrm{g}^{\perp}-2 .
\end{gathered}
$$

Probabilistic interpretations of the coefficients of Duursma's reduced polynomial

Proposition: Let C be an \mathbb{F}_{q}-linear code with Duursma's reduced polynomial $D_{C}(t)=\sum_{\mathrm{i}=0}^{\mathrm{g}+\mathrm{g}^{\perp}-2} \mathrm{c}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \in \mathbb{Q}[\mathrm{t}]$. If $\bar{\pi}_{[a]}^{(\mathrm{w})}$ is the probability of $\beta=\left\{\beta_{1}, \ldots, \beta_{\mathrm{w}}\right\} \subset\{1, \ldots, \mathrm{n}\}$ to contain the support $\operatorname{Supp}([a])$ of $[a] \in \mathbb{P}\left(\mathbb{F}_{\mathrm{q}}^{\mathrm{n}}\right)$, then

$$
\begin{gathered}
\mathrm{c}_{\mathrm{i}}=\sum_{[\mathrm{a}] \in \mathbb{P}(\mathrm{C})} \bar{\pi}_{[\mathrm{a}]}^{(\mathrm{d}+\mathrm{i})} \text { for } \forall 0 \leq \mathrm{i} \leq \mathrm{g}-1 ; \\
\mathrm{c}_{\mathrm{i}}=\mathrm{q}^{\mathrm{i}-\mathrm{g}+1}\left(\sum_{[\mathrm{b}] \in \mathbb{P}\left(\mathrm{C}^{\perp}\right)} \bar{\pi}_{[\mathrm{b}]}^{(\mathrm{n}-\mathrm{d}-\mathrm{i})}\right) \text { for } \forall \mathrm{g} \leq \mathrm{i} \leq \mathrm{g}+\mathrm{g}^{\perp}-2 .
\end{gathered}
$$

Thank you for your attention!

